book3s_pr.c 49.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *    Paul Mackerras <paulus@samba.org>
 *
 * Description:
 * Functions relating to running KVM on Book 3S processors where
 * we don't have access to hypervisor mode, and we run the guest
 * in problem state (user mode).
 *
 * This file is derived from arch/powerpc/kvm/44x.c,
 * by Hollis Blanchard <hollisb@us.ibm.com>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
23
#include <linux/export.h>
24 25 26 27 28 29 30
#include <linux/err.h>
#include <linux/slab.h>

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
31
#include <linux/uaccess.h>
32 33 34 35
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
36
#include <asm/switch_to.h>
37
#include <asm/firmware.h>
38
#include <asm/setup.h>
39 40 41 42
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
43
#include <linux/module.h>
44
#include <linux/miscdevice.h>
45
#include <asm/asm-prototypes.h>
46
#include <asm/tm.h>
47

48
#include "book3s.h"
49 50 51

#define CREATE_TRACE_POINTS
#include "trace_pr.h"
52 53 54 55 56 57

/* #define EXIT_DEBUG */
/* #define DEBUG_EXT */

static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr);
58
static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac);
59 60 61 62 63 64

/* Some compatibility defines */
#ifdef CONFIG_PPC_BOOK3S_32
#define MSR_USER32 MSR_USER
#define MSR_USER64 MSR_USER
#define HW_PAGE_SIZE PAGE_SIZE
65
#define HPTE_R_M   _PAGE_COHERENT
66 67
#endif

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
{
	ulong msr = kvmppc_get_msr(vcpu);
	return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
}

static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
{
	ulong msr = kvmppc_get_msr(vcpu);
	ulong pc = kvmppc_get_pc(vcpu);

	/* We are in DR only split real mode */
	if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
		return;

	/* We have not fixed up the guest already */
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
		return;

	/* The code is in fixupable address space */
	if (pc & SPLIT_HACK_MASK)
		return;

	vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
	kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
}

void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu);

97
static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
98 99
{
#ifdef CONFIG_PPC_BOOK3S_64
100 101 102
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
103
	svcpu->in_use = 0;
104
	svcpu_put(svcpu);
105
#endif
106 107 108 109 110 111

	/* Disable AIL if supported */
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);

112
	vcpu->cpu = smp_processor_id();
113
#ifdef CONFIG_PPC_BOOK3S_32
114
	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
115
#endif
116 117 118

	if (kvmppc_is_split_real(vcpu))
		kvmppc_fixup_split_real(vcpu);
119 120

	kvmppc_restore_tm_pr(vcpu);
121 122
}

123
static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
124 125
{
#ifdef CONFIG_PPC_BOOK3S_64
126
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
127
	if (svcpu->in_use) {
128
		kvmppc_copy_from_svcpu(vcpu);
129
	}
130 131 132
	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
	svcpu_put(svcpu);
133 134
#endif

135 136 137
	if (kvmppc_is_split_real(vcpu))
		kvmppc_unfixup_split_real(vcpu);

138
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
139
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
140
	kvmppc_save_tm_pr(vcpu);
141 142 143 144 145 146

	/* Enable AIL if supported */
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);

147
	vcpu->cpu = -1;
148 149
}

150
/* Copy data needed by real-mode code from vcpu to shadow vcpu */
151
void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
152
{
153 154
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);

155 156 157 158 159 160 161 162 163 164 165 166 167 168
	svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
	svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
	svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
	svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
	svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
	svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
	svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
	svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
	svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
	svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
	svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
	svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
	svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
	svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
169
	svcpu->cr  = vcpu->arch.cr;
170 171 172 173
	svcpu->xer = vcpu->arch.regs.xer;
	svcpu->ctr = vcpu->arch.regs.ctr;
	svcpu->lr  = vcpu->arch.regs.link;
	svcpu->pc  = vcpu->arch.regs.nip;
174 175 176
#ifdef CONFIG_PPC_BOOK3S_64
	svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
#endif
177 178 179 180 181
	/*
	 * Now also save the current time base value. We use this
	 * to find the guest purr and spurr value.
	 */
	vcpu->arch.entry_tb = get_tb();
182
	vcpu->arch.entry_vtb = get_vtb();
183 184
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcpu->arch.entry_ic = mfspr(SPRN_IC);
185
	svcpu->in_use = true;
186 187

	svcpu_put(svcpu);
188 189
}

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
{
	ulong guest_msr = kvmppc_get_msr(vcpu);
	ulong smsr = guest_msr;

	/* Guest MSR values */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
		MSR_TM | MSR_TS_MASK;
#else
	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
#endif
	/* Process MSR values */
	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
	/* External providers the guest reserved */
	smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
	/* 64-bit Process MSR values */
#ifdef CONFIG_PPC_BOOK3S_64
	smsr |= MSR_ISF | MSR_HV;
#endif
	vcpu->arch.shadow_msr = smsr;
}

213
/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
214
void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
215
{
216
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
217 218 219
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	ulong old_msr;
#endif
220 221 222 223 224 225 226 227

	/*
	 * Maybe we were already preempted and synced the svcpu from
	 * our preempt notifiers. Don't bother touching this svcpu then.
	 */
	if (!svcpu->in_use)
		goto out;

228 229 230 231 232 233 234 235 236 237 238 239 240 241
	vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
	vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
	vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
	vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
	vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
	vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
	vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
	vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
	vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
	vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
	vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
	vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
	vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
	vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
242
	vcpu->arch.cr  = svcpu->cr;
243 244 245 246
	vcpu->arch.regs.xer = svcpu->xer;
	vcpu->arch.regs.ctr = svcpu->ctr;
	vcpu->arch.regs.link  = svcpu->lr;
	vcpu->arch.regs.nip  = svcpu->pc;
247 248 249 250
	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
	vcpu->arch.fault_dar   = svcpu->fault_dar;
	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
	vcpu->arch.last_inst   = svcpu->last_inst;
251 252 253
#ifdef CONFIG_PPC_BOOK3S_64
	vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
#endif
254 255 256 257 258
	/*
	 * Update purr and spurr using time base on exit.
	 */
	vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
	vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
259
	to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
260 261
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
	 * notifying host:
	 *  modified by unprivileged instructions like "tbegin"/"tend"/
	 * "tresume"/"tsuspend" in PR KVM guest.
	 *
	 * It is necessary to sync here to calculate a correct shadow_msr.
	 *
	 * privileged guest's tbegin will be failed at present. So we
	 * only take care of problem state guest.
	 */
	old_msr = kvmppc_get_msr(vcpu);
	if (unlikely((old_msr & MSR_PR) &&
		(vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
				(old_msr & (MSR_TS_MASK)))) {
		old_msr &= ~(MSR_TS_MASK);
		old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
		kvmppc_set_msr_fast(vcpu, old_msr);
		kvmppc_recalc_shadow_msr(vcpu);
	}
#endif

286 287 288
	svcpu->in_use = false;

out:
289
	svcpu_put(svcpu);
290 291
}

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static inline void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
{
	tm_enable();
	vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
	vcpu->arch.texasr = mfspr(SPRN_TEXASR);
	vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
	tm_disable();
}

static inline void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
{
	tm_enable();
	mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
	mtspr(SPRN_TEXASR, vcpu->arch.texasr);
	mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
	tm_disable();
}

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
{
	if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
		kvmppc_save_tm_sprs(vcpu);
		return;
	}

	preempt_disable();
	_kvmppc_save_tm_pr(vcpu, mfmsr());
	preempt_enable();
}

void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
{
	if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
		kvmppc_restore_tm_sprs(vcpu);
		return;
	}

	preempt_disable();
	_kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
	preempt_enable();
}
334 335
#endif

336
static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
337
{
338 339
	int r = 1; /* Indicate we want to get back into the guest */

340 341 342 343
	/* We misuse TLB_FLUSH to indicate that we want to clear
	   all shadow cache entries */
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
		kvmppc_mmu_pte_flush(vcpu, 0, 0);
344 345

	return r;
346 347
}

348
/************* MMU Notifiers *************/
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
			     unsigned long end)
{
	long i;
	struct kvm_vcpu *vcpu;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
		kvm_for_each_vcpu(i, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
					      gfn_end << PAGE_SHIFT);
	}
}
378

379 380
static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
				  unsigned long end)
381
{
382
	do_kvm_unmap_hva(kvm, start, end);
383 384 385 386

	return 0;
}

A
Andres Lagar-Cavilla 已提交
387 388
static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start,
			  unsigned long end)
389 390 391 392 393
{
	/* XXX could be more clever ;) */
	return 0;
}

394
static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
395 396 397 398 399
{
	/* XXX could be more clever ;) */
	return 0;
}

400
static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
401 402
{
	/* The page will get remapped properly on its next fault */
403
	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
404 405 406 407
}

/*****************************************/

408
static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
409
{
410
	ulong old_msr = kvmppc_get_msr(vcpu);
411 412 413 414 415 416

#ifdef EXIT_DEBUG
	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
#endif

	msr &= to_book3s(vcpu)->msr_mask;
417
	kvmppc_set_msr_fast(vcpu, msr);
418 419 420 421 422
	kvmppc_recalc_shadow_msr(vcpu);

	if (msr & MSR_POW) {
		if (!vcpu->arch.pending_exceptions) {
			kvm_vcpu_block(vcpu);
423
			kvm_clear_request(KVM_REQ_UNHALT, vcpu);
424 425 426 427
			vcpu->stat.halt_wakeup++;

			/* Unset POW bit after we woke up */
			msr &= ~MSR_POW;
428
			kvmppc_set_msr_fast(vcpu, msr);
429 430 431
		}
	}

432 433 434 435 436
	if (kvmppc_is_split_real(vcpu))
		kvmppc_fixup_split_real(vcpu);
	else
		kvmppc_unfixup_split_real(vcpu);

437
	if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
		kvmppc_mmu_flush_segments(vcpu);
		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));

		/* Preload magic page segment when in kernel mode */
		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
			struct kvm_vcpu_arch *a = &vcpu->arch;

			if (msr & MSR_DR)
				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
			else
				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
		}
	}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
	/*
	 * When switching from 32 to 64-bit, we may have a stale 32-bit
	 * magic page around, we need to flush it. Typically 32-bit magic
	 * page will be instanciated when calling into RTAS. Note: We
	 * assume that such transition only happens while in kernel mode,
	 * ie, we never transition from user 32-bit to kernel 64-bit with
	 * a 32-bit magic page around.
	 */
	if (vcpu->arch.magic_page_pa &&
	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
		/* going from RTAS to normal kernel code */
		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
				     ~0xFFFUL);
	}

468
	/* Preload FPU if it's enabled */
469
	if (kvmppc_get_msr(vcpu) & MSR_FP)
470 471 472
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
}

473
void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
474 475 476 477 478 479 480 481
{
	u32 host_pvr;

	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
	vcpu->arch.pvr = pvr;
#ifdef CONFIG_PPC_BOOK3S_64
	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
		kvmppc_mmu_book3s_64_init(vcpu);
482 483
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0xfff00000;
484
		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
485
		vcpu->arch.cpu_type = KVM_CPU_3S_64;
486 487 488 489
	} else
#endif
	{
		kvmppc_mmu_book3s_32_init(vcpu);
490 491
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0;
492
		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
493
		vcpu->arch.cpu_type = KVM_CPU_3S_32;
494 495
	}

496 497
	kvmppc_sanity_check(vcpu);

498 499 500 501 502 503 504 505 506 507 508 509
	/* If we are in hypervisor level on 970, we can tell the CPU to
	 * treat DCBZ as 32 bytes store */
	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
	    !strcmp(cur_cpu_spec->platform, "ppc970"))
		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;

	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
	   really needs them in a VM on Cell and force disable them. */
	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);

510 511 512 513 514 515 516 517 518 519 520 521
	/*
	 * If they're asking for POWER6 or later, set the flag
	 * indicating that we can do multiple large page sizes
	 * and 1TB segments.
	 * Also set the flag that indicates that tlbie has the large
	 * page bit in the RB operand instead of the instruction.
	 */
	switch (PVR_VER(pvr)) {
	case PVR_POWER6:
	case PVR_POWER7:
	case PVR_POWER7p:
	case PVR_POWER8:
522 523
	case PVR_POWER8E:
	case PVR_POWER8NVL:
524 525 526 527 528
		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
			BOOK3S_HFLAG_NEW_TLBIE;
		break;
	}

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
#ifdef CONFIG_PPC_BOOK3S_32
	/* 32 bit Book3S always has 32 byte dcbz */
	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
#endif

	/* On some CPUs we can execute paired single operations natively */
	asm ( "mfpvr %0" : "=r"(host_pvr));
	switch (host_pvr) {
	case 0x00080200:	/* lonestar 2.0 */
	case 0x00088202:	/* lonestar 2.2 */
	case 0x70000100:	/* gekko 1.0 */
	case 0x00080100:	/* gekko 2.0 */
	case 0x00083203:	/* gekko 2.3a */
	case 0x00083213:	/* gekko 2.3b */
	case 0x00083204:	/* gekko 2.4 */
	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
	case 0x00087200:	/* broadway */
		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
		/* Enable HID2.PSE - in case we need it later */
		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
	}
}

/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
 * emulate 32 bytes dcbz length.
 *
 * The Book3s_64 inventors also realized this case and implemented a special bit
 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
 *
 * My approach here is to patch the dcbz instruction on executing pages.
 */
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
{
	struct page *hpage;
	u64 hpage_offset;
	u32 *page;
	int i;

	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
569
	if (is_error_page(hpage))
570 571 572 573 574 575 576
		return;

	hpage_offset = pte->raddr & ~PAGE_MASK;
	hpage_offset &= ~0xFFFULL;
	hpage_offset /= 4;

	get_page(hpage);
577
	page = kmap_atomic(hpage);
578 579 580

	/* patch dcbz into reserved instruction, so we trap */
	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
581 582
		if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
			page[i] &= cpu_to_be32(0xfffffff7);
583

584
	kunmap_atomic(page);
585 586 587
	put_page(hpage);
}

588
static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
589 590 591
{
	ulong mp_pa = vcpu->arch.magic_page_pa;

592
	if (!(kvmppc_get_msr(vcpu) & MSR_SF))
593 594
		mp_pa = (uint32_t)mp_pa;

595 596
	gpa &= ~0xFFFULL;
	if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
597
		return true;
598 599
	}

600
	return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
601 602 603 604 605 606
}

int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
			    ulong eaddr, int vec)
{
	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
607
	bool iswrite = false;
608 609 610
	int r = RESUME_GUEST;
	int relocated;
	int page_found = 0;
611
	struct kvmppc_pte pte = { 0 };
612 613
	bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
	bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
614 615 616
	u64 vsid;

	relocated = data ? dr : ir;
617 618
	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
		iswrite = true;
619 620 621

	/* Resolve real address if translation turned on */
	if (relocated) {
622
		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
623 624 625 626 627 628 629
	} else {
		pte.may_execute = true;
		pte.may_read = true;
		pte.may_write = true;
		pte.raddr = eaddr & KVM_PAM;
		pte.eaddr = eaddr;
		pte.vpage = eaddr >> 12;
630
		pte.page_size = MMU_PAGE_64K;
631
		pte.wimg = HPTE_R_M;
632 633
	}

634
	switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
635 636 637 638
	case 0:
		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
		break;
	case MSR_DR:
639 640 641 642 643
		if (!data &&
		    (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
		    ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
			pte.raddr &= ~SPLIT_HACK_MASK;
		/* fall through */
644 645 646
	case MSR_IR:
		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);

647
		if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
		else
			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
		pte.vpage |= vsid;

		if (vsid == -1)
			page_found = -EINVAL;
		break;
	}

	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
		/*
		 * If we do the dcbz hack, we have to NX on every execution,
		 * so we can patch the executing code. This renders our guest
		 * NX-less.
		 */
		pte.may_execute = !data;
	}

	if (page_found == -ENOENT) {
		/* Page not found in guest PTE entries */
670 671 672 673 674
		u64 ssrr1 = vcpu->arch.shadow_srr1;
		u64 msr = kvmppc_get_msr(vcpu);
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
		kvmppc_set_dsisr(vcpu, vcpu->arch.fault_dsisr);
		kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
675 676 677
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EPERM) {
		/* Storage protection */
678 679 680 681 682 683 684
		u32 dsisr = vcpu->arch.fault_dsisr;
		u64 ssrr1 = vcpu->arch.shadow_srr1;
		u64 msr = kvmppc_get_msr(vcpu);
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
		dsisr = (dsisr & ~DSISR_NOHPTE) | DSISR_PROTFAULT;
		kvmppc_set_dsisr(vcpu, dsisr);
		kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
685 686 687
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EINVAL) {
		/* Page not found in guest SLB */
688
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
689
		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
690
	} else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
691 692 693 694 695 696 697 698
		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
			/*
			 * There is already a host HPTE there, presumably
			 * a read-only one for a page the guest thinks
			 * is writable, so get rid of it first.
			 */
			kvmppc_mmu_unmap_page(vcpu, &pte);
		}
699
		/* The guest's PTE is not mapped yet. Map on the host */
700 701 702 703 704
		if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
			/* Exit KVM if mapping failed */
			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
			return RESUME_HOST;
		}
705 706 707
		if (data)
			vcpu->stat.sp_storage++;
		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
708
			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
709 710 711 712 713
			kvmppc_patch_dcbz(vcpu, &pte);
	} else {
		/* MMIO */
		vcpu->stat.mmio_exits++;
		vcpu->arch.paddr_accessed = pte.raddr;
714
		vcpu->arch.vaddr_accessed = pte.eaddr;
715 716 717 718 719 720 721 722 723 724 725 726 727
		r = kvmppc_emulate_mmio(run, vcpu);
		if ( r == RESUME_HOST_NV )
			r = RESUME_HOST;
	}

	return r;
}

/* Give up external provider (FPU, Altivec, VSX) */
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
{
	struct thread_struct *t = &current->thread;

728 729 730 731 732 733 734 735 736
	/*
	 * VSX instructions can access FP and vector registers, so if
	 * we are giving up VSX, make sure we give up FP and VMX as well.
	 */
	if (msr & MSR_VSX)
		msr |= MSR_FP | MSR_VEC;

	msr &= vcpu->arch.guest_owned_ext;
	if (!msr)
737 738 739 740 741 742
		return;

#ifdef DEBUG_EXT
	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
#endif

743 744 745 746
	if (msr & MSR_FP) {
		/*
		 * Note that on CPUs with VSX, giveup_fpu stores
		 * both the traditional FP registers and the added VSX
747
		 * registers into thread.fp_state.fpr[].
748
		 */
749
		if (t->regs->msr & MSR_FP)
750
			giveup_fpu(current);
751
		t->fp_save_area = NULL;
752 753
	}

754
#ifdef CONFIG_ALTIVEC
755
	if (msr & MSR_VEC) {
756 757
		if (current->thread.regs->msr & MSR_VEC)
			giveup_altivec(current);
758
		t->vr_save_area = NULL;
759
	}
760
#endif
761

762
	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
763 764 765
	kvmppc_recalc_shadow_msr(vcpu);
}

766 767 768 769 770 771 772 773
/* Give up facility (TAR / EBB / DSCR) */
static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
{
#ifdef CONFIG_PPC_BOOK3S_64
	if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
		/* Facility not available to the guest, ignore giveup request*/
		return;
	}
774 775 776 777 778 779 780 781

	switch (fac) {
	case FSCR_TAR_LG:
		vcpu->arch.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, current->thread.tar);
		vcpu->arch.shadow_fscr &= ~FSCR_TAR;
		break;
	}
782 783 784
#endif
}

785 786 787 788 789 790 791 792 793 794
/* Handle external providers (FPU, Altivec, VSX) */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr)
{
	struct thread_struct *t = &current->thread;

	/* When we have paired singles, we emulate in software */
	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
		return RESUME_GUEST;

795
	if (!(kvmppc_get_msr(vcpu) & msr)) {
796 797 798 799
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		return RESUME_GUEST;
	}

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
	if (msr == MSR_VSX) {
		/* No VSX?  Give an illegal instruction interrupt */
#ifdef CONFIG_VSX
		if (!cpu_has_feature(CPU_FTR_VSX))
#endif
		{
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			return RESUME_GUEST;
		}

		/*
		 * We have to load up all the FP and VMX registers before
		 * we can let the guest use VSX instructions.
		 */
		msr = MSR_FP | MSR_VEC | MSR_VSX;
815 816
	}

817 818 819 820 821
	/* See if we already own all the ext(s) needed */
	msr &= ~vcpu->arch.guest_owned_ext;
	if (!msr)
		return RESUME_GUEST;

822 823 824 825
#ifdef DEBUG_EXT
	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
#endif

826
	if (msr & MSR_FP) {
827
		preempt_disable();
828
		enable_kernel_fp();
829
		load_fp_state(&vcpu->arch.fp);
830
		disable_kernel_fp();
831
		t->fp_save_area = &vcpu->arch.fp;
832
		preempt_enable();
833 834 835
	}

	if (msr & MSR_VEC) {
836
#ifdef CONFIG_ALTIVEC
837
		preempt_disable();
838
		enable_kernel_altivec();
839
		load_vr_state(&vcpu->arch.vr);
840
		disable_kernel_altivec();
841
		t->vr_save_area = &vcpu->arch.vr;
842
		preempt_enable();
843 844 845
#endif
	}

846
	t->regs->msr |= msr;
847 848 849 850 851 852
	vcpu->arch.guest_owned_ext |= msr;
	kvmppc_recalc_shadow_msr(vcpu);

	return RESUME_GUEST;
}

853 854 855 856 857 858 859 860 861 862 863 864
/*
 * Kernel code using FP or VMX could have flushed guest state to
 * the thread_struct; if so, get it back now.
 */
static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
{
	unsigned long lost_ext;

	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
	if (!lost_ext)
		return;

865
	if (lost_ext & MSR_FP) {
866
		preempt_disable();
867
		enable_kernel_fp();
868
		load_fp_state(&vcpu->arch.fp);
869
		disable_kernel_fp();
870
		preempt_enable();
871
	}
872
#ifdef CONFIG_ALTIVEC
873
	if (lost_ext & MSR_VEC) {
874
		preempt_disable();
875
		enable_kernel_altivec();
876
		load_vr_state(&vcpu->arch.vr);
877
		disable_kernel_altivec();
878
		preempt_enable();
879
	}
880
#endif
881 882 883
	current->thread.regs->msr |= lost_ext;
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
#ifdef CONFIG_PPC_BOOK3S_64

static void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
{
	/* Inject the Interrupt Cause field and trigger a guest interrupt */
	vcpu->arch.fscr &= ~(0xffULL << 56);
	vcpu->arch.fscr |= (fac << 56);
	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
}

static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
{
	enum emulation_result er = EMULATE_FAIL;

	if (!(kvmppc_get_msr(vcpu) & MSR_PR))
		er = kvmppc_emulate_instruction(vcpu->run, vcpu);

	if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
		/* Couldn't emulate, trigger interrupt in guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
	}
}

/* Enable facilities (TAR, EBB, DSCR) for the guest */
static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
{
910
	bool guest_fac_enabled;
911 912
	BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
	/*
	 * Not every facility is enabled by FSCR bits, check whether the
	 * guest has this facility enabled at all.
	 */
	switch (fac) {
	case FSCR_TAR_LG:
	case FSCR_EBB_LG:
		guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
		break;
	case FSCR_TM_LG:
		guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
		break;
	default:
		guest_fac_enabled = false;
		break;
	}

	if (!guest_fac_enabled) {
931 932 933 934 935 936
		/* Facility not enabled by the guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
		return RESUME_GUEST;
	}

	switch (fac) {
937 938 939 940 941 942
	case FSCR_TAR_LG:
		/* TAR switching isn't lazy in Linux yet */
		current->thread.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, vcpu->arch.tar);
		vcpu->arch.shadow_fscr |= FSCR_TAR;
		break;
943 944 945 946 947 948 949
	default:
		kvmppc_emulate_fac(vcpu, fac);
		break;
	}

	return RESUME_GUEST;
}
950 951 952 953 954 955 956 957 958

void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
{
	if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
		/* TAR got dropped, drop it in shadow too */
		kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
	}
	vcpu->arch.fscr = fscr;
}
959 960
#endif

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
{
	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
		u64 msr = kvmppc_get_msr(vcpu);

		kvmppc_set_msr(vcpu, msr | MSR_SE);
	}
}

static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
{
	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
		u64 msr = kvmppc_get_msr(vcpu);

		kvmppc_set_msr(vcpu, msr & ~MSR_SE);
	}
}

979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
static int kvmppc_exit_pr_progint(struct kvm_run *run, struct kvm_vcpu *vcpu,
				  unsigned int exit_nr)
{
	enum emulation_result er;
	ulong flags;
	u32 last_inst;
	int emul, r;

	/*
	 * shadow_srr1 only contains valid flags if we came here via a program
	 * exception. The other exceptions (emulation assist, FP unavailable,
	 * etc.) do not provide flags in SRR1, so use an illegal-instruction
	 * exception when injecting a program interrupt into the guest.
	 */
	if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
	else
		flags = SRR1_PROGILL;

	emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
	if (emul != EMULATE_DONE)
		return RESUME_GUEST;

	if (kvmppc_get_msr(vcpu) & MSR_PR) {
#ifdef EXIT_DEBUG
		pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
			kvmppc_get_pc(vcpu), last_inst);
#endif
		if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
			kvmppc_core_queue_program(vcpu, flags);
			return RESUME_GUEST;
		}
	}

	vcpu->stat.emulated_inst_exits++;
	er = kvmppc_emulate_instruction(run, vcpu);
	switch (er) {
	case EMULATE_DONE:
		r = RESUME_GUEST_NV;
		break;
	case EMULATE_AGAIN:
		r = RESUME_GUEST;
		break;
	case EMULATE_FAIL:
		pr_crit("%s: emulation at %lx failed (%08x)\n",
			__func__, kvmppc_get_pc(vcpu), last_inst);
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST_NV;
		break;
	case EMULATE_EXIT_USER:
		r = RESUME_HOST_NV;
		break;
	default:
		BUG();
	}

	return r;
}

1042 1043
int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
			  unsigned int exit_nr)
1044 1045
{
	int r = RESUME_HOST;
1046
	int s;
1047 1048 1049 1050 1051 1052

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

1053
	/* We get here with MSR.EE=1 */
1054

1055
	trace_kvm_exit(exit_nr, vcpu);
1056
	guest_exit();
1057

1058 1059
	switch (exit_nr) {
	case BOOK3S_INTERRUPT_INST_STORAGE:
1060
	{
1061
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1062 1063
		vcpu->stat.pf_instruc++;

1064 1065 1066
		if (kvmppc_is_split_real(vcpu))
			kvmppc_fixup_split_real(vcpu);

1067 1068 1069
#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
1070 1071 1072 1073 1074 1075
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1076
			svcpu_put(svcpu);
1077 1078 1079 1080 1081
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
				r = RESUME_GUEST;
				break;
			}
1082 1083 1084 1085
		}
#endif

		/* only care about PTEG not found errors, but leave NX alone */
1086
		if (shadow_srr1 & 0x40000000) {
1087
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1088
			r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
1089
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
			vcpu->stat.sp_instruc++;
		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
			/*
			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
			 *     that no guest that needs the dcbz hack does NX.
			 */
			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
			r = RESUME_GUEST;
		} else {
1101 1102 1103
			u64 msr = kvmppc_get_msr(vcpu);
			msr |= shadow_srr1 & 0x58000000;
			kvmppc_set_msr_fast(vcpu, msr);
1104 1105 1106 1107
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
1108
	}
1109 1110 1111
	case BOOK3S_INTERRUPT_DATA_STORAGE:
	{
		ulong dar = kvmppc_get_fault_dar(vcpu);
1112
		u32 fault_dsisr = vcpu->arch.fault_dsisr;
1113 1114 1115 1116 1117
		vcpu->stat.pf_storage++;

#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
1118 1119 1120 1121 1122 1123
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[dar >> SID_SHIFT];
1124
			svcpu_put(svcpu);
1125 1126 1127 1128 1129
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, dar);
				r = RESUME_GUEST;
				break;
			}
1130 1131 1132
		}
#endif

1133 1134 1135 1136 1137 1138 1139
		/*
		 * We need to handle missing shadow PTEs, and
		 * protection faults due to us mapping a page read-only
		 * when the guest thinks it is writable.
		 */
		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1140
			r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
1141
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1142
		} else {
1143 1144
			kvmppc_set_dar(vcpu, dar);
			kvmppc_set_dsisr(vcpu, fault_dsisr);
1145 1146 1147 1148 1149 1150 1151
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
	}
	case BOOK3S_INTERRUPT_DATA_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1152
			kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_DATA_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_INST_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_INST_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_DECREMENTER:
1167
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1168
	case BOOK3S_INTERRUPT_DOORBELL:
1169
	case BOOK3S_INTERRUPT_H_DOORBELL:
1170 1171 1172 1173
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
1174 1175
	case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
	case BOOK3S_INTERRUPT_EXTERNAL_HV:
1176 1177 1178 1179 1180 1181 1182
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
1183
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1184
		r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
1185 1186
		break;
	case BOOK3S_INTERRUPT_SYSCALL:
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	{
		u32 last_sc;
		int emul;

		/* Get last sc for papr */
		if (vcpu->arch.papr_enabled) {
			/* The sc instuction points SRR0 to the next inst */
			emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
			if (emul != EMULATE_DONE) {
				kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
				r = RESUME_GUEST;
				break;
			}
		}

1202
		if (vcpu->arch.papr_enabled &&
1203
		    (last_sc == 0x44000022) &&
1204
		    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1205 1206 1207 1208
			/* SC 1 papr hypercalls */
			ulong cmd = kvmppc_get_gpr(vcpu, 3);
			int i;

1209
#ifdef CONFIG_PPC_BOOK3S_64
1210 1211 1212 1213
			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
				r = RESUME_GUEST;
				break;
			}
1214
#endif
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224

			run->papr_hcall.nr = cmd;
			for (i = 0; i < 9; ++i) {
				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
				run->papr_hcall.args[i] = gpr;
			}
			run->exit_reason = KVM_EXIT_PAPR_HCALL;
			vcpu->arch.hcall_needed = 1;
			r = RESUME_HOST;
		} else if (vcpu->arch.osi_enabled &&
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
			/* MOL hypercalls */
			u64 *gprs = run->osi.gprs;
			int i;

			run->exit_reason = KVM_EXIT_OSI;
			for (i = 0; i < 32; i++)
				gprs[i] = kvmppc_get_gpr(vcpu, i);
			vcpu->arch.osi_needed = 1;
			r = RESUME_HOST_NV;
1236
		} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
			/* KVM PV hypercalls */
			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
			r = RESUME_GUEST;
		} else {
			/* Guest syscalls */
			vcpu->stat.syscall_exits++;
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
1248
	}
1249 1250 1251 1252 1253
	case BOOK3S_INTERRUPT_FP_UNAVAIL:
	case BOOK3S_INTERRUPT_ALTIVEC:
	case BOOK3S_INTERRUPT_VSX:
	{
		int ext_msr = 0;
1254 1255 1256 1257 1258
		int emul;
		u32 last_inst;

		if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
			/* Do paired single instruction emulation */
1259 1260
			emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
						    &last_inst);
1261
			if (emul == EMULATE_DONE)
1262
				r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
1263 1264
			else
				r = RESUME_GUEST;
1265

1266
			break;
1267 1268
		}

1269 1270 1271 1272
		/* Enable external provider */
		switch (exit_nr) {
		case BOOK3S_INTERRUPT_FP_UNAVAIL:
			ext_msr = MSR_FP;
1273
			break;
1274 1275 1276

		case BOOK3S_INTERRUPT_ALTIVEC:
			ext_msr = MSR_VEC;
1277
			break;
1278 1279 1280

		case BOOK3S_INTERRUPT_VSX:
			ext_msr = MSR_VSX;
1281 1282
			break;
		}
1283 1284

		r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1285 1286 1287
		break;
	}
	case BOOK3S_INTERRUPT_ALIGNMENT:
1288
	{
1289 1290
		u32 last_inst;
		int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1291 1292

		if (emul == EMULATE_DONE) {
1293 1294 1295 1296 1297 1298 1299 1300 1301
			u32 dsisr;
			u64 dar;

			dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
			dar = kvmppc_alignment_dar(vcpu, last_inst);

			kvmppc_set_dsisr(vcpu, dsisr);
			kvmppc_set_dar(vcpu, dar);

1302 1303 1304 1305
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		}
		r = RESUME_GUEST;
		break;
1306
	}
1307 1308 1309 1310 1311 1312
#ifdef CONFIG_PPC_BOOK3S_64
	case BOOK3S_INTERRUPT_FAC_UNAVAIL:
		kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
		r = RESUME_GUEST;
		break;
#endif
1313 1314 1315 1316
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		r = RESUME_GUEST;
		break;
1317 1318 1319 1320 1321 1322 1323 1324 1325
	case BOOK3S_INTERRUPT_TRACE:
		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
			run->exit_reason = KVM_EXIT_DEBUG;
			r = RESUME_HOST;
		} else {
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
1326
	default:
1327
	{
1328
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1329 1330
		/* Ugh - bork here! What did we get? */
		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1331
			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1332 1333 1334 1335
		r = RESUME_HOST;
		BUG();
		break;
	}
1336
	}
1337 1338 1339 1340 1341

	if (!(r & RESUME_HOST)) {
		/* To avoid clobbering exit_reason, only check for signals if
		 * we aren't already exiting to userspace for some other
		 * reason. */
1342 1343 1344 1345 1346 1347 1348

		/*
		 * Interrupts could be timers for the guest which we have to
		 * inject again, so let's postpone them until we're in the guest
		 * and if we really did time things so badly, then we just exit
		 * again due to a host external interrupt.
		 */
1349
		s = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1350
		if (s <= 0)
1351
			r = s;
S
Scott Wood 已提交
1352 1353
		else {
			/* interrupts now hard-disabled */
1354
			kvmppc_fix_ee_before_entry();
1355
		}
S
Scott Wood 已提交
1356

1357
		kvmppc_handle_lost_ext(vcpu);
1358 1359 1360 1361 1362 1363 1364
	}

	trace_kvm_book3s_reenter(r, vcpu);

	return r;
}

1365 1366
static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

	sregs->pvr = vcpu->arch.pvr;

	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
		for (i = 0; i < 64; i++) {
			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
		}
	} else {
		for (i = 0; i < 16; i++)
1381
			sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391

		for (i = 0; i < 8; i++) {
			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
		}
	}

	return 0;
}

1392 1393
static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1394 1395 1396 1397
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

1398
	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1399 1400

	vcpu3s->sdr1 = sregs->u.s.sdr1;
1401
#ifdef CONFIG_PPC_BOOK3S_64
1402
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1403 1404 1405 1406
		/* Flush all SLB entries */
		vcpu->arch.mmu.slbmte(vcpu, 0, 0);
		vcpu->arch.mmu.slbia(vcpu);

1407
		for (i = 0; i < 64; i++) {
1408 1409 1410 1411 1412
			u64 rb = sregs->u.s.ppc64.slb[i].slbe;
			u64 rs = sregs->u.s.ppc64.slb[i].slbv;

			if (rb & SLB_ESID_V)
				vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1413
		}
1414 1415 1416
	} else
#endif
	{
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
		for (i = 0; i < 16; i++) {
			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
		}
		for (i = 0; i < 8; i++) {
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
				       (u32)sregs->u.s.ppc32.ibat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
				       (u32)sregs->u.s.ppc32.dbat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
		}
	}

	/* Flush the MMU after messing with the segments */
	kvmppc_mmu_pte_flush(vcpu, 0, 0);

	return 0;
}

1438 1439
static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1440
{
1441
	int r = 0;
1442

1443
	switch (id) {
1444 1445 1446
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1447
	case KVM_REG_PPC_HIOR:
1448
		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1449
		break;
1450 1451 1452
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, to_book3s(vcpu)->vtb);
		break;
1453
	case KVM_REG_PPC_LPCR:
1454
	case KVM_REG_PPC_LPCR_64:
1455 1456 1457 1458 1459 1460 1461 1462
		/*
		 * We are only interested in the LPCR_ILE bit
		 */
		if (vcpu->arch.intr_msr & MSR_LE)
			*val = get_reg_val(id, LPCR_ILE);
		else
			*val = get_reg_val(id, 0);
		break;
1463
	default:
1464
		r = -EINVAL;
1465 1466 1467 1468 1469 1470
		break;
	}

	return r;
}

1471 1472 1473 1474 1475 1476 1477 1478
static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
{
	if (new_lpcr & LPCR_ILE)
		vcpu->arch.intr_msr |= MSR_LE;
	else
		vcpu->arch.intr_msr &= ~MSR_LE;
}

1479 1480
static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1481
{
1482
	int r = 0;
1483

1484
	switch (id) {
1485
	case KVM_REG_PPC_HIOR:
1486 1487
		to_book3s(vcpu)->hior = set_reg_val(id, *val);
		to_book3s(vcpu)->hior_explicit = true;
1488
		break;
1489 1490 1491
	case KVM_REG_PPC_VTB:
		to_book3s(vcpu)->vtb = set_reg_val(id, *val);
		break;
1492
	case KVM_REG_PPC_LPCR:
1493
	case KVM_REG_PPC_LPCR_64:
1494 1495
		kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
		break;
1496
	default:
1497
		r = -EINVAL;
1498 1499 1500 1501 1502 1503
		break;
	}

	return r;
}

1504 1505
static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
						   unsigned int id)
1506 1507 1508 1509 1510 1511
{
	struct kvmppc_vcpu_book3s *vcpu_book3s;
	struct kvm_vcpu *vcpu;
	int err = -ENOMEM;
	unsigned long p;

1512 1513
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu)
1514 1515 1516 1517 1518
		goto out;

	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
	if (!vcpu_book3s)
		goto free_vcpu;
1519
	vcpu->arch.book3s = vcpu_book3s;
1520

1521
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1522 1523 1524 1525
	vcpu->arch.shadow_vcpu =
		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
	if (!vcpu->arch.shadow_vcpu)
		goto free_vcpu3s;
1526
#endif
1527 1528 1529 1530 1531

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_shadow_vcpu;

1532
	err = -ENOMEM;
1533 1534 1535
	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
	if (!p)
		goto uninit_vcpu;
1536
	vcpu->arch.shared = (void *)p;
1537
#ifdef CONFIG_PPC_BOOK3S_64
1538 1539 1540 1541 1542 1543 1544
	/* Always start the shared struct in native endian mode */
#ifdef __BIG_ENDIAN__
        vcpu->arch.shared_big_endian = true;
#else
        vcpu->arch.shared_big_endian = false;
#endif

1545 1546 1547 1548 1549
	/*
	 * Default to the same as the host if we're on sufficiently
	 * recent machine that we have 1TB segments;
	 * otherwise default to PPC970FX.
	 */
1550
	vcpu->arch.pvr = 0x3C0301;
1551 1552
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		vcpu->arch.pvr = mfspr(SPRN_PVR);
1553
	vcpu->arch.intr_msr = MSR_SF;
1554 1555 1556 1557
#else
	/* default to book3s_32 (750) */
	vcpu->arch.pvr = 0x84202;
#endif
1558
	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1559 1560
	vcpu->arch.slb_nr = 64;

1561
	vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571

	err = kvmppc_mmu_init(vcpu);
	if (err < 0)
		goto uninit_vcpu;

	return vcpu;

uninit_vcpu:
	kvm_vcpu_uninit(vcpu);
free_shadow_vcpu:
1572
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1573 1574
	kfree(vcpu->arch.shadow_vcpu);
free_vcpu3s:
1575
#endif
1576
	vfree(vcpu_book3s);
1577 1578
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1579 1580 1581 1582
out:
	return ERR_PTR(err);
}

1583
static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1584 1585 1586 1587 1588
{
	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);

	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
	kvm_vcpu_uninit(vcpu);
1589
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1590 1591
	kfree(vcpu->arch.shadow_vcpu);
#endif
1592
	vfree(vcpu_book3s);
1593
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1594 1595
}

1596
static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1597 1598 1599 1600 1601 1602
{
	int ret;
#ifdef CONFIG_ALTIVEC
	unsigned long uninitialized_var(vrsave);
#endif

1603 1604 1605
	/* Check if we can run the vcpu at all */
	if (!vcpu->arch.sane) {
		kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1606 1607
		ret = -EINVAL;
		goto out;
1608 1609
	}

1610 1611
	kvmppc_setup_debug(vcpu);

1612 1613 1614 1615 1616 1617
	/*
	 * Interrupts could be timers for the guest which we have to inject
	 * again, so let's postpone them until we're in the guest and if we
	 * really did time things so badly, then we just exit again due to
	 * a host external interrupt.
	 */
1618
	ret = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1619
	if (ret <= 0)
1620
		goto out;
S
Scott Wood 已提交
1621
	/* interrupts now hard-disabled */
1622

A
Anton Blanchard 已提交
1623 1624
	/* Save FPU, Altivec and VSX state */
	giveup_all(current);
1625 1626

	/* Preload FPU if it's enabled */
1627
	if (kvmppc_get_msr(vcpu) & MSR_FP)
1628 1629
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);

1630
	kvmppc_fix_ee_before_entry();
1631 1632 1633

	ret = __kvmppc_vcpu_run(kvm_run, vcpu);

1634 1635
	kvmppc_clear_debug(vcpu);

1636
	/* No need for guest_exit. It's done in handle_exit.
1637
	   We also get here with interrupts enabled. */
1638 1639

	/* Make sure we save the guest FPU/Altivec/VSX state */
1640 1641
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);

1642 1643 1644
	/* Make sure we save the guest TAR/EBB/DSCR state */
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);

1645
out:
1646
	vcpu->mode = OUTSIDE_GUEST_MODE;
1647 1648 1649
	return ret;
}

1650 1651 1652
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
1653 1654
static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
					 struct kvm_dirty_log *log)
1655
{
1656
	struct kvm_memslots *slots;
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	struct kvm_memory_slot *memslot;
	struct kvm_vcpu *vcpu;
	ulong ga, ga_end;
	int is_dirty = 0;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
1672 1673
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, log->slot);
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690

		ga = memslot->base_gfn << PAGE_SHIFT;
		ga_end = ga + (memslot->npages << PAGE_SHIFT);

		kvm_for_each_vcpu(n, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);

		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1691 1692
static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
					 struct kvm_memory_slot *memslot)
1693
{
1694 1695
	return;
}
1696

1697 1698
static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
1699
					const struct kvm_userspace_memory_region *mem)
1700
{
1701 1702 1703
	return 0;
}

1704
static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1705
				const struct kvm_userspace_memory_region *mem,
1706 1707
				const struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new)
1708
{
1709
	return;
1710 1711
}

1712 1713
static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
1714
{
1715
	return;
1716 1717
}

1718 1719
static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
					 unsigned long npages)
1720 1721 1722 1723
{
	return 0;
}

1724

1725
#ifdef CONFIG_PPC64
1726 1727
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1728
{
1729 1730 1731 1732
	long int i;
	struct kvm_vcpu *vcpu;

	info->flags = 0;
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

	/* SLB is always 64 entries */
	info->slb_size = 64;

	/* Standard 4k base page size segment */
	info->sps[0].page_shift = 12;
	info->sps[0].slb_enc = 0;
	info->sps[0].enc[0].page_shift = 12;
	info->sps[0].enc[0].pte_enc = 0;

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	/*
	 * 64k large page size.
	 * We only want to put this in if the CPUs we're emulating
	 * support it, but unfortunately we don't have a vcpu easily
	 * to hand here to test.  Just pick the first vcpu, and if
	 * that doesn't exist yet, report the minimum capability,
	 * i.e., no 64k pages.
	 * 1T segment support goes along with 64k pages.
	 */
	i = 1;
	vcpu = kvm_get_vcpu(kvm, 0);
	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
		info->flags = KVM_PPC_1T_SEGMENTS;
		info->sps[i].page_shift = 16;
		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
		info->sps[i].enc[0].page_shift = 16;
		info->sps[i].enc[0].pte_enc = 1;
		++i;
	}

1763
	/* Standard 16M large page size segment */
1764 1765 1766 1767
	info->sps[i].page_shift = 24;
	info->sps[i].slb_enc = SLB_VSID_L;
	info->sps[i].enc[0].page_shift = 24;
	info->sps[i].enc[0].pte_enc = 0;
1768

1769 1770
	return 0;
}
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781

static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
{
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -ENODEV;
	/* Require flags and process table base and size to all be zero. */
	if (cfg->flags || cfg->process_table)
		return -EINVAL;
	return 0;
}

1782 1783 1784
#else
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1785
{
1786 1787
	/* We should not get called */
	BUG();
1788
}
1789
#endif /* CONFIG_PPC64 */
1790

1791 1792 1793
static unsigned int kvm_global_user_count = 0;
static DEFINE_SPINLOCK(kvm_global_user_count_lock);

1794
static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1795
{
1796
	mutex_init(&kvm->arch.hpt_mutex);
1797

1798 1799 1800 1801 1802
#ifdef CONFIG_PPC_BOOK3S_64
	/* Start out with the default set of hcalls enabled */
	kvmppc_pr_init_default_hcalls(kvm);
#endif

1803 1804 1805
	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		if (++kvm_global_user_count == 1)
1806
			pseries_disable_reloc_on_exc();
1807 1808
		spin_unlock(&kvm_global_user_count_lock);
	}
1809 1810 1811
	return 0;
}

1812
static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
1813
{
1814 1815 1816
#ifdef CONFIG_PPC64
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
#endif
1817 1818 1819 1820 1821

	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		BUG_ON(kvm_global_user_count == 0);
		if (--kvm_global_user_count == 0)
1822
			pseries_enable_reloc_on_exc();
1823 1824
		spin_unlock(&kvm_global_user_count_lock);
	}
1825 1826
}

1827
static int kvmppc_core_check_processor_compat_pr(void)
1828
{
1829
	/*
1830 1831 1832 1833 1834 1835 1836
	 * PR KVM can work on POWER9 inside a guest partition
	 * running in HPT mode.  It can't work if we are using
	 * radix translation (because radix provides no way for
	 * a process to have unique translations in quadrant 3)
	 * or in a bare-metal HPT-mode host (because POWER9
	 * uses a modified HPTE format which the PR KVM code
	 * has not been adapted to use).
1837
	 */
1838 1839
	if (cpu_has_feature(CPU_FTR_ARCH_300) &&
	    (radix_enabled() || cpu_has_feature(CPU_FTR_HVMODE)))
1840
		return -EIO;
1841 1842
	return 0;
}
1843

1844 1845 1846 1847 1848
static long kvm_arch_vm_ioctl_pr(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	return -ENOTTY;
}
1849

1850
static struct kvmppc_ops kvm_ops_pr = {
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
	.get_one_reg = kvmppc_get_one_reg_pr,
	.set_one_reg = kvmppc_set_one_reg_pr,
	.vcpu_load   = kvmppc_core_vcpu_load_pr,
	.vcpu_put    = kvmppc_core_vcpu_put_pr,
	.set_msr     = kvmppc_set_msr_pr,
	.vcpu_run    = kvmppc_vcpu_run_pr,
	.vcpu_create = kvmppc_core_vcpu_create_pr,
	.vcpu_free   = kvmppc_core_vcpu_free_pr,
	.check_requests = kvmppc_core_check_requests_pr,
	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
	.flush_memslot = kvmppc_core_flush_memslot_pr,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
	.unmap_hva_range = kvm_unmap_hva_range_pr,
	.age_hva  = kvm_age_hva_pr,
	.test_age_hva = kvm_test_age_hva_pr,
	.set_spte_hva = kvm_set_spte_hva_pr,
	.mmu_destroy  = kvmppc_mmu_destroy_pr,
	.free_memslot = kvmppc_core_free_memslot_pr,
	.create_memslot = kvmppc_core_create_memslot_pr,
	.init_vm = kvmppc_core_init_vm_pr,
	.destroy_vm = kvmppc_core_destroy_vm_pr,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
	.emulate_op = kvmppc_core_emulate_op_pr,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
	.fast_vcpu_kick = kvm_vcpu_kick,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
1881 1882
#ifdef CONFIG_PPC_BOOK3S_64
	.hcall_implemented = kvmppc_hcall_impl_pr,
1883
	.configure_mmu = kvm_configure_mmu_pr,
1884
#endif
1885
	.giveup_ext = kvmppc_giveup_ext,
1886 1887
};

1888 1889

int kvmppc_book3s_init_pr(void)
1890 1891 1892
{
	int r;

1893 1894
	r = kvmppc_core_check_processor_compat_pr();
	if (r < 0)
1895 1896
		return r;

1897 1898
	kvm_ops_pr.owner = THIS_MODULE;
	kvmppc_pr_ops = &kvm_ops_pr;
1899

1900
	r = kvmppc_mmu_hpte_sysinit();
1901 1902 1903
	return r;
}

1904
void kvmppc_book3s_exit_pr(void)
1905
{
1906
	kvmppc_pr_ops = NULL;
1907 1908 1909
	kvmppc_mmu_hpte_sysexit();
}

1910 1911 1912 1913 1914
/*
 * We only support separate modules for book3s 64
 */
#ifdef CONFIG_PPC_BOOK3S_64

1915 1916
module_init(kvmppc_book3s_init_pr);
module_exit(kvmppc_book3s_exit_pr);
1917 1918

MODULE_LICENSE("GPL");
1919 1920
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");
1921
#endif