book3s_pr.c 43.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *    Paul Mackerras <paulus@samba.org>
 *
 * Description:
 * Functions relating to running KVM on Book 3S processors where
 * we don't have access to hypervisor mode, and we run the guest
 * in problem state (user mode).
 *
 * This file is derived from arch/powerpc/kvm/44x.c,
 * by Hollis Blanchard <hollisb@us.ibm.com>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
23
#include <linux/export.h>
24 25 26 27 28 29 30 31 32 33 34 35
#include <linux/err.h>
#include <linux/slab.h>

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
36
#include <asm/switch_to.h>
37
#include <asm/firmware.h>
38
#include <asm/hvcall.h>
39 40 41 42
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
43
#include <linux/module.h>
44
#include <linux/miscdevice.h>
45

46
#include "book3s.h"
47 48 49

#define CREATE_TRACE_POINTS
#include "trace_pr.h"
50 51 52 53 54 55

/* #define EXIT_DEBUG */
/* #define DEBUG_EXT */

static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr);
56
static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac);
57 58 59 60 61 62 63 64

/* Some compatibility defines */
#ifdef CONFIG_PPC_BOOK3S_32
#define MSR_USER32 MSR_USER
#define MSR_USER64 MSR_USER
#define HW_PAGE_SIZE PAGE_SIZE
#endif

65
static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
66 67
{
#ifdef CONFIG_PPC_BOOK3S_64
68 69 70
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
71
	svcpu->in_use = 0;
72
	svcpu_put(svcpu);
73
#endif
74
	vcpu->cpu = smp_processor_id();
75
#ifdef CONFIG_PPC_BOOK3S_32
76
	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
77 78 79
#endif
}

80
static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
81 82
{
#ifdef CONFIG_PPC_BOOK3S_64
83
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
84 85 86
	if (svcpu->in_use) {
		kvmppc_copy_from_svcpu(vcpu, svcpu);
	}
87 88 89
	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
	svcpu_put(svcpu);
90 91
#endif

92
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
93
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
94
	vcpu->cpu = -1;
95 96
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
/* Copy data needed by real-mode code from vcpu to shadow vcpu */
void kvmppc_copy_to_svcpu(struct kvmppc_book3s_shadow_vcpu *svcpu,
			  struct kvm_vcpu *vcpu)
{
	svcpu->gpr[0] = vcpu->arch.gpr[0];
	svcpu->gpr[1] = vcpu->arch.gpr[1];
	svcpu->gpr[2] = vcpu->arch.gpr[2];
	svcpu->gpr[3] = vcpu->arch.gpr[3];
	svcpu->gpr[4] = vcpu->arch.gpr[4];
	svcpu->gpr[5] = vcpu->arch.gpr[5];
	svcpu->gpr[6] = vcpu->arch.gpr[6];
	svcpu->gpr[7] = vcpu->arch.gpr[7];
	svcpu->gpr[8] = vcpu->arch.gpr[8];
	svcpu->gpr[9] = vcpu->arch.gpr[9];
	svcpu->gpr[10] = vcpu->arch.gpr[10];
	svcpu->gpr[11] = vcpu->arch.gpr[11];
	svcpu->gpr[12] = vcpu->arch.gpr[12];
	svcpu->gpr[13] = vcpu->arch.gpr[13];
	svcpu->cr  = vcpu->arch.cr;
	svcpu->xer = vcpu->arch.xer;
	svcpu->ctr = vcpu->arch.ctr;
	svcpu->lr  = vcpu->arch.lr;
	svcpu->pc  = vcpu->arch.pc;
120 121 122
#ifdef CONFIG_PPC_BOOK3S_64
	svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
#endif
123 124 125 126 127
	/*
	 * Now also save the current time base value. We use this
	 * to find the guest purr and spurr value.
	 */
	vcpu->arch.entry_tb = get_tb();
128
	vcpu->arch.entry_vtb = get_vtb();
129 130
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcpu->arch.entry_ic = mfspr(SPRN_IC);
131
	svcpu->in_use = true;
132 133 134 135 136 137
}

/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu,
			    struct kvmppc_book3s_shadow_vcpu *svcpu)
{
138 139 140 141 142 143 144 145 146 147 148 149 150
	/*
	 * vcpu_put would just call us again because in_use hasn't
	 * been updated yet.
	 */
	preempt_disable();

	/*
	 * Maybe we were already preempted and synced the svcpu from
	 * our preempt notifiers. Don't bother touching this svcpu then.
	 */
	if (!svcpu->in_use)
		goto out;

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
	vcpu->arch.gpr[0] = svcpu->gpr[0];
	vcpu->arch.gpr[1] = svcpu->gpr[1];
	vcpu->arch.gpr[2] = svcpu->gpr[2];
	vcpu->arch.gpr[3] = svcpu->gpr[3];
	vcpu->arch.gpr[4] = svcpu->gpr[4];
	vcpu->arch.gpr[5] = svcpu->gpr[5];
	vcpu->arch.gpr[6] = svcpu->gpr[6];
	vcpu->arch.gpr[7] = svcpu->gpr[7];
	vcpu->arch.gpr[8] = svcpu->gpr[8];
	vcpu->arch.gpr[9] = svcpu->gpr[9];
	vcpu->arch.gpr[10] = svcpu->gpr[10];
	vcpu->arch.gpr[11] = svcpu->gpr[11];
	vcpu->arch.gpr[12] = svcpu->gpr[12];
	vcpu->arch.gpr[13] = svcpu->gpr[13];
	vcpu->arch.cr  = svcpu->cr;
	vcpu->arch.xer = svcpu->xer;
	vcpu->arch.ctr = svcpu->ctr;
	vcpu->arch.lr  = svcpu->lr;
	vcpu->arch.pc  = svcpu->pc;
	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
	vcpu->arch.fault_dar   = svcpu->fault_dar;
	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
	vcpu->arch.last_inst   = svcpu->last_inst;
174 175 176
#ifdef CONFIG_PPC_BOOK3S_64
	vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
#endif
177 178 179 180 181
	/*
	 * Update purr and spurr using time base on exit.
	 */
	vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
	vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
182
	vcpu->arch.vtb += get_vtb() - vcpu->arch.entry_vtb;
183 184
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
185 186 187 188
	svcpu->in_use = false;

out:
	preempt_enable();
189 190
}

191
static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
192
{
193 194
	int r = 1; /* Indicate we want to get back into the guest */

195 196 197 198
	/* We misuse TLB_FLUSH to indicate that we want to clear
	   all shadow cache entries */
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
		kvmppc_mmu_pte_flush(vcpu, 0, 0);
199 200

	return r;
201 202
}

203
/************* MMU Notifiers *************/
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
			     unsigned long end)
{
	long i;
	struct kvm_vcpu *vcpu;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
		kvm_for_each_vcpu(i, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
					      gfn_end << PAGE_SHIFT);
	}
}
233

234
static int kvm_unmap_hva_pr(struct kvm *kvm, unsigned long hva)
235 236 237
{
	trace_kvm_unmap_hva(hva);

238
	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
239 240 241 242

	return 0;
}

243 244
static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
				  unsigned long end)
245
{
246
	do_kvm_unmap_hva(kvm, start, end);
247 248 249 250

	return 0;
}

251
static int kvm_age_hva_pr(struct kvm *kvm, unsigned long hva)
252 253 254 255 256
{
	/* XXX could be more clever ;) */
	return 0;
}

257
static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
258 259 260 261 262
{
	/* XXX could be more clever ;) */
	return 0;
}

263
static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
264 265
{
	/* The page will get remapped properly on its next fault */
266
	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
267 268 269 270
}

/*****************************************/

271 272
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
{
273 274
	ulong guest_msr = kvmppc_get_msr(vcpu);
	ulong smsr = guest_msr;
275 276

	/* Guest MSR values */
277
	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
278 279 280
	/* Process MSR values */
	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
	/* External providers the guest reserved */
281
	smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
282 283 284 285 286 287 288
	/* 64-bit Process MSR values */
#ifdef CONFIG_PPC_BOOK3S_64
	smsr |= MSR_ISF | MSR_HV;
#endif
	vcpu->arch.shadow_msr = smsr;
}

289
static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
290
{
291
	ulong old_msr = kvmppc_get_msr(vcpu);
292 293 294 295 296 297

#ifdef EXIT_DEBUG
	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
#endif

	msr &= to_book3s(vcpu)->msr_mask;
298
	kvmppc_set_msr_fast(vcpu, msr);
299 300 301 302 303
	kvmppc_recalc_shadow_msr(vcpu);

	if (msr & MSR_POW) {
		if (!vcpu->arch.pending_exceptions) {
			kvm_vcpu_block(vcpu);
304
			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
305 306 307 308
			vcpu->stat.halt_wakeup++;

			/* Unset POW bit after we woke up */
			msr &= ~MSR_POW;
309
			kvmppc_set_msr_fast(vcpu, msr);
310 311 312
		}
	}

313
	if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
		kvmppc_mmu_flush_segments(vcpu);
		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));

		/* Preload magic page segment when in kernel mode */
		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
			struct kvm_vcpu_arch *a = &vcpu->arch;

			if (msr & MSR_DR)
				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
			else
				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
		}
	}

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
	/*
	 * When switching from 32 to 64-bit, we may have a stale 32-bit
	 * magic page around, we need to flush it. Typically 32-bit magic
	 * page will be instanciated when calling into RTAS. Note: We
	 * assume that such transition only happens while in kernel mode,
	 * ie, we never transition from user 32-bit to kernel 64-bit with
	 * a 32-bit magic page around.
	 */
	if (vcpu->arch.magic_page_pa &&
	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
		/* going from RTAS to normal kernel code */
		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
				     ~0xFFFUL);
	}

344
	/* Preload FPU if it's enabled */
345
	if (kvmppc_get_msr(vcpu) & MSR_FP)
346 347 348
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
}

349
void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
350 351 352 353 354 355 356 357
{
	u32 host_pvr;

	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
	vcpu->arch.pvr = pvr;
#ifdef CONFIG_PPC_BOOK3S_64
	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
		kvmppc_mmu_book3s_64_init(vcpu);
358 359
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0xfff00000;
360
		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
361
		vcpu->arch.cpu_type = KVM_CPU_3S_64;
362 363 364 365
	} else
#endif
	{
		kvmppc_mmu_book3s_32_init(vcpu);
366 367
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0;
368
		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
369
		vcpu->arch.cpu_type = KVM_CPU_3S_32;
370 371
	}

372 373
	kvmppc_sanity_check(vcpu);

374 375 376 377 378 379 380 381 382 383 384 385
	/* If we are in hypervisor level on 970, we can tell the CPU to
	 * treat DCBZ as 32 bytes store */
	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
	    !strcmp(cur_cpu_spec->platform, "ppc970"))
		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;

	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
	   really needs them in a VM on Cell and force disable them. */
	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	/*
	 * If they're asking for POWER6 or later, set the flag
	 * indicating that we can do multiple large page sizes
	 * and 1TB segments.
	 * Also set the flag that indicates that tlbie has the large
	 * page bit in the RB operand instead of the instruction.
	 */
	switch (PVR_VER(pvr)) {
	case PVR_POWER6:
	case PVR_POWER7:
	case PVR_POWER7p:
	case PVR_POWER8:
		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
			BOOK3S_HFLAG_NEW_TLBIE;
		break;
	}

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
#ifdef CONFIG_PPC_BOOK3S_32
	/* 32 bit Book3S always has 32 byte dcbz */
	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
#endif

	/* On some CPUs we can execute paired single operations natively */
	asm ( "mfpvr %0" : "=r"(host_pvr));
	switch (host_pvr) {
	case 0x00080200:	/* lonestar 2.0 */
	case 0x00088202:	/* lonestar 2.2 */
	case 0x70000100:	/* gekko 1.0 */
	case 0x00080100:	/* gekko 2.0 */
	case 0x00083203:	/* gekko 2.3a */
	case 0x00083213:	/* gekko 2.3b */
	case 0x00083204:	/* gekko 2.4 */
	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
	case 0x00087200:	/* broadway */
		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
		/* Enable HID2.PSE - in case we need it later */
		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
	}
}

/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
 * emulate 32 bytes dcbz length.
 *
 * The Book3s_64 inventors also realized this case and implemented a special bit
 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
 *
 * My approach here is to patch the dcbz instruction on executing pages.
 */
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
{
	struct page *hpage;
	u64 hpage_offset;
	u32 *page;
	int i;

	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
443
	if (is_error_page(hpage))
444 445 446 447 448 449 450
		return;

	hpage_offset = pte->raddr & ~PAGE_MASK;
	hpage_offset &= ~0xFFFULL;
	hpage_offset /= 4;

	get_page(hpage);
451
	page = kmap_atomic(hpage);
452 453 454

	/* patch dcbz into reserved instruction, so we trap */
	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
455 456
		if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
			page[i] &= cpu_to_be32(0xfffffff7);
457

458
	kunmap_atomic(page);
459 460 461 462 463 464 465
	put_page(hpage);
}

static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
{
	ulong mp_pa = vcpu->arch.magic_page_pa;

466
	if (!(kvmppc_get_msr(vcpu) & MSR_SF))
467 468
		mp_pa = (uint32_t)mp_pa;

469 470 471 472 473 474 475 476 477 478 479 480
	if (unlikely(mp_pa) &&
	    unlikely((mp_pa & KVM_PAM) >> PAGE_SHIFT == gfn)) {
		return 1;
	}

	return kvm_is_visible_gfn(vcpu->kvm, gfn);
}

int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
			    ulong eaddr, int vec)
{
	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
481
	bool iswrite = false;
482 483 484 485 486
	int r = RESUME_GUEST;
	int relocated;
	int page_found = 0;
	struct kvmppc_pte pte;
	bool is_mmio = false;
487 488
	bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
	bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
489 490 491
	u64 vsid;

	relocated = data ? dr : ir;
492 493
	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
		iswrite = true;
494 495 496

	/* Resolve real address if translation turned on */
	if (relocated) {
497
		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
498 499 500 501 502 503 504
	} else {
		pte.may_execute = true;
		pte.may_read = true;
		pte.may_write = true;
		pte.raddr = eaddr & KVM_PAM;
		pte.eaddr = eaddr;
		pte.vpage = eaddr >> 12;
505
		pte.page_size = MMU_PAGE_64K;
506 507
	}

508
	switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
509 510 511 512 513 514 515
	case 0:
		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
		break;
	case MSR_DR:
	case MSR_IR:
		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);

516
		if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
		else
			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
		pte.vpage |= vsid;

		if (vsid == -1)
			page_found = -EINVAL;
		break;
	}

	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
		/*
		 * If we do the dcbz hack, we have to NX on every execution,
		 * so we can patch the executing code. This renders our guest
		 * NX-less.
		 */
		pte.may_execute = !data;
	}

	if (page_found == -ENOENT) {
		/* Page not found in guest PTE entries */
539 540 541 542 543
		u64 ssrr1 = vcpu->arch.shadow_srr1;
		u64 msr = kvmppc_get_msr(vcpu);
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
		kvmppc_set_dsisr(vcpu, vcpu->arch.fault_dsisr);
		kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
544 545 546
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EPERM) {
		/* Storage protection */
547 548 549 550 551 552 553
		u32 dsisr = vcpu->arch.fault_dsisr;
		u64 ssrr1 = vcpu->arch.shadow_srr1;
		u64 msr = kvmppc_get_msr(vcpu);
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
		dsisr = (dsisr & ~DSISR_NOHPTE) | DSISR_PROTFAULT;
		kvmppc_set_dsisr(vcpu, dsisr);
		kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
554 555 556
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EINVAL) {
		/* Page not found in guest SLB */
557
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
558 559 560
		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
	} else if (!is_mmio &&
		   kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) {
561 562 563 564 565 566 567 568
		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
			/*
			 * There is already a host HPTE there, presumably
			 * a read-only one for a page the guest thinks
			 * is writable, so get rid of it first.
			 */
			kvmppc_mmu_unmap_page(vcpu, &pte);
		}
569
		/* The guest's PTE is not mapped yet. Map on the host */
570
		kvmppc_mmu_map_page(vcpu, &pte, iswrite);
571 572 573
		if (data)
			vcpu->stat.sp_storage++;
		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
574
			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
575 576 577 578 579
			kvmppc_patch_dcbz(vcpu, &pte);
	} else {
		/* MMIO */
		vcpu->stat.mmio_exits++;
		vcpu->arch.paddr_accessed = pte.raddr;
580
		vcpu->arch.vaddr_accessed = pte.eaddr;
581 582 583 584 585 586 587 588 589 590
		r = kvmppc_emulate_mmio(run, vcpu);
		if ( r == RESUME_HOST_NV )
			r = RESUME_HOST;
	}

	return r;
}

static inline int get_fpr_index(int i)
{
591
	return i * TS_FPRWIDTH;
592 593 594 595 596 597 598
}

/* Give up external provider (FPU, Altivec, VSX) */
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
{
	struct thread_struct *t = &current->thread;

599 600 601 602 603 604 605 606 607
	/*
	 * VSX instructions can access FP and vector registers, so if
	 * we are giving up VSX, make sure we give up FP and VMX as well.
	 */
	if (msr & MSR_VSX)
		msr |= MSR_FP | MSR_VEC;

	msr &= vcpu->arch.guest_owned_ext;
	if (!msr)
608 609 610 611 612 613
		return;

#ifdef DEBUG_EXT
	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
#endif

614 615 616 617
	if (msr & MSR_FP) {
		/*
		 * Note that on CPUs with VSX, giveup_fpu stores
		 * both the traditional FP registers and the added VSX
618
		 * registers into thread.fp_state.fpr[].
619
		 */
620
		if (t->regs->msr & MSR_FP)
621
			giveup_fpu(current);
622
		t->fp_save_area = NULL;
623 624
	}

625
#ifdef CONFIG_ALTIVEC
626
	if (msr & MSR_VEC) {
627 628
		if (current->thread.regs->msr & MSR_VEC)
			giveup_altivec(current);
629
		t->vr_save_area = NULL;
630
	}
631
#endif
632

633
	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
634 635 636
	kvmppc_recalc_shadow_msr(vcpu);
}

637 638 639 640 641 642 643 644
/* Give up facility (TAR / EBB / DSCR) */
static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
{
#ifdef CONFIG_PPC_BOOK3S_64
	if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
		/* Facility not available to the guest, ignore giveup request*/
		return;
	}
645 646 647 648 649 650 651 652

	switch (fac) {
	case FSCR_TAR_LG:
		vcpu->arch.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, current->thread.tar);
		vcpu->arch.shadow_fscr &= ~FSCR_TAR;
		break;
	}
653 654 655
#endif
}

656 657 658 659 660 661 662 663
static int kvmppc_read_inst(struct kvm_vcpu *vcpu)
{
	ulong srr0 = kvmppc_get_pc(vcpu);
	u32 last_inst = kvmppc_get_last_inst(vcpu);
	int ret;

	ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
	if (ret == -ENOENT) {
664
		ulong msr = kvmppc_get_msr(vcpu);
665 666 667

		msr = kvmppc_set_field(msr, 33, 33, 1);
		msr = kvmppc_set_field(msr, 34, 36, 0);
668 669
		msr = kvmppc_set_field(msr, 42, 47, 0);
		kvmppc_set_msr_fast(vcpu, msr);
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
		kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE);
		return EMULATE_AGAIN;
	}

	return EMULATE_DONE;
}

static int kvmppc_check_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr)
{

	/* Need to do paired single emulation? */
	if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
		return EMULATE_DONE;

	/* Read out the instruction */
	if (kvmppc_read_inst(vcpu) == EMULATE_DONE)
		/* Need to emulate */
		return EMULATE_FAIL;

	return EMULATE_AGAIN;
}

/* Handle external providers (FPU, Altivec, VSX) */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr)
{
	struct thread_struct *t = &current->thread;

	/* When we have paired singles, we emulate in software */
	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
		return RESUME_GUEST;

702
	if (!(kvmppc_get_msr(vcpu) & msr)) {
703 704 705 706
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		return RESUME_GUEST;
	}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	if (msr == MSR_VSX) {
		/* No VSX?  Give an illegal instruction interrupt */
#ifdef CONFIG_VSX
		if (!cpu_has_feature(CPU_FTR_VSX))
#endif
		{
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			return RESUME_GUEST;
		}

		/*
		 * We have to load up all the FP and VMX registers before
		 * we can let the guest use VSX instructions.
		 */
		msr = MSR_FP | MSR_VEC | MSR_VSX;
722 723
	}

724 725 726 727 728
	/* See if we already own all the ext(s) needed */
	msr &= ~vcpu->arch.guest_owned_ext;
	if (!msr)
		return RESUME_GUEST;

729 730 731 732
#ifdef DEBUG_EXT
	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
#endif

733
	if (msr & MSR_FP) {
734
		preempt_disable();
735
		enable_kernel_fp();
736 737
		load_fp_state(&vcpu->arch.fp);
		t->fp_save_area = &vcpu->arch.fp;
738
		preempt_enable();
739 740 741
	}

	if (msr & MSR_VEC) {
742
#ifdef CONFIG_ALTIVEC
743
		preempt_disable();
744
		enable_kernel_altivec();
745 746
		load_vr_state(&vcpu->arch.vr);
		t->vr_save_area = &vcpu->arch.vr;
747
		preempt_enable();
748 749 750
#endif
	}

751
	t->regs->msr |= msr;
752 753 754 755 756 757
	vcpu->arch.guest_owned_ext |= msr;
	kvmppc_recalc_shadow_msr(vcpu);

	return RESUME_GUEST;
}

758 759 760 761 762 763 764 765 766 767 768 769
/*
 * Kernel code using FP or VMX could have flushed guest state to
 * the thread_struct; if so, get it back now.
 */
static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
{
	unsigned long lost_ext;

	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
	if (!lost_ext)
		return;

770
	if (lost_ext & MSR_FP) {
771
		preempt_disable();
772
		enable_kernel_fp();
773
		load_fp_state(&vcpu->arch.fp);
774
		preempt_enable();
775
	}
776
#ifdef CONFIG_ALTIVEC
777
	if (lost_ext & MSR_VEC) {
778
		preempt_disable();
779
		enable_kernel_altivec();
780
		load_vr_state(&vcpu->arch.vr);
781
		preempt_enable();
782
	}
783
#endif
784 785 786
	current->thread.regs->msr |= lost_ext;
}

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
#ifdef CONFIG_PPC_BOOK3S_64

static void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
{
	/* Inject the Interrupt Cause field and trigger a guest interrupt */
	vcpu->arch.fscr &= ~(0xffULL << 56);
	vcpu->arch.fscr |= (fac << 56);
	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
}

static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
{
	enum emulation_result er = EMULATE_FAIL;

	if (!(kvmppc_get_msr(vcpu) & MSR_PR))
		er = kvmppc_emulate_instruction(vcpu->run, vcpu);

	if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
		/* Couldn't emulate, trigger interrupt in guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
	}
}

/* Enable facilities (TAR, EBB, DSCR) for the guest */
static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
{
813
	bool guest_fac_enabled;
814 815
	BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
	/*
	 * Not every facility is enabled by FSCR bits, check whether the
	 * guest has this facility enabled at all.
	 */
	switch (fac) {
	case FSCR_TAR_LG:
	case FSCR_EBB_LG:
		guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
		break;
	case FSCR_TM_LG:
		guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
		break;
	default:
		guest_fac_enabled = false;
		break;
	}

	if (!guest_fac_enabled) {
834 835 836 837 838 839
		/* Facility not enabled by the guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
		return RESUME_GUEST;
	}

	switch (fac) {
840 841 842 843 844 845
	case FSCR_TAR_LG:
		/* TAR switching isn't lazy in Linux yet */
		current->thread.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, vcpu->arch.tar);
		vcpu->arch.shadow_fscr |= FSCR_TAR;
		break;
846 847 848 849 850 851 852 853 854
	default:
		kvmppc_emulate_fac(vcpu, fac);
		break;
	}

	return RESUME_GUEST;
}
#endif

855 856
int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
			  unsigned int exit_nr)
857 858
{
	int r = RESUME_HOST;
859
	int s;
860 861 862 863 864 865

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

866
	/* We get here with MSR.EE=1 */
867

868
	trace_kvm_exit(exit_nr, vcpu);
869
	kvm_guest_exit();
870

871 872
	switch (exit_nr) {
	case BOOK3S_INTERRUPT_INST_STORAGE:
873
	{
874
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
875 876 877 878 879
		vcpu->stat.pf_instruc++;

#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
880 881 882 883 884 885
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
886
			svcpu_put(svcpu);
887 888 889 890 891
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
				r = RESUME_GUEST;
				break;
			}
892 893 894 895
		}
#endif

		/* only care about PTEG not found errors, but leave NX alone */
896
		if (shadow_srr1 & 0x40000000) {
897
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
898
			r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
899
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
900 901 902 903 904 905 906 907 908 909 910
			vcpu->stat.sp_instruc++;
		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
			/*
			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
			 *     that no guest that needs the dcbz hack does NX.
			 */
			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
			r = RESUME_GUEST;
		} else {
911 912 913
			u64 msr = kvmppc_get_msr(vcpu);
			msr |= shadow_srr1 & 0x58000000;
			kvmppc_set_msr_fast(vcpu, msr);
914 915 916 917
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
918
	}
919 920 921
	case BOOK3S_INTERRUPT_DATA_STORAGE:
	{
		ulong dar = kvmppc_get_fault_dar(vcpu);
922
		u32 fault_dsisr = vcpu->arch.fault_dsisr;
923 924 925 926 927
		vcpu->stat.pf_storage++;

#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
928 929 930 931 932 933
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[dar >> SID_SHIFT];
934
			svcpu_put(svcpu);
935 936 937 938 939
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, dar);
				r = RESUME_GUEST;
				break;
			}
940 941 942
		}
#endif

943 944 945 946 947 948 949
		/*
		 * We need to handle missing shadow PTEs, and
		 * protection faults due to us mapping a page read-only
		 * when the guest thinks it is writable.
		 */
		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
950
			r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
951
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
952
		} else {
953 954
			kvmppc_set_dar(vcpu, dar);
			kvmppc_set_dsisr(vcpu, fault_dsisr);
955 956 957 958 959 960 961
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
	}
	case BOOK3S_INTERRUPT_DATA_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
962
			kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
963 964 965 966 967 968 969 970 971 972 973 974 975 976
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_DATA_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_INST_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_INST_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_DECREMENTER:
977
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
978
	case BOOK3S_INTERRUPT_DOORBELL:
979 980 981 982
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
983 984
	case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
	case BOOK3S_INTERRUPT_EXTERNAL_HV:
985 986 987 988 989 990 991
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
992
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
993 994 995 996 997
	{
		enum emulation_result er;
		ulong flags;

program_interrupt:
998
		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
999

1000
		if (kvmppc_get_msr(vcpu) & MSR_PR) {
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
#ifdef EXIT_DEBUG
			printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
#endif
			if ((kvmppc_get_last_inst(vcpu) & 0xff0007ff) !=
			    (INS_DCBZ & 0xfffffff7)) {
				kvmppc_core_queue_program(vcpu, flags);
				r = RESUME_GUEST;
				break;
			}
		}

		vcpu->stat.emulated_inst_exits++;
		er = kvmppc_emulate_instruction(run, vcpu);
		switch (er) {
		case EMULATE_DONE:
			r = RESUME_GUEST_NV;
			break;
		case EMULATE_AGAIN:
			r = RESUME_GUEST;
			break;
		case EMULATE_FAIL:
			printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
			       __func__, kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
			kvmppc_core_queue_program(vcpu, flags);
			r = RESUME_GUEST;
			break;
		case EMULATE_DO_MMIO:
			run->exit_reason = KVM_EXIT_MMIO;
			r = RESUME_HOST_NV;
			break;
1031
		case EMULATE_EXIT_USER:
1032 1033
			r = RESUME_HOST_NV;
			break;
1034 1035 1036 1037 1038 1039
		default:
			BUG();
		}
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
1040
		if (vcpu->arch.papr_enabled &&
1041
		    (kvmppc_get_last_sc(vcpu) == 0x44000022) &&
1042
		    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1043 1044 1045 1046
			/* SC 1 papr hypercalls */
			ulong cmd = kvmppc_get_gpr(vcpu, 3);
			int i;

1047
#ifdef CONFIG_PPC_BOOK3S_64
1048 1049 1050 1051
			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
				r = RESUME_GUEST;
				break;
			}
1052
#endif
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

			run->papr_hcall.nr = cmd;
			for (i = 0; i < 9; ++i) {
				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
				run->papr_hcall.args[i] = gpr;
			}
			run->exit_reason = KVM_EXIT_PAPR_HCALL;
			vcpu->arch.hcall_needed = 1;
			r = RESUME_HOST;
		} else if (vcpu->arch.osi_enabled &&
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
			/* MOL hypercalls */
			u64 *gprs = run->osi.gprs;
			int i;

			run->exit_reason = KVM_EXIT_OSI;
			for (i = 0; i < 32; i++)
				gprs[i] = kvmppc_get_gpr(vcpu, i);
			vcpu->arch.osi_needed = 1;
			r = RESUME_HOST_NV;
1074
		} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
			/* KVM PV hypercalls */
			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
			r = RESUME_GUEST;
		} else {
			/* Guest syscalls */
			vcpu->stat.syscall_exits++;
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
	case BOOK3S_INTERRUPT_FP_UNAVAIL:
	case BOOK3S_INTERRUPT_ALTIVEC:
	case BOOK3S_INTERRUPT_VSX:
	{
		int ext_msr = 0;

		switch (exit_nr) {
		case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP;  break;
		case BOOK3S_INTERRUPT_ALTIVEC:    ext_msr = MSR_VEC; break;
		case BOOK3S_INTERRUPT_VSX:        ext_msr = MSR_VSX; break;
		}

		switch (kvmppc_check_ext(vcpu, exit_nr)) {
		case EMULATE_DONE:
			/* everything ok - let's enable the ext */
			r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
			break;
		case EMULATE_FAIL:
			/* we need to emulate this instruction */
			goto program_interrupt;
			break;
		default:
			/* nothing to worry about - go again */
			break;
		}
		break;
	}
	case BOOK3S_INTERRUPT_ALIGNMENT:
		if (kvmppc_read_inst(vcpu) == EMULATE_DONE) {
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
			u32 last_inst = kvmppc_get_last_inst(vcpu);
			u32 dsisr;
			u64 dar;

			dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
			dar = kvmppc_alignment_dar(vcpu, last_inst);

			kvmppc_set_dsisr(vcpu, dsisr);
			kvmppc_set_dar(vcpu, dar);

1125 1126 1127 1128
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		}
		r = RESUME_GUEST;
		break;
1129 1130 1131 1132 1133 1134
#ifdef CONFIG_PPC_BOOK3S_64
	case BOOK3S_INTERRUPT_FAC_UNAVAIL:
		kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
		r = RESUME_GUEST;
		break;
#endif
1135 1136 1137 1138 1139 1140
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
	case BOOK3S_INTERRUPT_TRACE:
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		r = RESUME_GUEST;
		break;
	default:
1141
	{
1142
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1143 1144
		/* Ugh - bork here! What did we get? */
		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1145
			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1146 1147 1148 1149
		r = RESUME_HOST;
		BUG();
		break;
	}
1150
	}
1151 1152 1153 1154 1155

	if (!(r & RESUME_HOST)) {
		/* To avoid clobbering exit_reason, only check for signals if
		 * we aren't already exiting to userspace for some other
		 * reason. */
1156 1157 1158 1159 1160 1161 1162

		/*
		 * Interrupts could be timers for the guest which we have to
		 * inject again, so let's postpone them until we're in the guest
		 * and if we really did time things so badly, then we just exit
		 * again due to a host external interrupt.
		 */
1163
		s = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1164
		if (s <= 0)
1165
			r = s;
S
Scott Wood 已提交
1166 1167
		else {
			/* interrupts now hard-disabled */
1168
			kvmppc_fix_ee_before_entry();
1169
		}
S
Scott Wood 已提交
1170

1171
		kvmppc_handle_lost_ext(vcpu);
1172 1173 1174 1175 1176 1177 1178
	}

	trace_kvm_book3s_reenter(r, vcpu);

	return r;
}

1179 1180
static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

	sregs->pvr = vcpu->arch.pvr;

	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
		for (i = 0; i < 64; i++) {
			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
		}
	} else {
		for (i = 0; i < 16; i++)
1195
			sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

		for (i = 0; i < 8; i++) {
			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
		}
	}

	return 0;
}

1206 1207
static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1208 1209 1210 1211
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

1212
	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

	vcpu3s->sdr1 = sregs->u.s.sdr1;
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
		for (i = 0; i < 64; i++) {
			vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
						    sregs->u.s.ppc64.slb[i].slbe);
		}
	} else {
		for (i = 0; i < 16; i++) {
			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
		}
		for (i = 0; i < 8; i++) {
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
				       (u32)sregs->u.s.ppc32.ibat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
				       (u32)sregs->u.s.ppc32.dbat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
		}
	}

	/* Flush the MMU after messing with the segments */
	kvmppc_mmu_pte_flush(vcpu, 0, 0);

	return 0;
}

1242 1243
static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1244
{
1245
	int r = 0;
1246

1247
	switch (id) {
1248
	case KVM_REG_PPC_HIOR:
1249
		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1250
		break;
1251 1252 1253 1254 1255 1256 1257 1258 1259
	case KVM_REG_PPC_LPCR:
		/*
		 * We are only interested in the LPCR_ILE bit
		 */
		if (vcpu->arch.intr_msr & MSR_LE)
			*val = get_reg_val(id, LPCR_ILE);
		else
			*val = get_reg_val(id, 0);
		break;
1260
	default:
1261
		r = -EINVAL;
1262 1263 1264 1265 1266 1267
		break;
	}

	return r;
}

1268 1269 1270 1271 1272 1273 1274 1275
static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
{
	if (new_lpcr & LPCR_ILE)
		vcpu->arch.intr_msr |= MSR_LE;
	else
		vcpu->arch.intr_msr &= ~MSR_LE;
}

1276 1277
static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1278
{
1279
	int r = 0;
1280

1281
	switch (id) {
1282
	case KVM_REG_PPC_HIOR:
1283 1284
		to_book3s(vcpu)->hior = set_reg_val(id, *val);
		to_book3s(vcpu)->hior_explicit = true;
1285
		break;
1286 1287 1288
	case KVM_REG_PPC_LPCR:
		kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
		break;
1289
	default:
1290
		r = -EINVAL;
1291 1292 1293 1294 1295 1296
		break;
	}

	return r;
}

1297 1298
static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
						   unsigned int id)
1299 1300 1301 1302 1303 1304
{
	struct kvmppc_vcpu_book3s *vcpu_book3s;
	struct kvm_vcpu *vcpu;
	int err = -ENOMEM;
	unsigned long p;

1305 1306
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu)
1307 1308 1309 1310 1311
		goto out;

	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
	if (!vcpu_book3s)
		goto free_vcpu;
1312
	vcpu->arch.book3s = vcpu_book3s;
1313

1314
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1315 1316 1317 1318
	vcpu->arch.shadow_vcpu =
		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
	if (!vcpu->arch.shadow_vcpu)
		goto free_vcpu3s;
1319
#endif
1320 1321 1322 1323 1324

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_shadow_vcpu;

1325
	err = -ENOMEM;
1326 1327 1328
	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
	if (!p)
		goto uninit_vcpu;
1329 1330
	/* the real shared page fills the last 4k of our page */
	vcpu->arch.shared = (void *)(p + PAGE_SIZE - 4096);
1331
#ifdef CONFIG_PPC_BOOK3S_64
1332 1333 1334 1335 1336 1337 1338
	/* Always start the shared struct in native endian mode */
#ifdef __BIG_ENDIAN__
        vcpu->arch.shared_big_endian = true;
#else
        vcpu->arch.shared_big_endian = false;
#endif

1339 1340 1341 1342 1343
	/*
	 * Default to the same as the host if we're on sufficiently
	 * recent machine that we have 1TB segments;
	 * otherwise default to PPC970FX.
	 */
1344
	vcpu->arch.pvr = 0x3C0301;
1345 1346
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		vcpu->arch.pvr = mfspr(SPRN_PVR);
1347
	vcpu->arch.intr_msr = MSR_SF;
1348 1349 1350 1351
#else
	/* default to book3s_32 (750) */
	vcpu->arch.pvr = 0x84202;
#endif
1352
	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1353 1354
	vcpu->arch.slb_nr = 64;

1355
	vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365

	err = kvmppc_mmu_init(vcpu);
	if (err < 0)
		goto uninit_vcpu;

	return vcpu;

uninit_vcpu:
	kvm_vcpu_uninit(vcpu);
free_shadow_vcpu:
1366
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1367 1368
	kfree(vcpu->arch.shadow_vcpu);
free_vcpu3s:
1369
#endif
1370
	vfree(vcpu_book3s);
1371 1372
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1373 1374 1375 1376
out:
	return ERR_PTR(err);
}

1377
static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1378 1379 1380 1381 1382
{
	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);

	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
	kvm_vcpu_uninit(vcpu);
1383
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1384 1385
	kfree(vcpu->arch.shadow_vcpu);
#endif
1386
	vfree(vcpu_book3s);
1387
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1388 1389
}

1390
static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1391 1392 1393 1394 1395 1396
{
	int ret;
#ifdef CONFIG_ALTIVEC
	unsigned long uninitialized_var(vrsave);
#endif

1397 1398 1399
	/* Check if we can run the vcpu at all */
	if (!vcpu->arch.sane) {
		kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1400 1401
		ret = -EINVAL;
		goto out;
1402 1403
	}

1404 1405 1406 1407 1408 1409
	/*
	 * Interrupts could be timers for the guest which we have to inject
	 * again, so let's postpone them until we're in the guest and if we
	 * really did time things so badly, then we just exit again due to
	 * a host external interrupt.
	 */
1410
	ret = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1411
	if (ret <= 0)
1412
		goto out;
S
Scott Wood 已提交
1413
	/* interrupts now hard-disabled */
1414

1415
	/* Save FPU state in thread_struct */
1416 1417 1418 1419
	if (current->thread.regs->msr & MSR_FP)
		giveup_fpu(current);

#ifdef CONFIG_ALTIVEC
1420 1421 1422
	/* Save Altivec state in thread_struct */
	if (current->thread.regs->msr & MSR_VEC)
		giveup_altivec(current);
1423 1424 1425
#endif

#ifdef CONFIG_VSX
1426 1427
	/* Save VSX state in thread_struct */
	if (current->thread.regs->msr & MSR_VSX)
1428
		__giveup_vsx(current);
1429 1430 1431
#endif

	/* Preload FPU if it's enabled */
1432
	if (kvmppc_get_msr(vcpu) & MSR_FP)
1433 1434
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);

1435
	kvmppc_fix_ee_before_entry();
1436 1437 1438

	ret = __kvmppc_vcpu_run(kvm_run, vcpu);

1439 1440
	/* No need for kvm_guest_exit. It's done in handle_exit.
	   We also get here with interrupts enabled. */
1441 1442

	/* Make sure we save the guest FPU/Altivec/VSX state */
1443 1444
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);

1445 1446 1447
	/* Make sure we save the guest TAR/EBB/DSCR state */
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);

1448
out:
1449
	vcpu->mode = OUTSIDE_GUEST_MODE;
1450 1451 1452
	return ret;
}

1453 1454 1455
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
1456 1457
static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
					 struct kvm_dirty_log *log)
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
{
	struct kvm_memory_slot *memslot;
	struct kvm_vcpu *vcpu;
	ulong ga, ga_end;
	int is_dirty = 0;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
		memslot = id_to_memslot(kvm->memslots, log->slot);

		ga = memslot->base_gfn << PAGE_SHIFT;
		ga_end = ga + (memslot->npages << PAGE_SHIFT);

		kvm_for_each_vcpu(n, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);

		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1492 1493
static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
					 struct kvm_memory_slot *memslot)
1494
{
1495 1496
	return;
}
1497

1498 1499 1500 1501
static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
					struct kvm_userspace_memory_region *mem)
{
1502 1503 1504
	return 0;
}

1505 1506 1507
static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
				const struct kvm_memory_slot *old)
1508
{
1509
	return;
1510 1511
}

1512 1513
static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
1514
{
1515
	return;
1516 1517
}

1518 1519
static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
					 unsigned long npages)
1520 1521 1522 1523
{
	return 0;
}

1524

1525
#ifdef CONFIG_PPC64
1526 1527
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1528
{
1529 1530 1531 1532
	long int i;
	struct kvm_vcpu *vcpu;

	info->flags = 0;
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542

	/* SLB is always 64 entries */
	info->slb_size = 64;

	/* Standard 4k base page size segment */
	info->sps[0].page_shift = 12;
	info->sps[0].slb_enc = 0;
	info->sps[0].enc[0].page_shift = 12;
	info->sps[0].enc[0].pte_enc = 0;

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
	/*
	 * 64k large page size.
	 * We only want to put this in if the CPUs we're emulating
	 * support it, but unfortunately we don't have a vcpu easily
	 * to hand here to test.  Just pick the first vcpu, and if
	 * that doesn't exist yet, report the minimum capability,
	 * i.e., no 64k pages.
	 * 1T segment support goes along with 64k pages.
	 */
	i = 1;
	vcpu = kvm_get_vcpu(kvm, 0);
	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
		info->flags = KVM_PPC_1T_SEGMENTS;
		info->sps[i].page_shift = 16;
		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
		info->sps[i].enc[0].page_shift = 16;
		info->sps[i].enc[0].pte_enc = 1;
		++i;
	}

1563
	/* Standard 16M large page size segment */
1564 1565 1566 1567
	info->sps[i].page_shift = 24;
	info->sps[i].slb_enc = SLB_VSID_L;
	info->sps[i].enc[0].page_shift = 24;
	info->sps[i].enc[0].pte_enc = 0;
1568

1569 1570
	return 0;
}
1571 1572 1573
#else
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1574
{
1575 1576
	/* We should not get called */
	BUG();
1577
}
1578
#endif /* CONFIG_PPC64 */
1579

1580 1581 1582
static unsigned int kvm_global_user_count = 0;
static DEFINE_SPINLOCK(kvm_global_user_count_lock);

1583
static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1584
{
1585
	mutex_init(&kvm->arch.hpt_mutex);
1586

1587 1588 1589 1590 1591 1592
	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		if (++kvm_global_user_count == 1)
			pSeries_disable_reloc_on_exc();
		spin_unlock(&kvm_global_user_count_lock);
	}
1593 1594 1595
	return 0;
}

1596
static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
1597
{
1598 1599 1600
#ifdef CONFIG_PPC64
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
#endif
1601 1602 1603 1604 1605 1606 1607 1608

	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		BUG_ON(kvm_global_user_count == 0);
		if (--kvm_global_user_count == 0)
			pSeries_enable_reloc_on_exc();
		spin_unlock(&kvm_global_user_count_lock);
	}
1609 1610
}

1611
static int kvmppc_core_check_processor_compat_pr(void)
1612
{
1613 1614 1615
	/* we are always compatible */
	return 0;
}
1616

1617 1618 1619 1620 1621
static long kvm_arch_vm_ioctl_pr(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	return -ENOTTY;
}
1622

1623
static struct kvmppc_ops kvm_ops_pr = {
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
	.get_one_reg = kvmppc_get_one_reg_pr,
	.set_one_reg = kvmppc_set_one_reg_pr,
	.vcpu_load   = kvmppc_core_vcpu_load_pr,
	.vcpu_put    = kvmppc_core_vcpu_put_pr,
	.set_msr     = kvmppc_set_msr_pr,
	.vcpu_run    = kvmppc_vcpu_run_pr,
	.vcpu_create = kvmppc_core_vcpu_create_pr,
	.vcpu_free   = kvmppc_core_vcpu_free_pr,
	.check_requests = kvmppc_core_check_requests_pr,
	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
	.flush_memslot = kvmppc_core_flush_memslot_pr,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
	.unmap_hva = kvm_unmap_hva_pr,
	.unmap_hva_range = kvm_unmap_hva_range_pr,
	.age_hva  = kvm_age_hva_pr,
	.test_age_hva = kvm_test_age_hva_pr,
	.set_spte_hva = kvm_set_spte_hva_pr,
	.mmu_destroy  = kvmppc_mmu_destroy_pr,
	.free_memslot = kvmppc_core_free_memslot_pr,
	.create_memslot = kvmppc_core_create_memslot_pr,
	.init_vm = kvmppc_core_init_vm_pr,
	.destroy_vm = kvmppc_core_destroy_vm_pr,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
	.emulate_op = kvmppc_core_emulate_op_pr,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
	.fast_vcpu_kick = kvm_vcpu_kick,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
};

1657 1658

int kvmppc_book3s_init_pr(void)
1659 1660 1661
{
	int r;

1662 1663
	r = kvmppc_core_check_processor_compat_pr();
	if (r < 0)
1664 1665
		return r;

1666 1667
	kvm_ops_pr.owner = THIS_MODULE;
	kvmppc_pr_ops = &kvm_ops_pr;
1668

1669
	r = kvmppc_mmu_hpte_sysinit();
1670 1671 1672
	return r;
}

1673
void kvmppc_book3s_exit_pr(void)
1674
{
1675
	kvmppc_pr_ops = NULL;
1676 1677 1678
	kvmppc_mmu_hpte_sysexit();
}

1679 1680 1681 1682 1683
/*
 * We only support separate modules for book3s 64
 */
#ifdef CONFIG_PPC_BOOK3S_64

1684 1685
module_init(kvmppc_book3s_init_pr);
module_exit(kvmppc_book3s_exit_pr);
1686 1687

MODULE_LICENSE("GPL");
1688 1689
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");
1690
#endif