book3s_pr.c 48.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *    Paul Mackerras <paulus@samba.org>
 *
 * Description:
 * Functions relating to running KVM on Book 3S processors where
 * we don't have access to hypervisor mode, and we run the guest
 * in problem state (user mode).
 *
 * This file is derived from arch/powerpc/kvm/44x.c,
 * by Hollis Blanchard <hollisb@us.ibm.com>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
23
#include <linux/export.h>
24 25 26 27 28 29 30
#include <linux/err.h>
#include <linux/slab.h>

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
31
#include <linux/uaccess.h>
32 33 34 35
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
36
#include <asm/switch_to.h>
37
#include <asm/firmware.h>
38
#include <asm/setup.h>
39 40 41 42
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
43
#include <linux/module.h>
44
#include <linux/miscdevice.h>
45

46
#include "book3s.h"
47 48 49

#define CREATE_TRACE_POINTS
#include "trace_pr.h"
50 51 52 53 54 55

/* #define EXIT_DEBUG */
/* #define DEBUG_EXT */

static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr);
56
static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac);
57 58 59 60 61 62

/* Some compatibility defines */
#ifdef CONFIG_PPC_BOOK3S_32
#define MSR_USER32 MSR_USER
#define MSR_USER64 MSR_USER
#define HW_PAGE_SIZE PAGE_SIZE
63
#define HPTE_R_M   _PAGE_COHERENT
64 65
#endif

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
{
	ulong msr = kvmppc_get_msr(vcpu);
	return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
}

static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
{
	ulong msr = kvmppc_get_msr(vcpu);
	ulong pc = kvmppc_get_pc(vcpu);

	/* We are in DR only split real mode */
	if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
		return;

	/* We have not fixed up the guest already */
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
		return;

	/* The code is in fixupable address space */
	if (pc & SPLIT_HACK_MASK)
		return;

	vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
	kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
}

void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu);

95
static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
96 97
{
#ifdef CONFIG_PPC_BOOK3S_64
98 99 100
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
101
	svcpu->in_use = 0;
102
	svcpu_put(svcpu);
103
#endif
104 105 106 107 108 109

	/* Disable AIL if supported */
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);

110
	vcpu->cpu = smp_processor_id();
111
#ifdef CONFIG_PPC_BOOK3S_32
112
	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
113
#endif
114 115 116

	if (kvmppc_is_split_real(vcpu))
		kvmppc_fixup_split_real(vcpu);
117 118
}

119
static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
120 121
{
#ifdef CONFIG_PPC_BOOK3S_64
122
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
123
	if (svcpu->in_use) {
124
		kvmppc_copy_from_svcpu(vcpu);
125
	}
126 127 128
	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
	svcpu_put(svcpu);
129 130
#endif

131 132 133
	if (kvmppc_is_split_real(vcpu))
		kvmppc_unfixup_split_real(vcpu);

134
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
135
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
136 137 138 139 140 141

	/* Enable AIL if supported */
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);

142
	vcpu->cpu = -1;
143 144
}

145
/* Copy data needed by real-mode code from vcpu to shadow vcpu */
146
void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
147
{
148 149
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);

150 151 152 153 154 155 156 157 158 159 160 161 162 163
	svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
	svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
	svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
	svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
	svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
	svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
	svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
	svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
	svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
	svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
	svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
	svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
	svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
	svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
164
	svcpu->cr  = vcpu->arch.cr;
165 166 167 168
	svcpu->xer = vcpu->arch.regs.xer;
	svcpu->ctr = vcpu->arch.regs.ctr;
	svcpu->lr  = vcpu->arch.regs.link;
	svcpu->pc  = vcpu->arch.regs.nip;
169 170 171
#ifdef CONFIG_PPC_BOOK3S_64
	svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
#endif
172 173 174 175 176
	/*
	 * Now also save the current time base value. We use this
	 * to find the guest purr and spurr value.
	 */
	vcpu->arch.entry_tb = get_tb();
177
	vcpu->arch.entry_vtb = get_vtb();
178 179
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcpu->arch.entry_ic = mfspr(SPRN_IC);
180
	svcpu->in_use = true;
181 182

	svcpu_put(svcpu);
183 184
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
{
	ulong guest_msr = kvmppc_get_msr(vcpu);
	ulong smsr = guest_msr;

	/* Guest MSR values */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
		MSR_TM | MSR_TS_MASK;
#else
	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
#endif
	/* Process MSR values */
	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
	/* External providers the guest reserved */
	smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
	/* 64-bit Process MSR values */
#ifdef CONFIG_PPC_BOOK3S_64
	smsr |= MSR_ISF | MSR_HV;
#endif
	vcpu->arch.shadow_msr = smsr;
}

208
/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
209
void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
210
{
211
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
212 213 214
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	ulong old_msr;
#endif
215 216 217 218 219 220 221 222

	/*
	 * Maybe we were already preempted and synced the svcpu from
	 * our preempt notifiers. Don't bother touching this svcpu then.
	 */
	if (!svcpu->in_use)
		goto out;

223 224 225 226 227 228 229 230 231 232 233 234 235 236
	vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
	vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
	vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
	vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
	vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
	vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
	vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
	vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
	vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
	vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
	vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
	vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
	vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
	vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
237
	vcpu->arch.cr  = svcpu->cr;
238 239 240 241
	vcpu->arch.regs.xer = svcpu->xer;
	vcpu->arch.regs.ctr = svcpu->ctr;
	vcpu->arch.regs.link  = svcpu->lr;
	vcpu->arch.regs.nip  = svcpu->pc;
242 243 244 245
	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
	vcpu->arch.fault_dar   = svcpu->fault_dar;
	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
	vcpu->arch.last_inst   = svcpu->last_inst;
246 247 248
#ifdef CONFIG_PPC_BOOK3S_64
	vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
#endif
249 250 251 252 253
	/*
	 * Update purr and spurr using time base on exit.
	 */
	vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
	vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
254
	to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
255 256
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
	 * notifying host:
	 *  modified by unprivileged instructions like "tbegin"/"tend"/
	 * "tresume"/"tsuspend" in PR KVM guest.
	 *
	 * It is necessary to sync here to calculate a correct shadow_msr.
	 *
	 * privileged guest's tbegin will be failed at present. So we
	 * only take care of problem state guest.
	 */
	old_msr = kvmppc_get_msr(vcpu);
	if (unlikely((old_msr & MSR_PR) &&
		(vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
				(old_msr & (MSR_TS_MASK)))) {
		old_msr &= ~(MSR_TS_MASK);
		old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
		kvmppc_set_msr_fast(vcpu, old_msr);
		kvmppc_recalc_shadow_msr(vcpu);
	}
#endif

281 282 283
	svcpu->in_use = false;

out:
284
	svcpu_put(svcpu);
285 286
}

287
static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
288
{
289 290
	int r = 1; /* Indicate we want to get back into the guest */

291 292 293 294
	/* We misuse TLB_FLUSH to indicate that we want to clear
	   all shadow cache entries */
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
		kvmppc_mmu_pte_flush(vcpu, 0, 0);
295 296

	return r;
297 298
}

299
/************* MMU Notifiers *************/
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
			     unsigned long end)
{
	long i;
	struct kvm_vcpu *vcpu;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
		kvm_for_each_vcpu(i, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
					      gfn_end << PAGE_SHIFT);
	}
}
329

330 331
static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
				  unsigned long end)
332
{
333
	do_kvm_unmap_hva(kvm, start, end);
334 335 336 337

	return 0;
}

A
Andres Lagar-Cavilla 已提交
338 339
static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start,
			  unsigned long end)
340 341 342 343 344
{
	/* XXX could be more clever ;) */
	return 0;
}

345
static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
346 347 348 349 350
{
	/* XXX could be more clever ;) */
	return 0;
}

351
static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
352 353
{
	/* The page will get remapped properly on its next fault */
354
	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
355 356 357 358
}

/*****************************************/

359
static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
360
{
361
	ulong old_msr = kvmppc_get_msr(vcpu);
362 363 364 365 366 367

#ifdef EXIT_DEBUG
	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
#endif

	msr &= to_book3s(vcpu)->msr_mask;
368
	kvmppc_set_msr_fast(vcpu, msr);
369 370 371 372 373
	kvmppc_recalc_shadow_msr(vcpu);

	if (msr & MSR_POW) {
		if (!vcpu->arch.pending_exceptions) {
			kvm_vcpu_block(vcpu);
374
			kvm_clear_request(KVM_REQ_UNHALT, vcpu);
375 376 377 378
			vcpu->stat.halt_wakeup++;

			/* Unset POW bit after we woke up */
			msr &= ~MSR_POW;
379
			kvmppc_set_msr_fast(vcpu, msr);
380 381 382
		}
	}

383 384 385 386 387
	if (kvmppc_is_split_real(vcpu))
		kvmppc_fixup_split_real(vcpu);
	else
		kvmppc_unfixup_split_real(vcpu);

388
	if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
		kvmppc_mmu_flush_segments(vcpu);
		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));

		/* Preload magic page segment when in kernel mode */
		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
			struct kvm_vcpu_arch *a = &vcpu->arch;

			if (msr & MSR_DR)
				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
			else
				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
		}
	}

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
	/*
	 * When switching from 32 to 64-bit, we may have a stale 32-bit
	 * magic page around, we need to flush it. Typically 32-bit magic
	 * page will be instanciated when calling into RTAS. Note: We
	 * assume that such transition only happens while in kernel mode,
	 * ie, we never transition from user 32-bit to kernel 64-bit with
	 * a 32-bit magic page around.
	 */
	if (vcpu->arch.magic_page_pa &&
	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
		/* going from RTAS to normal kernel code */
		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
				     ~0xFFFUL);
	}

419
	/* Preload FPU if it's enabled */
420
	if (kvmppc_get_msr(vcpu) & MSR_FP)
421 422 423
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
}

424
void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
425 426 427 428 429 430 431 432
{
	u32 host_pvr;

	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
	vcpu->arch.pvr = pvr;
#ifdef CONFIG_PPC_BOOK3S_64
	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
		kvmppc_mmu_book3s_64_init(vcpu);
433 434
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0xfff00000;
435
		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
436
		vcpu->arch.cpu_type = KVM_CPU_3S_64;
437 438 439 440
	} else
#endif
	{
		kvmppc_mmu_book3s_32_init(vcpu);
441 442
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0;
443
		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
444
		vcpu->arch.cpu_type = KVM_CPU_3S_32;
445 446
	}

447 448
	kvmppc_sanity_check(vcpu);

449 450 451 452 453 454 455 456 457 458 459 460
	/* If we are in hypervisor level on 970, we can tell the CPU to
	 * treat DCBZ as 32 bytes store */
	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
	    !strcmp(cur_cpu_spec->platform, "ppc970"))
		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;

	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
	   really needs them in a VM on Cell and force disable them. */
	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);

461 462 463 464 465 466 467 468 469 470 471 472
	/*
	 * If they're asking for POWER6 or later, set the flag
	 * indicating that we can do multiple large page sizes
	 * and 1TB segments.
	 * Also set the flag that indicates that tlbie has the large
	 * page bit in the RB operand instead of the instruction.
	 */
	switch (PVR_VER(pvr)) {
	case PVR_POWER6:
	case PVR_POWER7:
	case PVR_POWER7p:
	case PVR_POWER8:
473 474
	case PVR_POWER8E:
	case PVR_POWER8NVL:
475 476 477 478 479
		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
			BOOK3S_HFLAG_NEW_TLBIE;
		break;
	}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
#ifdef CONFIG_PPC_BOOK3S_32
	/* 32 bit Book3S always has 32 byte dcbz */
	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
#endif

	/* On some CPUs we can execute paired single operations natively */
	asm ( "mfpvr %0" : "=r"(host_pvr));
	switch (host_pvr) {
	case 0x00080200:	/* lonestar 2.0 */
	case 0x00088202:	/* lonestar 2.2 */
	case 0x70000100:	/* gekko 1.0 */
	case 0x00080100:	/* gekko 2.0 */
	case 0x00083203:	/* gekko 2.3a */
	case 0x00083213:	/* gekko 2.3b */
	case 0x00083204:	/* gekko 2.4 */
	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
	case 0x00087200:	/* broadway */
		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
		/* Enable HID2.PSE - in case we need it later */
		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
	}
}

/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
 * emulate 32 bytes dcbz length.
 *
 * The Book3s_64 inventors also realized this case and implemented a special bit
 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
 *
 * My approach here is to patch the dcbz instruction on executing pages.
 */
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
{
	struct page *hpage;
	u64 hpage_offset;
	u32 *page;
	int i;

	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
520
	if (is_error_page(hpage))
521 522 523 524 525 526 527
		return;

	hpage_offset = pte->raddr & ~PAGE_MASK;
	hpage_offset &= ~0xFFFULL;
	hpage_offset /= 4;

	get_page(hpage);
528
	page = kmap_atomic(hpage);
529 530 531

	/* patch dcbz into reserved instruction, so we trap */
	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
532 533
		if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
			page[i] &= cpu_to_be32(0xfffffff7);
534

535
	kunmap_atomic(page);
536 537 538
	put_page(hpage);
}

539
static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
540 541 542
{
	ulong mp_pa = vcpu->arch.magic_page_pa;

543
	if (!(kvmppc_get_msr(vcpu) & MSR_SF))
544 545
		mp_pa = (uint32_t)mp_pa;

546 547
	gpa &= ~0xFFFULL;
	if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
548
		return true;
549 550
	}

551
	return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
552 553 554 555 556 557
}

int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
			    ulong eaddr, int vec)
{
	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
558
	bool iswrite = false;
559 560 561
	int r = RESUME_GUEST;
	int relocated;
	int page_found = 0;
562
	struct kvmppc_pte pte = { 0 };
563 564
	bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
	bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
565 566 567
	u64 vsid;

	relocated = data ? dr : ir;
568 569
	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
		iswrite = true;
570 571 572

	/* Resolve real address if translation turned on */
	if (relocated) {
573
		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
574 575 576 577 578 579 580
	} else {
		pte.may_execute = true;
		pte.may_read = true;
		pte.may_write = true;
		pte.raddr = eaddr & KVM_PAM;
		pte.eaddr = eaddr;
		pte.vpage = eaddr >> 12;
581
		pte.page_size = MMU_PAGE_64K;
582
		pte.wimg = HPTE_R_M;
583 584
	}

585
	switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
586 587 588 589
	case 0:
		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
		break;
	case MSR_DR:
590 591 592 593 594
		if (!data &&
		    (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
		    ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
			pte.raddr &= ~SPLIT_HACK_MASK;
		/* fall through */
595 596 597
	case MSR_IR:
		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);

598
		if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
		else
			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
		pte.vpage |= vsid;

		if (vsid == -1)
			page_found = -EINVAL;
		break;
	}

	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
		/*
		 * If we do the dcbz hack, we have to NX on every execution,
		 * so we can patch the executing code. This renders our guest
		 * NX-less.
		 */
		pte.may_execute = !data;
	}

	if (page_found == -ENOENT) {
		/* Page not found in guest PTE entries */
621 622 623 624 625
		u64 ssrr1 = vcpu->arch.shadow_srr1;
		u64 msr = kvmppc_get_msr(vcpu);
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
		kvmppc_set_dsisr(vcpu, vcpu->arch.fault_dsisr);
		kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
626 627 628
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EPERM) {
		/* Storage protection */
629 630 631 632 633 634 635
		u32 dsisr = vcpu->arch.fault_dsisr;
		u64 ssrr1 = vcpu->arch.shadow_srr1;
		u64 msr = kvmppc_get_msr(vcpu);
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
		dsisr = (dsisr & ~DSISR_NOHPTE) | DSISR_PROTFAULT;
		kvmppc_set_dsisr(vcpu, dsisr);
		kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
636 637 638
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EINVAL) {
		/* Page not found in guest SLB */
639
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
640
		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
641
	} else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
642 643 644 645 646 647 648 649
		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
			/*
			 * There is already a host HPTE there, presumably
			 * a read-only one for a page the guest thinks
			 * is writable, so get rid of it first.
			 */
			kvmppc_mmu_unmap_page(vcpu, &pte);
		}
650
		/* The guest's PTE is not mapped yet. Map on the host */
651 652 653 654 655
		if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
			/* Exit KVM if mapping failed */
			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
			return RESUME_HOST;
		}
656 657 658
		if (data)
			vcpu->stat.sp_storage++;
		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
659
			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
660 661 662 663 664
			kvmppc_patch_dcbz(vcpu, &pte);
	} else {
		/* MMIO */
		vcpu->stat.mmio_exits++;
		vcpu->arch.paddr_accessed = pte.raddr;
665
		vcpu->arch.vaddr_accessed = pte.eaddr;
666 667 668 669 670 671 672 673 674 675 676 677 678
		r = kvmppc_emulate_mmio(run, vcpu);
		if ( r == RESUME_HOST_NV )
			r = RESUME_HOST;
	}

	return r;
}

/* Give up external provider (FPU, Altivec, VSX) */
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
{
	struct thread_struct *t = &current->thread;

679 680 681 682 683 684 685 686 687
	/*
	 * VSX instructions can access FP and vector registers, so if
	 * we are giving up VSX, make sure we give up FP and VMX as well.
	 */
	if (msr & MSR_VSX)
		msr |= MSR_FP | MSR_VEC;

	msr &= vcpu->arch.guest_owned_ext;
	if (!msr)
688 689 690 691 692 693
		return;

#ifdef DEBUG_EXT
	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
#endif

694 695 696 697
	if (msr & MSR_FP) {
		/*
		 * Note that on CPUs with VSX, giveup_fpu stores
		 * both the traditional FP registers and the added VSX
698
		 * registers into thread.fp_state.fpr[].
699
		 */
700
		if (t->regs->msr & MSR_FP)
701
			giveup_fpu(current);
702
		t->fp_save_area = NULL;
703 704
	}

705
#ifdef CONFIG_ALTIVEC
706
	if (msr & MSR_VEC) {
707 708
		if (current->thread.regs->msr & MSR_VEC)
			giveup_altivec(current);
709
		t->vr_save_area = NULL;
710
	}
711
#endif
712

713
	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
714 715 716
	kvmppc_recalc_shadow_msr(vcpu);
}

717 718 719 720 721 722 723 724
/* Give up facility (TAR / EBB / DSCR) */
static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
{
#ifdef CONFIG_PPC_BOOK3S_64
	if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
		/* Facility not available to the guest, ignore giveup request*/
		return;
	}
725 726 727 728 729 730 731 732

	switch (fac) {
	case FSCR_TAR_LG:
		vcpu->arch.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, current->thread.tar);
		vcpu->arch.shadow_fscr &= ~FSCR_TAR;
		break;
	}
733 734 735
#endif
}

736 737 738 739 740 741 742 743 744 745
/* Handle external providers (FPU, Altivec, VSX) */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr)
{
	struct thread_struct *t = &current->thread;

	/* When we have paired singles, we emulate in software */
	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
		return RESUME_GUEST;

746
	if (!(kvmppc_get_msr(vcpu) & msr)) {
747 748 749 750
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		return RESUME_GUEST;
	}

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
	if (msr == MSR_VSX) {
		/* No VSX?  Give an illegal instruction interrupt */
#ifdef CONFIG_VSX
		if (!cpu_has_feature(CPU_FTR_VSX))
#endif
		{
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			return RESUME_GUEST;
		}

		/*
		 * We have to load up all the FP and VMX registers before
		 * we can let the guest use VSX instructions.
		 */
		msr = MSR_FP | MSR_VEC | MSR_VSX;
766 767
	}

768 769 770 771 772
	/* See if we already own all the ext(s) needed */
	msr &= ~vcpu->arch.guest_owned_ext;
	if (!msr)
		return RESUME_GUEST;

773 774 775 776
#ifdef DEBUG_EXT
	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
#endif

777
	if (msr & MSR_FP) {
778
		preempt_disable();
779
		enable_kernel_fp();
780
		load_fp_state(&vcpu->arch.fp);
781
		disable_kernel_fp();
782
		t->fp_save_area = &vcpu->arch.fp;
783
		preempt_enable();
784 785 786
	}

	if (msr & MSR_VEC) {
787
#ifdef CONFIG_ALTIVEC
788
		preempt_disable();
789
		enable_kernel_altivec();
790
		load_vr_state(&vcpu->arch.vr);
791
		disable_kernel_altivec();
792
		t->vr_save_area = &vcpu->arch.vr;
793
		preempt_enable();
794 795 796
#endif
	}

797
	t->regs->msr |= msr;
798 799 800 801 802 803
	vcpu->arch.guest_owned_ext |= msr;
	kvmppc_recalc_shadow_msr(vcpu);

	return RESUME_GUEST;
}

804 805 806 807 808 809 810 811 812 813 814 815
/*
 * Kernel code using FP or VMX could have flushed guest state to
 * the thread_struct; if so, get it back now.
 */
static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
{
	unsigned long lost_ext;

	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
	if (!lost_ext)
		return;

816
	if (lost_ext & MSR_FP) {
817
		preempt_disable();
818
		enable_kernel_fp();
819
		load_fp_state(&vcpu->arch.fp);
820
		disable_kernel_fp();
821
		preempt_enable();
822
	}
823
#ifdef CONFIG_ALTIVEC
824
	if (lost_ext & MSR_VEC) {
825
		preempt_disable();
826
		enable_kernel_altivec();
827
		load_vr_state(&vcpu->arch.vr);
828
		disable_kernel_altivec();
829
		preempt_enable();
830
	}
831
#endif
832 833 834
	current->thread.regs->msr |= lost_ext;
}

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
#ifdef CONFIG_PPC_BOOK3S_64

static void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
{
	/* Inject the Interrupt Cause field and trigger a guest interrupt */
	vcpu->arch.fscr &= ~(0xffULL << 56);
	vcpu->arch.fscr |= (fac << 56);
	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
}

static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
{
	enum emulation_result er = EMULATE_FAIL;

	if (!(kvmppc_get_msr(vcpu) & MSR_PR))
		er = kvmppc_emulate_instruction(vcpu->run, vcpu);

	if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
		/* Couldn't emulate, trigger interrupt in guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
	}
}

/* Enable facilities (TAR, EBB, DSCR) for the guest */
static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
{
861
	bool guest_fac_enabled;
862 863
	BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
	/*
	 * Not every facility is enabled by FSCR bits, check whether the
	 * guest has this facility enabled at all.
	 */
	switch (fac) {
	case FSCR_TAR_LG:
	case FSCR_EBB_LG:
		guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
		break;
	case FSCR_TM_LG:
		guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
		break;
	default:
		guest_fac_enabled = false;
		break;
	}

	if (!guest_fac_enabled) {
882 883 884 885 886 887
		/* Facility not enabled by the guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
		return RESUME_GUEST;
	}

	switch (fac) {
888 889 890 891 892 893
	case FSCR_TAR_LG:
		/* TAR switching isn't lazy in Linux yet */
		current->thread.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, vcpu->arch.tar);
		vcpu->arch.shadow_fscr |= FSCR_TAR;
		break;
894 895 896 897 898 899 900
	default:
		kvmppc_emulate_fac(vcpu, fac);
		break;
	}

	return RESUME_GUEST;
}
901 902 903 904 905 906 907 908 909

void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
{
	if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
		/* TAR got dropped, drop it in shadow too */
		kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
	}
	vcpu->arch.fscr = fscr;
}
910 911
#endif

912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
{
	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
		u64 msr = kvmppc_get_msr(vcpu);

		kvmppc_set_msr(vcpu, msr | MSR_SE);
	}
}

static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
{
	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
		u64 msr = kvmppc_get_msr(vcpu);

		kvmppc_set_msr(vcpu, msr & ~MSR_SE);
	}
}

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
static int kvmppc_exit_pr_progint(struct kvm_run *run, struct kvm_vcpu *vcpu,
				  unsigned int exit_nr)
{
	enum emulation_result er;
	ulong flags;
	u32 last_inst;
	int emul, r;

	/*
	 * shadow_srr1 only contains valid flags if we came here via a program
	 * exception. The other exceptions (emulation assist, FP unavailable,
	 * etc.) do not provide flags in SRR1, so use an illegal-instruction
	 * exception when injecting a program interrupt into the guest.
	 */
	if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
	else
		flags = SRR1_PROGILL;

	emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
	if (emul != EMULATE_DONE)
		return RESUME_GUEST;

	if (kvmppc_get_msr(vcpu) & MSR_PR) {
#ifdef EXIT_DEBUG
		pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
			kvmppc_get_pc(vcpu), last_inst);
#endif
		if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
			kvmppc_core_queue_program(vcpu, flags);
			return RESUME_GUEST;
		}
	}

	vcpu->stat.emulated_inst_exits++;
	er = kvmppc_emulate_instruction(run, vcpu);
	switch (er) {
	case EMULATE_DONE:
		r = RESUME_GUEST_NV;
		break;
	case EMULATE_AGAIN:
		r = RESUME_GUEST;
		break;
	case EMULATE_FAIL:
		pr_crit("%s: emulation at %lx failed (%08x)\n",
			__func__, kvmppc_get_pc(vcpu), last_inst);
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST_NV;
		break;
	case EMULATE_EXIT_USER:
		r = RESUME_HOST_NV;
		break;
	default:
		BUG();
	}

	return r;
}

993 994
int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
			  unsigned int exit_nr)
995 996
{
	int r = RESUME_HOST;
997
	int s;
998 999 1000 1001 1002 1003

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

1004
	/* We get here with MSR.EE=1 */
1005

1006
	trace_kvm_exit(exit_nr, vcpu);
1007
	guest_exit();
1008

1009 1010
	switch (exit_nr) {
	case BOOK3S_INTERRUPT_INST_STORAGE:
1011
	{
1012
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1013 1014
		vcpu->stat.pf_instruc++;

1015 1016 1017
		if (kvmppc_is_split_real(vcpu))
			kvmppc_fixup_split_real(vcpu);

1018 1019 1020
#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
1021 1022 1023 1024 1025 1026
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1027
			svcpu_put(svcpu);
1028 1029 1030 1031 1032
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
				r = RESUME_GUEST;
				break;
			}
1033 1034 1035 1036
		}
#endif

		/* only care about PTEG not found errors, but leave NX alone */
1037
		if (shadow_srr1 & 0x40000000) {
1038
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1039
			r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
1040
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
			vcpu->stat.sp_instruc++;
		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
			/*
			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
			 *     that no guest that needs the dcbz hack does NX.
			 */
			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
			r = RESUME_GUEST;
		} else {
1052 1053 1054
			u64 msr = kvmppc_get_msr(vcpu);
			msr |= shadow_srr1 & 0x58000000;
			kvmppc_set_msr_fast(vcpu, msr);
1055 1056 1057 1058
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
1059
	}
1060 1061 1062
	case BOOK3S_INTERRUPT_DATA_STORAGE:
	{
		ulong dar = kvmppc_get_fault_dar(vcpu);
1063
		u32 fault_dsisr = vcpu->arch.fault_dsisr;
1064 1065 1066 1067 1068
		vcpu->stat.pf_storage++;

#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
1069 1070 1071 1072 1073 1074
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[dar >> SID_SHIFT];
1075
			svcpu_put(svcpu);
1076 1077 1078 1079 1080
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, dar);
				r = RESUME_GUEST;
				break;
			}
1081 1082 1083
		}
#endif

1084 1085 1086 1087 1088 1089 1090
		/*
		 * We need to handle missing shadow PTEs, and
		 * protection faults due to us mapping a page read-only
		 * when the guest thinks it is writable.
		 */
		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1091
			r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
1092
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1093
		} else {
1094 1095
			kvmppc_set_dar(vcpu, dar);
			kvmppc_set_dsisr(vcpu, fault_dsisr);
1096 1097 1098 1099 1100 1101 1102
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
	}
	case BOOK3S_INTERRUPT_DATA_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1103
			kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_DATA_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_INST_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_INST_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_DECREMENTER:
1118
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1119
	case BOOK3S_INTERRUPT_DOORBELL:
1120
	case BOOK3S_INTERRUPT_H_DOORBELL:
1121 1122 1123 1124
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
1125 1126
	case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
	case BOOK3S_INTERRUPT_EXTERNAL_HV:
1127 1128 1129 1130 1131 1132 1133
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
1134
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1135
		r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
1136 1137
		break;
	case BOOK3S_INTERRUPT_SYSCALL:
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
	{
		u32 last_sc;
		int emul;

		/* Get last sc for papr */
		if (vcpu->arch.papr_enabled) {
			/* The sc instuction points SRR0 to the next inst */
			emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
			if (emul != EMULATE_DONE) {
				kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
				r = RESUME_GUEST;
				break;
			}
		}

1153
		if (vcpu->arch.papr_enabled &&
1154
		    (last_sc == 0x44000022) &&
1155
		    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1156 1157 1158 1159
			/* SC 1 papr hypercalls */
			ulong cmd = kvmppc_get_gpr(vcpu, 3);
			int i;

1160
#ifdef CONFIG_PPC_BOOK3S_64
1161 1162 1163 1164
			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
				r = RESUME_GUEST;
				break;
			}
1165
#endif
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

			run->papr_hcall.nr = cmd;
			for (i = 0; i < 9; ++i) {
				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
				run->papr_hcall.args[i] = gpr;
			}
			run->exit_reason = KVM_EXIT_PAPR_HCALL;
			vcpu->arch.hcall_needed = 1;
			r = RESUME_HOST;
		} else if (vcpu->arch.osi_enabled &&
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
			/* MOL hypercalls */
			u64 *gprs = run->osi.gprs;
			int i;

			run->exit_reason = KVM_EXIT_OSI;
			for (i = 0; i < 32; i++)
				gprs[i] = kvmppc_get_gpr(vcpu, i);
			vcpu->arch.osi_needed = 1;
			r = RESUME_HOST_NV;
1187
		} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
			/* KVM PV hypercalls */
			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
			r = RESUME_GUEST;
		} else {
			/* Guest syscalls */
			vcpu->stat.syscall_exits++;
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
1199
	}
1200 1201 1202 1203 1204
	case BOOK3S_INTERRUPT_FP_UNAVAIL:
	case BOOK3S_INTERRUPT_ALTIVEC:
	case BOOK3S_INTERRUPT_VSX:
	{
		int ext_msr = 0;
1205 1206 1207 1208 1209
		int emul;
		u32 last_inst;

		if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
			/* Do paired single instruction emulation */
1210 1211
			emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
						    &last_inst);
1212
			if (emul == EMULATE_DONE)
1213
				r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
1214 1215
			else
				r = RESUME_GUEST;
1216

1217
			break;
1218 1219
		}

1220 1221 1222 1223
		/* Enable external provider */
		switch (exit_nr) {
		case BOOK3S_INTERRUPT_FP_UNAVAIL:
			ext_msr = MSR_FP;
1224
			break;
1225 1226 1227

		case BOOK3S_INTERRUPT_ALTIVEC:
			ext_msr = MSR_VEC;
1228
			break;
1229 1230 1231

		case BOOK3S_INTERRUPT_VSX:
			ext_msr = MSR_VSX;
1232 1233
			break;
		}
1234 1235

		r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1236 1237 1238
		break;
	}
	case BOOK3S_INTERRUPT_ALIGNMENT:
1239
	{
1240 1241
		u32 last_inst;
		int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1242 1243

		if (emul == EMULATE_DONE) {
1244 1245 1246 1247 1248 1249 1250 1251 1252
			u32 dsisr;
			u64 dar;

			dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
			dar = kvmppc_alignment_dar(vcpu, last_inst);

			kvmppc_set_dsisr(vcpu, dsisr);
			kvmppc_set_dar(vcpu, dar);

1253 1254 1255 1256
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		}
		r = RESUME_GUEST;
		break;
1257
	}
1258 1259 1260 1261 1262 1263
#ifdef CONFIG_PPC_BOOK3S_64
	case BOOK3S_INTERRUPT_FAC_UNAVAIL:
		kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
		r = RESUME_GUEST;
		break;
#endif
1264 1265 1266 1267
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		r = RESUME_GUEST;
		break;
1268 1269 1270 1271 1272 1273 1274 1275 1276
	case BOOK3S_INTERRUPT_TRACE:
		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
			run->exit_reason = KVM_EXIT_DEBUG;
			r = RESUME_HOST;
		} else {
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
1277
	default:
1278
	{
1279
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1280 1281
		/* Ugh - bork here! What did we get? */
		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1282
			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1283 1284 1285 1286
		r = RESUME_HOST;
		BUG();
		break;
	}
1287
	}
1288 1289 1290 1291 1292

	if (!(r & RESUME_HOST)) {
		/* To avoid clobbering exit_reason, only check for signals if
		 * we aren't already exiting to userspace for some other
		 * reason. */
1293 1294 1295 1296 1297 1298 1299

		/*
		 * Interrupts could be timers for the guest which we have to
		 * inject again, so let's postpone them until we're in the guest
		 * and if we really did time things so badly, then we just exit
		 * again due to a host external interrupt.
		 */
1300
		s = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1301
		if (s <= 0)
1302
			r = s;
S
Scott Wood 已提交
1303 1304
		else {
			/* interrupts now hard-disabled */
1305
			kvmppc_fix_ee_before_entry();
1306
		}
S
Scott Wood 已提交
1307

1308
		kvmppc_handle_lost_ext(vcpu);
1309 1310 1311 1312 1313 1314 1315
	}

	trace_kvm_book3s_reenter(r, vcpu);

	return r;
}

1316 1317
static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

	sregs->pvr = vcpu->arch.pvr;

	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
		for (i = 0; i < 64; i++) {
			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
		}
	} else {
		for (i = 0; i < 16; i++)
1332
			sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

		for (i = 0; i < 8; i++) {
			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
		}
	}

	return 0;
}

1343 1344
static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1345 1346 1347 1348
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

1349
	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1350 1351

	vcpu3s->sdr1 = sregs->u.s.sdr1;
1352
#ifdef CONFIG_PPC_BOOK3S_64
1353
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1354 1355 1356 1357
		/* Flush all SLB entries */
		vcpu->arch.mmu.slbmte(vcpu, 0, 0);
		vcpu->arch.mmu.slbia(vcpu);

1358
		for (i = 0; i < 64; i++) {
1359 1360 1361 1362 1363
			u64 rb = sregs->u.s.ppc64.slb[i].slbe;
			u64 rs = sregs->u.s.ppc64.slb[i].slbv;

			if (rb & SLB_ESID_V)
				vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1364
		}
1365 1366 1367
	} else
#endif
	{
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
		for (i = 0; i < 16; i++) {
			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
		}
		for (i = 0; i < 8; i++) {
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
				       (u32)sregs->u.s.ppc32.ibat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
				       (u32)sregs->u.s.ppc32.dbat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
		}
	}

	/* Flush the MMU after messing with the segments */
	kvmppc_mmu_pte_flush(vcpu, 0, 0);

	return 0;
}

1389 1390
static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1391
{
1392
	int r = 0;
1393

1394
	switch (id) {
1395 1396 1397
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1398
	case KVM_REG_PPC_HIOR:
1399
		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1400
		break;
1401 1402 1403
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, to_book3s(vcpu)->vtb);
		break;
1404
	case KVM_REG_PPC_LPCR:
1405
	case KVM_REG_PPC_LPCR_64:
1406 1407 1408 1409 1410 1411 1412 1413
		/*
		 * We are only interested in the LPCR_ILE bit
		 */
		if (vcpu->arch.intr_msr & MSR_LE)
			*val = get_reg_val(id, LPCR_ILE);
		else
			*val = get_reg_val(id, 0);
		break;
1414
	default:
1415
		r = -EINVAL;
1416 1417 1418 1419 1420 1421
		break;
	}

	return r;
}

1422 1423 1424 1425 1426 1427 1428 1429
static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
{
	if (new_lpcr & LPCR_ILE)
		vcpu->arch.intr_msr |= MSR_LE;
	else
		vcpu->arch.intr_msr &= ~MSR_LE;
}

1430 1431
static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1432
{
1433
	int r = 0;
1434

1435
	switch (id) {
1436
	case KVM_REG_PPC_HIOR:
1437 1438
		to_book3s(vcpu)->hior = set_reg_val(id, *val);
		to_book3s(vcpu)->hior_explicit = true;
1439
		break;
1440 1441 1442
	case KVM_REG_PPC_VTB:
		to_book3s(vcpu)->vtb = set_reg_val(id, *val);
		break;
1443
	case KVM_REG_PPC_LPCR:
1444
	case KVM_REG_PPC_LPCR_64:
1445 1446
		kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
		break;
1447
	default:
1448
		r = -EINVAL;
1449 1450 1451 1452 1453 1454
		break;
	}

	return r;
}

1455 1456
static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
						   unsigned int id)
1457 1458 1459 1460 1461 1462
{
	struct kvmppc_vcpu_book3s *vcpu_book3s;
	struct kvm_vcpu *vcpu;
	int err = -ENOMEM;
	unsigned long p;

1463 1464
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu)
1465 1466 1467 1468 1469
		goto out;

	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
	if (!vcpu_book3s)
		goto free_vcpu;
1470
	vcpu->arch.book3s = vcpu_book3s;
1471

1472
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1473 1474 1475 1476
	vcpu->arch.shadow_vcpu =
		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
	if (!vcpu->arch.shadow_vcpu)
		goto free_vcpu3s;
1477
#endif
1478 1479 1480 1481 1482

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_shadow_vcpu;

1483
	err = -ENOMEM;
1484 1485 1486
	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
	if (!p)
		goto uninit_vcpu;
1487
	vcpu->arch.shared = (void *)p;
1488
#ifdef CONFIG_PPC_BOOK3S_64
1489 1490 1491 1492 1493 1494 1495
	/* Always start the shared struct in native endian mode */
#ifdef __BIG_ENDIAN__
        vcpu->arch.shared_big_endian = true;
#else
        vcpu->arch.shared_big_endian = false;
#endif

1496 1497 1498 1499 1500
	/*
	 * Default to the same as the host if we're on sufficiently
	 * recent machine that we have 1TB segments;
	 * otherwise default to PPC970FX.
	 */
1501
	vcpu->arch.pvr = 0x3C0301;
1502 1503
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		vcpu->arch.pvr = mfspr(SPRN_PVR);
1504
	vcpu->arch.intr_msr = MSR_SF;
1505 1506 1507 1508
#else
	/* default to book3s_32 (750) */
	vcpu->arch.pvr = 0x84202;
#endif
1509
	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1510 1511
	vcpu->arch.slb_nr = 64;

1512
	vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522

	err = kvmppc_mmu_init(vcpu);
	if (err < 0)
		goto uninit_vcpu;

	return vcpu;

uninit_vcpu:
	kvm_vcpu_uninit(vcpu);
free_shadow_vcpu:
1523
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1524 1525
	kfree(vcpu->arch.shadow_vcpu);
free_vcpu3s:
1526
#endif
1527
	vfree(vcpu_book3s);
1528 1529
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1530 1531 1532 1533
out:
	return ERR_PTR(err);
}

1534
static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1535 1536 1537 1538 1539
{
	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);

	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
	kvm_vcpu_uninit(vcpu);
1540
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1541 1542
	kfree(vcpu->arch.shadow_vcpu);
#endif
1543
	vfree(vcpu_book3s);
1544
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1545 1546
}

1547
static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1548 1549 1550 1551 1552 1553
{
	int ret;
#ifdef CONFIG_ALTIVEC
	unsigned long uninitialized_var(vrsave);
#endif

1554 1555 1556
	/* Check if we can run the vcpu at all */
	if (!vcpu->arch.sane) {
		kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1557 1558
		ret = -EINVAL;
		goto out;
1559 1560
	}

1561 1562
	kvmppc_setup_debug(vcpu);

1563 1564 1565 1566 1567 1568
	/*
	 * Interrupts could be timers for the guest which we have to inject
	 * again, so let's postpone them until we're in the guest and if we
	 * really did time things so badly, then we just exit again due to
	 * a host external interrupt.
	 */
1569
	ret = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1570
	if (ret <= 0)
1571
		goto out;
S
Scott Wood 已提交
1572
	/* interrupts now hard-disabled */
1573

A
Anton Blanchard 已提交
1574 1575
	/* Save FPU, Altivec and VSX state */
	giveup_all(current);
1576 1577

	/* Preload FPU if it's enabled */
1578
	if (kvmppc_get_msr(vcpu) & MSR_FP)
1579 1580
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);

1581
	kvmppc_fix_ee_before_entry();
1582 1583 1584

	ret = __kvmppc_vcpu_run(kvm_run, vcpu);

1585 1586
	kvmppc_clear_debug(vcpu);

1587
	/* No need for guest_exit. It's done in handle_exit.
1588
	   We also get here with interrupts enabled. */
1589 1590

	/* Make sure we save the guest FPU/Altivec/VSX state */
1591 1592
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);

1593 1594 1595
	/* Make sure we save the guest TAR/EBB/DSCR state */
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);

1596
out:
1597
	vcpu->mode = OUTSIDE_GUEST_MODE;
1598 1599 1600
	return ret;
}

1601 1602 1603
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
1604 1605
static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
					 struct kvm_dirty_log *log)
1606
{
1607
	struct kvm_memslots *slots;
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
	struct kvm_memory_slot *memslot;
	struct kvm_vcpu *vcpu;
	ulong ga, ga_end;
	int is_dirty = 0;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
1623 1624
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, log->slot);
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641

		ga = memslot->base_gfn << PAGE_SHIFT;
		ga_end = ga + (memslot->npages << PAGE_SHIFT);

		kvm_for_each_vcpu(n, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);

		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1642 1643
static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
					 struct kvm_memory_slot *memslot)
1644
{
1645 1646
	return;
}
1647

1648 1649
static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
1650
					const struct kvm_userspace_memory_region *mem)
1651
{
1652 1653 1654
	return 0;
}

1655
static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1656
				const struct kvm_userspace_memory_region *mem,
1657 1658
				const struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new)
1659
{
1660
	return;
1661 1662
}

1663 1664
static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
1665
{
1666
	return;
1667 1668
}

1669 1670
static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
					 unsigned long npages)
1671 1672 1673 1674
{
	return 0;
}

1675

1676
#ifdef CONFIG_PPC64
1677 1678
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1679
{
1680 1681 1682 1683
	long int i;
	struct kvm_vcpu *vcpu;

	info->flags = 0;
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693

	/* SLB is always 64 entries */
	info->slb_size = 64;

	/* Standard 4k base page size segment */
	info->sps[0].page_shift = 12;
	info->sps[0].slb_enc = 0;
	info->sps[0].enc[0].page_shift = 12;
	info->sps[0].enc[0].pte_enc = 0;

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	/*
	 * 64k large page size.
	 * We only want to put this in if the CPUs we're emulating
	 * support it, but unfortunately we don't have a vcpu easily
	 * to hand here to test.  Just pick the first vcpu, and if
	 * that doesn't exist yet, report the minimum capability,
	 * i.e., no 64k pages.
	 * 1T segment support goes along with 64k pages.
	 */
	i = 1;
	vcpu = kvm_get_vcpu(kvm, 0);
	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
		info->flags = KVM_PPC_1T_SEGMENTS;
		info->sps[i].page_shift = 16;
		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
		info->sps[i].enc[0].page_shift = 16;
		info->sps[i].enc[0].pte_enc = 1;
		++i;
	}

1714
	/* Standard 16M large page size segment */
1715 1716 1717 1718
	info->sps[i].page_shift = 24;
	info->sps[i].slb_enc = SLB_VSID_L;
	info->sps[i].enc[0].page_shift = 24;
	info->sps[i].enc[0].pte_enc = 0;
1719

1720 1721
	return 0;
}
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732

static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
{
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -ENODEV;
	/* Require flags and process table base and size to all be zero. */
	if (cfg->flags || cfg->process_table)
		return -EINVAL;
	return 0;
}

1733 1734 1735
#else
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1736
{
1737 1738
	/* We should not get called */
	BUG();
1739
}
1740
#endif /* CONFIG_PPC64 */
1741

1742 1743 1744
static unsigned int kvm_global_user_count = 0;
static DEFINE_SPINLOCK(kvm_global_user_count_lock);

1745
static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1746
{
1747
	mutex_init(&kvm->arch.hpt_mutex);
1748

1749 1750 1751 1752 1753
#ifdef CONFIG_PPC_BOOK3S_64
	/* Start out with the default set of hcalls enabled */
	kvmppc_pr_init_default_hcalls(kvm);
#endif

1754 1755 1756
	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		if (++kvm_global_user_count == 1)
1757
			pseries_disable_reloc_on_exc();
1758 1759
		spin_unlock(&kvm_global_user_count_lock);
	}
1760 1761 1762
	return 0;
}

1763
static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
1764
{
1765 1766 1767
#ifdef CONFIG_PPC64
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
#endif
1768 1769 1770 1771 1772

	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		BUG_ON(kvm_global_user_count == 0);
		if (--kvm_global_user_count == 0)
1773
			pseries_enable_reloc_on_exc();
1774 1775
		spin_unlock(&kvm_global_user_count_lock);
	}
1776 1777
}

1778
static int kvmppc_core_check_processor_compat_pr(void)
1779
{
1780
	/*
1781 1782 1783 1784 1785 1786 1787
	 * PR KVM can work on POWER9 inside a guest partition
	 * running in HPT mode.  It can't work if we are using
	 * radix translation (because radix provides no way for
	 * a process to have unique translations in quadrant 3)
	 * or in a bare-metal HPT-mode host (because POWER9
	 * uses a modified HPTE format which the PR KVM code
	 * has not been adapted to use).
1788
	 */
1789 1790
	if (cpu_has_feature(CPU_FTR_ARCH_300) &&
	    (radix_enabled() || cpu_has_feature(CPU_FTR_HVMODE)))
1791
		return -EIO;
1792 1793
	return 0;
}
1794

1795 1796 1797 1798 1799
static long kvm_arch_vm_ioctl_pr(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	return -ENOTTY;
}
1800

1801
static struct kvmppc_ops kvm_ops_pr = {
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
	.get_one_reg = kvmppc_get_one_reg_pr,
	.set_one_reg = kvmppc_set_one_reg_pr,
	.vcpu_load   = kvmppc_core_vcpu_load_pr,
	.vcpu_put    = kvmppc_core_vcpu_put_pr,
	.set_msr     = kvmppc_set_msr_pr,
	.vcpu_run    = kvmppc_vcpu_run_pr,
	.vcpu_create = kvmppc_core_vcpu_create_pr,
	.vcpu_free   = kvmppc_core_vcpu_free_pr,
	.check_requests = kvmppc_core_check_requests_pr,
	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
	.flush_memslot = kvmppc_core_flush_memslot_pr,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
	.unmap_hva_range = kvm_unmap_hva_range_pr,
	.age_hva  = kvm_age_hva_pr,
	.test_age_hva = kvm_test_age_hva_pr,
	.set_spte_hva = kvm_set_spte_hva_pr,
	.mmu_destroy  = kvmppc_mmu_destroy_pr,
	.free_memslot = kvmppc_core_free_memslot_pr,
	.create_memslot = kvmppc_core_create_memslot_pr,
	.init_vm = kvmppc_core_init_vm_pr,
	.destroy_vm = kvmppc_core_destroy_vm_pr,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
	.emulate_op = kvmppc_core_emulate_op_pr,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
	.fast_vcpu_kick = kvm_vcpu_kick,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
1832 1833
#ifdef CONFIG_PPC_BOOK3S_64
	.hcall_implemented = kvmppc_hcall_impl_pr,
1834
	.configure_mmu = kvm_configure_mmu_pr,
1835
#endif
1836
	.giveup_ext = kvmppc_giveup_ext,
1837 1838
};

1839 1840

int kvmppc_book3s_init_pr(void)
1841 1842 1843
{
	int r;

1844 1845
	r = kvmppc_core_check_processor_compat_pr();
	if (r < 0)
1846 1847
		return r;

1848 1849
	kvm_ops_pr.owner = THIS_MODULE;
	kvmppc_pr_ops = &kvm_ops_pr;
1850

1851
	r = kvmppc_mmu_hpte_sysinit();
1852 1853 1854
	return r;
}

1855
void kvmppc_book3s_exit_pr(void)
1856
{
1857
	kvmppc_pr_ops = NULL;
1858 1859 1860
	kvmppc_mmu_hpte_sysexit();
}

1861 1862 1863 1864 1865
/*
 * We only support separate modules for book3s 64
 */
#ifdef CONFIG_PPC_BOOK3S_64

1866 1867
module_init(kvmppc_book3s_init_pr);
module_exit(kvmppc_book3s_exit_pr);
1868 1869

MODULE_LICENSE("GPL");
1870 1871
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");
1872
#endif