book3s_pr.c 40.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *    Paul Mackerras <paulus@samba.org>
 *
 * Description:
 * Functions relating to running KVM on Book 3S processors where
 * we don't have access to hypervisor mode, and we run the guest
 * in problem state (user mode).
 *
 * This file is derived from arch/powerpc/kvm/44x.c,
 * by Hollis Blanchard <hollisb@us.ibm.com>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
23
#include <linux/export.h>
24 25 26 27 28 29 30 31 32 33 34 35
#include <linux/err.h>
#include <linux/slab.h>

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
36
#include <asm/switch_to.h>
37
#include <asm/firmware.h>
38
#include <asm/hvcall.h>
39 40 41 42 43
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>

44
#include "book3s.h"
45 46 47

#define CREATE_TRACE_POINTS
#include "trace_pr.h"
48 49 50 51 52 53 54 55 56 57 58 59 60 61

/* #define EXIT_DEBUG */
/* #define DEBUG_EXT */

static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr);

/* Some compatibility defines */
#ifdef CONFIG_PPC_BOOK3S_32
#define MSR_USER32 MSR_USER
#define MSR_USER64 MSR_USER
#define HW_PAGE_SIZE PAGE_SIZE
#endif

62
static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
63 64
{
#ifdef CONFIG_PPC_BOOK3S_64
65 66 67 68
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
	svcpu_put(svcpu);
69
#endif
70
	vcpu->cpu = smp_processor_id();
71
#ifdef CONFIG_PPC_BOOK3S_32
72
	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
73 74 75
#endif
}

76
static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
77 78
{
#ifdef CONFIG_PPC_BOOK3S_64
79 80 81 82
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
	svcpu_put(svcpu);
83 84
#endif

85
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
86
	vcpu->cpu = -1;
87 88
}

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
/* Copy data needed by real-mode code from vcpu to shadow vcpu */
void kvmppc_copy_to_svcpu(struct kvmppc_book3s_shadow_vcpu *svcpu,
			  struct kvm_vcpu *vcpu)
{
	svcpu->gpr[0] = vcpu->arch.gpr[0];
	svcpu->gpr[1] = vcpu->arch.gpr[1];
	svcpu->gpr[2] = vcpu->arch.gpr[2];
	svcpu->gpr[3] = vcpu->arch.gpr[3];
	svcpu->gpr[4] = vcpu->arch.gpr[4];
	svcpu->gpr[5] = vcpu->arch.gpr[5];
	svcpu->gpr[6] = vcpu->arch.gpr[6];
	svcpu->gpr[7] = vcpu->arch.gpr[7];
	svcpu->gpr[8] = vcpu->arch.gpr[8];
	svcpu->gpr[9] = vcpu->arch.gpr[9];
	svcpu->gpr[10] = vcpu->arch.gpr[10];
	svcpu->gpr[11] = vcpu->arch.gpr[11];
	svcpu->gpr[12] = vcpu->arch.gpr[12];
	svcpu->gpr[13] = vcpu->arch.gpr[13];
	svcpu->cr  = vcpu->arch.cr;
	svcpu->xer = vcpu->arch.xer;
	svcpu->ctr = vcpu->arch.ctr;
	svcpu->lr  = vcpu->arch.lr;
	svcpu->pc  = vcpu->arch.pc;
}

/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu,
			    struct kvmppc_book3s_shadow_vcpu *svcpu)
{
	vcpu->arch.gpr[0] = svcpu->gpr[0];
	vcpu->arch.gpr[1] = svcpu->gpr[1];
	vcpu->arch.gpr[2] = svcpu->gpr[2];
	vcpu->arch.gpr[3] = svcpu->gpr[3];
	vcpu->arch.gpr[4] = svcpu->gpr[4];
	vcpu->arch.gpr[5] = svcpu->gpr[5];
	vcpu->arch.gpr[6] = svcpu->gpr[6];
	vcpu->arch.gpr[7] = svcpu->gpr[7];
	vcpu->arch.gpr[8] = svcpu->gpr[8];
	vcpu->arch.gpr[9] = svcpu->gpr[9];
	vcpu->arch.gpr[10] = svcpu->gpr[10];
	vcpu->arch.gpr[11] = svcpu->gpr[11];
	vcpu->arch.gpr[12] = svcpu->gpr[12];
	vcpu->arch.gpr[13] = svcpu->gpr[13];
	vcpu->arch.cr  = svcpu->cr;
	vcpu->arch.xer = svcpu->xer;
	vcpu->arch.ctr = svcpu->ctr;
	vcpu->arch.lr  = svcpu->lr;
	vcpu->arch.pc  = svcpu->pc;
	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
	vcpu->arch.fault_dar   = svcpu->fault_dar;
	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
	vcpu->arch.last_inst   = svcpu->last_inst;
}

143
static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
144
{
145 146
	int r = 1; /* Indicate we want to get back into the guest */

147 148 149 150
	/* We misuse TLB_FLUSH to indicate that we want to clear
	   all shadow cache entries */
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
		kvmppc_mmu_pte_flush(vcpu, 0, 0);
151 152

	return r;
153 154
}

155
/************* MMU Notifiers *************/
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
			     unsigned long end)
{
	long i;
	struct kvm_vcpu *vcpu;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
		kvm_for_each_vcpu(i, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
					      gfn_end << PAGE_SHIFT);
	}
}
185

186
static int kvm_unmap_hva_pr(struct kvm *kvm, unsigned long hva)
187 188 189
{
	trace_kvm_unmap_hva(hva);

190
	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
191 192 193 194

	return 0;
}

195 196
static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
				  unsigned long end)
197
{
198
	do_kvm_unmap_hva(kvm, start, end);
199 200 201 202

	return 0;
}

203
static int kvm_age_hva_pr(struct kvm *kvm, unsigned long hva)
204 205 206 207 208
{
	/* XXX could be more clever ;) */
	return 0;
}

209
static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
210 211 212 213 214
{
	/* XXX could be more clever ;) */
	return 0;
}

215
static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
216 217
{
	/* The page will get remapped properly on its next fault */
218
	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
219 220 221 222
}

/*****************************************/

223 224 225 226 227
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
{
	ulong smsr = vcpu->arch.shared->msr;

	/* Guest MSR values */
228
	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE;
229 230 231 232 233 234 235 236 237 238 239
	/* Process MSR values */
	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
	/* External providers the guest reserved */
	smsr |= (vcpu->arch.shared->msr & vcpu->arch.guest_owned_ext);
	/* 64-bit Process MSR values */
#ifdef CONFIG_PPC_BOOK3S_64
	smsr |= MSR_ISF | MSR_HV;
#endif
	vcpu->arch.shadow_msr = smsr;
}

240
static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
241 242 243 244 245 246 247 248 249 250 251 252 253 254
{
	ulong old_msr = vcpu->arch.shared->msr;

#ifdef EXIT_DEBUG
	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
#endif

	msr &= to_book3s(vcpu)->msr_mask;
	vcpu->arch.shared->msr = msr;
	kvmppc_recalc_shadow_msr(vcpu);

	if (msr & MSR_POW) {
		if (!vcpu->arch.pending_exceptions) {
			kvm_vcpu_block(vcpu);
255
			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
			vcpu->stat.halt_wakeup++;

			/* Unset POW bit after we woke up */
			msr &= ~MSR_POW;
			vcpu->arch.shared->msr = msr;
		}
	}

	if ((vcpu->arch.shared->msr & (MSR_PR|MSR_IR|MSR_DR)) !=
		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
		kvmppc_mmu_flush_segments(vcpu);
		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));

		/* Preload magic page segment when in kernel mode */
		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
			struct kvm_vcpu_arch *a = &vcpu->arch;

			if (msr & MSR_DR)
				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
			else
				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
		}
	}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
	/*
	 * When switching from 32 to 64-bit, we may have a stale 32-bit
	 * magic page around, we need to flush it. Typically 32-bit magic
	 * page will be instanciated when calling into RTAS. Note: We
	 * assume that such transition only happens while in kernel mode,
	 * ie, we never transition from user 32-bit to kernel 64-bit with
	 * a 32-bit magic page around.
	 */
	if (vcpu->arch.magic_page_pa &&
	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
		/* going from RTAS to normal kernel code */
		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
				     ~0xFFFUL);
	}

295 296 297 298 299
	/* Preload FPU if it's enabled */
	if (vcpu->arch.shared->msr & MSR_FP)
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
}

300
void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
301 302 303 304 305 306 307 308
{
	u32 host_pvr;

	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
	vcpu->arch.pvr = pvr;
#ifdef CONFIG_PPC_BOOK3S_64
	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
		kvmppc_mmu_book3s_64_init(vcpu);
309 310
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0xfff00000;
311
		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
312
		vcpu->arch.cpu_type = KVM_CPU_3S_64;
313 314 315 316
	} else
#endif
	{
		kvmppc_mmu_book3s_32_init(vcpu);
317 318
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0;
319
		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
320
		vcpu->arch.cpu_type = KVM_CPU_3S_32;
321 322
	}

323 324
	kvmppc_sanity_check(vcpu);

325 326 327 328 329 330 331 332 333 334 335 336
	/* If we are in hypervisor level on 970, we can tell the CPU to
	 * treat DCBZ as 32 bytes store */
	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
	    !strcmp(cur_cpu_spec->platform, "ppc970"))
		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;

	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
	   really needs them in a VM on Cell and force disable them. */
	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
	/*
	 * If they're asking for POWER6 or later, set the flag
	 * indicating that we can do multiple large page sizes
	 * and 1TB segments.
	 * Also set the flag that indicates that tlbie has the large
	 * page bit in the RB operand instead of the instruction.
	 */
	switch (PVR_VER(pvr)) {
	case PVR_POWER6:
	case PVR_POWER7:
	case PVR_POWER7p:
	case PVR_POWER8:
		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
			BOOK3S_HFLAG_NEW_TLBIE;
		break;
	}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
#ifdef CONFIG_PPC_BOOK3S_32
	/* 32 bit Book3S always has 32 byte dcbz */
	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
#endif

	/* On some CPUs we can execute paired single operations natively */
	asm ( "mfpvr %0" : "=r"(host_pvr));
	switch (host_pvr) {
	case 0x00080200:	/* lonestar 2.0 */
	case 0x00088202:	/* lonestar 2.2 */
	case 0x70000100:	/* gekko 1.0 */
	case 0x00080100:	/* gekko 2.0 */
	case 0x00083203:	/* gekko 2.3a */
	case 0x00083213:	/* gekko 2.3b */
	case 0x00083204:	/* gekko 2.4 */
	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
	case 0x00087200:	/* broadway */
		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
		/* Enable HID2.PSE - in case we need it later */
		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
	}
}

/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
 * emulate 32 bytes dcbz length.
 *
 * The Book3s_64 inventors also realized this case and implemented a special bit
 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
 *
 * My approach here is to patch the dcbz instruction on executing pages.
 */
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
{
	struct page *hpage;
	u64 hpage_offset;
	u32 *page;
	int i;

	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
394
	if (is_error_page(hpage))
395 396 397 398 399 400 401
		return;

	hpage_offset = pte->raddr & ~PAGE_MASK;
	hpage_offset &= ~0xFFFULL;
	hpage_offset /= 4;

	get_page(hpage);
402
	page = kmap_atomic(hpage);
403 404 405 406 407 408

	/* patch dcbz into reserved instruction, so we trap */
	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
		if ((page[i] & 0xff0007ff) == INS_DCBZ)
			page[i] &= 0xfffffff7;

409
	kunmap_atomic(page);
410 411 412 413 414 415 416
	put_page(hpage);
}

static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
	ulong mp_pa = vcpu->arch.magic_page_pa;

417 418 419
	if (!(vcpu->arch.shared->msr & MSR_SF))
		mp_pa = (uint32_t)mp_pa;

420 421 422 423 424 425 426 427 428 429 430 431
	if (unlikely(mp_pa) &&
	    unlikely((mp_pa & KVM_PAM) >> PAGE_SHIFT == gfn)) {
		return 1;
	}

	return kvm_is_visible_gfn(vcpu->kvm, gfn);
}

int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
			    ulong eaddr, int vec)
{
	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
432
	bool iswrite = false;
433 434 435 436 437 438 439 440 441 442
	int r = RESUME_GUEST;
	int relocated;
	int page_found = 0;
	struct kvmppc_pte pte;
	bool is_mmio = false;
	bool dr = (vcpu->arch.shared->msr & MSR_DR) ? true : false;
	bool ir = (vcpu->arch.shared->msr & MSR_IR) ? true : false;
	u64 vsid;

	relocated = data ? dr : ir;
443 444
	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
		iswrite = true;
445 446 447

	/* Resolve real address if translation turned on */
	if (relocated) {
448
		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
449 450 451 452 453 454 455
	} else {
		pte.may_execute = true;
		pte.may_read = true;
		pte.may_write = true;
		pte.raddr = eaddr & KVM_PAM;
		pte.eaddr = eaddr;
		pte.vpage = eaddr >> 12;
456
		pte.page_size = MMU_PAGE_64K;
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
	}

	switch (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) {
	case 0:
		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
		break;
	case MSR_DR:
	case MSR_IR:
		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);

		if ((vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) == MSR_DR)
			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
		else
			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
		pte.vpage |= vsid;

		if (vsid == -1)
			page_found = -EINVAL;
		break;
	}

	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
		/*
		 * If we do the dcbz hack, we have to NX on every execution,
		 * so we can patch the executing code. This renders our guest
		 * NX-less.
		 */
		pte.may_execute = !data;
	}

	if (page_found == -ENOENT) {
		/* Page not found in guest PTE entries */
		vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
491
		vcpu->arch.shared->dsisr = vcpu->arch.fault_dsisr;
492
		vcpu->arch.shared->msr |=
493
			vcpu->arch.shadow_srr1 & 0x00000000f8000000ULL;
494 495 496 497
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EPERM) {
		/* Storage protection */
		vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
498
		vcpu->arch.shared->dsisr = vcpu->arch.fault_dsisr & ~DSISR_NOHPTE;
499 500
		vcpu->arch.shared->dsisr |= DSISR_PROTFAULT;
		vcpu->arch.shared->msr |=
501
			vcpu->arch.shadow_srr1 & 0x00000000f8000000ULL;
502 503 504 505 506 507 508
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EINVAL) {
		/* Page not found in guest SLB */
		vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
	} else if (!is_mmio &&
		   kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) {
509 510 511 512 513 514 515 516
		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
			/*
			 * There is already a host HPTE there, presumably
			 * a read-only one for a page the guest thinks
			 * is writable, so get rid of it first.
			 */
			kvmppc_mmu_unmap_page(vcpu, &pte);
		}
517
		/* The guest's PTE is not mapped yet. Map on the host */
518
		kvmppc_mmu_map_page(vcpu, &pte, iswrite);
519 520 521
		if (data)
			vcpu->stat.sp_storage++;
		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
522
			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
523 524 525 526 527
			kvmppc_patch_dcbz(vcpu, &pte);
	} else {
		/* MMIO */
		vcpu->stat.mmio_exits++;
		vcpu->arch.paddr_accessed = pte.raddr;
528
		vcpu->arch.vaddr_accessed = pte.eaddr;
529 530 531 532 533 534 535 536 537 538
		r = kvmppc_emulate_mmio(run, vcpu);
		if ( r == RESUME_HOST_NV )
			r = RESUME_HOST;
	}

	return r;
}

static inline int get_fpr_index(int i)
{
539
	return i * TS_FPRWIDTH;
540 541 542 543 544 545 546 547 548 549 550 551 552
}

/* Give up external provider (FPU, Altivec, VSX) */
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
{
	struct thread_struct *t = &current->thread;
	u64 *vcpu_fpr = vcpu->arch.fpr;
#ifdef CONFIG_VSX
	u64 *vcpu_vsx = vcpu->arch.vsr;
#endif
	u64 *thread_fpr = (u64*)t->fpr;
	int i;

553 554 555 556 557 558 559 560 561
	/*
	 * VSX instructions can access FP and vector registers, so if
	 * we are giving up VSX, make sure we give up FP and VMX as well.
	 */
	if (msr & MSR_VSX)
		msr |= MSR_FP | MSR_VEC;

	msr &= vcpu->arch.guest_owned_ext;
	if (!msr)
562 563 564 565 566 567
		return;

#ifdef DEBUG_EXT
	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
#endif

568 569 570 571 572 573
	if (msr & MSR_FP) {
		/*
		 * Note that on CPUs with VSX, giveup_fpu stores
		 * both the traditional FP registers and the added VSX
		 * registers into thread.fpr[].
		 */
574 575
		if (current->thread.regs->msr & MSR_FP)
			giveup_fpu(current);
576 577 578 579
		for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
			vcpu_fpr[i] = thread_fpr[get_fpr_index(i)];

		vcpu->arch.fpscr = t->fpscr.val;
580 581 582 583 584 585 586 587

#ifdef CONFIG_VSX
		if (cpu_has_feature(CPU_FTR_VSX))
			for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr) / 2; i++)
				vcpu_vsx[i] = thread_fpr[get_fpr_index(i) + 1];
#endif
	}

588
#ifdef CONFIG_ALTIVEC
589
	if (msr & MSR_VEC) {
590 591
		if (current->thread.regs->msr & MSR_VEC)
			giveup_altivec(current);
592 593 594
		memcpy(vcpu->arch.vr, t->vr, sizeof(vcpu->arch.vr));
		vcpu->arch.vscr = t->vscr;
	}
595
#endif
596

597
	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
	kvmppc_recalc_shadow_msr(vcpu);
}

static int kvmppc_read_inst(struct kvm_vcpu *vcpu)
{
	ulong srr0 = kvmppc_get_pc(vcpu);
	u32 last_inst = kvmppc_get_last_inst(vcpu);
	int ret;

	ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
	if (ret == -ENOENT) {
		ulong msr = vcpu->arch.shared->msr;

		msr = kvmppc_set_field(msr, 33, 33, 1);
		msr = kvmppc_set_field(msr, 34, 36, 0);
		vcpu->arch.shared->msr = kvmppc_set_field(msr, 42, 47, 0);
		kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE);
		return EMULATE_AGAIN;
	}

	return EMULATE_DONE;
}

static int kvmppc_check_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr)
{

	/* Need to do paired single emulation? */
	if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
		return EMULATE_DONE;

	/* Read out the instruction */
	if (kvmppc_read_inst(vcpu) == EMULATE_DONE)
		/* Need to emulate */
		return EMULATE_FAIL;

	return EMULATE_AGAIN;
}

/* Handle external providers (FPU, Altivec, VSX) */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr)
{
	struct thread_struct *t = &current->thread;
	u64 *vcpu_fpr = vcpu->arch.fpr;
#ifdef CONFIG_VSX
	u64 *vcpu_vsx = vcpu->arch.vsr;
#endif
	u64 *thread_fpr = (u64*)t->fpr;
	int i;

	/* When we have paired singles, we emulate in software */
	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
		return RESUME_GUEST;

	if (!(vcpu->arch.shared->msr & msr)) {
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		return RESUME_GUEST;
	}

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
	if (msr == MSR_VSX) {
		/* No VSX?  Give an illegal instruction interrupt */
#ifdef CONFIG_VSX
		if (!cpu_has_feature(CPU_FTR_VSX))
#endif
		{
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			return RESUME_GUEST;
		}

		/*
		 * We have to load up all the FP and VMX registers before
		 * we can let the guest use VSX instructions.
		 */
		msr = MSR_FP | MSR_VEC | MSR_VSX;
672 673
	}

674 675 676 677 678
	/* See if we already own all the ext(s) needed */
	msr &= ~vcpu->arch.guest_owned_ext;
	if (!msr)
		return RESUME_GUEST;

679 680 681 682
#ifdef DEBUG_EXT
	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
#endif

683
	if (msr & MSR_FP) {
684 685
		for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
			thread_fpr[get_fpr_index(i)] = vcpu_fpr[i];
686 687 688 689
#ifdef CONFIG_VSX
		for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr) / 2; i++)
			thread_fpr[get_fpr_index(i) + 1] = vcpu_vsx[i];
#endif
690 691 692
		t->fpscr.val = vcpu->arch.fpscr;
		t->fpexc_mode = 0;
		kvmppc_load_up_fpu();
693 694 695
	}

	if (msr & MSR_VEC) {
696 697 698 699 700 701 702 703
#ifdef CONFIG_ALTIVEC
		memcpy(t->vr, vcpu->arch.vr, sizeof(vcpu->arch.vr));
		t->vscr = vcpu->arch.vscr;
		t->vrsave = -1;
		kvmppc_load_up_altivec();
#endif
	}

704
	current->thread.regs->msr |= msr;
705 706 707 708 709 710
	vcpu->arch.guest_owned_ext |= msr;
	kvmppc_recalc_shadow_msr(vcpu);

	return RESUME_GUEST;
}

711 712 713 714 715 716 717 718 719 720 721 722 723 724
/*
 * Kernel code using FP or VMX could have flushed guest state to
 * the thread_struct; if so, get it back now.
 */
static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
{
	unsigned long lost_ext;

	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
	if (!lost_ext)
		return;

	if (lost_ext & MSR_FP)
		kvmppc_load_up_fpu();
725
#ifdef CONFIG_ALTIVEC
726 727
	if (lost_ext & MSR_VEC)
		kvmppc_load_up_altivec();
728
#endif
729 730 731
	current->thread.regs->msr |= lost_ext;
}

732 733
int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
			  unsigned int exit_nr)
734 735
{
	int r = RESUME_HOST;
736
	int s;
737 738 739 740 741 742

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

743
	/* We get here with MSR.EE=1 */
744

745
	trace_kvm_exit(exit_nr, vcpu);
746
	kvm_guest_exit();
747

748 749
	switch (exit_nr) {
	case BOOK3S_INTERRUPT_INST_STORAGE:
750
	{
751
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
752 753 754 755 756
		vcpu->stat.pf_instruc++;

#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
757 758 759 760 761 762
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
763
			svcpu_put(svcpu);
764 765 766 767 768
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
				r = RESUME_GUEST;
				break;
			}
769 770 771 772
		}
#endif

		/* only care about PTEG not found errors, but leave NX alone */
773
		if (shadow_srr1 & 0x40000000) {
774
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
775
			r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
776
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
777 778 779 780 781 782 783 784 785 786 787
			vcpu->stat.sp_instruc++;
		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
			/*
			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
			 *     that no guest that needs the dcbz hack does NX.
			 */
			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
			r = RESUME_GUEST;
		} else {
788
			vcpu->arch.shared->msr |= shadow_srr1 & 0x58000000;
789 790 791 792
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
793
	}
794 795 796
	case BOOK3S_INTERRUPT_DATA_STORAGE:
	{
		ulong dar = kvmppc_get_fault_dar(vcpu);
797
		u32 fault_dsisr = vcpu->arch.fault_dsisr;
798 799 800 801 802
		vcpu->stat.pf_storage++;

#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
803 804 805 806 807 808
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[dar >> SID_SHIFT];
809
			svcpu_put(svcpu);
810 811 812 813 814
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, dar);
				r = RESUME_GUEST;
				break;
			}
815 816 817
		}
#endif

818 819 820 821 822 823 824
		/*
		 * We need to handle missing shadow PTEs, and
		 * protection faults due to us mapping a page read-only
		 * when the guest thinks it is writable.
		 */
		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
825
			r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
826
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
827 828
		} else {
			vcpu->arch.shared->dar = dar;
829
			vcpu->arch.shared->dsisr = fault_dsisr;
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
	}
	case BOOK3S_INTERRUPT_DATA_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
			vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_DATA_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_INST_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_INST_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_DECREMENTER:
852
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
853 854 855 856
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
857 858
	case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
	case BOOK3S_INTERRUPT_EXTERNAL_HV:
859 860 861 862 863 864 865
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
866
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
867 868 869 870 871
	{
		enum emulation_result er;
		ulong flags;

program_interrupt:
872
		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904

		if (vcpu->arch.shared->msr & MSR_PR) {
#ifdef EXIT_DEBUG
			printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
#endif
			if ((kvmppc_get_last_inst(vcpu) & 0xff0007ff) !=
			    (INS_DCBZ & 0xfffffff7)) {
				kvmppc_core_queue_program(vcpu, flags);
				r = RESUME_GUEST;
				break;
			}
		}

		vcpu->stat.emulated_inst_exits++;
		er = kvmppc_emulate_instruction(run, vcpu);
		switch (er) {
		case EMULATE_DONE:
			r = RESUME_GUEST_NV;
			break;
		case EMULATE_AGAIN:
			r = RESUME_GUEST;
			break;
		case EMULATE_FAIL:
			printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
			       __func__, kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
			kvmppc_core_queue_program(vcpu, flags);
			r = RESUME_GUEST;
			break;
		case EMULATE_DO_MMIO:
			run->exit_reason = KVM_EXIT_MMIO;
			r = RESUME_HOST_NV;
			break;
905
		case EMULATE_EXIT_USER:
906 907
			r = RESUME_HOST_NV;
			break;
908 909 910 911 912 913
		default:
			BUG();
		}
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
914
		if (vcpu->arch.papr_enabled &&
915
		    (kvmppc_get_last_sc(vcpu) == 0x44000022) &&
916 917 918 919 920
		    !(vcpu->arch.shared->msr & MSR_PR)) {
			/* SC 1 papr hypercalls */
			ulong cmd = kvmppc_get_gpr(vcpu, 3);
			int i;

921
#ifdef CONFIG_KVM_BOOK3S_64_PR
922 923 924 925
			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
				r = RESUME_GUEST;
				break;
			}
926
#endif
927 928 929 930 931 932 933 934 935 936

			run->papr_hcall.nr = cmd;
			for (i = 0; i < 9; ++i) {
				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
				run->papr_hcall.args[i] = gpr;
			}
			run->exit_reason = KVM_EXIT_PAPR_HCALL;
			vcpu->arch.hcall_needed = 1;
			r = RESUME_HOST;
		} else if (vcpu->arch.osi_enabled &&
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
			/* MOL hypercalls */
			u64 *gprs = run->osi.gprs;
			int i;

			run->exit_reason = KVM_EXIT_OSI;
			for (i = 0; i < 32; i++)
				gprs[i] = kvmppc_get_gpr(vcpu, i);
			vcpu->arch.osi_needed = 1;
			r = RESUME_HOST_NV;
		} else if (!(vcpu->arch.shared->msr & MSR_PR) &&
		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
			/* KVM PV hypercalls */
			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
			r = RESUME_GUEST;
		} else {
			/* Guest syscalls */
			vcpu->stat.syscall_exits++;
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
	case BOOK3S_INTERRUPT_FP_UNAVAIL:
	case BOOK3S_INTERRUPT_ALTIVEC:
	case BOOK3S_INTERRUPT_VSX:
	{
		int ext_msr = 0;

		switch (exit_nr) {
		case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP;  break;
		case BOOK3S_INTERRUPT_ALTIVEC:    ext_msr = MSR_VEC; break;
		case BOOK3S_INTERRUPT_VSX:        ext_msr = MSR_VSX; break;
		}

		switch (kvmppc_check_ext(vcpu, exit_nr)) {
		case EMULATE_DONE:
			/* everything ok - let's enable the ext */
			r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
			break;
		case EMULATE_FAIL:
			/* we need to emulate this instruction */
			goto program_interrupt;
			break;
		default:
			/* nothing to worry about - go again */
			break;
		}
		break;
	}
	case BOOK3S_INTERRUPT_ALIGNMENT:
		if (kvmppc_read_inst(vcpu) == EMULATE_DONE) {
			vcpu->arch.shared->dsisr = kvmppc_alignment_dsisr(vcpu,
				kvmppc_get_last_inst(vcpu));
			vcpu->arch.shared->dar = kvmppc_alignment_dar(vcpu,
				kvmppc_get_last_inst(vcpu));
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		}
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
	case BOOK3S_INTERRUPT_TRACE:
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		r = RESUME_GUEST;
		break;
	default:
1003
	{
1004
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1005 1006
		/* Ugh - bork here! What did we get? */
		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1007
			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1008 1009 1010 1011
		r = RESUME_HOST;
		BUG();
		break;
	}
1012
	}
1013 1014 1015 1016 1017

	if (!(r & RESUME_HOST)) {
		/* To avoid clobbering exit_reason, only check for signals if
		 * we aren't already exiting to userspace for some other
		 * reason. */
1018 1019 1020 1021 1022 1023 1024

		/*
		 * Interrupts could be timers for the guest which we have to
		 * inject again, so let's postpone them until we're in the guest
		 * and if we really did time things so badly, then we just exit
		 * again due to a host external interrupt.
		 */
1025
		local_irq_disable();
1026 1027
		s = kvmppc_prepare_to_enter(vcpu);
		if (s <= 0) {
1028
			local_irq_enable();
1029
			r = s;
1030
		} else {
1031
			kvmppc_fix_ee_before_entry();
1032
		}
1033
		kvmppc_handle_lost_ext(vcpu);
1034 1035 1036 1037 1038 1039 1040
	}

	trace_kvm_book3s_reenter(r, vcpu);

	return r;
}

1041 1042
static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

	sregs->pvr = vcpu->arch.pvr;

	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
		for (i = 0; i < 64; i++) {
			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
		}
	} else {
		for (i = 0; i < 16; i++)
			sregs->u.s.ppc32.sr[i] = vcpu->arch.shared->sr[i];

		for (i = 0; i < 8; i++) {
			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
		}
	}

	return 0;
}

1068 1069
static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1070 1071 1072 1073
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

1074
	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103

	vcpu3s->sdr1 = sregs->u.s.sdr1;
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
		for (i = 0; i < 64; i++) {
			vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
						    sregs->u.s.ppc64.slb[i].slbe);
		}
	} else {
		for (i = 0; i < 16; i++) {
			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
		}
		for (i = 0; i < 8; i++) {
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
				       (u32)sregs->u.s.ppc32.ibat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
				       (u32)sregs->u.s.ppc32.dbat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
		}
	}

	/* Flush the MMU after messing with the segments */
	kvmppc_mmu_pte_flush(vcpu, 0, 0);

	return 0;
}

1104 1105
static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1106
{
1107
	int r = 0;
1108

1109
	switch (id) {
1110
	case KVM_REG_PPC_HIOR:
1111
		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1112
		break;
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
#ifdef CONFIG_VSX
	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: {
		long int i = id - KVM_REG_PPC_VSR0;

		if (!cpu_has_feature(CPU_FTR_VSX)) {
			r = -ENXIO;
			break;
		}
		val->vsxval[0] = vcpu->arch.fpr[i];
		val->vsxval[1] = vcpu->arch.vsr[i];
		break;
	}
#endif /* CONFIG_VSX */
1126
	default:
1127
		r = -EINVAL;
1128 1129 1130 1131 1132 1133
		break;
	}

	return r;
}

1134 1135
static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1136
{
1137
	int r = 0;
1138

1139
	switch (id) {
1140
	case KVM_REG_PPC_HIOR:
1141 1142
		to_book3s(vcpu)->hior = set_reg_val(id, *val);
		to_book3s(vcpu)->hior_explicit = true;
1143
		break;
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
#ifdef CONFIG_VSX
	case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31: {
		long int i = id - KVM_REG_PPC_VSR0;

		if (!cpu_has_feature(CPU_FTR_VSX)) {
			r = -ENXIO;
			break;
		}
		vcpu->arch.fpr[i] = val->vsxval[0];
		vcpu->arch.vsr[i] = val->vsxval[1];
		break;
	}
#endif /* CONFIG_VSX */
1157
	default:
1158
		r = -EINVAL;
1159 1160 1161 1162 1163 1164
		break;
	}

	return r;
}

1165 1166
static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
						   unsigned int id)
1167 1168 1169 1170 1171 1172
{
	struct kvmppc_vcpu_book3s *vcpu_book3s;
	struct kvm_vcpu *vcpu;
	int err = -ENOMEM;
	unsigned long p;

1173 1174 1175 1176
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu)
		goto out;

1177 1178
	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
	if (!vcpu_book3s)
1179 1180
		goto free_vcpu;
	vcpu->arch.book3s = vcpu_book3s;
1181

1182
#ifdef CONFIG_KVM_BOOK3S_32
1183 1184 1185 1186
	vcpu->arch.shadow_vcpu =
		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
	if (!vcpu->arch.shadow_vcpu)
		goto free_vcpu3s;
1187
#endif
1188

1189 1190 1191 1192
	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_shadow_vcpu;

1193
	err = -ENOMEM;
1194 1195 1196
	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
	if (!p)
		goto uninit_vcpu;
1197 1198
	/* the real shared page fills the last 4k of our page */
	vcpu->arch.shared = (void *)(p + PAGE_SIZE - 4096);
1199 1200

#ifdef CONFIG_PPC_BOOK3S_64
1201 1202 1203 1204 1205
	/*
	 * Default to the same as the host if we're on sufficiently
	 * recent machine that we have 1TB segments;
	 * otherwise default to PPC970FX.
	 */
1206
	vcpu->arch.pvr = 0x3C0301;
1207 1208
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		vcpu->arch.pvr = mfspr(SPRN_PVR);
1209 1210 1211 1212
#else
	/* default to book3s_32 (750) */
	vcpu->arch.pvr = 0x84202;
#endif
1213
	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	vcpu->arch.slb_nr = 64;

	vcpu->arch.shadow_msr = MSR_USER64;

	err = kvmppc_mmu_init(vcpu);
	if (err < 0)
		goto uninit_vcpu;

	return vcpu;

uninit_vcpu:
	kvm_vcpu_uninit(vcpu);
free_shadow_vcpu:
1227
#ifdef CONFIG_KVM_BOOK3S_32
1228 1229
	kfree(vcpu->arch.shadow_vcpu);
free_vcpu3s:
1230
#endif
1231
	vfree(vcpu_book3s);
1232 1233
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1234 1235 1236 1237
out:
	return ERR_PTR(err);
}

1238
static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1239 1240 1241 1242 1243
{
	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);

	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
	kvm_vcpu_uninit(vcpu);
1244 1245 1246
#ifdef CONFIG_KVM_BOOK3S_32
	kfree(vcpu->arch.shadow_vcpu);
#endif
1247
	vfree(vcpu_book3s);
1248
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1249 1250
}

1251
static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
{
	int ret;
	double fpr[32][TS_FPRWIDTH];
	unsigned int fpscr;
	int fpexc_mode;
#ifdef CONFIG_ALTIVEC
	vector128 vr[32];
	vector128 vscr;
	unsigned long uninitialized_var(vrsave);
	int used_vr;
#endif
#ifdef CONFIG_VSX
	int used_vsr;
#endif
	ulong ext_msr;

1268 1269 1270
	/* Check if we can run the vcpu at all */
	if (!vcpu->arch.sane) {
		kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1271 1272
		ret = -EINVAL;
		goto out;
1273 1274
	}

1275 1276 1277 1278 1279 1280
	/*
	 * Interrupts could be timers for the guest which we have to inject
	 * again, so let's postpone them until we're in the guest and if we
	 * really did time things so badly, then we just exit again due to
	 * a host external interrupt.
	 */
1281
	local_irq_disable();
1282 1283
	ret = kvmppc_prepare_to_enter(vcpu);
	if (ret <= 0) {
1284
		local_irq_enable();
1285
		goto out;
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	}

	/* Save FPU state in stack */
	if (current->thread.regs->msr & MSR_FP)
		giveup_fpu(current);
	memcpy(fpr, current->thread.fpr, sizeof(current->thread.fpr));
	fpscr = current->thread.fpscr.val;
	fpexc_mode = current->thread.fpexc_mode;

#ifdef CONFIG_ALTIVEC
	/* Save Altivec state in stack */
	used_vr = current->thread.used_vr;
	if (used_vr) {
		if (current->thread.regs->msr & MSR_VEC)
			giveup_altivec(current);
		memcpy(vr, current->thread.vr, sizeof(current->thread.vr));
		vscr = current->thread.vscr;
		vrsave = current->thread.vrsave;
	}
#endif

#ifdef CONFIG_VSX
	/* Save VSX state in stack */
	used_vsr = current->thread.used_vsr;
	if (used_vsr && (current->thread.regs->msr & MSR_VSX))
1311
		__giveup_vsx(current);
1312 1313 1314 1315 1316 1317 1318 1319 1320
#endif

	/* Remember the MSR with disabled extensions */
	ext_msr = current->thread.regs->msr;

	/* Preload FPU if it's enabled */
	if (vcpu->arch.shared->msr & MSR_FP)
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);

1321
	kvmppc_fix_ee_before_entry();
1322 1323 1324

	ret = __kvmppc_vcpu_run(kvm_run, vcpu);

1325 1326
	/* No need for kvm_guest_exit. It's done in handle_exit.
	   We also get here with interrupts enabled. */
1327 1328

	/* Make sure we save the guest FPU/Altivec/VSX state */
1329 1330 1331
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);

	current->thread.regs->msr = ext_msr;
1332

1333
	/* Restore FPU/VSX state from stack */
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
	memcpy(current->thread.fpr, fpr, sizeof(current->thread.fpr));
	current->thread.fpscr.val = fpscr;
	current->thread.fpexc_mode = fpexc_mode;

#ifdef CONFIG_ALTIVEC
	/* Restore Altivec state from stack */
	if (used_vr && current->thread.used_vr) {
		memcpy(current->thread.vr, vr, sizeof(current->thread.vr));
		current->thread.vscr = vscr;
		current->thread.vrsave = vrsave;
	}
	current->thread.used_vr = used_vr;
#endif

#ifdef CONFIG_VSX
	current->thread.used_vsr = used_vsr;
#endif

1352
out:
1353
	vcpu->mode = OUTSIDE_GUEST_MODE;
1354 1355 1356
	return ret;
}

1357 1358 1359
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
1360 1361
static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
					 struct kvm_dirty_log *log)
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
{
	struct kvm_memory_slot *memslot;
	struct kvm_vcpu *vcpu;
	ulong ga, ga_end;
	int is_dirty = 0;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		memslot = id_to_memslot(kvm->memslots, log->slot);

		ga = memslot->base_gfn << PAGE_SHIFT;
		ga_end = ga + (memslot->npages << PAGE_SHIFT);

		kvm_for_each_vcpu(n, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);

		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
					 struct kvm_memory_slot *memslot)
{
	return;
}

static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
					struct kvm_userspace_memory_region *mem)
{
	return 0;
}

static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				const struct kvm_memory_slot *old)
{
	return;
}

static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
{
	return;
}

static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
					 unsigned long npages)
{
	return 0;
}


1429
#ifdef CONFIG_PPC64
1430 1431
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1432
{
1433 1434 1435 1436
	long int i;
	struct kvm_vcpu *vcpu;

	info->flags = 0;
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446

	/* SLB is always 64 entries */
	info->slb_size = 64;

	/* Standard 4k base page size segment */
	info->sps[0].page_shift = 12;
	info->sps[0].slb_enc = 0;
	info->sps[0].enc[0].page_shift = 12;
	info->sps[0].enc[0].pte_enc = 0;

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	/*
	 * 64k large page size.
	 * We only want to put this in if the CPUs we're emulating
	 * support it, but unfortunately we don't have a vcpu easily
	 * to hand here to test.  Just pick the first vcpu, and if
	 * that doesn't exist yet, report the minimum capability,
	 * i.e., no 64k pages.
	 * 1T segment support goes along with 64k pages.
	 */
	i = 1;
	vcpu = kvm_get_vcpu(kvm, 0);
	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
		info->flags = KVM_PPC_1T_SEGMENTS;
		info->sps[i].page_shift = 16;
		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
		info->sps[i].enc[0].page_shift = 16;
		info->sps[i].enc[0].pte_enc = 1;
		++i;
	}

1467
	/* Standard 16M large page size segment */
1468 1469 1470 1471
	info->sps[i].page_shift = 24;
	info->sps[i].slb_enc = SLB_VSID_L;
	info->sps[i].enc[0].page_shift = 24;
	info->sps[i].enc[0].pte_enc = 0;
1472 1473 1474

	return 0;
}
1475 1476 1477
#else
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1478
{
1479 1480
	/* We should not get called */
	BUG();
1481
}
1482
#endif /* CONFIG_PPC64 */
1483

1484 1485 1486
static unsigned int kvm_global_user_count = 0;
static DEFINE_SPINLOCK(kvm_global_user_count_lock);

1487
static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1488
{
1489
	mutex_init(&kvm->arch.hpt_mutex);
1490

1491 1492 1493 1494 1495 1496
	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		if (++kvm_global_user_count == 1)
			pSeries_disable_reloc_on_exc();
		spin_unlock(&kvm_global_user_count_lock);
	}
1497 1498 1499
	return 0;
}

1500
static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
1501
{
1502 1503 1504
#ifdef CONFIG_PPC64
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
#endif
1505 1506 1507 1508 1509 1510 1511 1512

	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		BUG_ON(kvm_global_user_count == 0);
		if (--kvm_global_user_count == 0)
			pSeries_enable_reloc_on_exc();
		spin_unlock(&kvm_global_user_count_lock);
	}
1513 1514
}

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
static int kvmppc_core_check_processor_compat_pr(void)
{
	/* we are always compatible */
	return 0;
}

static long kvm_arch_vm_ioctl_pr(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	return -ENOTTY;
}

static struct kvmppc_ops kvmppc_pr_ops = {
1528
	.is_hv_enabled = false,
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
	.get_one_reg = kvmppc_get_one_reg_pr,
	.set_one_reg = kvmppc_set_one_reg_pr,
	.vcpu_load   = kvmppc_core_vcpu_load_pr,
	.vcpu_put    = kvmppc_core_vcpu_put_pr,
	.set_msr     = kvmppc_set_msr_pr,
	.vcpu_run    = kvmppc_vcpu_run_pr,
	.vcpu_create = kvmppc_core_vcpu_create_pr,
	.vcpu_free   = kvmppc_core_vcpu_free_pr,
	.check_requests = kvmppc_core_check_requests_pr,
	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
	.flush_memslot = kvmppc_core_flush_memslot_pr,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
	.unmap_hva = kvm_unmap_hva_pr,
	.unmap_hva_range = kvm_unmap_hva_range_pr,
	.age_hva  = kvm_age_hva_pr,
	.test_age_hva = kvm_test_age_hva_pr,
	.set_spte_hva = kvm_set_spte_hva_pr,
	.mmu_destroy  = kvmppc_mmu_destroy_pr,
	.free_memslot = kvmppc_core_free_memslot_pr,
	.create_memslot = kvmppc_core_create_memslot_pr,
	.init_vm = kvmppc_core_init_vm_pr,
	.destroy_vm = kvmppc_core_destroy_vm_pr,
	.check_processor_compat = kvmppc_core_check_processor_compat_pr,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
	.emulate_op = kvmppc_core_emulate_op_pr,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
	.fast_vcpu_kick = kvm_vcpu_kick,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
};

static int kvmppc_book3s_init_pr(void)
1564 1565 1566
{
	int r;

1567
	r = kvm_init(&kvmppc_pr_ops, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1568 1569 1570 1571 1572 1573 1574 1575 1576

	if (r)
		return r;

	r = kvmppc_mmu_hpte_sysinit();

	return r;
}

1577
static void kvmppc_book3s_exit_pr(void)
1578 1579 1580 1581 1582
{
	kvmppc_mmu_hpte_sysexit();
	kvm_exit();
}

1583 1584
module_init(kvmppc_book3s_init_pr);
module_exit(kvmppc_book3s_exit_pr);