book3s_pr.c 54.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *    Paul Mackerras <paulus@samba.org>
 *
 * Description:
 * Functions relating to running KVM on Book 3S processors where
 * we don't have access to hypervisor mode, and we run the guest
 * in problem state (user mode).
 *
 * This file is derived from arch/powerpc/kvm/44x.c,
 * by Hollis Blanchard <hollisb@us.ibm.com>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
23
#include <linux/export.h>
24 25 26 27 28 29 30
#include <linux/err.h>
#include <linux/slab.h>

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
31
#include <linux/uaccess.h>
32 33 34 35
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
36
#include <asm/switch_to.h>
37
#include <asm/firmware.h>
38
#include <asm/setup.h>
39 40 41 42
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
43
#include <linux/module.h>
44
#include <linux/miscdevice.h>
45
#include <asm/asm-prototypes.h>
46
#include <asm/tm.h>
47

48
#include "book3s.h"
49 50 51

#define CREATE_TRACE_POINTS
#include "trace_pr.h"
52 53 54 55 56 57

/* #define EXIT_DEBUG */
/* #define DEBUG_EXT */

static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr);
58 59 60
#ifdef CONFIG_PPC_BOOK3S_64
static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac);
#endif
61 62 63 64 65 66

/* Some compatibility defines */
#ifdef CONFIG_PPC_BOOK3S_32
#define MSR_USER32 MSR_USER
#define MSR_USER64 MSR_USER
#define HW_PAGE_SIZE PAGE_SIZE
67
#define HPTE_R_M   _PAGE_COHERENT
68 69
#endif

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
{
	ulong msr = kvmppc_get_msr(vcpu);
	return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
}

static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
{
	ulong msr = kvmppc_get_msr(vcpu);
	ulong pc = kvmppc_get_pc(vcpu);

	/* We are in DR only split real mode */
	if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
		return;

	/* We have not fixed up the guest already */
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
		return;

	/* The code is in fixupable address space */
	if (pc & SPLIT_HACK_MASK)
		return;

	vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
	kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
}

void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu);

99
static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
100 101
{
#ifdef CONFIG_PPC_BOOK3S_64
102 103 104
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
105
	svcpu->in_use = 0;
106
	svcpu_put(svcpu);
107
#endif
108 109 110 111 112 113

	/* Disable AIL if supported */
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);

114
	vcpu->cpu = smp_processor_id();
115
#ifdef CONFIG_PPC_BOOK3S_32
116
	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
117
#endif
118 119 120

	if (kvmppc_is_split_real(vcpu))
		kvmppc_fixup_split_real(vcpu);
121 122

	kvmppc_restore_tm_pr(vcpu);
123 124
}

125
static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
126 127
{
#ifdef CONFIG_PPC_BOOK3S_64
128
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
129
	if (svcpu->in_use) {
130
		kvmppc_copy_from_svcpu(vcpu);
131
	}
132 133 134
	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
	svcpu_put(svcpu);
135 136
#endif

137 138 139
	if (kvmppc_is_split_real(vcpu))
		kvmppc_unfixup_split_real(vcpu);

140
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
141
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
142
	kvmppc_save_tm_pr(vcpu);
143 144 145 146 147 148

	/* Enable AIL if supported */
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);

149
	vcpu->cpu = -1;
150 151
}

152
/* Copy data needed by real-mode code from vcpu to shadow vcpu */
153
void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
154
{
155 156
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);

157 158 159 160 161 162 163 164 165 166 167 168 169 170
	svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
	svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
	svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
	svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
	svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
	svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
	svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
	svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
	svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
	svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
	svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
	svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
	svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
	svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
171
	svcpu->cr  = vcpu->arch.cr;
172 173 174 175
	svcpu->xer = vcpu->arch.regs.xer;
	svcpu->ctr = vcpu->arch.regs.ctr;
	svcpu->lr  = vcpu->arch.regs.link;
	svcpu->pc  = vcpu->arch.regs.nip;
176 177 178
#ifdef CONFIG_PPC_BOOK3S_64
	svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
#endif
179 180 181 182 183
	/*
	 * Now also save the current time base value. We use this
	 * to find the guest purr and spurr value.
	 */
	vcpu->arch.entry_tb = get_tb();
184
	vcpu->arch.entry_vtb = get_vtb();
185 186
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcpu->arch.entry_ic = mfspr(SPRN_IC);
187
	svcpu->in_use = true;
188 189

	svcpu_put(svcpu);
190 191
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
{
	ulong guest_msr = kvmppc_get_msr(vcpu);
	ulong smsr = guest_msr;

	/* Guest MSR values */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE |
		MSR_TM | MSR_TS_MASK;
#else
	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
#endif
	/* Process MSR values */
	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
	/* External providers the guest reserved */
	smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
	/* 64-bit Process MSR values */
#ifdef CONFIG_PPC_BOOK3S_64
	smsr |= MSR_ISF | MSR_HV;
211 212 213 214 215 216 217 218 219
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * in guest privileged state, we want to fail all TM transactions.
	 * So disable MSR TM bit so that all tbegin. will be able to be
	 * trapped into host.
	 */
	if (!(guest_msr & MSR_PR))
		smsr &= ~MSR_TM;
220 221 222 223
#endif
	vcpu->arch.shadow_msr = smsr;
}

224
/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
225
void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
226
{
227
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
228 229 230
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	ulong old_msr;
#endif
231 232 233 234 235 236 237 238

	/*
	 * Maybe we were already preempted and synced the svcpu from
	 * our preempt notifiers. Don't bother touching this svcpu then.
	 */
	if (!svcpu->in_use)
		goto out;

239 240 241 242 243 244 245 246 247 248 249 250 251 252
	vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
	vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
	vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
	vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
	vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
	vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
	vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
	vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
	vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
	vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
	vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
	vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
	vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
	vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
253
	vcpu->arch.cr  = svcpu->cr;
254 255 256 257
	vcpu->arch.regs.xer = svcpu->xer;
	vcpu->arch.regs.ctr = svcpu->ctr;
	vcpu->arch.regs.link  = svcpu->lr;
	vcpu->arch.regs.nip  = svcpu->pc;
258 259 260 261
	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
	vcpu->arch.fault_dar   = svcpu->fault_dar;
	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
	vcpu->arch.last_inst   = svcpu->last_inst;
262 263 264
#ifdef CONFIG_PPC_BOOK3S_64
	vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
#endif
265 266 267 268 269
	/*
	 * Update purr and spurr using time base on exit.
	 */
	vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
	vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
270
	to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
271 272
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Unlike other MSR bits, MSR[TS]bits can be changed at guest without
	 * notifying host:
	 *  modified by unprivileged instructions like "tbegin"/"tend"/
	 * "tresume"/"tsuspend" in PR KVM guest.
	 *
	 * It is necessary to sync here to calculate a correct shadow_msr.
	 *
	 * privileged guest's tbegin will be failed at present. So we
	 * only take care of problem state guest.
	 */
	old_msr = kvmppc_get_msr(vcpu);
	if (unlikely((old_msr & MSR_PR) &&
		(vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) !=
				(old_msr & (MSR_TS_MASK)))) {
		old_msr &= ~(MSR_TS_MASK);
		old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK));
		kvmppc_set_msr_fast(vcpu, old_msr);
		kvmppc_recalc_shadow_msr(vcpu);
	}
#endif

297 298 299
	svcpu->in_use = false;

out:
300
	svcpu_put(svcpu);
301 302
}

303
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
304
void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu)
305 306 307 308 309 310 311 312
{
	tm_enable();
	vcpu->arch.tfhar = mfspr(SPRN_TFHAR);
	vcpu->arch.texasr = mfspr(SPRN_TEXASR);
	vcpu->arch.tfiar = mfspr(SPRN_TFIAR);
	tm_disable();
}

313
void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu)
314 315 316 317 318 319 320 321
{
	tm_enable();
	mtspr(SPRN_TFHAR, vcpu->arch.tfhar);
	mtspr(SPRN_TEXASR, vcpu->arch.texasr);
	mtspr(SPRN_TFIAR, vcpu->arch.tfiar);
	tm_disable();
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
/* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at
 * hardware.
 */
static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu)
{
	ulong exit_nr;
	ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) &
		(MSR_FP | MSR_VEC | MSR_VSX);

	if (!ext_diff)
		return;

	if (ext_diff == MSR_FP)
		exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL;
	else if (ext_diff == MSR_VEC)
		exit_nr = BOOK3S_INTERRUPT_ALTIVEC;
	else
		exit_nr = BOOK3S_INTERRUPT_VSX;

	kvmppc_handle_ext(vcpu, exit_nr, ext_diff);
}

344 345 346 347 348 349 350
void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu)
{
	if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) {
		kvmppc_save_tm_sprs(vcpu);
		return;
	}

351
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
352 353
	kvmppc_giveup_ext(vcpu, MSR_VSX);

354 355 356 357 358 359 360 361 362
	preempt_disable();
	_kvmppc_save_tm_pr(vcpu, mfmsr());
	preempt_enable();
}

void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu)
{
	if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) {
		kvmppc_restore_tm_sprs(vcpu);
363
		if (kvmppc_get_msr(vcpu) & MSR_TM) {
364
			kvmppc_handle_lost_math_exts(vcpu);
365 366 367
			if (vcpu->arch.fscr & FSCR_TAR)
				kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
		}
368 369 370 371 372 373
		return;
	}

	preempt_disable();
	_kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu));
	preempt_enable();
374

375
	if (kvmppc_get_msr(vcpu) & MSR_TM) {
376
		kvmppc_handle_lost_math_exts(vcpu);
377 378 379
		if (vcpu->arch.fscr & FSCR_TAR)
			kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
	}
380
}
381 382
#endif

383
static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
384
{
385 386
	int r = 1; /* Indicate we want to get back into the guest */

387 388 389 390
	/* We misuse TLB_FLUSH to indicate that we want to clear
	   all shadow cache entries */
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
		kvmppc_mmu_pte_flush(vcpu, 0, 0);
391 392

	return r;
393 394
}

395
/************* MMU Notifiers *************/
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
			     unsigned long end)
{
	long i;
	struct kvm_vcpu *vcpu;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
		kvm_for_each_vcpu(i, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
					      gfn_end << PAGE_SHIFT);
	}
}
425

426 427
static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
				  unsigned long end)
428
{
429
	do_kvm_unmap_hva(kvm, start, end);
430 431 432 433

	return 0;
}

A
Andres Lagar-Cavilla 已提交
434 435
static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start,
			  unsigned long end)
436 437 438 439 440
{
	/* XXX could be more clever ;) */
	return 0;
}

441
static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
442 443 444 445 446
{
	/* XXX could be more clever ;) */
	return 0;
}

447
static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
448 449
{
	/* The page will get remapped properly on its next fault */
450
	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
451 452 453 454
}

/*****************************************/

455
static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
456
{
457
	ulong old_msr;
458 459 460 461 462

#ifdef EXIT_DEBUG
	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
#endif

463 464 465 466 467 468 469 470 471 472 473
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/* We should never target guest MSR to TS=10 && PR=0,
	 * since we always fail transaction for guest privilege
	 * state.
	 */
	if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr))
		kvmppc_emulate_tabort(vcpu,
			TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT);
#endif

	old_msr = kvmppc_get_msr(vcpu);
474
	msr &= to_book3s(vcpu)->msr_mask;
475
	kvmppc_set_msr_fast(vcpu, msr);
476 477 478 479 480
	kvmppc_recalc_shadow_msr(vcpu);

	if (msr & MSR_POW) {
		if (!vcpu->arch.pending_exceptions) {
			kvm_vcpu_block(vcpu);
481
			kvm_clear_request(KVM_REQ_UNHALT, vcpu);
482 483 484 485
			vcpu->stat.halt_wakeup++;

			/* Unset POW bit after we woke up */
			msr &= ~MSR_POW;
486
			kvmppc_set_msr_fast(vcpu, msr);
487 488 489
		}
	}

490 491 492 493 494
	if (kvmppc_is_split_real(vcpu))
		kvmppc_fixup_split_real(vcpu);
	else
		kvmppc_unfixup_split_real(vcpu);

495
	if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
		kvmppc_mmu_flush_segments(vcpu);
		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));

		/* Preload magic page segment when in kernel mode */
		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
			struct kvm_vcpu_arch *a = &vcpu->arch;

			if (msr & MSR_DR)
				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
			else
				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
		}
	}

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	/*
	 * When switching from 32 to 64-bit, we may have a stale 32-bit
	 * magic page around, we need to flush it. Typically 32-bit magic
	 * page will be instanciated when calling into RTAS. Note: We
	 * assume that such transition only happens while in kernel mode,
	 * ie, we never transition from user 32-bit to kernel 64-bit with
	 * a 32-bit magic page around.
	 */
	if (vcpu->arch.magic_page_pa &&
	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
		/* going from RTAS to normal kernel code */
		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
				     ~0xFFFUL);
	}

526
	/* Preload FPU if it's enabled */
527
	if (kvmppc_get_msr(vcpu) & MSR_FP)
528
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
529 530 531 532 533

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (kvmppc_get_msr(vcpu) & MSR_TM)
		kvmppc_handle_lost_math_exts(vcpu);
#endif
534 535
}

536
void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
537 538 539 540 541 542 543 544
{
	u32 host_pvr;

	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
	vcpu->arch.pvr = pvr;
#ifdef CONFIG_PPC_BOOK3S_64
	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
		kvmppc_mmu_book3s_64_init(vcpu);
545 546
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0xfff00000;
547
		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
548
		vcpu->arch.cpu_type = KVM_CPU_3S_64;
549 550 551 552
	} else
#endif
	{
		kvmppc_mmu_book3s_32_init(vcpu);
553 554
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0;
555
		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
556
		vcpu->arch.cpu_type = KVM_CPU_3S_32;
557 558
	}

559 560
	kvmppc_sanity_check(vcpu);

561 562 563 564 565 566 567 568 569 570 571 572
	/* If we are in hypervisor level on 970, we can tell the CPU to
	 * treat DCBZ as 32 bytes store */
	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
	    !strcmp(cur_cpu_spec->platform, "ppc970"))
		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;

	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
	   really needs them in a VM on Cell and force disable them. */
	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);

573 574 575 576 577 578 579 580 581 582 583 584
	/*
	 * If they're asking for POWER6 or later, set the flag
	 * indicating that we can do multiple large page sizes
	 * and 1TB segments.
	 * Also set the flag that indicates that tlbie has the large
	 * page bit in the RB operand instead of the instruction.
	 */
	switch (PVR_VER(pvr)) {
	case PVR_POWER6:
	case PVR_POWER7:
	case PVR_POWER7p:
	case PVR_POWER8:
585 586
	case PVR_POWER8E:
	case PVR_POWER8NVL:
587 588 589 590 591
		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
			BOOK3S_HFLAG_NEW_TLBIE;
		break;
	}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
#ifdef CONFIG_PPC_BOOK3S_32
	/* 32 bit Book3S always has 32 byte dcbz */
	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
#endif

	/* On some CPUs we can execute paired single operations natively */
	asm ( "mfpvr %0" : "=r"(host_pvr));
	switch (host_pvr) {
	case 0x00080200:	/* lonestar 2.0 */
	case 0x00088202:	/* lonestar 2.2 */
	case 0x70000100:	/* gekko 1.0 */
	case 0x00080100:	/* gekko 2.0 */
	case 0x00083203:	/* gekko 2.3a */
	case 0x00083213:	/* gekko 2.3b */
	case 0x00083204:	/* gekko 2.4 */
	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
	case 0x00087200:	/* broadway */
		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
		/* Enable HID2.PSE - in case we need it later */
		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
	}
}

/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
 * emulate 32 bytes dcbz length.
 *
 * The Book3s_64 inventors also realized this case and implemented a special bit
 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
 *
 * My approach here is to patch the dcbz instruction on executing pages.
 */
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
{
	struct page *hpage;
	u64 hpage_offset;
	u32 *page;
	int i;

	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
632
	if (is_error_page(hpage))
633 634 635 636 637 638 639
		return;

	hpage_offset = pte->raddr & ~PAGE_MASK;
	hpage_offset &= ~0xFFFULL;
	hpage_offset /= 4;

	get_page(hpage);
640
	page = kmap_atomic(hpage);
641 642 643

	/* patch dcbz into reserved instruction, so we trap */
	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
644 645
		if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
			page[i] &= cpu_to_be32(0xfffffff7);
646

647
	kunmap_atomic(page);
648 649 650
	put_page(hpage);
}

651
static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
652 653 654
{
	ulong mp_pa = vcpu->arch.magic_page_pa;

655
	if (!(kvmppc_get_msr(vcpu) & MSR_SF))
656 657
		mp_pa = (uint32_t)mp_pa;

658 659
	gpa &= ~0xFFFULL;
	if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
660
		return true;
661 662
	}

663
	return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
664 665 666 667 668 669
}

int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
			    ulong eaddr, int vec)
{
	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
670
	bool iswrite = false;
671 672 673
	int r = RESUME_GUEST;
	int relocated;
	int page_found = 0;
674
	struct kvmppc_pte pte = { 0 };
675 676
	bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
	bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
677 678 679
	u64 vsid;

	relocated = data ? dr : ir;
680 681
	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
		iswrite = true;
682 683 684

	/* Resolve real address if translation turned on */
	if (relocated) {
685
		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
686 687 688 689 690 691 692
	} else {
		pte.may_execute = true;
		pte.may_read = true;
		pte.may_write = true;
		pte.raddr = eaddr & KVM_PAM;
		pte.eaddr = eaddr;
		pte.vpage = eaddr >> 12;
693
		pte.page_size = MMU_PAGE_64K;
694
		pte.wimg = HPTE_R_M;
695 696
	}

697
	switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
698 699 700 701
	case 0:
		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
		break;
	case MSR_DR:
702 703 704 705 706
		if (!data &&
		    (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
		    ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
			pte.raddr &= ~SPLIT_HACK_MASK;
		/* fall through */
707 708 709
	case MSR_IR:
		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);

710
		if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
		else
			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
		pte.vpage |= vsid;

		if (vsid == -1)
			page_found = -EINVAL;
		break;
	}

	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
		/*
		 * If we do the dcbz hack, we have to NX on every execution,
		 * so we can patch the executing code. This renders our guest
		 * NX-less.
		 */
		pte.may_execute = !data;
	}

	if (page_found == -ENOENT) {
		/* Page not found in guest PTE entries */
733 734 735 736 737
		u64 ssrr1 = vcpu->arch.shadow_srr1;
		u64 msr = kvmppc_get_msr(vcpu);
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
		kvmppc_set_dsisr(vcpu, vcpu->arch.fault_dsisr);
		kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
738 739 740
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EPERM) {
		/* Storage protection */
741 742 743 744 745 746 747
		u32 dsisr = vcpu->arch.fault_dsisr;
		u64 ssrr1 = vcpu->arch.shadow_srr1;
		u64 msr = kvmppc_get_msr(vcpu);
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
		dsisr = (dsisr & ~DSISR_NOHPTE) | DSISR_PROTFAULT;
		kvmppc_set_dsisr(vcpu, dsisr);
		kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
748 749 750
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EINVAL) {
		/* Page not found in guest SLB */
751
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
752
		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
753
	} else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
754 755 756 757 758 759 760 761
		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
			/*
			 * There is already a host HPTE there, presumably
			 * a read-only one for a page the guest thinks
			 * is writable, so get rid of it first.
			 */
			kvmppc_mmu_unmap_page(vcpu, &pte);
		}
762
		/* The guest's PTE is not mapped yet. Map on the host */
763 764 765 766 767
		if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
			/* Exit KVM if mapping failed */
			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
			return RESUME_HOST;
		}
768 769 770
		if (data)
			vcpu->stat.sp_storage++;
		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
771
			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
772 773 774 775 776
			kvmppc_patch_dcbz(vcpu, &pte);
	} else {
		/* MMIO */
		vcpu->stat.mmio_exits++;
		vcpu->arch.paddr_accessed = pte.raddr;
777
		vcpu->arch.vaddr_accessed = pte.eaddr;
778 779 780 781 782 783 784 785 786 787 788 789 790
		r = kvmppc_emulate_mmio(run, vcpu);
		if ( r == RESUME_HOST_NV )
			r = RESUME_HOST;
	}

	return r;
}

/* Give up external provider (FPU, Altivec, VSX) */
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
{
	struct thread_struct *t = &current->thread;

791 792 793 794 795 796 797 798 799
	/*
	 * VSX instructions can access FP and vector registers, so if
	 * we are giving up VSX, make sure we give up FP and VMX as well.
	 */
	if (msr & MSR_VSX)
		msr |= MSR_FP | MSR_VEC;

	msr &= vcpu->arch.guest_owned_ext;
	if (!msr)
800 801 802 803 804 805
		return;

#ifdef DEBUG_EXT
	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
#endif

806 807 808 809
	if (msr & MSR_FP) {
		/*
		 * Note that on CPUs with VSX, giveup_fpu stores
		 * both the traditional FP registers and the added VSX
810
		 * registers into thread.fp_state.fpr[].
811
		 */
812
		if (t->regs->msr & MSR_FP)
813
			giveup_fpu(current);
814
		t->fp_save_area = NULL;
815 816
	}

817
#ifdef CONFIG_ALTIVEC
818
	if (msr & MSR_VEC) {
819 820
		if (current->thread.regs->msr & MSR_VEC)
			giveup_altivec(current);
821
		t->vr_save_area = NULL;
822
	}
823
#endif
824

825
	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
826 827 828
	kvmppc_recalc_shadow_msr(vcpu);
}

829
/* Give up facility (TAR / EBB / DSCR) */
830
void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
831 832 833 834 835 836
{
#ifdef CONFIG_PPC_BOOK3S_64
	if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
		/* Facility not available to the guest, ignore giveup request*/
		return;
	}
837 838 839 840 841 842 843 844

	switch (fac) {
	case FSCR_TAR_LG:
		vcpu->arch.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, current->thread.tar);
		vcpu->arch.shadow_fscr &= ~FSCR_TAR;
		break;
	}
845 846 847
#endif
}

848 849 850 851 852 853 854 855 856 857
/* Handle external providers (FPU, Altivec, VSX) */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr)
{
	struct thread_struct *t = &current->thread;

	/* When we have paired singles, we emulate in software */
	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
		return RESUME_GUEST;

858
	if (!(kvmppc_get_msr(vcpu) & msr)) {
859 860 861 862
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		return RESUME_GUEST;
	}

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
	if (msr == MSR_VSX) {
		/* No VSX?  Give an illegal instruction interrupt */
#ifdef CONFIG_VSX
		if (!cpu_has_feature(CPU_FTR_VSX))
#endif
		{
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			return RESUME_GUEST;
		}

		/*
		 * We have to load up all the FP and VMX registers before
		 * we can let the guest use VSX instructions.
		 */
		msr = MSR_FP | MSR_VEC | MSR_VSX;
878 879
	}

880 881 882 883 884
	/* See if we already own all the ext(s) needed */
	msr &= ~vcpu->arch.guest_owned_ext;
	if (!msr)
		return RESUME_GUEST;

885 886 887 888
#ifdef DEBUG_EXT
	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
#endif

889
	if (msr & MSR_FP) {
890
		preempt_disable();
891
		enable_kernel_fp();
892
		load_fp_state(&vcpu->arch.fp);
893
		disable_kernel_fp();
894
		t->fp_save_area = &vcpu->arch.fp;
895
		preempt_enable();
896 897 898
	}

	if (msr & MSR_VEC) {
899
#ifdef CONFIG_ALTIVEC
900
		preempt_disable();
901
		enable_kernel_altivec();
902
		load_vr_state(&vcpu->arch.vr);
903
		disable_kernel_altivec();
904
		t->vr_save_area = &vcpu->arch.vr;
905
		preempt_enable();
906 907 908
#endif
	}

909
	t->regs->msr |= msr;
910 911 912 913 914 915
	vcpu->arch.guest_owned_ext |= msr;
	kvmppc_recalc_shadow_msr(vcpu);

	return RESUME_GUEST;
}

916 917 918 919 920 921 922 923 924 925 926 927
/*
 * Kernel code using FP or VMX could have flushed guest state to
 * the thread_struct; if so, get it back now.
 */
static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
{
	unsigned long lost_ext;

	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
	if (!lost_ext)
		return;

928
	if (lost_ext & MSR_FP) {
929
		preempt_disable();
930
		enable_kernel_fp();
931
		load_fp_state(&vcpu->arch.fp);
932
		disable_kernel_fp();
933
		preempt_enable();
934
	}
935
#ifdef CONFIG_ALTIVEC
936
	if (lost_ext & MSR_VEC) {
937
		preempt_disable();
938
		enable_kernel_altivec();
939
		load_vr_state(&vcpu->arch.vr);
940
		disable_kernel_altivec();
941
		preempt_enable();
942
	}
943
#endif
944 945 946
	current->thread.regs->msr |= lost_ext;
}

947 948
#ifdef CONFIG_PPC_BOOK3S_64

949
void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
{
	/* Inject the Interrupt Cause field and trigger a guest interrupt */
	vcpu->arch.fscr &= ~(0xffULL << 56);
	vcpu->arch.fscr |= (fac << 56);
	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
}

static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
{
	enum emulation_result er = EMULATE_FAIL;

	if (!(kvmppc_get_msr(vcpu) & MSR_PR))
		er = kvmppc_emulate_instruction(vcpu->run, vcpu);

	if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
		/* Couldn't emulate, trigger interrupt in guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
	}
}

/* Enable facilities (TAR, EBB, DSCR) for the guest */
static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
{
973
	bool guest_fac_enabled;
974 975
	BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
	/*
	 * Not every facility is enabled by FSCR bits, check whether the
	 * guest has this facility enabled at all.
	 */
	switch (fac) {
	case FSCR_TAR_LG:
	case FSCR_EBB_LG:
		guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
		break;
	case FSCR_TM_LG:
		guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
		break;
	default:
		guest_fac_enabled = false;
		break;
	}

	if (!guest_fac_enabled) {
994 995 996 997 998 999
		/* Facility not enabled by the guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
		return RESUME_GUEST;
	}

	switch (fac) {
1000 1001 1002 1003 1004 1005
	case FSCR_TAR_LG:
		/* TAR switching isn't lazy in Linux yet */
		current->thread.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, vcpu->arch.tar);
		vcpu->arch.shadow_fscr |= FSCR_TAR;
		break;
1006 1007 1008 1009 1010
	default:
		kvmppc_emulate_fac(vcpu, fac);
		break;
	}

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/* Since we disabled MSR_TM at privilege state, the mfspr instruction
	 * for TM spr can trigger TM fac unavailable. In this case, the
	 * emulation is handled by kvmppc_emulate_fac(), which invokes
	 * kvmppc_emulate_mfspr() finally. But note the mfspr can include
	 * RT for NV registers. So it need to restore those NV reg to reflect
	 * the update.
	 */
	if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR))
		return RESUME_GUEST_NV;
#endif

1023 1024
	return RESUME_GUEST;
}
1025 1026 1027 1028 1029 1030

void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
{
	if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
		/* TAR got dropped, drop it in shadow too */
		kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
1031 1032 1033 1034
	} else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) {
		vcpu->arch.fscr = fscr;
		kvmppc_handle_fac(vcpu, FSCR_TAR_LG);
		return;
1035
	}
1036

1037 1038
	vcpu->arch.fscr = fscr;
}
1039 1040
#endif

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
{
	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
		u64 msr = kvmppc_get_msr(vcpu);

		kvmppc_set_msr(vcpu, msr | MSR_SE);
	}
}

static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
{
	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
		u64 msr = kvmppc_get_msr(vcpu);

		kvmppc_set_msr(vcpu, msr & ~MSR_SE);
	}
}

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
static int kvmppc_exit_pr_progint(struct kvm_run *run, struct kvm_vcpu *vcpu,
				  unsigned int exit_nr)
{
	enum emulation_result er;
	ulong flags;
	u32 last_inst;
	int emul, r;

	/*
	 * shadow_srr1 only contains valid flags if we came here via a program
	 * exception. The other exceptions (emulation assist, FP unavailable,
	 * etc.) do not provide flags in SRR1, so use an illegal-instruction
	 * exception when injecting a program interrupt into the guest.
	 */
	if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
	else
		flags = SRR1_PROGILL;

	emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
	if (emul != EMULATE_DONE)
		return RESUME_GUEST;

	if (kvmppc_get_msr(vcpu) & MSR_PR) {
#ifdef EXIT_DEBUG
		pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
			kvmppc_get_pc(vcpu), last_inst);
#endif
		if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
			kvmppc_core_queue_program(vcpu, flags);
			return RESUME_GUEST;
		}
	}

	vcpu->stat.emulated_inst_exits++;
	er = kvmppc_emulate_instruction(run, vcpu);
	switch (er) {
	case EMULATE_DONE:
		r = RESUME_GUEST_NV;
		break;
	case EMULATE_AGAIN:
		r = RESUME_GUEST;
		break;
	case EMULATE_FAIL:
		pr_crit("%s: emulation at %lx failed (%08x)\n",
			__func__, kvmppc_get_pc(vcpu), last_inst);
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST_NV;
		break;
	case EMULATE_EXIT_USER:
		r = RESUME_HOST_NV;
		break;
	default:
		BUG();
	}

	return r;
}

1122 1123
int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
			  unsigned int exit_nr)
1124 1125
{
	int r = RESUME_HOST;
1126
	int s;
1127 1128 1129 1130 1131 1132

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

1133
	/* We get here with MSR.EE=1 */
1134

1135
	trace_kvm_exit(exit_nr, vcpu);
1136
	guest_exit();
1137

1138 1139
	switch (exit_nr) {
	case BOOK3S_INTERRUPT_INST_STORAGE:
1140
	{
1141
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1142 1143
		vcpu->stat.pf_instruc++;

1144 1145 1146
		if (kvmppc_is_split_real(vcpu))
			kvmppc_fixup_split_real(vcpu);

1147 1148 1149
#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
1150 1151 1152 1153 1154 1155
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
1156
			svcpu_put(svcpu);
1157 1158 1159 1160 1161
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
				r = RESUME_GUEST;
				break;
			}
1162 1163 1164 1165
		}
#endif

		/* only care about PTEG not found errors, but leave NX alone */
1166
		if (shadow_srr1 & 0x40000000) {
1167
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1168
			r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
1169
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
			vcpu->stat.sp_instruc++;
		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
			/*
			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
			 *     that no guest that needs the dcbz hack does NX.
			 */
			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
			r = RESUME_GUEST;
		} else {
1181 1182 1183
			u64 msr = kvmppc_get_msr(vcpu);
			msr |= shadow_srr1 & 0x58000000;
			kvmppc_set_msr_fast(vcpu, msr);
1184 1185 1186 1187
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
1188
	}
1189 1190 1191
	case BOOK3S_INTERRUPT_DATA_STORAGE:
	{
		ulong dar = kvmppc_get_fault_dar(vcpu);
1192
		u32 fault_dsisr = vcpu->arch.fault_dsisr;
1193 1194 1195 1196 1197
		vcpu->stat.pf_storage++;

#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
1198 1199 1200 1201 1202 1203
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[dar >> SID_SHIFT];
1204
			svcpu_put(svcpu);
1205 1206 1207 1208 1209
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, dar);
				r = RESUME_GUEST;
				break;
			}
1210 1211 1212
		}
#endif

1213 1214 1215 1216 1217 1218 1219
		/*
		 * We need to handle missing shadow PTEs, and
		 * protection faults due to us mapping a page read-only
		 * when the guest thinks it is writable.
		 */
		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1220
			r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
1221
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1222
		} else {
1223 1224
			kvmppc_set_dar(vcpu, dar);
			kvmppc_set_dsisr(vcpu, fault_dsisr);
1225 1226 1227 1228 1229 1230 1231
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
	}
	case BOOK3S_INTERRUPT_DATA_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1232
			kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_DATA_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_INST_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_INST_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_DECREMENTER:
1247
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1248
	case BOOK3S_INTERRUPT_DOORBELL:
1249
	case BOOK3S_INTERRUPT_H_DOORBELL:
1250 1251 1252 1253
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
1254 1255
	case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
	case BOOK3S_INTERRUPT_EXTERNAL_HV:
1256 1257 1258 1259 1260 1261 1262
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
1263
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1264
		r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
1265 1266
		break;
	case BOOK3S_INTERRUPT_SYSCALL:
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	{
		u32 last_sc;
		int emul;

		/* Get last sc for papr */
		if (vcpu->arch.papr_enabled) {
			/* The sc instuction points SRR0 to the next inst */
			emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
			if (emul != EMULATE_DONE) {
				kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
				r = RESUME_GUEST;
				break;
			}
		}

1282
		if (vcpu->arch.papr_enabled &&
1283
		    (last_sc == 0x44000022) &&
1284
		    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1285 1286 1287 1288
			/* SC 1 papr hypercalls */
			ulong cmd = kvmppc_get_gpr(vcpu, 3);
			int i;

1289
#ifdef CONFIG_PPC_BOOK3S_64
1290 1291 1292 1293
			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
				r = RESUME_GUEST;
				break;
			}
1294
#endif
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

			run->papr_hcall.nr = cmd;
			for (i = 0; i < 9; ++i) {
				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
				run->papr_hcall.args[i] = gpr;
			}
			run->exit_reason = KVM_EXIT_PAPR_HCALL;
			vcpu->arch.hcall_needed = 1;
			r = RESUME_HOST;
		} else if (vcpu->arch.osi_enabled &&
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
			/* MOL hypercalls */
			u64 *gprs = run->osi.gprs;
			int i;

			run->exit_reason = KVM_EXIT_OSI;
			for (i = 0; i < 32; i++)
				gprs[i] = kvmppc_get_gpr(vcpu, i);
			vcpu->arch.osi_needed = 1;
			r = RESUME_HOST_NV;
1316
		} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
			/* KVM PV hypercalls */
			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
			r = RESUME_GUEST;
		} else {
			/* Guest syscalls */
			vcpu->stat.syscall_exits++;
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
1328
	}
1329 1330 1331 1332 1333
	case BOOK3S_INTERRUPT_FP_UNAVAIL:
	case BOOK3S_INTERRUPT_ALTIVEC:
	case BOOK3S_INTERRUPT_VSX:
	{
		int ext_msr = 0;
1334 1335 1336 1337 1338
		int emul;
		u32 last_inst;

		if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
			/* Do paired single instruction emulation */
1339 1340
			emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
						    &last_inst);
1341
			if (emul == EMULATE_DONE)
1342
				r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
1343 1344
			else
				r = RESUME_GUEST;
1345

1346
			break;
1347 1348
		}

1349 1350 1351 1352
		/* Enable external provider */
		switch (exit_nr) {
		case BOOK3S_INTERRUPT_FP_UNAVAIL:
			ext_msr = MSR_FP;
1353
			break;
1354 1355 1356

		case BOOK3S_INTERRUPT_ALTIVEC:
			ext_msr = MSR_VEC;
1357
			break;
1358 1359 1360

		case BOOK3S_INTERRUPT_VSX:
			ext_msr = MSR_VSX;
1361 1362
			break;
		}
1363 1364

		r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1365 1366 1367
		break;
	}
	case BOOK3S_INTERRUPT_ALIGNMENT:
1368
	{
1369 1370
		u32 last_inst;
		int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1371 1372

		if (emul == EMULATE_DONE) {
1373 1374 1375 1376 1377 1378 1379 1380 1381
			u32 dsisr;
			u64 dar;

			dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
			dar = kvmppc_alignment_dar(vcpu, last_inst);

			kvmppc_set_dsisr(vcpu, dsisr);
			kvmppc_set_dar(vcpu, dar);

1382 1383 1384 1385
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		}
		r = RESUME_GUEST;
		break;
1386
	}
1387 1388
#ifdef CONFIG_PPC_BOOK3S_64
	case BOOK3S_INTERRUPT_FAC_UNAVAIL:
1389
		r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
1390 1391
		break;
#endif
1392 1393 1394 1395
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		r = RESUME_GUEST;
		break;
1396 1397 1398 1399 1400 1401 1402 1403 1404
	case BOOK3S_INTERRUPT_TRACE:
		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
			run->exit_reason = KVM_EXIT_DEBUG;
			r = RESUME_HOST;
		} else {
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
1405
	default:
1406
	{
1407
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1408 1409
		/* Ugh - bork here! What did we get? */
		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1410
			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1411 1412 1413 1414
		r = RESUME_HOST;
		BUG();
		break;
	}
1415
	}
1416 1417 1418 1419 1420

	if (!(r & RESUME_HOST)) {
		/* To avoid clobbering exit_reason, only check for signals if
		 * we aren't already exiting to userspace for some other
		 * reason. */
1421 1422 1423 1424 1425 1426 1427

		/*
		 * Interrupts could be timers for the guest which we have to
		 * inject again, so let's postpone them until we're in the guest
		 * and if we really did time things so badly, then we just exit
		 * again due to a host external interrupt.
		 */
1428
		s = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1429
		if (s <= 0)
1430
			r = s;
S
Scott Wood 已提交
1431 1432
		else {
			/* interrupts now hard-disabled */
1433
			kvmppc_fix_ee_before_entry();
1434
		}
S
Scott Wood 已提交
1435

1436
		kvmppc_handle_lost_ext(vcpu);
1437 1438 1439 1440 1441 1442 1443
	}

	trace_kvm_book3s_reenter(r, vcpu);

	return r;
}

1444 1445
static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

	sregs->pvr = vcpu->arch.pvr;

	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
		for (i = 0; i < 64; i++) {
			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
		}
	} else {
		for (i = 0; i < 16; i++)
1460
			sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470

		for (i = 0; i < 8; i++) {
			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
		}
	}

	return 0;
}

1471 1472
static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1473 1474 1475 1476
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

1477
	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1478 1479

	vcpu3s->sdr1 = sregs->u.s.sdr1;
1480
#ifdef CONFIG_PPC_BOOK3S_64
1481
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1482 1483 1484 1485
		/* Flush all SLB entries */
		vcpu->arch.mmu.slbmte(vcpu, 0, 0);
		vcpu->arch.mmu.slbia(vcpu);

1486
		for (i = 0; i < 64; i++) {
1487 1488 1489 1490 1491
			u64 rb = sregs->u.s.ppc64.slb[i].slbe;
			u64 rs = sregs->u.s.ppc64.slb[i].slbv;

			if (rb & SLB_ESID_V)
				vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1492
		}
1493 1494 1495
	} else
#endif
	{
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
		for (i = 0; i < 16; i++) {
			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
		}
		for (i = 0; i < 8; i++) {
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
				       (u32)sregs->u.s.ppc32.ibat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
				       (u32)sregs->u.s.ppc32.dbat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
		}
	}

	/* Flush the MMU after messing with the segments */
	kvmppc_mmu_pte_flush(vcpu, 0, 0);

	return 0;
}

1517 1518
static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1519
{
1520
	int r = 0;
1521

1522
	switch (id) {
1523 1524 1525
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1526
	case KVM_REG_PPC_HIOR:
1527
		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1528
		break;
1529 1530 1531
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, to_book3s(vcpu)->vtb);
		break;
1532
	case KVM_REG_PPC_LPCR:
1533
	case KVM_REG_PPC_LPCR_64:
1534 1535 1536 1537 1538 1539 1540 1541
		/*
		 * We are only interested in the LPCR_ILE bit
		 */
		if (vcpu->arch.intr_msr & MSR_LE)
			*val = get_reg_val(id, LPCR_ILE);
		else
			*val = get_reg_val(id, 0);
		break;
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		*val = get_reg_val(id,
				vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int i, j;

		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
	case KVM_REG_PPC_TM_XER:
		*val = get_reg_val(id, vcpu->arch.xer_tm);
		break;
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1609
	default:
1610
		r = -EINVAL;
1611 1612 1613 1614 1615 1616
		break;
	}

	return r;
}

1617 1618 1619 1620 1621 1622 1623 1624
static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
{
	if (new_lpcr & LPCR_ILE)
		vcpu->arch.intr_msr |= MSR_LE;
	else
		vcpu->arch.intr_msr &= ~MSR_LE;
}

1625 1626
static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1627
{
1628
	int r = 0;
1629

1630
	switch (id) {
1631
	case KVM_REG_PPC_HIOR:
1632 1633
		to_book3s(vcpu)->hior = set_reg_val(id, *val);
		to_book3s(vcpu)->hior_explicit = true;
1634
		break;
1635 1636 1637
	case KVM_REG_PPC_VTB:
		to_book3s(vcpu)->vtb = set_reg_val(id, *val);
		break;
1638
	case KVM_REG_PPC_LPCR:
1639
	case KVM_REG_PPC_LPCR_64:
1640 1641
		kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
		break;
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] =
			set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int i, j;

		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_XER:
		vcpu->arch.xer_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1708
	default:
1709
		r = -EINVAL;
1710 1711 1712 1713 1714 1715
		break;
	}

	return r;
}

1716 1717
static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
						   unsigned int id)
1718 1719 1720 1721 1722 1723
{
	struct kvmppc_vcpu_book3s *vcpu_book3s;
	struct kvm_vcpu *vcpu;
	int err = -ENOMEM;
	unsigned long p;

1724 1725
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu)
1726 1727 1728 1729 1730
		goto out;

	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
	if (!vcpu_book3s)
		goto free_vcpu;
1731
	vcpu->arch.book3s = vcpu_book3s;
1732

1733
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1734 1735 1736 1737
	vcpu->arch.shadow_vcpu =
		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
	if (!vcpu->arch.shadow_vcpu)
		goto free_vcpu3s;
1738
#endif
1739 1740 1741 1742 1743

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_shadow_vcpu;

1744
	err = -ENOMEM;
1745 1746 1747
	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
	if (!p)
		goto uninit_vcpu;
1748
	vcpu->arch.shared = (void *)p;
1749
#ifdef CONFIG_PPC_BOOK3S_64
1750 1751 1752 1753 1754 1755 1756
	/* Always start the shared struct in native endian mode */
#ifdef __BIG_ENDIAN__
        vcpu->arch.shared_big_endian = true;
#else
        vcpu->arch.shared_big_endian = false;
#endif

1757 1758 1759 1760 1761
	/*
	 * Default to the same as the host if we're on sufficiently
	 * recent machine that we have 1TB segments;
	 * otherwise default to PPC970FX.
	 */
1762
	vcpu->arch.pvr = 0x3C0301;
1763 1764
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		vcpu->arch.pvr = mfspr(SPRN_PVR);
1765
	vcpu->arch.intr_msr = MSR_SF;
1766 1767 1768 1769
#else
	/* default to book3s_32 (750) */
	vcpu->arch.pvr = 0x84202;
#endif
1770
	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1771 1772
	vcpu->arch.slb_nr = 64;

1773
	vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783

	err = kvmppc_mmu_init(vcpu);
	if (err < 0)
		goto uninit_vcpu;

	return vcpu;

uninit_vcpu:
	kvm_vcpu_uninit(vcpu);
free_shadow_vcpu:
1784
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1785 1786
	kfree(vcpu->arch.shadow_vcpu);
free_vcpu3s:
1787
#endif
1788
	vfree(vcpu_book3s);
1789 1790
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1791 1792 1793 1794
out:
	return ERR_PTR(err);
}

1795
static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1796 1797 1798 1799 1800
{
	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);

	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
	kvm_vcpu_uninit(vcpu);
1801
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1802 1803
	kfree(vcpu->arch.shadow_vcpu);
#endif
1804
	vfree(vcpu_book3s);
1805
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1806 1807
}

1808
static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1809 1810 1811 1812 1813 1814
{
	int ret;
#ifdef CONFIG_ALTIVEC
	unsigned long uninitialized_var(vrsave);
#endif

1815 1816 1817
	/* Check if we can run the vcpu at all */
	if (!vcpu->arch.sane) {
		kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1818 1819
		ret = -EINVAL;
		goto out;
1820 1821
	}

1822 1823
	kvmppc_setup_debug(vcpu);

1824 1825 1826 1827 1828 1829
	/*
	 * Interrupts could be timers for the guest which we have to inject
	 * again, so let's postpone them until we're in the guest and if we
	 * really did time things so badly, then we just exit again due to
	 * a host external interrupt.
	 */
1830
	ret = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1831
	if (ret <= 0)
1832
		goto out;
S
Scott Wood 已提交
1833
	/* interrupts now hard-disabled */
1834

A
Anton Blanchard 已提交
1835 1836
	/* Save FPU, Altivec and VSX state */
	giveup_all(current);
1837 1838

	/* Preload FPU if it's enabled */
1839
	if (kvmppc_get_msr(vcpu) & MSR_FP)
1840 1841
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);

1842
	kvmppc_fix_ee_before_entry();
1843 1844 1845

	ret = __kvmppc_vcpu_run(kvm_run, vcpu);

1846 1847
	kvmppc_clear_debug(vcpu);

1848
	/* No need for guest_exit. It's done in handle_exit.
1849
	   We also get here with interrupts enabled. */
1850 1851

	/* Make sure we save the guest FPU/Altivec/VSX state */
1852 1853
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);

1854 1855 1856
	/* Make sure we save the guest TAR/EBB/DSCR state */
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);

1857
out:
1858
	vcpu->mode = OUTSIDE_GUEST_MODE;
1859 1860 1861
	return ret;
}

1862 1863 1864
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
1865 1866
static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
					 struct kvm_dirty_log *log)
1867
{
1868
	struct kvm_memslots *slots;
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	struct kvm_memory_slot *memslot;
	struct kvm_vcpu *vcpu;
	ulong ga, ga_end;
	int is_dirty = 0;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
1884 1885
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, log->slot);
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902

		ga = memslot->base_gfn << PAGE_SHIFT;
		ga_end = ga + (memslot->npages << PAGE_SHIFT);

		kvm_for_each_vcpu(n, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);

		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1903 1904
static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
					 struct kvm_memory_slot *memslot)
1905
{
1906 1907
	return;
}
1908

1909 1910
static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
1911
					const struct kvm_userspace_memory_region *mem)
1912
{
1913 1914 1915
	return 0;
}

1916
static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1917
				const struct kvm_userspace_memory_region *mem,
1918 1919
				const struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new)
1920
{
1921
	return;
1922 1923
}

1924 1925
static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
1926
{
1927
	return;
1928 1929
}

1930 1931
static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
					 unsigned long npages)
1932 1933 1934 1935
{
	return 0;
}

1936

1937
#ifdef CONFIG_PPC64
1938 1939
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1940
{
1941 1942 1943 1944
	long int i;
	struct kvm_vcpu *vcpu;

	info->flags = 0;
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954

	/* SLB is always 64 entries */
	info->slb_size = 64;

	/* Standard 4k base page size segment */
	info->sps[0].page_shift = 12;
	info->sps[0].slb_enc = 0;
	info->sps[0].enc[0].page_shift = 12;
	info->sps[0].enc[0].pte_enc = 0;

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
	/*
	 * 64k large page size.
	 * We only want to put this in if the CPUs we're emulating
	 * support it, but unfortunately we don't have a vcpu easily
	 * to hand here to test.  Just pick the first vcpu, and if
	 * that doesn't exist yet, report the minimum capability,
	 * i.e., no 64k pages.
	 * 1T segment support goes along with 64k pages.
	 */
	i = 1;
	vcpu = kvm_get_vcpu(kvm, 0);
	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
		info->flags = KVM_PPC_1T_SEGMENTS;
		info->sps[i].page_shift = 16;
		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
		info->sps[i].enc[0].page_shift = 16;
		info->sps[i].enc[0].pte_enc = 1;
		++i;
	}

1975
	/* Standard 16M large page size segment */
1976 1977 1978 1979
	info->sps[i].page_shift = 24;
	info->sps[i].slb_enc = SLB_VSID_L;
	info->sps[i].enc[0].page_shift = 24;
	info->sps[i].enc[0].pte_enc = 0;
1980

1981 1982
	return 0;
}
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993

static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
{
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -ENODEV;
	/* Require flags and process table base and size to all be zero. */
	if (cfg->flags || cfg->process_table)
		return -EINVAL;
	return 0;
}

1994 1995 1996
#else
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1997
{
1998 1999
	/* We should not get called */
	BUG();
2000
}
2001
#endif /* CONFIG_PPC64 */
2002

2003 2004 2005
static unsigned int kvm_global_user_count = 0;
static DEFINE_SPINLOCK(kvm_global_user_count_lock);

2006
static int kvmppc_core_init_vm_pr(struct kvm *kvm)
2007
{
2008
	mutex_init(&kvm->arch.hpt_mutex);
2009

2010 2011 2012 2013 2014
#ifdef CONFIG_PPC_BOOK3S_64
	/* Start out with the default set of hcalls enabled */
	kvmppc_pr_init_default_hcalls(kvm);
#endif

2015 2016 2017
	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		if (++kvm_global_user_count == 1)
2018
			pseries_disable_reloc_on_exc();
2019 2020
		spin_unlock(&kvm_global_user_count_lock);
	}
2021 2022 2023
	return 0;
}

2024
static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
2025
{
2026 2027 2028
#ifdef CONFIG_PPC64
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
#endif
2029 2030 2031 2032 2033

	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		BUG_ON(kvm_global_user_count == 0);
		if (--kvm_global_user_count == 0)
2034
			pseries_enable_reloc_on_exc();
2035 2036
		spin_unlock(&kvm_global_user_count_lock);
	}
2037 2038
}

2039
static int kvmppc_core_check_processor_compat_pr(void)
2040
{
2041
	/*
2042 2043 2044 2045 2046 2047 2048
	 * PR KVM can work on POWER9 inside a guest partition
	 * running in HPT mode.  It can't work if we are using
	 * radix translation (because radix provides no way for
	 * a process to have unique translations in quadrant 3)
	 * or in a bare-metal HPT-mode host (because POWER9
	 * uses a modified HPTE format which the PR KVM code
	 * has not been adapted to use).
2049
	 */
2050 2051
	if (cpu_has_feature(CPU_FTR_ARCH_300) &&
	    (radix_enabled() || cpu_has_feature(CPU_FTR_HVMODE)))
2052
		return -EIO;
2053 2054
	return 0;
}
2055

2056 2057 2058 2059 2060
static long kvm_arch_vm_ioctl_pr(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	return -ENOTTY;
}
2061

2062
static struct kvmppc_ops kvm_ops_pr = {
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
	.get_one_reg = kvmppc_get_one_reg_pr,
	.set_one_reg = kvmppc_set_one_reg_pr,
	.vcpu_load   = kvmppc_core_vcpu_load_pr,
	.vcpu_put    = kvmppc_core_vcpu_put_pr,
	.set_msr     = kvmppc_set_msr_pr,
	.vcpu_run    = kvmppc_vcpu_run_pr,
	.vcpu_create = kvmppc_core_vcpu_create_pr,
	.vcpu_free   = kvmppc_core_vcpu_free_pr,
	.check_requests = kvmppc_core_check_requests_pr,
	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
	.flush_memslot = kvmppc_core_flush_memslot_pr,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
	.unmap_hva_range = kvm_unmap_hva_range_pr,
	.age_hva  = kvm_age_hva_pr,
	.test_age_hva = kvm_test_age_hva_pr,
	.set_spte_hva = kvm_set_spte_hva_pr,
	.mmu_destroy  = kvmppc_mmu_destroy_pr,
	.free_memslot = kvmppc_core_free_memslot_pr,
	.create_memslot = kvmppc_core_create_memslot_pr,
	.init_vm = kvmppc_core_init_vm_pr,
	.destroy_vm = kvmppc_core_destroy_vm_pr,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
	.emulate_op = kvmppc_core_emulate_op_pr,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
	.fast_vcpu_kick = kvm_vcpu_kick,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
2093 2094
#ifdef CONFIG_PPC_BOOK3S_64
	.hcall_implemented = kvmppc_hcall_impl_pr,
2095
	.configure_mmu = kvm_configure_mmu_pr,
2096
#endif
2097
	.giveup_ext = kvmppc_giveup_ext,
2098 2099
};

2100 2101

int kvmppc_book3s_init_pr(void)
2102 2103 2104
{
	int r;

2105 2106
	r = kvmppc_core_check_processor_compat_pr();
	if (r < 0)
2107 2108
		return r;

2109 2110
	kvm_ops_pr.owner = THIS_MODULE;
	kvmppc_pr_ops = &kvm_ops_pr;
2111

2112
	r = kvmppc_mmu_hpte_sysinit();
2113 2114 2115
	return r;
}

2116
void kvmppc_book3s_exit_pr(void)
2117
{
2118
	kvmppc_pr_ops = NULL;
2119 2120 2121
	kvmppc_mmu_hpte_sysexit();
}

2122 2123 2124 2125 2126
/*
 * We only support separate modules for book3s 64
 */
#ifdef CONFIG_PPC_BOOK3S_64

2127 2128
module_init(kvmppc_book3s_init_pr);
module_exit(kvmppc_book3s_exit_pr);
2129 2130

MODULE_LICENSE("GPL");
2131 2132
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");
2133
#endif