book3s_hv.c 136.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Paul Mackerras <paulus@au1.ibm.com>
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *
 * Description: KVM functions specific to running on Book 3S
 * processors in hypervisor mode (specifically POWER7 and later).
 *
 * This file is derived from arch/powerpc/kvm/book3s.c,
 * by Alexander Graf <agraf@suse.de>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
22
#include <linux/kernel.h>
23 24 25
#include <linux/err.h>
#include <linux/slab.h>
#include <linux/preempt.h>
26
#include <linux/sched/signal.h>
27
#include <linux/sched/stat.h>
28
#include <linux/delay.h>
29
#include <linux/export.h>
30 31
#include <linux/fs.h>
#include <linux/anon_inodes.h>
32
#include <linux/cpu.h>
33
#include <linux/cpumask.h>
34 35
#include <linux/spinlock.h>
#include <linux/page-flags.h>
36
#include <linux/srcu.h>
37
#include <linux/miscdevice.h>
38
#include <linux/debugfs.h>
39 40 41 42 43 44 45 46 47
#include <linux/gfp.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
#include <linux/module.h>
#include <linux/compiler.h>
#include <linux/of.h>
48

49
#include <asm/ftrace.h>
50
#include <asm/reg.h>
51
#include <asm/ppc-opcode.h>
52
#include <asm/asm-prototypes.h>
53
#include <asm/archrandom.h>
54
#include <asm/debug.h>
55
#include <asm/disassemble.h>
56 57
#include <asm/cputable.h>
#include <asm/cacheflush.h>
58
#include <linux/uaccess.h>
59 60 61 62 63 64
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/lppaca.h>
#include <asm/processor.h>
65
#include <asm/cputhreads.h>
66
#include <asm/page.h>
67
#include <asm/hvcall.h>
68
#include <asm/switch_to.h>
69
#include <asm/smp.h>
70
#include <asm/dbell.h>
71
#include <asm/hmi.h>
72
#include <asm/pnv-pci.h>
73
#include <asm/mmu.h>
74 75
#include <asm/opal.h>
#include <asm/xics.h>
76
#include <asm/xive.h>
77

78 79
#include "book3s.h"

80 81 82
#define CREATE_TRACE_POINTS
#include "trace_hv.h"

83 84 85 86
/* #define EXIT_DEBUG */
/* #define EXIT_DEBUG_SIMPLE */
/* #define EXIT_DEBUG_INT */

87 88
/* Used to indicate that a guest page fault needs to be handled */
#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
89 90
/* Used to indicate that a guest passthrough interrupt needs to be handled */
#define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
91

92 93 94
/* Used as a "null" value for timebase values */
#define TB_NIL	(~(u64)0)

95 96
static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);

97
static int dynamic_mt_modes = 6;
98
module_param(dynamic_mt_modes, int, 0644);
99
MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
100
static int target_smt_mode;
101
module_param(target_smt_mode, int, 0644);
102
MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
103

104 105 106 107
static bool indep_threads_mode = true;
module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");

108 109 110 111 112 113
#ifdef CONFIG_KVM_XICS
static struct kernel_param_ops module_param_ops = {
	.set = param_set_int,
	.get = param_get_int,
};

114
module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
115 116
MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");

117
module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
118 119 120
MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
#endif

121 122 123
/* If set, the threads on each CPU core have to be in the same MMU mode */
static bool no_mixing_hpt_and_radix;

124
static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
125
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
126

127 128 129 130 131
/*
 * RWMR values for POWER8.  These control the rate at which PURR
 * and SPURR count and should be set according to the number of
 * online threads in the vcore being run.
 */
132 133 134 135 136 137 138 139
#define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
#define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
#define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
#define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
140 141 142 143 144 145 146 147 148 149 150 151 152

static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
	RWMR_RPA_P8_1THREAD,
	RWMR_RPA_P8_1THREAD,
	RWMR_RPA_P8_2THREAD,
	RWMR_RPA_P8_3THREAD,
	RWMR_RPA_P8_4THREAD,
	RWMR_RPA_P8_5THREAD,
	RWMR_RPA_P8_6THREAD,
	RWMR_RPA_P8_7THREAD,
	RWMR_RPA_P8_8THREAD,
};

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
		int *ip)
{
	int i = *ip;
	struct kvm_vcpu *vcpu;

	while (++i < MAX_SMT_THREADS) {
		vcpu = READ_ONCE(vc->runnable_threads[i]);
		if (vcpu) {
			*ip = i;
			return vcpu;
		}
	}
	return NULL;
}

/* Used to traverse the list of runnable threads for a given vcore */
#define for_each_runnable_thread(i, vcpu, vc) \
	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )

173 174
static bool kvmppc_ipi_thread(int cpu)
{
175 176
	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);

177 178 179 180
	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
	if (kvmhv_on_pseries())
		return false;

181 182 183 184 185 186 187 188
	/* On POWER9 we can use msgsnd to IPI any cpu */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		msg |= get_hard_smp_processor_id(cpu);
		smp_mb();
		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
		return true;
	}

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		preempt_disable();
		if (cpu_first_thread_sibling(cpu) ==
		    cpu_first_thread_sibling(smp_processor_id())) {
			msg |= cpu_thread_in_core(cpu);
			smp_mb();
			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
			preempt_enable();
			return true;
		}
		preempt_enable();
	}

#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
204
	if (cpu >= 0 && cpu < nr_cpu_ids) {
205
		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
206 207 208 209
			xics_wake_cpu(cpu);
			return true;
		}
		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
210 211 212 213 214 215 216
		return true;
	}
#endif

	return false;
}

217
static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
218
{
219
	int cpu;
220
	struct swait_queue_head *wqp;
221 222

	wqp = kvm_arch_vcpu_wq(vcpu);
223
	if (swq_has_sleeper(wqp)) {
224
		swake_up_one(wqp);
225 226 227
		++vcpu->stat.halt_wakeup;
	}

228 229
	cpu = READ_ONCE(vcpu->arch.thread_cpu);
	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
230
		return;
231 232

	/* CPU points to the first thread of the core */
233
	cpu = vcpu->cpu;
234 235
	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
		smp_send_reschedule(cpu);
236 237
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/*
 * We use the vcpu_load/put functions to measure stolen time.
 * Stolen time is counted as time when either the vcpu is able to
 * run as part of a virtual core, but the task running the vcore
 * is preempted or sleeping, or when the vcpu needs something done
 * in the kernel by the task running the vcpu, but that task is
 * preempted or sleeping.  Those two things have to be counted
 * separately, since one of the vcpu tasks will take on the job
 * of running the core, and the other vcpu tasks in the vcore will
 * sleep waiting for it to do that, but that sleep shouldn't count
 * as stolen time.
 *
 * Hence we accumulate stolen time when the vcpu can run as part of
 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
 * needs its task to do other things in the kernel (for example,
 * service a page fault) in busy_stolen.  We don't accumulate
 * stolen time for a vcore when it is inactive, or for a vcpu
 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
 * a misnomer; it means that the vcpu task is not executing in
 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
 * the kernel.  We don't have any way of dividing up that time
 * between time that the vcpu is genuinely stopped, time that
 * the task is actively working on behalf of the vcpu, and time
 * that the task is preempted, so we don't count any of it as
 * stolen.
 *
 * Updates to busy_stolen are protected by arch.tbacct_lock;
265 266 267 268
 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
 * lock.  The stolen times are measured in units of timebase ticks.
 * (Note that the != TB_NIL checks below are purely defensive;
 * they should never fail.)
269 270
 */

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	vc->preempt_tb = mftb();
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
{
	unsigned long flags;

	spin_lock_irqsave(&vc->stoltb_lock, flags);
	if (vc->preempt_tb != TB_NIL) {
		vc->stolen_tb += mftb() - vc->preempt_tb;
		vc->preempt_tb = TB_NIL;
	}
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
}

292
static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
293
{
294
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
295
	unsigned long flags;
296

297 298 299 300 301 302
	/*
	 * We can test vc->runner without taking the vcore lock,
	 * because only this task ever sets vc->runner to this
	 * vcpu, and once it is set to this vcpu, only this task
	 * ever sets it to NULL.
	 */
303 304 305
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_end_stolen(vc);

306
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
307 308 309 310 311
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
	    vcpu->arch.busy_preempt != TB_NIL) {
		vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
		vcpu->arch.busy_preempt = TB_NIL;
	}
312
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
313 314
}

315
static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
316
{
317
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
318
	unsigned long flags;
319

320 321 322
	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
		kvmppc_core_start_stolen(vc);

323
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
324 325
	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
		vcpu->arch.busy_preempt = mftb();
326
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
327 328
}

329
static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
330
{
331 332 333 334 335 336
	/*
	 * Check for illegal transactional state bit combination
	 * and if we find it, force the TS field to a safe state.
	 */
	if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
		msr &= ~MSR_TS_MASK;
337
	vcpu->arch.shregs.msr = msr;
338
	kvmppc_end_cede(vcpu);
339 340
}

T
Thomas Huth 已提交
341
static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
342 343 344 345
{
	vcpu->arch.pvr = pvr;
}

346 347 348
/* Dummy value used in computing PCR value below */
#define PCR_ARCH_300	(PCR_ARCH_207 << 1)

T
Thomas Huth 已提交
349
static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
350
{
351
	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
352 353
	struct kvmppc_vcore *vc = vcpu->arch.vcore;

354 355 356 357 358 359 360 361 362 363 364 365
	/* We can (emulate) our own architecture version and anything older */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		host_pcr_bit = PCR_ARCH_300;
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		host_pcr_bit = PCR_ARCH_207;
	else if (cpu_has_feature(CPU_FTR_ARCH_206))
		host_pcr_bit = PCR_ARCH_206;
	else
		host_pcr_bit = PCR_ARCH_205;

	/* Determine lowest PCR bit needed to run guest in given PVR level */
	guest_pcr_bit = host_pcr_bit;
366 367 368
	if (arch_compat) {
		switch (arch_compat) {
		case PVR_ARCH_205:
369
			guest_pcr_bit = PCR_ARCH_205;
370 371 372
			break;
		case PVR_ARCH_206:
		case PVR_ARCH_206p:
373
			guest_pcr_bit = PCR_ARCH_206;
374 375
			break;
		case PVR_ARCH_207:
376 377 378 379
			guest_pcr_bit = PCR_ARCH_207;
			break;
		case PVR_ARCH_300:
			guest_pcr_bit = PCR_ARCH_300;
380 381 382 383 384 385
			break;
		default:
			return -EINVAL;
		}
	}

386 387 388 389
	/* Check requested PCR bits don't exceed our capabilities */
	if (guest_pcr_bit > host_pcr_bit)
		return -EINVAL;

390 391
	spin_lock(&vc->lock);
	vc->arch_compat = arch_compat;
392 393
	/* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
	vc->pcr = host_pcr_bit - guest_pcr_bit;
394 395 396 397 398
	spin_unlock(&vc->lock);

	return 0;
}

T
Thomas Huth 已提交
399
static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
400 401 402 403 404
{
	int r;

	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
405
	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
406 407 408 409 410
	for (r = 0; r < 16; ++r)
		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
		       r, kvmppc_get_gpr(vcpu, r),
		       r+16, kvmppc_get_gpr(vcpu, r+16));
	pr_err("ctr = %.16lx  lr  = %.16lx\n",
411
	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
412 413 414 415 416 417
	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
418 419
	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
420 421 422 423 424 425 426 427
	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
	pr_err("fault dar = %.16lx dsisr = %.8x\n",
	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
	for (r = 0; r < vcpu->arch.slb_max; ++r)
		pr_err("  ESID = %.16llx VSID = %.16llx\n",
		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
428
	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
429 430 431
	       vcpu->arch.last_inst);
}

T
Thomas Huth 已提交
432
static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
433
{
434
	struct kvm_vcpu *ret;
435 436

	mutex_lock(&kvm->lock);
437
	ret = kvm_get_vcpu_by_id(kvm, id);
438 439 440 441 442 443
	mutex_unlock(&kvm->lock);
	return ret;
}

static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
{
444
	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
445
	vpa->yield_count = cpu_to_be32(1);
446 447
}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
		   unsigned long addr, unsigned long len)
{
	/* check address is cacheline aligned */
	if (addr & (L1_CACHE_BYTES - 1))
		return -EINVAL;
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (v->next_gpa != addr || v->len != len) {
		v->next_gpa = addr;
		v->len = addr ? len : 0;
		v->update_pending = 1;
	}
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return 0;
}

464 465 466 467
/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
struct reg_vpa {
	u32 dummy;
	union {
468 469
		__be16 hword;
		__be32 word;
470 471 472 473 474 475 476 477 478 479
	} length;
};

static int vpa_is_registered(struct kvmppc_vpa *vpap)
{
	if (vpap->update_pending)
		return vpap->next_gpa != 0;
	return vpap->pinned_addr != NULL;
}

480 481 482 483 484
static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
				       unsigned long flags,
				       unsigned long vcpuid, unsigned long vpa)
{
	struct kvm *kvm = vcpu->kvm;
485
	unsigned long len, nb;
486 487
	void *va;
	struct kvm_vcpu *tvcpu;
488 489 490
	int err;
	int subfunc;
	struct kvmppc_vpa *vpap;
491 492 493 494 495

	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
	if (!tvcpu)
		return H_PARAMETER;

496 497 498 499 500
	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
	    subfunc == H_VPA_REG_SLB) {
		/* Registering new area - address must be cache-line aligned */
		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
501
			return H_PARAMETER;
502 503

		/* convert logical addr to kernel addr and read length */
504 505
		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
		if (va == NULL)
506
			return H_PARAMETER;
507
		if (subfunc == H_VPA_REG_VPA)
508
			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
509
		else
510
			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
511
		kvmppc_unpin_guest_page(kvm, va, vpa, false);
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526

		/* Check length */
		if (len > nb || len < sizeof(struct reg_vpa))
			return H_PARAMETER;
	} else {
		vpa = 0;
		len = 0;
	}

	err = H_PARAMETER;
	vpap = NULL;
	spin_lock(&tvcpu->arch.vpa_update_lock);

	switch (subfunc) {
	case H_VPA_REG_VPA:		/* register VPA */
527 528 529 530 531 532
		/*
		 * The size of our lppaca is 1kB because of the way we align
		 * it for the guest to avoid crossing a 4kB boundary. We only
		 * use 640 bytes of the structure though, so we should accept
		 * clients that set a size of 640.
		 */
533 534
		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
		if (len < sizeof(struct lppaca))
535
			break;
536 537 538 539 540 541
		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_REG_DTL:		/* register DTL */
		if (len < sizeof(struct dtl_entry))
542
			break;
543 544 545 546 547
		len -= len % sizeof(struct dtl_entry);

		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
548
			break;
549 550 551 552 553 554 555 556 557

		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
		/* Check that they have previously registered a VPA */
		err = H_RESOURCE;
		if (!vpa_is_registered(&tvcpu->arch.vpa))
558
			break;
559 560 561 562 563 564 565 566 567 568

		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;

	case H_VPA_DEREG_VPA:		/* deregister VPA */
		/* Check they don't still have a DTL or SLB buf registered */
		err = H_RESOURCE;
		if (vpa_is_registered(&tvcpu->arch.dtl) ||
		    vpa_is_registered(&tvcpu->arch.slb_shadow))
569
			break;
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589

		vpap = &tvcpu->arch.vpa;
		err = 0;
		break;

	case H_VPA_DEREG_DTL:		/* deregister DTL */
		vpap = &tvcpu->arch.dtl;
		err = 0;
		break;

	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
		vpap = &tvcpu->arch.slb_shadow;
		err = 0;
		break;
	}

	if (vpap) {
		vpap->next_gpa = vpa;
		vpap->len = len;
		vpap->update_pending = 1;
590
	}
591

592 593
	spin_unlock(&tvcpu->arch.vpa_update_lock);

594
	return err;
595 596
}

597
static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
598
{
599
	struct kvm *kvm = vcpu->kvm;
600 601
	void *va;
	unsigned long nb;
602
	unsigned long gpa;
603

604 605 606 607 608 609 610 611 612 613 614 615 616 617
	/*
	 * We need to pin the page pointed to by vpap->next_gpa,
	 * but we can't call kvmppc_pin_guest_page under the lock
	 * as it does get_user_pages() and down_read().  So we
	 * have to drop the lock, pin the page, then get the lock
	 * again and check that a new area didn't get registered
	 * in the meantime.
	 */
	for (;;) {
		gpa = vpap->next_gpa;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		va = NULL;
		nb = 0;
		if (gpa)
618
			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
619 620 621 622 623
		spin_lock(&vcpu->arch.vpa_update_lock);
		if (gpa == vpap->next_gpa)
			break;
		/* sigh... unpin that one and try again */
		if (va)
624
			kvmppc_unpin_guest_page(kvm, va, gpa, false);
625 626 627 628 629 630 631 632 633
	}

	vpap->update_pending = 0;
	if (va && nb < vpap->len) {
		/*
		 * If it's now too short, it must be that userspace
		 * has changed the mappings underlying guest memory,
		 * so unregister the region.
		 */
634
		kvmppc_unpin_guest_page(kvm, va, gpa, false);
635
		va = NULL;
636 637
	}
	if (vpap->pinned_addr)
638 639 640
		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
					vpap->dirty);
	vpap->gpa = gpa;
641
	vpap->pinned_addr = va;
642
	vpap->dirty = false;
643 644 645 646 647 648
	if (va)
		vpap->pinned_end = va + vpap->len;
}

static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
{
649 650 651 652 653
	if (!(vcpu->arch.vpa.update_pending ||
	      vcpu->arch.slb_shadow.update_pending ||
	      vcpu->arch.dtl.update_pending))
		return;

654 655
	spin_lock(&vcpu->arch.vpa_update_lock);
	if (vcpu->arch.vpa.update_pending) {
656
		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
657 658
		if (vcpu->arch.vpa.pinned_addr)
			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
659 660
	}
	if (vcpu->arch.dtl.update_pending) {
661
		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
662 663 664 665
		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
		vcpu->arch.dtl_index = 0;
	}
	if (vcpu->arch.slb_shadow.update_pending)
666
		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
667 668 669
	spin_unlock(&vcpu->arch.vpa_update_lock);
}

670 671 672 673 674 675 676
/*
 * Return the accumulated stolen time for the vcore up until `now'.
 * The caller should hold the vcore lock.
 */
static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
{
	u64 p;
677
	unsigned long flags;
678

679 680
	spin_lock_irqsave(&vc->stoltb_lock, flags);
	p = vc->stolen_tb;
681
	if (vc->vcore_state != VCORE_INACTIVE &&
682 683 684
	    vc->preempt_tb != TB_NIL)
		p += now - vc->preempt_tb;
	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
685 686 687
	return p;
}

688 689 690 691 692
static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
				    struct kvmppc_vcore *vc)
{
	struct dtl_entry *dt;
	struct lppaca *vpa;
693 694 695
	unsigned long stolen;
	unsigned long core_stolen;
	u64 now;
696
	unsigned long flags;
697 698 699

	dt = vcpu->arch.dtl_ptr;
	vpa = vcpu->arch.vpa.pinned_addr;
700 701 702 703
	now = mftb();
	core_stolen = vcore_stolen_time(vc, now);
	stolen = core_stolen - vcpu->arch.stolen_logged;
	vcpu->arch.stolen_logged = core_stolen;
704
	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
705 706
	stolen += vcpu->arch.busy_stolen;
	vcpu->arch.busy_stolen = 0;
707
	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
708 709 710 711
	if (!dt || !vpa)
		return;
	memset(dt, 0, sizeof(struct dtl_entry));
	dt->dispatch_reason = 7;
712 713 714 715 716
	dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
	dt->timebase = cpu_to_be64(now + vc->tb_offset);
	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
717 718 719 720 721 722
	++dt;
	if (dt == vcpu->arch.dtl.pinned_end)
		dt = vcpu->arch.dtl.pinned_addr;
	vcpu->arch.dtl_ptr = dt;
	/* order writing *dt vs. writing vpa->dtl_idx */
	smp_wmb();
723
	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
724
	vcpu->arch.dtl.dirty = true;
725 726
}

727 728 729 730 731 732
/* See if there is a doorbell interrupt pending for a vcpu */
static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
{
	int thr;
	struct kvmppc_vcore *vc;

733 734 735 736 737
	if (vcpu->arch.doorbell_request)
		return true;
	/*
	 * Ensure that the read of vcore->dpdes comes after the read
	 * of vcpu->doorbell_request.  This barrier matches the
738
	 * smb_wmb() in kvmppc_guest_entry_inject().
739 740
	 */
	smp_rmb();
741 742 743 744 745
	vc = vcpu->arch.vcore;
	thr = vcpu->vcpu_id - vc->first_vcpuid;
	return !!(vc->dpdes & (1 << thr));
}

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
		return true;
	if ((!vcpu->arch.vcore->arch_compat) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		return true;
	return false;
}

static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
			     unsigned long resource, unsigned long value1,
			     unsigned long value2)
{
	switch (resource) {
	case H_SET_MODE_RESOURCE_SET_CIABR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
		if (value2)
			return H_P4;
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		/* Guests can't breakpoint the hypervisor */
		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
			return H_P3;
		vcpu->arch.ciabr  = value1;
		return H_SUCCESS;
	case H_SET_MODE_RESOURCE_SET_DAWR:
		if (!kvmppc_power8_compatible(vcpu))
			return H_P2;
776 777
		if (!ppc_breakpoint_available())
			return H_P2;
778 779 780 781 782 783 784 785 786 787 788 789
		if (mflags)
			return H_UNSUPPORTED_FLAG_START;
		if (value2 & DABRX_HYP)
			return H_P4;
		vcpu->arch.dawr  = value1;
		vcpu->arch.dawrx = value2;
		return H_SUCCESS;
	default:
		return H_TOO_HARD;
	}
}

790 791 792 793 794 795 796 797 798 799 800 801 802 803
static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
{
	struct kvmppc_vcore *vcore = target->arch.vcore;

	/*
	 * We expect to have been called by the real mode handler
	 * (kvmppc_rm_h_confer()) which would have directly returned
	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
	 * have useful work to do and should not confer) so we don't
	 * recheck that here.
	 */

	spin_lock(&vcore->lock);
	if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
804 805
	    vcore->vcore_state != VCORE_INACTIVE &&
	    vcore->runner)
806 807 808 809 810 811 812 813 814 815 816 817 818 819
		target = vcore->runner;
	spin_unlock(&vcore->lock);

	return kvm_vcpu_yield_to(target);
}

static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
{
	int yield_count = 0;
	struct lppaca *lppaca;

	spin_lock(&vcpu->arch.vpa_update_lock);
	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
	if (lppaca)
820
		yield_count = be32_to_cpu(lppaca->yield_count);
821 822 823 824
	spin_unlock(&vcpu->arch.vpa_update_lock);
	return yield_count;
}

825 826 827 828
int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
{
	unsigned long req = kvmppc_get_gpr(vcpu, 3);
	unsigned long target, ret = H_SUCCESS;
829
	int yield_count;
830
	struct kvm_vcpu *tvcpu;
831
	int idx, rc;
832

833 834 835 836
	if (req <= MAX_HCALL_OPCODE &&
	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
		return RESUME_HOST;

837 838 839 840 841 842 843 844 845 846 847 848
	switch (req) {
	case H_CEDE:
		break;
	case H_PROD:
		target = kvmppc_get_gpr(vcpu, 4);
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
		tvcpu->arch.prodded = 1;
		smp_mb();
849 850
		if (tvcpu->arch.ceded)
			kvmppc_fast_vcpu_kick_hv(tvcpu);
851 852
		break;
	case H_CONFER:
853 854 855 856 857 858 859 860
		target = kvmppc_get_gpr(vcpu, 4);
		if (target == -1)
			break;
		tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
		if (!tvcpu) {
			ret = H_PARAMETER;
			break;
		}
861 862 863 864
		yield_count = kvmppc_get_gpr(vcpu, 5);
		if (kvmppc_get_yield_count(tvcpu) != yield_count)
			break;
		kvm_arch_vcpu_yield_to(tvcpu);
865 866 867 868 869 870
		break;
	case H_REGISTER_VPA:
		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6));
		break;
871 872 873 874
	case H_RTAS:
		if (list_empty(&vcpu->kvm->arch.rtas_tokens))
			return RESUME_HOST;

875
		idx = srcu_read_lock(&vcpu->kvm->srcu);
876
		rc = kvmppc_rtas_hcall(vcpu);
877
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
878 879 880 881 882 883 884 885

		if (rc == -ENOENT)
			return RESUME_HOST;
		else if (rc == 0)
			break;

		/* Send the error out to userspace via KVM_RUN */
		return rc;
886 887 888 889 890 891 892 893 894 895
	case H_LOGICAL_CI_LOAD:
		ret = kvmppc_h_logical_ci_load(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_LOGICAL_CI_STORE:
		ret = kvmppc_h_logical_ci_store(vcpu);
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
896 897 898 899 900 901 902 903
	case H_SET_MODE:
		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
					kvmppc_get_gpr(vcpu, 5),
					kvmppc_get_gpr(vcpu, 6),
					kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
904 905 906 907
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
908 909
	case H_IPOLL:
	case H_XIRR_X:
910
		if (kvmppc_xics_enabled(vcpu)) {
911 912 913 914
			if (xive_enabled()) {
				ret = H_NOT_AVAILABLE;
				return RESUME_GUEST;
			}
915 916
			ret = kvmppc_xics_hcall(vcpu, req);
			break;
917 918
		}
		return RESUME_HOST;
919 920 921 922 923 924 925 926 927 928 929 930 931
	case H_SET_DABR:
		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
		break;
	case H_SET_XDABR:
		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5));
		break;
	case H_GET_TCE:
		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	case H_PUT_TCE:
		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_PUT_TCE_INDIRECT:
		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
	case H_STUFF_TCE:
		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
						kvmppc_get_gpr(vcpu, 5),
						kvmppc_get_gpr(vcpu, 6),
						kvmppc_get_gpr(vcpu, 7));
		if (ret == H_TOO_HARD)
			return RESUME_HOST;
		break;
955 956 957 958
	case H_RANDOM:
		if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
			ret = H_HARDWARE;
		break;
959 960 961 962 963 964 965 966

	case H_SET_PARTITION_TABLE:
		ret = H_FUNCTION;
		if (vcpu->kvm->arch.nested_enable)
			ret = kvmhv_set_partition_table(vcpu);
		break;
	case H_ENTER_NESTED:
		ret = H_FUNCTION;
967 968 969 970 971 972 973
		if (!vcpu->kvm->arch.nested_enable)
			break;
		ret = kvmhv_enter_nested_guest(vcpu);
		if (ret == H_INTERRUPT) {
			kvmppc_set_gpr(vcpu, 3, 0);
			return -EINTR;
		}
974 975 976 977 978
		break;
	case H_TLB_INVALIDATE:
		ret = H_FUNCTION;
		break;

979 980 981 982 983 984 985 986
	default:
		return RESUME_HOST;
	}
	kvmppc_set_gpr(vcpu, 3, ret);
	vcpu->arch.hcall_needed = 0;
	return RESUME_GUEST;
}

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
/*
 * Handle H_CEDE in the nested virtualization case where we haven't
 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
 * that the cede logic in kvmppc_run_single_vcpu() works properly.
 */
static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
{
	vcpu->arch.shregs.msr |= MSR_EE;
	vcpu->arch.ceded = 1;
	smp_mb();
	if (vcpu->arch.prodded) {
		vcpu->arch.prodded = 0;
		smp_mb();
		vcpu->arch.ceded = 0;
	}
}

1005 1006 1007 1008 1009 1010 1011
static int kvmppc_hcall_impl_hv(unsigned long cmd)
{
	switch (cmd) {
	case H_CEDE:
	case H_PROD:
	case H_CONFER:
	case H_REGISTER_VPA:
1012
	case H_SET_MODE:
1013 1014
	case H_LOGICAL_CI_LOAD:
	case H_LOGICAL_CI_STORE:
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
#ifdef CONFIG_KVM_XICS
	case H_XIRR:
	case H_CPPR:
	case H_EOI:
	case H_IPI:
	case H_IPOLL:
	case H_XIRR_X:
#endif
		return 1;
	}

	/* See if it's in the real-mode table */
	return kvmppc_hcall_impl_hv_realmode(cmd);
}

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
static int kvmppc_emulate_debug_inst(struct kvm_run *run,
					struct kvm_vcpu *vcpu)
{
	u32 last_inst;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
					EMULATE_DONE) {
		/*
		 * Fetch failed, so return to guest and
		 * try executing it again.
		 */
		return RESUME_GUEST;
	}

	if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
		run->exit_reason = KVM_EXIT_DEBUG;
		run->debug.arch.address = kvmppc_get_pc(vcpu);
		return RESUME_HOST;
	} else {
		kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
		return RESUME_GUEST;
	}
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
static void do_nothing(void *x)
{
}

static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
{
	int thr, cpu, pcpu, nthreads;
	struct kvm_vcpu *v;
	unsigned long dpdes;

	nthreads = vcpu->kvm->arch.emul_smt_mode;
	dpdes = 0;
	cpu = vcpu->vcpu_id & ~(nthreads - 1);
	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
		if (!v)
			continue;
		/*
		 * If the vcpu is currently running on a physical cpu thread,
		 * interrupt it in order to pull it out of the guest briefly,
		 * which will update its vcore->dpdes value.
		 */
		pcpu = READ_ONCE(v->cpu);
		if (pcpu >= 0)
			smp_call_function_single(pcpu, do_nothing, NULL, 1);
		if (kvmppc_doorbell_pending(v))
			dpdes |= 1 << thr;
	}
	return dpdes;
}

/*
 * On POWER9, emulate doorbell-related instructions in order to
 * give the guest the illusion of running on a multi-threaded core.
 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
 * and mfspr DPDES.
 */
static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
{
	u32 inst, rb, thr;
	unsigned long arg;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu *tvcpu;

	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
		return RESUME_GUEST;
	if (get_op(inst) != 31)
		return EMULATE_FAIL;
	rb = get_rb(inst);
	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
	switch (get_xop(inst)) {
	case OP_31_XOP_MSGSNDP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		arg &= 0x3f;
		if (arg >= kvm->arch.emul_smt_mode)
			break;
		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
		if (!tvcpu)
			break;
		if (!tvcpu->arch.doorbell_request) {
			tvcpu->arch.doorbell_request = 1;
			kvmppc_fast_vcpu_kick_hv(tvcpu);
		}
		break;
	case OP_31_XOP_MSGCLRP:
		arg = kvmppc_get_gpr(vcpu, rb);
		if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
			break;
		vcpu->arch.vcore->dpdes = 0;
		vcpu->arch.doorbell_request = 0;
		break;
	case OP_31_XOP_MFSPR:
		switch (get_sprn(inst)) {
		case SPRN_TIR:
			arg = thr;
			break;
		case SPRN_DPDES:
			arg = kvmppc_read_dpdes(vcpu);
			break;
		default:
			return EMULATE_FAIL;
		}
		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
		break;
	default:
		return EMULATE_FAIL;
	}
	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
	return RESUME_GUEST;
}

1147 1148
static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				 struct task_struct *tsk)
1149 1150 1151 1152 1153
{
	int r = RESUME_HOST;

	vcpu->stat.sum_exits++;

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		printk(KERN_EMERG "KVM trap in HV mode!\n");
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		return RESUME_HOST;
	}
1172 1173 1174 1175 1176 1177 1178 1179 1180
	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
1181
	case BOOK3S_INTERRUPT_H_DOORBELL:
1182
	case BOOK3S_INTERRUPT_H_VIRT:
1183 1184 1185
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
1186
	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1187
	case BOOK3S_INTERRUPT_HMI:
1188
	case BOOK3S_INTERRUPT_PERFMON:
1189
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1190 1191
		r = RESUME_GUEST;
		break;
1192
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
		/* Exit to guest with KVM_EXIT_NMI as exit reason */
		run->exit_reason = KVM_EXIT_NMI;
		run->hw.hardware_exit_reason = vcpu->arch.trap;
		/* Clear out the old NMI status from run->flags */
		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
		/* Now set the NMI status */
		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
		else
			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;

		r = RESUME_HOST;
		/* Print the MCE event to host console. */
		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1207
		break;
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	case BOOK3S_INTERRUPT_PROGRAM:
	{
		ulong flags;
		/*
		 * Normally program interrupts are delivered directly
		 * to the guest by the hardware, but we can get here
		 * as a result of a hypervisor emulation interrupt
		 * (e40) getting turned into a 700 by BML RTAS.
		 */
		flags = vcpu->arch.shregs.msr & 0x1f0000ull;
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
	{
		/* hcall - punt to userspace */
		int i;

1227 1228 1229 1230
		/* hypercall with MSR_PR has already been handled in rmode,
		 * and never reaches here.
		 */

1231 1232 1233 1234 1235 1236 1237 1238 1239
		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
		for (i = 0; i < 9; ++i)
			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
		run->exit_reason = KVM_EXIT_PAPR_HCALL;
		vcpu->arch.hcall_needed = 1;
		r = RESUME_HOST;
		break;
	}
	/*
1240 1241 1242 1243 1244
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.  Any other HDSI/HISI interrupts
	 * have been handled already.
1245 1246
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1247
		r = RESUME_PAGE_FAULT;
1248 1249
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1250
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1251 1252 1253 1254
		vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
			DSISR_SRR1_MATCH_64S;
		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1255
		r = RESUME_PAGE_FAULT;
1256 1257 1258
		break;
	/*
	 * This occurs if the guest executes an illegal instruction.
1259 1260 1261 1262
	 * If the guest debug is disabled, generate a program interrupt
	 * to the guest. If guest debug is enabled, we need to check
	 * whether the instruction is a software breakpoint instruction.
	 * Accordingly return to Guest or Host.
1263 1264
	 */
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1265 1266 1267 1268
		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
				swab32(vcpu->arch.emul_inst) :
				vcpu->arch.emul_inst;
1269 1270 1271 1272 1273 1274
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
			r = kvmppc_emulate_debug_inst(run, vcpu);
		} else {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1275 1276 1277
		break;
	/*
	 * This occurs if the guest (kernel or userspace), does something that
1278 1279 1280 1281
	 * is prohibited by HFSCR.
	 * On POWER9, this could be a doorbell instruction that we need
	 * to emulate.
	 * Otherwise, we just generate a program interrupt to the guest.
1282 1283
	 */
	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1284
		r = EMULATE_FAIL;
1285
		if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1286
		    cpu_has_feature(CPU_FTR_ARCH_300))
1287 1288 1289 1290 1291
			r = kvmppc_emulate_doorbell_instr(vcpu);
		if (r == EMULATE_FAIL) {
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			r = RESUME_GUEST;
		}
1292
		break;
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
		/*
		 * This occurs for various TM-related instructions that
		 * we need to emulate on POWER9 DD2.2.  We have already
		 * handled the cases where the guest was in real-suspend
		 * mode and was transitioning to transactional state.
		 */
		r = kvmhv_p9_tm_emulation(vcpu);
		break;
#endif

1306 1307 1308
	case BOOK3S_INTERRUPT_HV_RM_HARD:
		r = RESUME_PASSTHROUGH;
		break;
1309 1310 1311 1312 1313
	default:
		kvmppc_dump_regs(vcpu);
		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			vcpu->arch.trap, kvmppc_get_pc(vcpu),
			vcpu->arch.shregs.msr);
1314
		run->hw.hardware_exit_reason = vcpu->arch.trap;
1315 1316 1317 1318 1319 1320 1321
		r = RESUME_HOST;
		break;
	}

	return r;
}

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
{
	int r;
	int srcu_idx;

	vcpu->stat.sum_exits++;

	/*
	 * This can happen if an interrupt occurs in the last stages
	 * of guest entry or the first stages of guest exit (i.e. after
	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
	 * That can happen due to a bug, or due to a machine check
	 * occurring at just the wrong time.
	 */
	if (vcpu->arch.shregs.msr & MSR_HV) {
		pr_emerg("KVM trap in HV mode while nested!\n");
		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
			 vcpu->arch.shregs.msr);
		kvmppc_dump_regs(vcpu);
		return RESUME_HOST;
	}
	switch (vcpu->arch.trap) {
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_HOST;
		break;
	case BOOK3S_INTERRUPT_H_DOORBELL:
	case BOOK3S_INTERRUPT_H_VIRT:
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
	case BOOK3S_INTERRUPT_HMI:
	case BOOK3S_INTERRUPT_PERFMON:
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		/* Pass the machine check to the L1 guest */
		r = RESUME_HOST;
		/* Print the MCE event to host console. */
		machine_check_print_event_info(&vcpu->arch.mce_evt, false);
		break;
	/*
	 * We get these next two if the guest accesses a page which it thinks
	 * it has mapped but which is not actually present, either because
	 * it is for an emulated I/O device or because the corresonding
	 * host page has been paged out.
	 */
	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
		r = kvmhv_nested_page_fault(vcpu);
		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
		break;
	case BOOK3S_INTERRUPT_H_INST_STORAGE:
		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
					 DSISR_SRR1_MATCH_64S;
		if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
		r = kvmhv_nested_page_fault(vcpu);
		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
		break;

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
		/*
		 * This occurs for various TM-related instructions that
		 * we need to emulate on POWER9 DD2.2.  We have already
		 * handled the cases where the guest was in real-suspend
		 * mode and was transitioning to transactional state.
		 */
		r = kvmhv_p9_tm_emulation(vcpu);
		break;
#endif

	case BOOK3S_INTERRUPT_HV_RM_HARD:
		vcpu->arch.trap = 0;
		r = RESUME_GUEST;
		if (!xive_enabled())
			kvmppc_xics_rm_complete(vcpu, 0);
		break;
	default:
		r = RESUME_HOST;
		break;
	}

	return r;
}

1420 1421
static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1422 1423 1424 1425
{
	int i;

	memset(sregs, 0, sizeof(struct kvm_sregs));
1426
	sregs->pvr = vcpu->arch.pvr;
1427 1428 1429 1430 1431 1432 1433 1434
	for (i = 0; i < vcpu->arch.slb_max; i++) {
		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
	}

	return 0;
}

1435 1436
static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1437 1438 1439
{
	int i, j;

1440 1441 1442
	/* Only accept the same PVR as the host's, since we can't spoof it */
	if (sregs->pvr != vcpu->arch.pvr)
		return -EINVAL;
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456

	j = 0;
	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
			++j;
		}
	}
	vcpu->arch.slb_max = j;

	return 0;
}

1457 1458
static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
		bool preserve_top32)
1459
{
1460
	struct kvm *kvm = vcpu->kvm;
1461 1462 1463
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	u64 mask;

1464
	mutex_lock(&kvm->lock);
1465
	spin_lock(&vc->lock);
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
	/*
	 * If ILE (interrupt little-endian) has changed, update the
	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
	 */
	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
		struct kvm_vcpu *vcpu;
		int i;

		kvm_for_each_vcpu(i, vcpu, kvm) {
			if (vcpu->arch.vcore != vc)
				continue;
			if (new_lpcr & LPCR_ILE)
				vcpu->arch.intr_msr |= MSR_LE;
			else
				vcpu->arch.intr_msr &= ~MSR_LE;
		}
	}

1484 1485 1486
	/*
	 * Userspace can only modify DPFD (default prefetch depth),
	 * ILE (interrupt little-endian) and TC (translation control).
1487
	 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1488 1489
	 */
	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1490 1491
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		mask |= LPCR_AIL;
1492 1493 1494 1495 1496 1497
	/*
	 * On POWER9, allow userspace to enable large decrementer for the
	 * guest, whether or not the host has it enabled.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		mask |= LPCR_LD;
1498 1499 1500 1501

	/* Broken 32-bit version of LPCR must not clear top bits */
	if (preserve_top32)
		mask &= 0xFFFFFFFF;
1502 1503
	vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
	spin_unlock(&vc->lock);
1504
	mutex_unlock(&kvm->lock);
1505 1506
}

1507 1508
static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1509
{
1510 1511
	int r = 0;
	long int i;
1512

1513
	switch (id) {
1514 1515 1516
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1517
	case KVM_REG_PPC_HIOR:
1518 1519 1520 1521 1522
		*val = get_reg_val(id, 0);
		break;
	case KVM_REG_PPC_DABR:
		*val = get_reg_val(id, vcpu->arch.dabr);
		break;
1523 1524 1525
	case KVM_REG_PPC_DABRX:
		*val = get_reg_val(id, vcpu->arch.dabrx);
		break;
1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	case KVM_REG_PPC_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr);
		break;
	case KVM_REG_PPC_PURR:
		*val = get_reg_val(id, vcpu->arch.purr);
		break;
	case KVM_REG_PPC_SPURR:
		*val = get_reg_val(id, vcpu->arch.spurr);
		break;
	case KVM_REG_PPC_AMR:
		*val = get_reg_val(id, vcpu->arch.amr);
		break;
	case KVM_REG_PPC_UAMOR:
		*val = get_reg_val(id, vcpu->arch.uamor);
		break;
1541
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1542 1543 1544 1545 1546 1547
		i = id - KVM_REG_PPC_MMCR0;
		*val = get_reg_val(id, vcpu->arch.mmcr[i]);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		*val = get_reg_val(id, vcpu->arch.pmc[i]);
1548
		break;
1549 1550 1551 1552
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		*val = get_reg_val(id, vcpu->arch.spmc[i]);
		break;
1553 1554 1555 1556 1557 1558
	case KVM_REG_PPC_SIAR:
		*val = get_reg_val(id, vcpu->arch.siar);
		break;
	case KVM_REG_PPC_SDAR:
		*val = get_reg_val(id, vcpu->arch.sdar);
		break;
1559 1560
	case KVM_REG_PPC_SIER:
		*val = get_reg_val(id, vcpu->arch.sier);
1561
		break;
1562 1563 1564 1565 1566 1567 1568 1569 1570
	case KVM_REG_PPC_IAMR:
		*val = get_reg_val(id, vcpu->arch.iamr);
		break;
	case KVM_REG_PPC_PSPB:
		*val = get_reg_val(id, vcpu->arch.pspb);
		break;
	case KVM_REG_PPC_DPDES:
		*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
		break;
1571 1572 1573
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
		break;
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	case KVM_REG_PPC_DAWR:
		*val = get_reg_val(id, vcpu->arch.dawr);
		break;
	case KVM_REG_PPC_DAWRX:
		*val = get_reg_val(id, vcpu->arch.dawrx);
		break;
	case KVM_REG_PPC_CIABR:
		*val = get_reg_val(id, vcpu->arch.ciabr);
		break;
	case KVM_REG_PPC_CSIGR:
		*val = get_reg_val(id, vcpu->arch.csigr);
		break;
	case KVM_REG_PPC_TACR:
		*val = get_reg_val(id, vcpu->arch.tacr);
		break;
	case KVM_REG_PPC_TCSCR:
		*val = get_reg_val(id, vcpu->arch.tcscr);
		break;
	case KVM_REG_PPC_PID:
		*val = get_reg_val(id, vcpu->arch.pid);
		break;
	case KVM_REG_PPC_ACOP:
		*val = get_reg_val(id, vcpu->arch.acop);
		break;
	case KVM_REG_PPC_WORT:
		*val = get_reg_val(id, vcpu->arch.wort);
1600
		break;
1601 1602 1603 1604 1605 1606
	case KVM_REG_PPC_TIDR:
		*val = get_reg_val(id, vcpu->arch.tid);
		break;
	case KVM_REG_PPC_PSSCR:
		*val = get_reg_val(id, vcpu->arch.psscr);
		break;
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	case KVM_REG_PPC_VPA_ADDR:
		spin_lock(&vcpu->arch.vpa_update_lock);
		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_SLB:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
		val->vpaval.length = vcpu->arch.slb_shadow.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
	case KVM_REG_PPC_VPA_DTL:
		spin_lock(&vcpu->arch.vpa_update_lock);
		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
		val->vpaval.length = vcpu->arch.dtl.len;
		spin_unlock(&vcpu->arch.vpa_update_lock);
		break;
1624 1625 1626
	case KVM_REG_PPC_TB_OFFSET:
		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
		break;
1627
	case KVM_REG_PPC_LPCR:
1628
	case KVM_REG_PPC_LPCR_64:
1629 1630
		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
		break;
1631 1632 1633
	case KVM_REG_PPC_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr);
		break;
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		*val = get_reg_val(id, vcpu->arch.tfhar);
		break;
	case KVM_REG_PPC_TFIAR:
		*val = get_reg_val(id, vcpu->arch.tfiar);
		break;
	case KVM_REG_PPC_TEXASR:
		*val = get_reg_val(id, vcpu->arch.texasr);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
		else {
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				val->vval = vcpu->arch.vr_tm.vr[i-32];
			else
				r = -ENXIO;
		}
		break;
	}
	case KVM_REG_PPC_TM_CR:
		*val = get_reg_val(id, vcpu->arch.cr_tm);
		break;
1666 1667 1668
	case KVM_REG_PPC_TM_XER:
		*val = get_reg_val(id, vcpu->arch.xer_tm);
		break;
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	case KVM_REG_PPC_TM_LR:
		*val = get_reg_val(id, vcpu->arch.lr_tm);
		break;
	case KVM_REG_PPC_TM_CTR:
		*val = get_reg_val(id, vcpu->arch.ctr_tm);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
		break;
	case KVM_REG_PPC_TM_AMR:
		*val = get_reg_val(id, vcpu->arch.amr_tm);
		break;
	case KVM_REG_PPC_TM_PPR:
		*val = get_reg_val(id, vcpu->arch.ppr_tm);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
		else
			r = -ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		*val = get_reg_val(id, vcpu->arch.dscr_tm);
		break;
	case KVM_REG_PPC_TM_TAR:
		*val = get_reg_val(id, vcpu->arch.tar_tm);
		break;
#endif
1700 1701 1702
	case KVM_REG_PPC_ARCH_COMPAT:
		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
		break;
1703 1704 1705 1706
	case KVM_REG_PPC_DEC_EXPIRY:
		*val = get_reg_val(id, vcpu->arch.dec_expires +
				   vcpu->arch.vcore->tb_offset);
		break;
1707 1708 1709
	case KVM_REG_PPC_ONLINE:
		*val = get_reg_val(id, vcpu->arch.online);
		break;
1710
	default:
1711
		r = -EINVAL;
1712 1713 1714 1715 1716 1717
		break;
	}

	return r;
}

1718 1719
static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1720
{
1721 1722
	int r = 0;
	long int i;
1723
	unsigned long addr, len;
1724

1725
	switch (id) {
1726 1727
	case KVM_REG_PPC_HIOR:
		/* Only allow this to be set to zero */
1728
		if (set_reg_val(id, *val))
1729 1730
			r = -EINVAL;
		break;
1731 1732 1733
	case KVM_REG_PPC_DABR:
		vcpu->arch.dabr = set_reg_val(id, *val);
		break;
1734 1735 1736
	case KVM_REG_PPC_DABRX:
		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
		break;
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	case KVM_REG_PPC_DSCR:
		vcpu->arch.dscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PURR:
		vcpu->arch.purr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SPURR:
		vcpu->arch.spurr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_AMR:
		vcpu->arch.amr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_UAMOR:
		vcpu->arch.uamor = set_reg_val(id, *val);
		break;
1752
	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1753 1754 1755 1756 1757 1758 1759
		i = id - KVM_REG_PPC_MMCR0;
		vcpu->arch.mmcr[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
		i = id - KVM_REG_PPC_PMC1;
		vcpu->arch.pmc[i] = set_reg_val(id, *val);
		break;
1760 1761 1762 1763
	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
		i = id - KVM_REG_PPC_SPMC1;
		vcpu->arch.spmc[i] = set_reg_val(id, *val);
		break;
1764 1765 1766 1767 1768 1769
	case KVM_REG_PPC_SIAR:
		vcpu->arch.siar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_SDAR:
		vcpu->arch.sdar = set_reg_val(id, *val);
		break;
1770 1771
	case KVM_REG_PPC_SIER:
		vcpu->arch.sier = set_reg_val(id, *val);
1772
		break;
1773 1774 1775 1776 1777 1778 1779 1780 1781
	case KVM_REG_PPC_IAMR:
		vcpu->arch.iamr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSPB:
		vcpu->arch.pspb = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DPDES:
		vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
		break;
1782 1783 1784
	case KVM_REG_PPC_VTB:
		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
		break;
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	case KVM_REG_PPC_DAWR:
		vcpu->arch.dawr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAWRX:
		vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
		break;
	case KVM_REG_PPC_CIABR:
		vcpu->arch.ciabr = set_reg_val(id, *val);
		/* Don't allow setting breakpoints in hypervisor code */
		if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
			vcpu->arch.ciabr &= ~CIABR_PRIV;	/* disable */
		break;
	case KVM_REG_PPC_CSIGR:
		vcpu->arch.csigr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TACR:
		vcpu->arch.tacr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TCSCR:
		vcpu->arch.tcscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PID:
		vcpu->arch.pid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_ACOP:
		vcpu->arch.acop = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_WORT:
		vcpu->arch.wort = set_reg_val(id, *val);
1814
		break;
1815 1816 1817 1818 1819 1820
	case KVM_REG_PPC_TIDR:
		vcpu->arch.tid = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_PSSCR:
		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
		break;
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
	case KVM_REG_PPC_VPA_ADDR:
		addr = set_reg_val(id, *val);
		r = -EINVAL;
		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
			      vcpu->arch.dtl.next_gpa))
			break;
		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
		break;
	case KVM_REG_PPC_VPA_SLB:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
		if (addr && !vcpu->arch.vpa.next_gpa)
			break;
		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
		break;
	case KVM_REG_PPC_VPA_DTL:
		addr = val->vpaval.addr;
		len = val->vpaval.length;
		r = -EINVAL;
1841 1842
		if (addr && (len < sizeof(struct dtl_entry) ||
			     !vcpu->arch.vpa.next_gpa))
1843 1844 1845 1846
			break;
		len -= len % sizeof(struct dtl_entry);
		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
		break;
1847 1848 1849 1850 1851
	case KVM_REG_PPC_TB_OFFSET:
		/* round up to multiple of 2^24 */
		vcpu->arch.vcore->tb_offset =
			ALIGN(set_reg_val(id, *val), 1UL << 24);
		break;
1852
	case KVM_REG_PPC_LPCR:
1853 1854 1855 1856
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
		break;
	case KVM_REG_PPC_LPCR_64:
		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1857
		break;
1858 1859 1860
	case KVM_REG_PPC_PPR:
		vcpu->arch.ppr = set_reg_val(id, *val);
		break;
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	case KVM_REG_PPC_TFHAR:
		vcpu->arch.tfhar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TFIAR:
		vcpu->arch.tfiar = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TEXASR:
		vcpu->arch.texasr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
		i = id - KVM_REG_PPC_TM_GPR0;
		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
	{
		int j;
		i = id - KVM_REG_PPC_TM_VSR0;
		if (i < 32)
			for (j = 0; j < TS_FPRWIDTH; j++)
				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
		else
			if (cpu_has_feature(CPU_FTR_ALTIVEC))
				vcpu->arch.vr_tm.vr[i-32] = val->vval;
			else
				r = -ENXIO;
		break;
	}
	case KVM_REG_PPC_TM_CR:
		vcpu->arch.cr_tm = set_reg_val(id, *val);
		break;
1892 1893 1894
	case KVM_REG_PPC_TM_XER:
		vcpu->arch.xer_tm = set_reg_val(id, *val);
		break;
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
	case KVM_REG_PPC_TM_LR:
		vcpu->arch.lr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_CTR:
		vcpu->arch.ctr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_FPSCR:
		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_AMR:
		vcpu->arch.amr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_PPR:
		vcpu->arch.ppr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VRSAVE:
		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_VSCR:
		if (cpu_has_feature(CPU_FTR_ALTIVEC))
			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
		else
			r = - ENXIO;
		break;
	case KVM_REG_PPC_TM_DSCR:
		vcpu->arch.dscr_tm = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_TM_TAR:
		vcpu->arch.tar_tm = set_reg_val(id, *val);
		break;
#endif
1926 1927 1928
	case KVM_REG_PPC_ARCH_COMPAT:
		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
		break;
1929 1930 1931 1932
	case KVM_REG_PPC_DEC_EXPIRY:
		vcpu->arch.dec_expires = set_reg_val(id, *val) -
			vcpu->arch.vcore->tb_offset;
		break;
1933
	case KVM_REG_PPC_ONLINE:
1934 1935 1936 1937 1938 1939
		i = set_reg_val(id, *val);
		if (i && !vcpu->arch.online)
			atomic_inc(&vcpu->arch.vcore->online_count);
		else if (!i && vcpu->arch.online)
			atomic_dec(&vcpu->arch.vcore->online_count);
		vcpu->arch.online = i;
1940
		break;
1941
	default:
1942
		r = -EINVAL;
1943 1944 1945 1946 1947 1948
		break;
	}

	return r;
}

1949 1950 1951 1952 1953 1954 1955
/*
 * On POWER9, threads are independent and can be in different partitions.
 * Therefore we consider each thread to be a subcore.
 * There is a restriction that all threads have to be in the same
 * MMU mode (radix or HPT), unfortunately, but since we only support
 * HPT guests on a HPT host so far, that isn't an impediment yet.
 */
1956
static int threads_per_vcore(struct kvm *kvm)
1957
{
1958
	if (kvm->arch.threads_indep)
1959 1960 1961 1962
		return 1;
	return threads_per_subcore;
}

1963
static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
1964 1965 1966 1967 1968 1969 1970 1971 1972
{
	struct kvmppc_vcore *vcore;

	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);

	if (vcore == NULL)
		return NULL;

	spin_lock_init(&vcore->lock);
1973
	spin_lock_init(&vcore->stoltb_lock);
1974
	init_swait_queue_head(&vcore->wq);
1975 1976
	vcore->preempt_tb = TB_NIL;
	vcore->lpcr = kvm->arch.lpcr;
1977
	vcore->first_vcpuid = id;
1978
	vcore->kvm = kvm;
1979
	INIT_LIST_HEAD(&vcore->preempt_list);
1980 1981 1982 1983

	return vcore;
}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
static struct debugfs_timings_element {
	const char *name;
	size_t offset;
} timings[] = {
	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
};

1996
#define N_TIMINGS	(ARRAY_SIZE(timings))
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131

struct debugfs_timings_state {
	struct kvm_vcpu	*vcpu;
	unsigned int	buflen;
	char		buf[N_TIMINGS * 100];
};

static int debugfs_timings_open(struct inode *inode, struct file *file)
{
	struct kvm_vcpu *vcpu = inode->i_private;
	struct debugfs_timings_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(vcpu->kvm);
	p->vcpu = vcpu;
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_timings_release(struct inode *inode, struct file *file)
{
	struct debugfs_timings_state *p = file->private_data;

	kvm_put_kvm(p->vcpu->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
				    size_t len, loff_t *ppos)
{
	struct debugfs_timings_state *p = file->private_data;
	struct kvm_vcpu *vcpu = p->vcpu;
	char *s, *buf_end;
	struct kvmhv_tb_accumulator tb;
	u64 count;
	loff_t pos;
	ssize_t n;
	int i, loops;
	bool ok;

	if (!p->buflen) {
		s = p->buf;
		buf_end = s + sizeof(p->buf);
		for (i = 0; i < N_TIMINGS; ++i) {
			struct kvmhv_tb_accumulator *acc;

			acc = (struct kvmhv_tb_accumulator *)
				((unsigned long)vcpu + timings[i].offset);
			ok = false;
			for (loops = 0; loops < 1000; ++loops) {
				count = acc->seqcount;
				if (!(count & 1)) {
					smp_rmb();
					tb = *acc;
					smp_rmb();
					if (count == acc->seqcount) {
						ok = true;
						break;
					}
				}
				udelay(1);
			}
			if (!ok)
				snprintf(s, buf_end - s, "%s: stuck\n",
					timings[i].name);
			else
				snprintf(s, buf_end - s,
					"%s: %llu %llu %llu %llu\n",
					timings[i].name, count / 2,
					tb_to_ns(tb.tb_total),
					tb_to_ns(tb.tb_min),
					tb_to_ns(tb.tb_max));
			s += strlen(s);
		}
		p->buflen = s - p->buf;
	}

	pos = *ppos;
	if (pos >= p->buflen)
		return 0;
	if (len > p->buflen - pos)
		len = p->buflen - pos;
	n = copy_to_user(buf, p->buf + pos, len);
	if (n) {
		if (n == len)
			return -EFAULT;
		len -= n;
	}
	*ppos = pos + len;
	return len;
}

static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
				     size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_timings_ops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_timings_open,
	.release = debugfs_timings_release,
	.read	 = debugfs_timings_read,
	.write	 = debugfs_timings_write,
	.llseek	 = generic_file_llseek,
};

/* Create a debugfs directory for the vcpu */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
	char buf[16];
	struct kvm *kvm = vcpu->kvm;

	snprintf(buf, sizeof(buf), "vcpu%u", id);
	if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
	if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
		return;
	vcpu->arch.debugfs_timings =
		debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
				    vcpu, &debugfs_timings_ops);
}

#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
{
}
#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */

2132 2133
static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
						   unsigned int id)
2134 2135
{
	struct kvm_vcpu *vcpu;
2136
	int err;
2137 2138
	int core;
	struct kvmppc_vcore *vcore;
2139

2140
	err = -ENOMEM;
2141
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2142 2143 2144 2145 2146 2147 2148 2149
	if (!vcpu)
		goto out;

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

	vcpu->arch.shared = &vcpu->arch.shregs;
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
	/*
	 * The shared struct is never shared on HV,
	 * so we can always use host endianness
	 */
#ifdef __BIG_ENDIAN__
	vcpu->arch.shared_big_endian = true;
#else
	vcpu->arch.shared_big_endian = false;
#endif
#endif
2161 2162 2163
	vcpu->arch.mmcr[0] = MMCR0_FC;
	vcpu->arch.ctrl = CTRL_RUNLATCH;
	/* default to host PVR, since we can't spoof it */
2164
	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2165
	spin_lock_init(&vcpu->arch.vpa_update_lock);
2166 2167
	spin_lock_init(&vcpu->arch.tbacct_lock);
	vcpu->arch.busy_preempt = TB_NIL;
2168
	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2169

2170 2171 2172
	/*
	 * Set the default HFSCR for the guest from the host value.
	 * This value is only used on POWER9.
2173 2174
	 * On POWER9, we want to virtualize the doorbell facility, so we
	 * turn off the HFSCR bit, which causes those instructions to trap.
2175 2176
	 */
	vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
2177 2178 2179
	if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
		vcpu->arch.hfscr |= HFSCR_TM;
	else if (!cpu_has_feature(CPU_FTR_TM_COMP))
2180
		vcpu->arch.hfscr &= ~HFSCR_TM;
2181 2182
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		vcpu->arch.hfscr &= ~HFSCR_MSGP;
2183

2184 2185
	kvmppc_mmu_book3s_hv_init(vcpu);

2186
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2187 2188 2189 2190

	init_waitqueue_head(&vcpu->arch.cpu_run);

	mutex_lock(&kvm->lock);
2191 2192
	vcore = NULL;
	err = -EINVAL;
2193
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2194 2195 2196 2197 2198 2199 2200
		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
			pr_devel("KVM: VCPU ID too high\n");
			core = KVM_MAX_VCORES;
		} else {
			BUG_ON(kvm->arch.smt_mode != 1);
			core = kvmppc_pack_vcpu_id(kvm, id);
		}
2201 2202 2203
	} else {
		core = id / kvm->arch.smt_mode;
	}
2204 2205
	if (core < KVM_MAX_VCORES) {
		vcore = kvm->arch.vcores[core];
2206 2207 2208 2209
		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
			pr_devel("KVM: collision on id %u", id);
			vcore = NULL;
		} else if (!vcore) {
2210
			err = -ENOMEM;
2211 2212
			vcore = kvmppc_vcore_create(kvm,
					id & ~(kvm->arch.smt_mode - 1));
2213 2214 2215
			kvm->arch.vcores[core] = vcore;
			kvm->arch.online_vcores++;
		}
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
	}
	mutex_unlock(&kvm->lock);

	if (!vcore)
		goto free_vcpu;

	spin_lock(&vcore->lock);
	++vcore->num_threads;
	spin_unlock(&vcore->lock);
	vcpu->arch.vcore = vcore;
2226
	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2227
	vcpu->arch.thread_cpu = -1;
2228
	vcpu->arch.prev_cpu = -1;
2229

2230 2231 2232
	vcpu->arch.cpu_type = KVM_CPU_3S_64;
	kvmppc_sanity_check(vcpu);

2233 2234
	debugfs_vcpu_init(vcpu, id);

2235 2236 2237
	return vcpu;

free_vcpu:
2238
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2239 2240 2241 2242
out:
	return ERR_PTR(err);
}

2243 2244 2245 2246
static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
			      unsigned long flags)
{
	int err;
2247
	int esmt = 0;
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264

	if (flags)
		return -EINVAL;
	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
		return -EINVAL;
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/*
		 * On POWER8 (or POWER7), the threading mode is "strict",
		 * so we pack smt_mode vcpus per vcore.
		 */
		if (smt_mode > threads_per_subcore)
			return -EINVAL;
	} else {
		/*
		 * On POWER9, the threading mode is "loose",
		 * so each vcpu gets its own vcore.
		 */
2265
		esmt = smt_mode;
2266 2267 2268 2269 2270 2271
		smt_mode = 1;
	}
	mutex_lock(&kvm->lock);
	err = -EBUSY;
	if (!kvm->arch.online_vcores) {
		kvm->arch.smt_mode = smt_mode;
2272
		kvm->arch.emul_smt_mode = esmt;
2273 2274 2275 2276 2277 2278 2279
		err = 0;
	}
	mutex_unlock(&kvm->lock);

	return err;
}

2280 2281 2282 2283 2284 2285 2286
static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
{
	if (vpa->pinned_addr)
		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
					vpa->dirty);
}

2287
static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2288
{
2289
	spin_lock(&vcpu->arch.vpa_update_lock);
2290 2291 2292
	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2293
	spin_unlock(&vcpu->arch.vpa_update_lock);
2294
	kvm_vcpu_uninit(vcpu);
2295
	kmem_cache_free(kvm_vcpu_cache, vcpu);
2296 2297
}

2298 2299 2300 2301 2302 2303
static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
{
	/* Indicate we want to get back into the guest */
	return 1;
}

2304
static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2305
{
2306
	unsigned long dec_nsec, now;
2307

2308 2309 2310 2311
	now = get_tb();
	if (now > vcpu->arch.dec_expires) {
		/* decrementer has already gone negative */
		kvmppc_core_queue_dec(vcpu);
2312
		kvmppc_core_prepare_to_enter(vcpu);
2313
		return;
2314
	}
2315 2316
	dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
		   / tb_ticks_per_sec;
T
Thomas Gleixner 已提交
2317
	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2318
	vcpu->arch.timer_running = 1;
2319 2320
}

2321
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2322
{
2323 2324 2325 2326 2327
	vcpu->arch.ceded = 0;
	if (vcpu->arch.timer_running) {
		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
		vcpu->arch.timer_running = 0;
	}
2328 2329
}

2330
extern int __kvmppc_vcore_entry(void);
2331

2332 2333
static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
				   struct kvm_vcpu *vcpu)
2334
{
2335 2336
	u64 now;

2337 2338
	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2339
	spin_lock_irq(&vcpu->arch.tbacct_lock);
2340 2341 2342 2343 2344
	now = mftb();
	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
		vcpu->arch.stolen_logged;
	vcpu->arch.busy_preempt = now;
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2345
	spin_unlock_irq(&vcpu->arch.tbacct_lock);
2346
	--vc->n_runnable;
2347
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2348 2349
}

2350 2351 2352
static int kvmppc_grab_hwthread(int cpu)
{
	struct paca_struct *tpaca;
2353
	long timeout = 10000;
2354

2355
	tpaca = paca_ptrs[cpu];
2356 2357

	/* Ensure the thread won't go into the kernel if it wakes */
2358
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2359
	tpaca->kvm_hstate.kvm_vcore = NULL;
2360 2361 2362
	tpaca->kvm_hstate.napping = 0;
	smp_wmb();
	tpaca->kvm_hstate.hwthread_req = 1;
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387

	/*
	 * If the thread is already executing in the kernel (e.g. handling
	 * a stray interrupt), wait for it to get back to nap mode.
	 * The smp_mb() is to ensure that our setting of hwthread_req
	 * is visible before we look at hwthread_state, so if this
	 * races with the code at system_reset_pSeries and the thread
	 * misses our setting of hwthread_req, we are sure to see its
	 * setting of hwthread_state, and vice versa.
	 */
	smp_mb();
	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
		if (--timeout <= 0) {
			pr_err("KVM: couldn't grab cpu %d\n", cpu);
			return -EBUSY;
		}
		udelay(1);
	}
	return 0;
}

static void kvmppc_release_hwthread(int cpu)
{
	struct paca_struct *tpaca;

2388
	tpaca = paca_ptrs[cpu];
2389
	tpaca->kvm_hstate.hwthread_req = 0;
2390
	tpaca->kvm_hstate.kvm_vcpu = NULL;
2391 2392
	tpaca->kvm_hstate.kvm_vcore = NULL;
	tpaca->kvm_hstate.kvm_split_mode = NULL;
2393 2394
}

2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
{
	int i;

	cpu = cpu_first_thread_sibling(cpu);
	cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
	/*
	 * Make sure setting of bit in need_tlb_flush precedes
	 * testing of cpu_in_guest bits.  The matching barrier on
	 * the other side is the first smp_mb() in kvmppc_run_core().
	 */
	smp_mb();
	for (i = 0; i < threads_per_core; ++i)
		if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
			smp_call_function_single(cpu + i, do_nothing, NULL, 1);
}

2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
{
	struct kvm *kvm = vcpu->kvm;

	/*
	 * With radix, the guest can do TLB invalidations itself,
	 * and it could choose to use the local form (tlbiel) if
	 * it is invalidating a translation that has only ever been
	 * used on one vcpu.  However, that doesn't mean it has
	 * only ever been used on one physical cpu, since vcpus
	 * can move around between pcpus.  To cope with this, when
	 * a vcpu moves from one pcpu to another, we need to tell
	 * any vcpus running on the same core as this vcpu previously
	 * ran to flush the TLB.  The TLB is shared between threads,
	 * so we use a single bit in .need_tlb_flush for all 4 threads.
	 */
	if (vcpu->arch.prev_cpu != pcpu) {
		if (vcpu->arch.prev_cpu >= 0 &&
		    cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
		    cpu_first_thread_sibling(pcpu))
			radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
		vcpu->arch.prev_cpu = pcpu;
	}
}

2437
static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2438 2439 2440
{
	int cpu;
	struct paca_struct *tpaca;
2441
	struct kvm *kvm = vc->kvm;
2442

2443 2444 2445 2446 2447 2448 2449
	cpu = vc->pcpu;
	if (vcpu) {
		if (vcpu->arch.timer_running) {
			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
			vcpu->arch.timer_running = 0;
		}
		cpu += vcpu->arch.ptid;
2450
		vcpu->cpu = vc->pcpu;
2451
		vcpu->arch.thread_cpu = cpu;
2452
		cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2453
	}
2454
	tpaca = paca_ptrs[cpu];
2455
	tpaca->kvm_hstate.kvm_vcpu = vcpu;
2456
	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2457
	tpaca->kvm_hstate.fake_suspend = 0;
2458
	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2459
	smp_wmb();
2460
	tpaca->kvm_hstate.kvm_vcore = vc;
2461
	if (cpu != smp_processor_id())
2462
		kvmppc_ipi_thread(cpu);
2463
}
2464

2465
static void kvmppc_wait_for_nap(int n_threads)
2466
{
2467 2468
	int cpu = smp_processor_id();
	int i, loops;
2469

2470 2471
	if (n_threads <= 1)
		return;
2472 2473 2474
	for (loops = 0; loops < 1000000; ++loops) {
		/*
		 * Check if all threads are finished.
2475
		 * We set the vcore pointer when starting a thread
2476
		 * and the thread clears it when finished, so we look
2477
		 * for any threads that still have a non-NULL vcore ptr.
2478
		 */
2479
		for (i = 1; i < n_threads; ++i)
2480
			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2481
				break;
2482
		if (i == n_threads) {
2483 2484
			HMT_medium();
			return;
2485
		}
2486
		HMT_low();
2487 2488
	}
	HMT_medium();
2489
	for (i = 1; i < n_threads; ++i)
2490
		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2491
			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2492 2493 2494 2495
}

/*
 * Check that we are on thread 0 and that any other threads in
2496 2497
 * this core are off-line.  Then grab the threads so they can't
 * enter the kernel.
2498 2499 2500 2501
 */
static int on_primary_thread(void)
{
	int cpu = smp_processor_id();
2502
	int thr;
2503

2504 2505
	/* Are we on a primary subcore? */
	if (cpu_thread_in_subcore(cpu))
2506
		return 0;
2507 2508 2509

	thr = 0;
	while (++thr < threads_per_subcore)
2510 2511
		if (cpu_online(cpu + thr))
			return 0;
2512 2513

	/* Grab all hw threads so they can't go into the kernel */
2514
	for (thr = 1; thr < threads_per_subcore; ++thr) {
2515 2516 2517 2518 2519 2520 2521 2522
		if (kvmppc_grab_hwthread(cpu + thr)) {
			/* Couldn't grab one; let the others go */
			do {
				kvmppc_release_hwthread(cpu + thr);
			} while (--thr > 0);
			return 0;
		}
	}
2523 2524 2525
	return 1;
}

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
/*
 * A list of virtual cores for each physical CPU.
 * These are vcores that could run but their runner VCPU tasks are
 * (or may be) preempted.
 */
struct preempted_vcore_list {
	struct list_head	list;
	spinlock_t		lock;
};

static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);

static void init_vcore_lists(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
		spin_lock_init(&lp->lock);
		INIT_LIST_HEAD(&lp->list);
	}
}

static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);

	vc->vcore_state = VCORE_PREEMPT;
	vc->pcpu = smp_processor_id();
2555
	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
		spin_lock(&lp->lock);
		list_add_tail(&vc->preempt_list, &lp->list);
		spin_unlock(&lp->lock);
	}

	/* Start accumulating stolen time */
	kvmppc_core_start_stolen(vc);
}

static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
{
2567
	struct preempted_vcore_list *lp;
2568 2569 2570

	kvmppc_core_end_stolen(vc);
	if (!list_empty(&vc->preempt_list)) {
2571
		lp = &per_cpu(preempted_vcores, vc->pcpu);
2572 2573 2574 2575 2576 2577 2578
		spin_lock(&lp->lock);
		list_del_init(&vc->preempt_list);
		spin_unlock(&lp->lock);
	}
	vc->vcore_state = VCORE_INACTIVE;
}

2579 2580 2581 2582
/*
 * This stores information about the virtual cores currently
 * assigned to a physical core.
 */
2583
struct core_info {
2584 2585
	int		n_subcores;
	int		max_subcore_threads;
2586
	int		total_threads;
2587
	int		subcore_threads[MAX_SUBCORES];
2588
	struct kvmppc_vcore *vc[MAX_SUBCORES];
2589 2590
};

2591 2592
/*
 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2593
 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2594 2595 2596
 */
static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };

2597 2598 2599
static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
{
	memset(cip, 0, sizeof(*cip));
2600 2601
	cip->n_subcores = 1;
	cip->max_subcore_threads = vc->num_threads;
2602
	cip->total_threads = vc->num_threads;
2603
	cip->subcore_threads[0] = vc->num_threads;
2604
	cip->vc[0] = vc;
2605 2606 2607 2608
}

static bool subcore_config_ok(int n_subcores, int n_threads)
{
2609
	/*
2610 2611
	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
	 * split-core mode, with one thread per subcore.
2612 2613 2614 2615 2616
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		return n_subcores <= 4 && n_threads == 1;

	/* On POWER8, can only dynamically split if unsplit to begin with */
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
		return false;
	if (n_subcores > MAX_SUBCORES)
		return false;
	if (n_subcores > 1) {
		if (!(dynamic_mt_modes & 2))
			n_subcores = 4;
		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
			return false;
	}

	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2629 2630
}

2631
static void init_vcore_to_run(struct kvmppc_vcore *vc)
2632 2633 2634 2635 2636
{
	vc->entry_exit_map = 0;
	vc->in_guest = 0;
	vc->napping_threads = 0;
	vc->conferring_threads = 0;
2637
	vc->tb_offset_applied = 0;
2638 2639
}

2640 2641 2642 2643 2644 2645 2646 2647
static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
{
	int n_threads = vc->num_threads;
	int sub;

	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return false;

2648 2649
	/* Some POWER9 chips require all threads to be in the same MMU mode */
	if (no_mixing_hpt_and_radix &&
2650 2651 2652
	    kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
		return false;

2653 2654
	if (n_threads < cip->max_subcore_threads)
		n_threads = cip->max_subcore_threads;
2655
	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2656
		return false;
2657
	cip->max_subcore_threads = n_threads;
2658 2659 2660 2661 2662

	sub = cip->n_subcores;
	++cip->n_subcores;
	cip->total_threads += vc->num_threads;
	cip->subcore_threads[sub] = vc->num_threads;
2663 2664 2665
	cip->vc[sub] = vc;
	init_vcore_to_run(vc);
	list_del_init(&vc->preempt_list);
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679

	return true;
}

/*
 * Work out whether it is possible to piggyback the execution of
 * vcore *pvc onto the execution of the other vcores described in *cip.
 */
static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
			  int target_threads)
{
	if (cip->total_threads + pvc->num_threads > target_threads)
		return false;

2680
	return can_dynamic_split(pvc, cip);
2681 2682
}

2683 2684
static void prepare_threads(struct kvmppc_vcore *vc)
{
2685 2686
	int i;
	struct kvm_vcpu *vcpu;
2687

2688
	for_each_runnable_thread(i, vcpu, vc) {
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
		if (signal_pending(vcpu->arch.run_task))
			vcpu->arch.ret = -EINTR;
		else if (vcpu->arch.vpa.update_pending ||
			 vcpu->arch.slb_shadow.update_pending ||
			 vcpu->arch.dtl.update_pending)
			vcpu->arch.ret = RESUME_GUEST;
		else
			continue;
		kvmppc_remove_runnable(vc, vcpu);
		wake_up(&vcpu->arch.cpu_run);
	}
}

2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
static void collect_piggybacks(struct core_info *cip, int target_threads)
{
	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
	struct kvmppc_vcore *pvc, *vcnext;

	spin_lock(&lp->lock);
	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
		if (!spin_trylock(&pvc->lock))
			continue;
		prepare_threads(pvc);
		if (!pvc->n_runnable) {
			list_del_init(&pvc->preempt_list);
			if (pvc->runner == NULL) {
				pvc->vcore_state = VCORE_INACTIVE;
				kvmppc_core_end_stolen(pvc);
			}
			spin_unlock(&pvc->lock);
			continue;
		}
		if (!can_piggyback(pvc, cip, target_threads)) {
			spin_unlock(&pvc->lock);
			continue;
		}
		kvmppc_core_end_stolen(pvc);
		pvc->vcore_state = VCORE_PIGGYBACK;
		if (cip->total_threads >= target_threads)
			break;
	}
	spin_unlock(&lp->lock);
}

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
static bool recheck_signals(struct core_info *cip)
{
	int sub, i;
	struct kvm_vcpu *vcpu;

	for (sub = 0; sub < cip->n_subcores; ++sub)
		for_each_runnable_thread(i, vcpu, cip->vc[sub])
			if (signal_pending(vcpu->arch.run_task))
				return true;
	return false;
}

2745
static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2746
{
2747
	int still_running = 0, i;
2748 2749
	u64 now;
	long ret;
2750
	struct kvm_vcpu *vcpu;
2751

2752
	spin_lock(&vc->lock);
2753
	now = get_tb();
2754
	for_each_runnable_thread(i, vcpu, vc) {
2755 2756 2757 2758 2759 2760 2761 2762
		/*
		 * It's safe to unlock the vcore in the loop here, because
		 * for_each_runnable_thread() is safe against removal of
		 * the vcpu, and the vcore state is VCORE_EXITING here,
		 * so any vcpus becoming runnable will have their arch.trap
		 * set to zero and can't actually run in the guest.
		 */
		spin_unlock(&vc->lock);
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
		/* cancel pending dec exception if dec is positive */
		if (now < vcpu->arch.dec_expires &&
		    kvmppc_core_pending_dec(vcpu))
			kvmppc_core_dequeue_dec(vcpu);

		trace_kvm_guest_exit(vcpu);

		ret = RESUME_GUEST;
		if (vcpu->arch.trap)
			ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
						    vcpu->arch.run_task);

		vcpu->arch.ret = ret;
		vcpu->arch.trap = 0;

2778
		spin_lock(&vc->lock);
2779 2780 2781 2782
		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
			if (vcpu->arch.pending_exceptions)
				kvmppc_core_prepare_to_enter(vcpu);
			if (vcpu->arch.ceded)
2783
				kvmppc_set_timer(vcpu);
2784 2785 2786
			else
				++still_running;
		} else {
2787 2788 2789 2790
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
	}
2791
	if (!is_master) {
2792
		if (still_running > 0) {
2793
			kvmppc_vcore_preempt(vc);
2794 2795 2796 2797 2798 2799
		} else if (vc->runner) {
			vc->vcore_state = VCORE_PREEMPT;
			kvmppc_core_start_stolen(vc);
		} else {
			vc->vcore_state = VCORE_INACTIVE;
		}
2800 2801
		if (vc->n_runnable > 0 && vc->runner == NULL) {
			/* make sure there's a candidate runner awake */
2802 2803
			i = -1;
			vcpu = next_runnable_thread(vc, &i);
2804 2805 2806 2807
			wake_up(&vcpu->arch.cpu_run);
		}
	}
	spin_unlock(&vc->lock);
2808 2809
}

2810 2811 2812 2813 2814
/*
 * Clear core from the list of active host cores as we are about to
 * enter the guest. Only do this if it is the primary thread of the
 * core (not if a subcore) that is entering the guest.
 */
2815
static inline int kvmppc_clear_host_core(unsigned int cpu)
2816 2817 2818 2819
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2820
		return 0;
2821 2822 2823 2824 2825 2826 2827
	/*
	 * Memory barrier can be omitted here as we will do a smp_wmb()
	 * later in kvmppc_start_thread and we need ensure that state is
	 * visible to other CPUs only after we enter guest.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2828
	return 0;
2829 2830 2831 2832 2833 2834 2835
}

/*
 * Advertise this core as an active host core since we exited the guest
 * Only need to do this if it is the primary thread of the core that is
 * exiting.
 */
2836
static inline int kvmppc_set_host_core(unsigned int cpu)
2837 2838 2839 2840
{
	int core;

	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2841
		return 0;
2842 2843 2844 2845 2846 2847 2848

	/*
	 * Memory barrier can be omitted here because we do a spin_unlock
	 * immediately after this which provides the memory barrier.
	 */
	core = cpu >> threads_shift;
	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2849
	return 0;
2850 2851
}

2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
static void set_irq_happened(int trap)
{
	switch (trap) {
	case BOOK3S_INTERRUPT_EXTERNAL:
		local_paca->irq_happened |= PACA_IRQ_EE;
		break;
	case BOOK3S_INTERRUPT_H_DOORBELL:
		local_paca->irq_happened |= PACA_IRQ_DBELL;
		break;
	case BOOK3S_INTERRUPT_HMI:
		local_paca->irq_happened |= PACA_IRQ_HMI;
		break;
2864 2865 2866
	case BOOK3S_INTERRUPT_SYSTEM_RESET:
		replay_system_reset();
		break;
2867 2868 2869
	}
}

2870 2871 2872 2873
/*
 * Run a set of guest threads on a physical core.
 * Called with vc->lock held.
 */
2874
static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2875
{
2876
	struct kvm_vcpu *vcpu;
2877
	int i;
2878
	int srcu_idx;
2879
	struct core_info core_info;
2880
	struct kvmppc_vcore *pvc;
2881 2882 2883 2884 2885
	struct kvm_split_mode split_info, *sip;
	int split, subcore_size, active;
	int sub;
	bool thr0_done;
	unsigned long cmd_bit, stat_bit;
2886 2887
	int pcpu, thr;
	int target_threads;
2888
	int controlled_threads;
2889
	int trap;
2890
	bool is_power8;
2891
	bool hpt_on_radix;
2892

2893 2894 2895 2896 2897 2898 2899 2900 2901
	/*
	 * Remove from the list any threads that have a signal pending
	 * or need a VPA update done
	 */
	prepare_threads(vc);

	/* if the runner is no longer runnable, let the caller pick a new one */
	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
		return;
2902 2903

	/*
2904
	 * Initialize *vc.
2905
	 */
2906
	init_vcore_to_run(vc);
2907
	vc->preempt_tb = TB_NIL;
2908

2909 2910 2911 2912 2913
	/*
	 * Number of threads that we will be controlling: the same as
	 * the number of threads per subcore, except on POWER9,
	 * where it's 1 because the threads are (mostly) independent.
	 */
2914
	controlled_threads = threads_per_vcore(vc->kvm);
2915

2916
	/*
2917 2918 2919
	 * Make sure we are running on primary threads, and that secondary
	 * threads are offline.  Also check if the number of threads in this
	 * guest are greater than the current system threads per guest.
2920
	 * On POWER9, we need to be not in independent-threads mode if
2921 2922
	 * this is a HPT guest on a radix host machine where the
	 * CPU threads may not be in different MMU modes.
2923
	 */
2924 2925
	hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
		!kvm_is_radix(vc->kvm);
2926 2927 2928
	if (((controlled_threads > 1) &&
	     ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
	    (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2929
		for_each_runnable_thread(i, vcpu, vc) {
2930
			vcpu->arch.ret = -EBUSY;
2931 2932 2933
			kvmppc_remove_runnable(vc, vcpu);
			wake_up(&vcpu->arch.cpu_run);
		}
2934 2935 2936
		goto out;
	}

2937 2938 2939 2940 2941 2942
	/*
	 * See if we could run any other vcores on the physical core
	 * along with this one.
	 */
	init_core_info(&core_info, vc);
	pcpu = smp_processor_id();
2943
	target_threads = controlled_threads;
2944 2945 2946 2947
	if (target_smt_mode && target_smt_mode < target_threads)
		target_threads = target_smt_mode;
	if (vc->num_threads < target_threads)
		collect_piggybacks(&core_info, target_threads);
2948

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	/*
	 * On radix, arrange for TLB flushing if necessary.
	 * This has to be done before disabling interrupts since
	 * it uses smp_call_function().
	 */
	pcpu = smp_processor_id();
	if (kvm_is_radix(vc->kvm)) {
		for (sub = 0; sub < core_info.n_subcores; ++sub)
			for_each_runnable_thread(i, vcpu, core_info.vc[sub])
				kvmppc_prepare_radix_vcpu(vcpu, pcpu);
	}

	/*
	 * Hard-disable interrupts, and check resched flag and signals.
	 * If we need to reschedule or deliver a signal, clean up
	 * and return without going into the guest(s).
2965
	 * If the mmu_ready flag has been cleared, don't go into the
2966
	 * guest because that means a HPT resize operation is in progress.
2967 2968 2969 2970
	 */
	local_irq_disable();
	hard_irq_disable();
	if (lazy_irq_pending() || need_resched() ||
2971
	    recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
		local_irq_enable();
		vc->vcore_state = VCORE_INACTIVE;
		/* Unlock all except the primary vcore */
		for (sub = 1; sub < core_info.n_subcores; ++sub) {
			pvc = core_info.vc[sub];
			/* Put back on to the preempted vcores list */
			kvmppc_vcore_preempt(pvc);
			spin_unlock(&pvc->lock);
		}
		for (i = 0; i < controlled_threads; ++i)
			kvmppc_release_hwthread(pcpu + i);
		return;
	}

	kvmppc_clear_host_core(pcpu);

2988 2989 2990 2991 2992
	/* Decide on micro-threading (split-core) mode */
	subcore_size = threads_per_subcore;
	cmd_bit = stat_bit = 0;
	split = core_info.n_subcores;
	sip = NULL;
2993 2994 2995
	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
		&& !cpu_has_feature(CPU_FTR_ARCH_300);

2996
	if (split > 1 || hpt_on_radix) {
2997 2998 2999
		sip = &split_info;
		memset(&split_info, 0, sizeof(split_info));
		for (sub = 0; sub < core_info.n_subcores; ++sub)
3000
			split_info.vc[sub] = core_info.vc[sub];
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017

		if (is_power8) {
			if (split == 2 && (dynamic_mt_modes & 2)) {
				cmd_bit = HID0_POWER8_1TO2LPAR;
				stat_bit = HID0_POWER8_2LPARMODE;
			} else {
				split = 4;
				cmd_bit = HID0_POWER8_1TO4LPAR;
				stat_bit = HID0_POWER8_4LPARMODE;
			}
			subcore_size = MAX_SMT_THREADS / split;
			split_info.rpr = mfspr(SPRN_RPR);
			split_info.pmmar = mfspr(SPRN_PMMAR);
			split_info.ldbar = mfspr(SPRN_LDBAR);
			split_info.subcore_size = subcore_size;
		} else {
			split_info.subcore_size = 1;
3018 3019 3020 3021 3022 3023 3024
			if (hpt_on_radix) {
				/* Use the split_info for LPCR/LPIDR changes */
				split_info.lpcr_req = vc->lpcr;
				split_info.lpidr_req = vc->kvm->arch.lpid;
				split_info.host_lpcr = vc->kvm->arch.host_lpcr;
				split_info.do_set = 1;
			}
3025 3026
		}

3027 3028 3029
		/* order writes to split_info before kvm_split_mode pointer */
		smp_wmb();
	}
3030 3031

	for (thr = 0; thr < controlled_threads; ++thr) {
3032 3033 3034 3035 3036
		struct paca_struct *paca = paca_ptrs[pcpu + thr];

		paca->kvm_hstate.tid = thr;
		paca->kvm_hstate.napping = 0;
		paca->kvm_hstate.kvm_split_mode = sip;
3037
	}
3038

3039
	/* Initiate micro-threading (split-core) on POWER8 if required */
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	if (cmd_bit) {
		unsigned long hid0 = mfspr(SPRN_HID0);

		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (hid0 & stat_bit)
				break;
			cpu_relax();
3052
		}
3053
	}
3054

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
	/*
	 * On POWER8, set RWMR register.
	 * Since it only affects PURR and SPURR, it doesn't affect
	 * the host, so we don't save/restore the host value.
	 */
	if (is_power8) {
		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
		int n_online = atomic_read(&vc->online_count);

		/*
		 * Use the 8-thread value if we're doing split-core
		 * or if the vcore's online count looks bogus.
		 */
		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
			rwmr_val = p8_rwmr_values[n_online];
		mtspr(SPRN_RWMR, rwmr_val);
	}

3074 3075 3076
	/* Start all the threads */
	active = 0;
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3077
		thr = is_power8 ? subcore_thread_map[sub] : sub;
3078 3079
		thr0_done = false;
		active |= 1 << thr;
3080 3081 3082 3083 3084 3085 3086 3087 3088
		pvc = core_info.vc[sub];
		pvc->pcpu = pcpu + thr;
		for_each_runnable_thread(i, vcpu, pvc) {
			kvmppc_start_thread(vcpu, pvc);
			kvmppc_create_dtl_entry(vcpu, pvc);
			trace_kvm_guest_enter(vcpu);
			if (!vcpu->arch.ptid)
				thr0_done = true;
			active |= 1 << (thr + vcpu->arch.ptid);
3089
		}
3090 3091 3092 3093 3094 3095
		/*
		 * We need to start the first thread of each subcore
		 * even if it doesn't have a vcpu.
		 */
		if (!thr0_done)
			kvmppc_start_thread(NULL, pvc);
3096
	}
3097

3098 3099 3100 3101 3102 3103
	/*
	 * Ensure that split_info.do_nap is set after setting
	 * the vcore pointer in the PACA of the secondaries.
	 */
	smp_mb();

3104 3105 3106 3107
	/*
	 * When doing micro-threading, poke the inactive threads as well.
	 * This gets them to the nap instruction after kvm_do_nap,
	 * which reduces the time taken to unsplit later.
3108 3109
	 * For POWER9 HPT guest on radix host, we need all the secondary
	 * threads woken up so they can do the LPCR/LPIDR change.
3110
	 */
3111
	if (cmd_bit || hpt_on_radix) {
3112
		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3113 3114 3115
		for (thr = 1; thr < threads_per_subcore; ++thr)
			if (!(active & (1 << thr)))
				kvmppc_ipi_thread(pcpu + thr);
3116
	}
3117

3118
	vc->vcore_state = VCORE_RUNNING;
3119
	preempt_disable();
3120 3121 3122

	trace_kvmppc_run_core(vc, 0);

3123
	for (sub = 0; sub < core_info.n_subcores; ++sub)
3124
		spin_unlock(&core_info.vc[sub]->lock);
3125

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
	if (kvm_is_radix(vc->kvm)) {
		int tmp = pcpu;

		/*
		 * Do we need to flush the process scoped TLB for the LPAR?
		 *
		 * On POWER9, individual threads can come in here, but the
		 * TLB is shared between the 4 threads in a core, hence
		 * invalidating on one thread invalidates for all.
		 * Thus we make all 4 threads use the same bit here.
		 *
		 * Hash must be flushed in realmode in order to use tlbiel.
		 */
		mtspr(SPRN_LPID, vc->kvm->arch.lpid);
		isync();

		if (cpu_has_feature(CPU_FTR_ARCH_300))
			tmp &= ~0x3UL;

		if (cpumask_test_cpu(tmp, &vc->kvm->arch.need_tlb_flush)) {
			radix__local_flush_tlb_lpid_guest(vc->kvm->arch.lpid);
			/* Clear the bit after the TLB flush */
			cpumask_clear_cpu(tmp, &vc->kvm->arch.need_tlb_flush);
		}
	}

3152 3153 3154 3155 3156
	/*
	 * Interrupts will be enabled once we get into the guest,
	 * so tell lockdep that we're about to enable interrupts.
	 */
	trace_hardirqs_on();
3157

3158
	guest_enter_irqoff();
3159

3160
	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3161

3162 3163
	this_cpu_disable_ftrace();

3164
	trap = __kvmppc_vcore_entry();
3165

3166 3167
	this_cpu_enable_ftrace();

3168 3169
	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);

3170 3171 3172
	trace_hardirqs_off();
	set_irq_happened(trap);

3173
	spin_lock(&vc->lock);
3174
	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3175
	vc->vcore_state = VCORE_EXITING;
3176

3177
	/* wait for secondary threads to finish writing their state to memory */
3178
	kvmppc_wait_for_nap(controlled_threads);
3179 3180

	/* Return to whole-core mode if we split the core earlier */
3181
	if (cmd_bit) {
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
		unsigned long hid0 = mfspr(SPRN_HID0);
		unsigned long loops = 0;

		hid0 &= ~HID0_POWER8_DYNLPARDIS;
		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
		mb();
		mtspr(SPRN_HID0, hid0);
		isync();
		for (;;) {
			hid0 = mfspr(SPRN_HID0);
			if (!(hid0 & stat_bit))
				break;
			cpu_relax();
			++loops;
		}
3197 3198 3199
	} else if (hpt_on_radix) {
		/* Wait for all threads to have seen final sync */
		for (thr = 1; thr < controlled_threads; ++thr) {
3200 3201 3202
			struct paca_struct *paca = paca_ptrs[pcpu + thr];

			while (paca->kvm_hstate.kvm_split_mode) {
3203 3204 3205 3206 3207
				HMT_low();
				barrier();
			}
			HMT_medium();
		}
3208
	}
3209
	split_info.do_nap = 0;
3210

3211 3212 3213
	kvmppc_set_host_core(pcpu);

	local_irq_enable();
3214
	guest_exit();
3215

3216
	/* Let secondaries go back to the offline loop */
3217
	for (i = 0; i < controlled_threads; ++i) {
3218 3219 3220
		kvmppc_release_hwthread(pcpu + i);
		if (sip && sip->napped[i])
			kvmppc_ipi_thread(pcpu + i);
3221
		cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3222 3223
	}

3224
	spin_unlock(&vc->lock);
3225

3226 3227
	/* make sure updates to secondary vcpu structs are visible now */
	smp_mb();
3228

3229 3230
	preempt_enable();

3231 3232 3233 3234
	for (sub = 0; sub < core_info.n_subcores; ++sub) {
		pvc = core_info.vc[sub];
		post_guest_process(pvc, pvc == vc);
	}
3235

3236
	spin_lock(&vc->lock);
3237 3238

 out:
3239
	vc->vcore_state = VCORE_INACTIVE;
3240
	trace_kvmppc_run_core(vc, 1);
3241 3242
}

3243 3244 3245
/*
 * Load up hypervisor-mode registers on P9.
 */
3246 3247
static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
				     unsigned long lpcr)
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	s64 hdec;
	u64 tb, purr, spurr;
	int trap;
	unsigned long host_hfscr = mfspr(SPRN_HFSCR);
	unsigned long host_ciabr = mfspr(SPRN_CIABR);
	unsigned long host_dawr = mfspr(SPRN_DAWR);
	unsigned long host_dawrx = mfspr(SPRN_DAWRX);
	unsigned long host_psscr = mfspr(SPRN_PSSCR);
	unsigned long host_pidr = mfspr(SPRN_PID);

	hdec = time_limit - mftb();
	if (hdec < 0)
		return BOOK3S_INTERRUPT_HV_DECREMENTER;
	mtspr(SPRN_HDEC, hdec);

	if (vc->tb_offset) {
		u64 new_tb = mftb() + vc->tb_offset;
		mtspr(SPRN_TBU40, new_tb);
		tb = mftb();
		if ((tb & 0xffffff) < (new_tb & 0xffffff))
			mtspr(SPRN_TBU40, new_tb + 0x1000000);
		vc->tb_offset_applied = vc->tb_offset;
	}

	if (vc->pcr)
		mtspr(SPRN_PCR, vc->pcr);
	mtspr(SPRN_DPDES, vc->dpdes);
	mtspr(SPRN_VTB, vc->vtb);

	local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
	local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
	mtspr(SPRN_PURR, vcpu->arch.purr);
	mtspr(SPRN_SPURR, vcpu->arch.spurr);

	if (cpu_has_feature(CPU_FTR_DAWR)) {
		mtspr(SPRN_DAWR, vcpu->arch.dawr);
		mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
	}
	mtspr(SPRN_CIABR, vcpu->arch.ciabr);
	mtspr(SPRN_IC, vcpu->arch.ic);
	mtspr(SPRN_PID, vcpu->arch.pid);

	mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
	      (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));

	mtspr(SPRN_HFSCR, vcpu->arch.hfscr);

	mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
	mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
	mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
	mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);

	mtspr(SPRN_AMOR, ~0UL);

3304
	mtspr(SPRN_LPCR, lpcr);
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
	isync();

	kvmppc_xive_push_vcpu(vcpu);

	mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
	mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);

	trap = __kvmhv_vcpu_entry_p9(vcpu);

	/* Advance host PURR/SPURR by the amount used by guest */
	purr = mfspr(SPRN_PURR);
	spurr = mfspr(SPRN_SPURR);
	mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
	      purr - vcpu->arch.purr);
	mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
	      spurr - vcpu->arch.spurr);
	vcpu->arch.purr = purr;
	vcpu->arch.spurr = spurr;

	vcpu->arch.ic = mfspr(SPRN_IC);
	vcpu->arch.pid = mfspr(SPRN_PID);
	vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;

	vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
	vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
	vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
	vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);

	mtspr(SPRN_PSSCR, host_psscr);
	mtspr(SPRN_HFSCR, host_hfscr);
	mtspr(SPRN_CIABR, host_ciabr);
	mtspr(SPRN_DAWR, host_dawr);
	mtspr(SPRN_DAWRX, host_dawrx);
	mtspr(SPRN_PID, host_pidr);

	/*
	 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
	 * case we interrupted the guest between a tlbie and a ptesync.
	 */
	asm volatile("eieio; tlbsync; ptesync");

	mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid);	/* restore host LPID */
	isync();

	vc->dpdes = mfspr(SPRN_DPDES);
	vc->vtb = mfspr(SPRN_VTB);
	mtspr(SPRN_DPDES, 0);
	if (vc->pcr)
		mtspr(SPRN_PCR, 0);

	if (vc->tb_offset_applied) {
		u64 new_tb = mftb() - vc->tb_offset_applied;
		mtspr(SPRN_TBU40, new_tb);
		tb = mftb();
		if ((tb & 0xffffff) < (new_tb & 0xffffff))
			mtspr(SPRN_TBU40, new_tb + 0x1000000);
		vc->tb_offset_applied = 0;
	}

	mtspr(SPRN_HDEC, 0x7fffffff);
	mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);

	return trap;
}

/*
 * Virtual-mode guest entry for POWER9 and later when the host and
 * guest are both using the radix MMU.  The LPIDR has already been set.
 */
3374 3375
int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
			 unsigned long lpcr)
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
{
	struct kvmppc_vcore *vc = vcpu->arch.vcore;
	unsigned long host_dscr = mfspr(SPRN_DSCR);
	unsigned long host_tidr = mfspr(SPRN_TIDR);
	unsigned long host_iamr = mfspr(SPRN_IAMR);
	s64 dec;
	u64 tb;
	int trap, save_pmu;

	dec = mfspr(SPRN_DEC);
	tb = mftb();
	if (dec < 512)
		return BOOK3S_INTERRUPT_HV_DECREMENTER;
	local_paca->kvm_hstate.dec_expires = dec + tb;
	if (local_paca->kvm_hstate.dec_expires < time_limit)
		time_limit = local_paca->kvm_hstate.dec_expires;

	vcpu->arch.ceded = 0;

	kvmhv_save_host_pmu();		/* saves it to PACA kvm_hstate */

	kvmppc_subcore_enter_guest();

	vc->entry_exit_map = 1;
	vc->in_guest = 1;

	if (vcpu->arch.vpa.pinned_addr) {
		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
		lp->yield_count = cpu_to_be32(yield_count);
		vcpu->arch.vpa.dirty = 1;
	}

	if (cpu_has_feature(CPU_FTR_TM) ||
	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
		kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);

	kvmhv_load_guest_pmu(vcpu);

	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
	load_fp_state(&vcpu->arch.fp);
#ifdef CONFIG_ALTIVEC
	load_vr_state(&vcpu->arch.vr);
#endif

	mtspr(SPRN_DSCR, vcpu->arch.dscr);
	mtspr(SPRN_IAMR, vcpu->arch.iamr);
	mtspr(SPRN_PSPB, vcpu->arch.pspb);
	mtspr(SPRN_FSCR, vcpu->arch.fscr);
	mtspr(SPRN_TAR, vcpu->arch.tar);
	mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
	mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
	mtspr(SPRN_BESCR, vcpu->arch.bescr);
	mtspr(SPRN_WORT, vcpu->arch.wort);
	mtspr(SPRN_TIDR, vcpu->arch.tid);
	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
	mtspr(SPRN_AMR, vcpu->arch.amr);
	mtspr(SPRN_UAMOR, vcpu->arch.uamor);

	if (!(vcpu->arch.ctrl & 1))
		mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);

	mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());

3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
	if (kvmhv_on_pseries()) {
		/* call our hypervisor to load up HV regs and go */
		struct hv_guest_state hvregs;

		kvmhv_save_hv_regs(vcpu, &hvregs);
		hvregs.lpcr = lpcr;
		vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
		hvregs.version = HV_GUEST_STATE_VERSION;
		if (vcpu->arch.nested) {
			hvregs.lpid = vcpu->arch.nested->shadow_lpid;
			hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
		} else {
			hvregs.lpid = vcpu->kvm->arch.lpid;
			hvregs.vcpu_token = vcpu->vcpu_id;
		}
		hvregs.hdec_expiry = time_limit;
		trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
					  __pa(&vcpu->arch.regs));
		kvmhv_restore_hv_return_state(vcpu, &hvregs);
		vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
		vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
		vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3463 3464 3465 3466 3467 3468 3469

		/* H_CEDE has to be handled now, not later */
		if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
			kvmppc_nested_cede(vcpu);
			trap = 0;
		}
3470 3471
	} else {
		trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
	}

	vcpu->arch.slb_max = 0;
	dec = mfspr(SPRN_DEC);
	tb = mftb();
	vcpu->arch.dec_expires = dec + tb;
	vcpu->cpu = -1;
	vcpu->arch.thread_cpu = -1;
	vcpu->arch.ctrl = mfspr(SPRN_CTRLF);

	vcpu->arch.iamr = mfspr(SPRN_IAMR);
	vcpu->arch.pspb = mfspr(SPRN_PSPB);
	vcpu->arch.fscr = mfspr(SPRN_FSCR);
	vcpu->arch.tar = mfspr(SPRN_TAR);
	vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
	vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
	vcpu->arch.bescr = mfspr(SPRN_BESCR);
	vcpu->arch.wort = mfspr(SPRN_WORT);
	vcpu->arch.tid = mfspr(SPRN_TIDR);
	vcpu->arch.amr = mfspr(SPRN_AMR);
	vcpu->arch.uamor = mfspr(SPRN_UAMOR);
	vcpu->arch.dscr = mfspr(SPRN_DSCR);

	mtspr(SPRN_PSPB, 0);
	mtspr(SPRN_WORT, 0);
	mtspr(SPRN_AMR, 0);
	mtspr(SPRN_UAMOR, 0);
	mtspr(SPRN_DSCR, host_dscr);
	mtspr(SPRN_TIDR, host_tidr);
	mtspr(SPRN_IAMR, host_iamr);
	mtspr(SPRN_PSPB, 0);

	msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
	store_fp_state(&vcpu->arch.fp);
#ifdef CONFIG_ALTIVEC
	store_vr_state(&vcpu->arch.vr);
#endif

	if (cpu_has_feature(CPU_FTR_TM) ||
	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
		kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);

	save_pmu = 1;
	if (vcpu->arch.vpa.pinned_addr) {
		struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
		lp->yield_count = cpu_to_be32(yield_count);
		vcpu->arch.vpa.dirty = 1;
		save_pmu = lp->pmcregs_in_use;
	}

	kvmhv_save_guest_pmu(vcpu, save_pmu);

	vc->entry_exit_map = 0x101;
	vc->in_guest = 0;

	mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());

	kvmhv_load_host_pmu();

	kvmppc_subcore_exit_guest();

	return trap;
}

3537 3538 3539 3540
/*
 * Wait for some other vcpu thread to execute us, and
 * wake us up when we need to handle something in the host.
 */
3541 3542
static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
				 struct kvm_vcpu *vcpu, int wait_state)
3543 3544 3545
{
	DEFINE_WAIT(wait);

3546
	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3547 3548
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		spin_unlock(&vc->lock);
3549
		schedule();
3550 3551
		spin_lock(&vc->lock);
	}
3552 3553 3554
	finish_wait(&vcpu->arch.cpu_run, &wait);
}

3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
{
	/* 10us base */
	if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
		vc->halt_poll_ns = 10000;
	else
		vc->halt_poll_ns *= halt_poll_ns_grow;
}

static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
{
	if (halt_poll_ns_shrink == 0)
		vc->halt_poll_ns = 0;
	else
		vc->halt_poll_ns /= halt_poll_ns_shrink;
}

3572 3573 3574 3575 3576
#ifdef CONFIG_KVM_XICS
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	if (!xive_enabled())
		return false;
3577
	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3578 3579 3580 3581 3582 3583 3584 3585 3586
		vcpu->arch.xive_saved_state.cppr;
}
#else
static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
{
	return false;
}
#endif /* CONFIG_KVM_XICS */

3587 3588 3589
static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3590
	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3591 3592 3593 3594 3595
		return true;

	return false;
}

3596 3597
/*
 * Check to see if any of the runnable vcpus on the vcore have pending
3598 3599 3600 3601 3602 3603 3604 3605
 * exceptions or are no longer ceded
 */
static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
{
	struct kvm_vcpu *vcpu;
	int i;

	for_each_runnable_thread(i, vcpu, vc) {
3606
		if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3607 3608 3609 3610 3611 3612
			return 1;
	}

	return 0;
}

3613 3614 3615 3616 3617 3618
/*
 * All the vcpus in this vcore are idle, so wait for a decrementer
 * or external interrupt to one of the vcpus.  vc->lock is held.
 */
static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
{
3619
	ktime_t cur, start_poll, start_wait;
3620 3621
	int do_sleep = 1;
	u64 block_ns;
3622
	DECLARE_SWAITQUEUE(wait);
3623

3624
	/* Poll for pending exceptions and ceded state */
3625
	cur = start_poll = ktime_get();
3626
	if (vc->halt_poll_ns) {
3627 3628
		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
		++vc->runner->stat.halt_attempted_poll;
3629

3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
		vc->vcore_state = VCORE_POLLING;
		spin_unlock(&vc->lock);

		do {
			if (kvmppc_vcore_check_block(vc)) {
				do_sleep = 0;
				break;
			}
			cur = ktime_get();
		} while (single_task_running() && ktime_before(cur, stop));

		spin_lock(&vc->lock);
		vc->vcore_state = VCORE_INACTIVE;

3644 3645
		if (!do_sleep) {
			++vc->runner->stat.halt_successful_poll;
3646
			goto out;
3647
		}
3648 3649
	}

3650
	prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3651 3652

	if (kvmppc_vcore_check_block(vc)) {
3653
		finish_swait(&vc->wq, &wait);
3654
		do_sleep = 0;
3655 3656 3657
		/* If we polled, count this as a successful poll */
		if (vc->halt_poll_ns)
			++vc->runner->stat.halt_successful_poll;
3658
		goto out;
3659 3660
	}

3661 3662
	start_wait = ktime_get();

3663
	vc->vcore_state = VCORE_SLEEPING;
3664
	trace_kvmppc_vcore_blocked(vc, 0);
3665
	spin_unlock(&vc->lock);
3666
	schedule();
3667
	finish_swait(&vc->wq, &wait);
3668 3669
	spin_lock(&vc->lock);
	vc->vcore_state = VCORE_INACTIVE;
3670
	trace_kvmppc_vcore_blocked(vc, 1);
3671
	++vc->runner->stat.halt_successful_wait;
3672 3673 3674 3675

	cur = ktime_get();

out:
3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693
	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);

	/* Attribute wait time */
	if (do_sleep) {
		vc->runner->stat.halt_wait_ns +=
			ktime_to_ns(cur) - ktime_to_ns(start_wait);
		/* Attribute failed poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_fail_ns +=
				ktime_to_ns(start_wait) -
				ktime_to_ns(start_poll);
	} else {
		/* Attribute successful poll time */
		if (vc->halt_poll_ns)
			vc->runner->stat.halt_poll_success_ns +=
				ktime_to_ns(cur) -
				ktime_to_ns(start_poll);
	}
3694 3695

	/* Adjust poll time */
3696
	if (halt_poll_ns) {
3697 3698 3699
		if (block_ns <= vc->halt_poll_ns)
			;
		/* We slept and blocked for longer than the max halt time */
3700
		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3701 3702
			shrink_halt_poll_ns(vc);
		/* We slept and our poll time is too small */
3703 3704
		else if (vc->halt_poll_ns < halt_poll_ns &&
				block_ns < halt_poll_ns)
3705
			grow_halt_poll_ns(vc);
3706 3707
		if (vc->halt_poll_ns > halt_poll_ns)
			vc->halt_poll_ns = halt_poll_ns;
3708 3709 3710 3711
	} else
		vc->halt_poll_ns = 0;

	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3712
}
3713

3714 3715 3716 3717 3718
/*
 * This never fails for a radix guest, as none of the operations it does
 * for a radix guest can fail or have a way to report failure.
 * kvmhv_run_single_vcpu() relies on this fact.
 */
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737
static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
{
	int r = 0;
	struct kvm *kvm = vcpu->kvm;

	mutex_lock(&kvm->lock);
	if (!kvm->arch.mmu_ready) {
		if (!kvm_is_radix(kvm))
			r = kvmppc_hv_setup_htab_rma(vcpu);
		if (!r) {
			if (cpu_has_feature(CPU_FTR_ARCH_300))
				kvmppc_setup_partition_table(kvm);
			kvm->arch.mmu_ready = 1;
		}
	}
	mutex_unlock(&kvm->lock);
	return r;
}

3738 3739
static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
3740
	int n_ceded, i, r;
3741
	struct kvmppc_vcore *vc;
3742
	struct kvm_vcpu *v;
3743

3744 3745
	trace_kvmppc_run_vcpu_enter(vcpu);

3746 3747 3748
	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;
3749
	kvmppc_update_vpas(vcpu);
3750 3751 3752 3753 3754 3755

	/*
	 * Synchronize with other threads in this virtual core
	 */
	vc = vcpu->arch.vcore;
	spin_lock(&vc->lock);
3756
	vcpu->arch.ceded = 0;
3757 3758
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
3759
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3760
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3761
	vcpu->arch.busy_preempt = TB_NIL;
3762
	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3763 3764
	++vc->n_runnable;

3765 3766 3767 3768 3769
	/*
	 * This happens the first time this is called for a vcpu.
	 * If the vcore is already running, we may be able to start
	 * this thread straight away and have it join in.
	 */
3770
	if (!signal_pending(current)) {
3771 3772
		if ((vc->vcore_state == VCORE_PIGGYBACK ||
		     vc->vcore_state == VCORE_RUNNING) &&
3773
			   !VCORE_IS_EXITING(vc)) {
3774
			kvmppc_create_dtl_entry(vcpu, vc);
3775
			kvmppc_start_thread(vcpu, vc);
3776
			trace_kvm_guest_enter(vcpu);
3777
		} else if (vc->vcore_state == VCORE_SLEEPING) {
3778
			swake_up_one(&vc->wq);
3779 3780
		}

3781
	}
3782

3783 3784
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       !signal_pending(current)) {
3785 3786
		/* See if the MMU is ready to go */
		if (!vcpu->kvm->arch.mmu_ready) {
3787
			spin_unlock(&vc->lock);
3788
			r = kvmhv_setup_mmu(vcpu);
3789 3790 3791
			spin_lock(&vc->lock);
			if (r) {
				kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3792 3793
				kvm_run->fail_entry.
					hardware_entry_failure_reason = 0;
3794 3795 3796 3797 3798
				vcpu->arch.ret = r;
				break;
			}
		}

3799 3800 3801
		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
			kvmppc_vcore_end_preempt(vc);

3802
		if (vc->vcore_state != VCORE_INACTIVE) {
3803
			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3804 3805
			continue;
		}
3806
		for_each_runnable_thread(i, v, vc) {
3807
			kvmppc_core_prepare_to_enter(v);
3808 3809 3810 3811 3812 3813 3814 3815
			if (signal_pending(v->arch.run_task)) {
				kvmppc_remove_runnable(vc, v);
				v->stat.signal_exits++;
				v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
				v->arch.ret = -EINTR;
				wake_up(&v->arch.cpu_run);
			}
		}
3816 3817 3818
		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
			break;
		n_ceded = 0;
3819
		for_each_runnable_thread(i, v, vc) {
3820
			if (!kvmppc_vcpu_woken(v))
3821
				n_ceded += v->arch.ceded;
3822 3823 3824
			else
				v->arch.ceded = 0;
		}
3825 3826
		vc->runner = vcpu;
		if (n_ceded == vc->n_runnable) {
3827
			kvmppc_vcore_blocked(vc);
3828
		} else if (need_resched()) {
3829
			kvmppc_vcore_preempt(vc);
3830 3831
			/* Let something else run */
			cond_resched_lock(&vc->lock);
3832 3833
			if (vc->vcore_state == VCORE_PREEMPT)
				kvmppc_vcore_end_preempt(vc);
3834
		} else {
3835
			kvmppc_run_core(vc);
3836
		}
3837
		vc->runner = NULL;
3838
	}
3839

3840 3841
	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
	       (vc->vcore_state == VCORE_RUNNING ||
3842 3843
		vc->vcore_state == VCORE_EXITING ||
		vc->vcore_state == VCORE_PIGGYBACK))
3844
		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3845

3846 3847 3848
	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
		kvmppc_vcore_end_preempt(vc);

3849 3850 3851 3852 3853 3854 3855 3856 3857
	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
		kvmppc_remove_runnable(vc, vcpu);
		vcpu->stat.signal_exits++;
		kvm_run->exit_reason = KVM_EXIT_INTR;
		vcpu->arch.ret = -EINTR;
	}

	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
		/* Wake up some vcpu to run the core */
3858 3859
		i = -1;
		v = next_runnable_thread(vc, &i);
3860
		wake_up(&v->arch.cpu_run);
3861 3862
	}

3863
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3864 3865
	spin_unlock(&vc->lock);
	return vcpu->arch.ret;
3866 3867
}

3868 3869 3870
int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
			  struct kvm_vcpu *vcpu, u64 time_limit,
			  unsigned long lpcr)
3871 3872 3873 3874 3875
{
	int trap, r, pcpu, pcpu0;
	int srcu_idx;
	struct kvmppc_vcore *vc;
	struct kvm *kvm = vcpu->kvm;
3876 3877
	struct kvm_nested_guest *nested = vcpu->arch.nested;
	unsigned long lpid;
3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897

	trace_kvmppc_run_vcpu_enter(vcpu);

	kvm_run->exit_reason = 0;
	vcpu->arch.ret = RESUME_GUEST;
	vcpu->arch.trap = 0;

	vc = vcpu->arch.vcore;
	vcpu->arch.ceded = 0;
	vcpu->arch.run_task = current;
	vcpu->arch.kvm_run = kvm_run;
	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
	vcpu->arch.busy_preempt = TB_NIL;
	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
	vc->runnable_threads[0] = vcpu;
	vc->n_runnable = 1;
	vc->runner = vcpu;

	/* See if the MMU is ready to go */
3898 3899
	if (!kvm->arch.mmu_ready)
		kvmhv_setup_mmu(vcpu);
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920

	if (need_resched())
		cond_resched();

	kvmppc_update_vpas(vcpu);

	init_vcore_to_run(vc);
	vc->preempt_tb = TB_NIL;

	preempt_disable();
	pcpu = smp_processor_id();
	vc->pcpu = pcpu;
	kvmppc_prepare_radix_vcpu(vcpu, pcpu);

	local_irq_disable();
	hard_irq_disable();
	if (signal_pending(current))
		goto sigpend;
	if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
		goto out;

3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
	if (!nested) {
		kvmppc_core_prepare_to_enter(vcpu);
		if (vcpu->arch.doorbell_request) {
			vc->dpdes = 1;
			smp_wmb();
			vcpu->arch.doorbell_request = 0;
		}
		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
			     &vcpu->arch.pending_exceptions))
			lpcr |= LPCR_MER;
	} else if (vcpu->arch.pending_exceptions ||
		   vcpu->arch.doorbell_request ||
		   xive_interrupt_pending(vcpu)) {
		vcpu->arch.ret = RESUME_HOST;
		goto out;
	}
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949

	kvmppc_clear_host_core(pcpu);

	local_paca->kvm_hstate.tid = 0;
	local_paca->kvm_hstate.napping = 0;
	local_paca->kvm_hstate.kvm_split_mode = NULL;
	kvmppc_start_thread(vcpu, vc);
	kvmppc_create_dtl_entry(vcpu, vc);
	trace_kvm_guest_enter(vcpu);

	vc->vcore_state = VCORE_RUNNING;
	trace_kvmppc_run_core(vc, 0);

3950 3951 3952 3953
	lpid = vc->kvm->arch.lpid;
	if (nested)
		lpid = nested->shadow_lpid;
	mtspr(SPRN_LPID, lpid);
3954 3955 3956 3957 3958 3959 3960 3961
	isync();

	/* See comment above in kvmppc_run_core() about this */
	pcpu0 = pcpu;
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		pcpu0 &= ~0x3UL;

	if (cpumask_test_cpu(pcpu0, &kvm->arch.need_tlb_flush)) {
3962
		radix__local_flush_tlb_lpid_guest(lpid);
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973
		/* Clear the bit after the TLB flush */
		cpumask_clear_cpu(pcpu0, &kvm->arch.need_tlb_flush);
	}

	trace_hardirqs_on();
	guest_enter_irqoff();

	srcu_idx = srcu_read_lock(&kvm->srcu);

	this_cpu_disable_ftrace();

3974
	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
	vcpu->arch.trap = trap;

	this_cpu_enable_ftrace();

	srcu_read_unlock(&kvm->srcu, srcu_idx);

	mtspr(SPRN_LPID, kvm->arch.host_lpid);
	isync();

	trace_hardirqs_off();
	set_irq_happened(trap);

	kvmppc_set_host_core(pcpu);

	local_irq_enable();
	guest_exit();

	cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);

	preempt_enable();

	/* cancel pending decrementer exception if DEC is now positive */
	if (get_tb() < vcpu->arch.dec_expires && kvmppc_core_pending_dec(vcpu))
		kvmppc_core_dequeue_dec(vcpu);

	trace_kvm_guest_exit(vcpu);
	r = RESUME_GUEST;
4002 4003 4004 4005 4006 4007
	if (trap) {
		if (!nested)
			r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
		else
			r = kvmppc_handle_nested_exit(vcpu);
	}
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
	vcpu->arch.ret = r;

	if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
	    !kvmppc_vcpu_woken(vcpu)) {
		kvmppc_set_timer(vcpu);
		while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
			if (signal_pending(current)) {
				vcpu->stat.signal_exits++;
				kvm_run->exit_reason = KVM_EXIT_INTR;
				vcpu->arch.ret = -EINTR;
				break;
			}
			spin_lock(&vc->lock);
			kvmppc_vcore_blocked(vc);
			spin_unlock(&vc->lock);
		}
	}
	vcpu->arch.ceded = 0;

	vc->vcore_state = VCORE_INACTIVE;
	trace_kvmppc_run_core(vc, 1);

 done:
	kvmppc_remove_runnable(vc, vcpu);
	trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);

	return vcpu->arch.ret;

 sigpend:
	vcpu->stat.signal_exits++;
	kvm_run->exit_reason = KVM_EXIT_INTR;
	vcpu->arch.ret = -EINTR;
 out:
	local_irq_enable();
	preempt_enable();
	goto done;
}

4046
static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4047 4048
{
	int r;
4049
	int srcu_idx;
4050
	unsigned long ebb_regs[3] = {};	/* shut up GCC */
4051 4052
	unsigned long user_tar = 0;
	unsigned int user_vrsave;
4053
	struct kvm *kvm;
4054

4055 4056 4057 4058 4059
	if (!vcpu->arch.sane) {
		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073
	/*
	 * Don't allow entry with a suspended transaction, because
	 * the guest entry/exit code will lose it.
	 * If the guest has TM enabled, save away their TM-related SPRs
	 * (they will get restored by the TM unavailable interrupt).
	 */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
	    (current->thread.regs->msr & MSR_TM)) {
		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
			run->fail_entry.hardware_entry_failure_reason = 0;
			return -EINVAL;
		}
4074 4075
		/* Enable TM so we can read the TM SPRs */
		mtmsr(mfmsr() | MSR_TM);
4076 4077 4078 4079 4080 4081 4082
		current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
		current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
		current->thread.tm_texasr = mfspr(SPRN_TEXASR);
		current->thread.regs->msr &= ~MSR_TM;
	}
#endif

4083 4084 4085 4086 4087 4088 4089 4090 4091
	/*
	 * Force online to 1 for the sake of old userspace which doesn't
	 * set it.
	 */
	if (!vcpu->arch.online) {
		atomic_inc(&vcpu->arch.vcore->online_count);
		vcpu->arch.online = 1;
	}

4092 4093
	kvmppc_core_prepare_to_enter(vcpu);

4094 4095 4096 4097 4098 4099
	/* No need to go into the guest when all we'll do is come back out */
	if (signal_pending(current)) {
		run->exit_reason = KVM_EXIT_INTR;
		return -EINTR;
	}

4100 4101 4102
	kvm = vcpu->kvm;
	atomic_inc(&kvm->arch.vcpus_running);
	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4103 4104
	smp_mb();

4105 4106
	flush_all_to_thread(current);

4107
	/* Save userspace EBB and other register values */
4108 4109 4110 4111
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		ebb_regs[0] = mfspr(SPRN_EBBHR);
		ebb_regs[1] = mfspr(SPRN_EBBRR);
		ebb_regs[2] = mfspr(SPRN_BESCR);
4112
		user_tar = mfspr(SPRN_TAR);
4113
	}
4114
	user_vrsave = mfspr(SPRN_VRSAVE);
4115

4116
	vcpu->arch.wqp = &vcpu->arch.vcore->wq;
4117
	vcpu->arch.pgdir = current->mm->pgd;
4118
	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4119

4120
	do {
4121
		if (kvm->arch.threads_indep && kvm_is_radix(kvm))
4122 4123
			r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
						  vcpu->arch.vcore->lpcr);
4124 4125
		else
			r = kvmppc_run_vcpu(run, vcpu);
4126 4127 4128

		if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
		    !(vcpu->arch.shregs.msr & MSR_PR)) {
4129
			trace_kvm_hcall_enter(vcpu);
4130
			r = kvmppc_pseries_do_hcall(vcpu);
4131
			trace_kvm_hcall_exit(vcpu, r);
4132
			kvmppc_core_prepare_to_enter(vcpu);
4133
		} else if (r == RESUME_PAGE_FAULT) {
4134
			srcu_idx = srcu_read_lock(&kvm->srcu);
4135 4136
			r = kvmppc_book3s_hv_page_fault(run, vcpu,
				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4137
			srcu_read_unlock(&kvm->srcu, srcu_idx);
4138 4139 4140 4141 4142 4143
		} else if (r == RESUME_PASSTHROUGH) {
			if (WARN_ON(xive_enabled()))
				r = H_SUCCESS;
			else
				r = kvmppc_xics_rm_complete(vcpu, 0);
		}
4144
	} while (is_kvmppc_resume_guest(r));
4145

4146
	/* Restore userspace EBB and other register values */
4147 4148 4149 4150
	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		mtspr(SPRN_EBBHR, ebb_regs[0]);
		mtspr(SPRN_EBBRR, ebb_regs[1]);
		mtspr(SPRN_BESCR, ebb_regs[2]);
4151 4152
		mtspr(SPRN_TAR, user_tar);
		mtspr(SPRN_FSCR, current->thread.fscr);
4153
	}
4154
	mtspr(SPRN_VRSAVE, user_vrsave);
4155

4156
	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4157
	atomic_dec(&kvm->arch.vcpus_running);
4158 4159 4160
	return r;
}

4161
static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4162
				     int shift, int sllp)
4163
{
4164 4165 4166 4167
	(*sps)->page_shift = shift;
	(*sps)->slb_enc = sllp;
	(*sps)->enc[0].page_shift = shift;
	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4168
	/*
4169
	 * Add 16MB MPSS support (may get filtered out by userspace)
4170
	 */
4171 4172 4173 4174 4175 4176
	if (shift != 24) {
		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
		if (penc != -1) {
			(*sps)->enc[1].page_shift = 24;
			(*sps)->enc[1].pte_enc = penc;
		}
4177
	}
4178 4179 4180
	(*sps)++;
}

4181 4182
static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
4183 4184 4185
{
	struct kvm_ppc_one_seg_page_size *sps;

4186 4187 4188 4189 4190 4191 4192 4193
	/*
	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
	 * POWER7 doesn't support keys for instruction accesses,
	 * POWER8 and POWER9 do.
	 */
	info->data_keys = 32;
	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;

4194 4195 4196
	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
	info->slb_size = 32;
4197 4198 4199

	/* We only support these sizes for now, and no muti-size segments */
	sps = &info->sps[0];
4200 4201 4202
	kvmppc_add_seg_page_size(&sps, 12, 0);
	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4203 4204 4205 4206

	return 0;
}

4207 4208 4209
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
4210 4211
static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
					 struct kvm_dirty_log *log)
4212
{
4213
	struct kvm_memslots *slots;
4214
	struct kvm_memory_slot *memslot;
4215
	int i, r;
4216
	unsigned long n;
4217
	unsigned long *buf, *p;
4218
	struct kvm_vcpu *vcpu;
4219 4220 4221 4222

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
4223
	if (log->slot >= KVM_USER_MEM_SLOTS)
4224 4225
		goto out;

4226 4227
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
4228 4229 4230 4231
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

4232
	/*
4233 4234
	 * Use second half of bitmap area because both HPT and radix
	 * accumulate bits in the first half.
4235
	 */
4236
	n = kvm_dirty_bitmap_bytes(memslot);
4237 4238
	buf = memslot->dirty_bitmap + n / sizeof(long);
	memset(buf, 0, n);
4239

4240 4241 4242 4243
	if (kvm_is_radix(kvm))
		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
	else
		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4244 4245 4246
	if (r)
		goto out;

4247 4248 4249 4250 4251 4252 4253 4254 4255 4256
	/*
	 * We accumulate dirty bits in the first half of the
	 * memslot's dirty_bitmap area, for when pages are paged
	 * out or modified by the host directly.  Pick up these
	 * bits and add them to the map.
	 */
	p = memslot->dirty_bitmap;
	for (i = 0; i < n / sizeof(long); ++i)
		buf[i] |= xchg(&p[i], 0);

4257 4258 4259 4260 4261 4262 4263 4264 4265
	/* Harvest dirty bits from VPA and DTL updates */
	/* Note: we never modify the SLB shadow buffer areas */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		spin_lock(&vcpu->arch.vpa_update_lock);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
		spin_unlock(&vcpu->arch.vpa_update_lock);
	}

4266
	r = -EFAULT;
4267
	if (copy_to_user(log->dirty_bitmap, buf, n))
4268 4269 4270 4271 4272 4273 4274 4275
		goto out;

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

4276 4277
static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
4278 4279 4280 4281
{
	if (!dont || free->arch.rmap != dont->arch.rmap) {
		vfree(free->arch.rmap);
		free->arch.rmap = NULL;
4282
	}
4283 4284
}

4285 4286
static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
					 unsigned long npages)
4287
{
4288
	slot->arch.rmap = vzalloc(array_size(npages, sizeof(*slot->arch.rmap)));
4289 4290
	if (!slot->arch.rmap)
		return -ENOMEM;
4291

4292 4293
	return 0;
}
4294

4295 4296
static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
4297
					const struct kvm_userspace_memory_region *mem)
4298
{
4299
	return 0;
4300 4301
}

4302
static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4303
				const struct kvm_userspace_memory_region *mem,
4304 4305
				const struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new)
4306
{
4307 4308
	unsigned long npages = mem->memory_size >> PAGE_SHIFT;

4309 4310 4311 4312 4313 4314 4315 4316
	/*
	 * If we are making a new memslot, it might make
	 * some address that was previously cached as emulated
	 * MMIO be no longer emulated MMIO, so invalidate
	 * all the caches of emulated MMIO translations.
	 */
	if (npages)
		atomic64_inc(&kvm->arch.mmio_update);
4317 4318
}

4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344
/*
 * Update LPCR values in kvm->arch and in vcores.
 * Caller must hold kvm->lock.
 */
void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
{
	long int i;
	u32 cores_done = 0;

	if ((kvm->arch.lpcr & mask) == lpcr)
		return;

	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;

	for (i = 0; i < KVM_MAX_VCORES; ++i) {
		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
		if (!vc)
			continue;
		spin_lock(&vc->lock);
		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
		spin_unlock(&vc->lock);
		if (++cores_done >= kvm->arch.online_vcores)
			break;
	}
}

4345 4346 4347 4348 4349
static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
{
	return;
}

4350
void kvmppc_setup_partition_table(struct kvm *kvm)
4351 4352 4353
{
	unsigned long dw0, dw1;

4354 4355 4356 4357 4358 4359
	if (!kvm_is_radix(kvm)) {
		/* PS field - page size for VRMA */
		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
		/* HTABSIZE and HTABORG fields */
		dw0 |= kvm->arch.sdr1;
4360

4361 4362 4363 4364 4365 4366 4367
		/* Second dword as set by userspace */
		dw1 = kvm->arch.process_table;
	} else {
		dw0 = PATB_HR | radix__get_tree_size() |
			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
		dw1 = PATB_GR | kvm->arch.process_table;
	}
4368
	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4369 4370
}

4371 4372 4373 4374
/*
 * Set up HPT (hashed page table) and RMA (real-mode area).
 * Must be called with kvm->lock held.
 */
4375
static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4376 4377 4378 4379 4380 4381
{
	int err = 0;
	struct kvm *kvm = vcpu->kvm;
	unsigned long hva;
	struct kvm_memory_slot *memslot;
	struct vm_area_struct *vma;
4382
	unsigned long lpcr = 0, senc;
4383
	unsigned long psize, porder;
4384
	int srcu_idx;
4385

4386
	/* Allocate hashed page table (if not done already) and reset it */
4387
	if (!kvm->arch.hpt.virt) {
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
		int order = KVM_DEFAULT_HPT_ORDER;
		struct kvm_hpt_info info;

		err = kvmppc_allocate_hpt(&info, order);
		/* If we get here, it means userspace didn't specify a
		 * size explicitly.  So, try successively smaller
		 * sizes if the default failed. */
		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
			err  = kvmppc_allocate_hpt(&info, order);

		if (err < 0) {
4399 4400 4401
			pr_err("KVM: Couldn't alloc HPT\n");
			goto out;
		}
4402 4403

		kvmppc_set_hpt(kvm, &info);
4404 4405
	}

4406
	/* Look up the memslot for guest physical address 0 */
4407
	srcu_idx = srcu_read_lock(&kvm->srcu);
4408
	memslot = gfn_to_memslot(kvm, 0);
4409

4410 4411 4412
	/* We must have some memory at 0 by now */
	err = -EINVAL;
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4413
		goto out_srcu;
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425

	/* Look up the VMA for the start of this memory slot */
	hva = memslot->userspace_addr;
	down_read(&current->mm->mmap_sem);
	vma = find_vma(current->mm, hva);
	if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
		goto up_out;

	psize = vma_kernel_pagesize(vma);

	up_read(&current->mm->mmap_sem);

4426
	/* We can handle 4k, 64k or 16M pages in the VRMA */
4427 4428 4429 4430 4431 4432 4433
	if (psize >= 0x1000000)
		psize = 0x1000000;
	else if (psize >= 0x10000)
		psize = 0x10000;
	else
		psize = 0x1000;
	porder = __ilog2(psize);
4434

4435 4436 4437 4438 4439
	senc = slb_pgsize_encoding(psize);
	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* Create HPTEs in the hash page table for the VRMA */
	kvmppc_map_vrma(vcpu, memslot, porder);
4440

4441 4442 4443 4444 4445 4446
	/* Update VRMASD field in the LPCR */
	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
		/* the -4 is to account for senc values starting at 0x10 */
		lpcr = senc << (LPCR_VRMASD_SH - 4);
		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
	}
4447

4448
	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4449 4450
	smp_wmb();
	err = 0;
4451 4452
 out_srcu:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
4453 4454
 out:
	return err;
4455

4456 4457
 up_out:
	up_read(&current->mm->mmap_sem);
4458
	goto out_srcu;
4459 4460
}

4461 4462 4463
/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
{
4464 4465 4466 4467
	if (kvm->arch.nested_enable) {
		kvm->arch.nested_enable = false;
		kvmhv_release_all_nested(kvm);
	}
4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
	kvmppc_free_radix(kvm);
	kvmppc_update_lpcr(kvm, LPCR_VPM1,
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
	kvmppc_rmap_reset(kvm);
	kvm->arch.radix = 0;
	kvm->arch.process_table = 0;
	return 0;
}

/* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
{
	int err;

	err = kvmppc_init_vm_radix(kvm);
	if (err)
		return err;

	kvmppc_free_hpt(&kvm->arch.hpt);
	kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
			   LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
	kvm->arch.radix = 1;
	return 0;
}

4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526
#ifdef CONFIG_KVM_XICS
/*
 * Allocate a per-core structure for managing state about which cores are
 * running in the host versus the guest and for exchanging data between
 * real mode KVM and CPU running in the host.
 * This is only done for the first VM.
 * The allocated structure stays even if all VMs have stopped.
 * It is only freed when the kvm-hv module is unloaded.
 * It's OK for this routine to fail, we just don't support host
 * core operations like redirecting H_IPI wakeups.
 */
void kvmppc_alloc_host_rm_ops(void)
{
	struct kvmppc_host_rm_ops *ops;
	unsigned long l_ops;
	int cpu, core;
	int size;

	/* Not the first time here ? */
	if (kvmppc_host_rm_ops_hv != NULL)
		return;

	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
	if (!ops)
		return;

	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
	ops->rm_core = kzalloc(size, GFP_KERNEL);

	if (!ops->rm_core) {
		kfree(ops);
		return;
	}

4527
	cpus_read_lock();
4528

4529 4530 4531 4532 4533 4534 4535 4536
	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
		if (!cpu_online(cpu))
			continue;

		core = cpu >> threads_shift;
		ops->rm_core[core].rm_state.in_host = 1;
	}

4537 4538
	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
	/*
	 * Make the contents of the kvmppc_host_rm_ops structure visible
	 * to other CPUs before we assign it to the global variable.
	 * Do an atomic assignment (no locks used here), but if someone
	 * beats us to it, just free our copy and return.
	 */
	smp_wmb();
	l_ops = (unsigned long) ops;

	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4549
		cpus_read_unlock();
4550 4551
		kfree(ops->rm_core);
		kfree(ops);
4552
		return;
4553
	}
4554

4555 4556 4557 4558 4559
	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
					     "ppc/kvm_book3s:prepare",
					     kvmppc_set_host_core,
					     kvmppc_clear_host_core);
	cpus_read_unlock();
4560 4561 4562 4563 4564
}

void kvmppc_free_host_rm_ops(void)
{
	if (kvmppc_host_rm_ops_hv) {
4565
		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4566 4567 4568 4569 4570 4571 4572
		kfree(kvmppc_host_rm_ops_hv->rm_core);
		kfree(kvmppc_host_rm_ops_hv);
		kvmppc_host_rm_ops_hv = NULL;
	}
}
#endif

4573
static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4574
{
4575
	unsigned long lpcr, lpid;
4576
	char buf[32];
4577
	int ret;
4578

4579 4580 4581
	/* Allocate the guest's logical partition ID */

	lpid = kvmppc_alloc_lpid();
4582
	if ((long)lpid < 0)
4583 4584
		return -ENOMEM;
	kvm->arch.lpid = lpid;
4585

4586 4587
	kvmppc_alloc_host_rm_ops();

4588 4589
	kvmhv_vm_nested_init(kvm);

4590 4591 4592 4593
	/*
	 * Since we don't flush the TLB when tearing down a VM,
	 * and this lpid might have previously been used,
	 * make sure we flush on each core before running the new VM.
4594 4595
	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
	 * does this flush for us.
4596
	 */
4597 4598
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		cpumask_setall(&kvm->arch.need_tlb_flush);
4599

4600 4601 4602 4603
	/* Start out with the default set of hcalls enabled */
	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
	       sizeof(kvm->arch.enabled_hcalls));

4604 4605
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4606

4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
	/* Init LPCR for virtual RMA mode */
	kvm->arch.host_lpid = mfspr(SPRN_LPID);
	kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
	lpcr &= LPCR_PECE | LPCR_LPES;
	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
		LPCR_VPM0 | LPCR_VPM1;
	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
		(VRMA_VSID << SLB_VSID_SHIFT_1T);
	/* On POWER8 turn on online bit to enable PURR/SPURR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		lpcr |= LPCR_ONL;
4618 4619 4620
	/*
	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
	 * Set HVICE bit to enable hypervisor virtualization interrupts.
4621 4622 4623
	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
	 * be unnecessary but better safe than sorry in case we re-enable
	 * EE in HV mode with this LPCR still set)
4624 4625
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4626
		lpcr &= ~LPCR_VPM0;
4627 4628 4629 4630 4631 4632 4633 4634
		lpcr |= LPCR_HVICE | LPCR_HEIC;

		/*
		 * If xive is enabled, we route 0x500 interrupts directly
		 * to the guest.
		 */
		if (xive_enabled())
			lpcr |= LPCR_LPES;
4635 4636
	}

4637
	/*
4638
	 * If the host uses radix, the guest starts out as radix.
4639 4640 4641
	 */
	if (radix_enabled()) {
		kvm->arch.radix = 1;
4642
		kvm->arch.mmu_ready = 1;
4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
		lpcr &= ~LPCR_VPM1;
		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
		ret = kvmppc_init_vm_radix(kvm);
		if (ret) {
			kvmppc_free_lpid(kvm->arch.lpid);
			return ret;
		}
		kvmppc_setup_partition_table(kvm);
	}

4653
	kvm->arch.lpcr = lpcr;
4654

4655 4656 4657
	/* Initialization for future HPT resizes */
	kvm->arch.resize_hpt = NULL;

4658 4659 4660 4661
	/*
	 * Work out how many sets the TLB has, for the use of
	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
	 */
4662
	if (radix_enabled())
4663 4664
		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
	else if (cpu_has_feature(CPU_FTR_ARCH_300))
4665 4666 4667 4668 4669 4670
		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
	else
		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */

4671
	/*
4672 4673
	 * Track that we now have a HV mode VM active. This blocks secondary
	 * CPU threads from coming online.
4674 4675
	 * On POWER9, we only need to do this if the "indep_threads_mode"
	 * module parameter has been set to N.
4676
	 */
4677 4678 4679 4680 4681 4682 4683 4684
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
			pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
			kvm->arch.threads_indep = true;
		} else {
			kvm->arch.threads_indep = indep_threads_mode;
		}
	}
4685
	if (!kvm->arch.threads_indep)
4686
		kvm_hv_vm_activated();
4687

4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
	/*
	 * Initialize smt_mode depending on processor.
	 * POWER8 and earlier have to use "strict" threading, where
	 * all vCPUs in a vcore have to run on the same (sub)core,
	 * whereas on POWER9 the threads can each run a different
	 * guest.
	 */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		kvm->arch.smt_mode = threads_per_subcore;
	else
		kvm->arch.smt_mode = 1;
4699
	kvm->arch.emul_smt_mode = 1;
4700

4701 4702 4703 4704 4705
	/*
	 * Create a debugfs directory for the VM
	 */
	snprintf(buf, sizeof(buf), "vm%d", current->pid);
	kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4706
	kvmppc_mmu_debugfs_init(kvm);
4707 4708
	if (radix_enabled())
		kvmhv_radix_debugfs_init(kvm);
4709

4710
	return 0;
4711 4712
}

4713 4714 4715 4716
static void kvmppc_free_vcores(struct kvm *kvm)
{
	long int i;

4717
	for (i = 0; i < KVM_MAX_VCORES; ++i)
4718 4719 4720 4721
		kfree(kvm->arch.vcores[i]);
	kvm->arch.online_vcores = 0;
}

4722
static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4723
{
4724 4725
	debugfs_remove_recursive(kvm->arch.debugfs_dir);

4726
	if (!kvm->arch.threads_indep)
4727
		kvm_hv_vm_deactivated();
4728

4729
	kvmppc_free_vcores(kvm);
4730

4731

4732 4733 4734
	if (kvm_is_radix(kvm))
		kvmppc_free_radix(kvm);
	else
4735
		kvmppc_free_hpt(&kvm->arch.hpt);
4736

4737 4738
	/* Perform global invalidation and return lpid to the pool */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4739 4740
		if (kvm->arch.nested_enable)
			kvmhv_release_all_nested(kvm);
4741
		kvm->arch.process_table = 0;
4742
		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4743 4744 4745
	}
	kvmppc_free_lpid(kvm->arch.lpid);

4746
	kvmppc_free_pimap(kvm);
4747 4748
}

4749 4750 4751
/* We don't need to emulate any privileged instructions or dcbz */
static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
				     unsigned int inst, int *advance)
4752
{
4753
	return EMULATE_FAIL;
4754 4755
}

4756 4757
static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong spr_val)
4758 4759 4760 4761
{
	return EMULATE_FAIL;
}

4762 4763
static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
					ulong *spr_val)
4764 4765 4766 4767
{
	return EMULATE_FAIL;
}

4768
static int kvmppc_core_check_processor_compat_hv(void)
4769
{
4770 4771
	if (!cpu_has_feature(CPU_FTR_HVMODE) ||
	    !cpu_has_feature(CPU_FTR_ARCH_206))
4772
		return -EIO;
4773

4774
	return 0;
4775 4776
}

4777 4778 4779 4780 4781 4782 4783
#ifdef CONFIG_KVM_XICS

void kvmppc_free_pimap(struct kvm *kvm)
{
	kfree(kvm->arch.pimap);
}

4784
static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
4785 4786 4787
{
	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
}
4788 4789 4790 4791 4792 4793 4794

static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_irq_map *irq_map;
	struct kvmppc_passthru_irqmap *pimap;
	struct irq_chip *chip;
4795
	int i, rc = 0;
4796

4797 4798 4799
	if (!kvm_irq_bypass)
		return 1;

4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);

	pimap = kvm->arch.pimap;
	if (pimap == NULL) {
		/* First call, allocate structure to hold IRQ map */
		pimap = kvmppc_alloc_pimap();
		if (pimap == NULL) {
			mutex_unlock(&kvm->lock);
			return -ENOMEM;
		}
		kvm->arch.pimap = pimap;
	}

	/*
	 * For now, we only support interrupts for which the EOI operation
	 * is an OPAL call followed by a write to XIRR, since that's
4820
	 * what our real-mode EOI code does, or a XIVE interrupt
4821 4822
	 */
	chip = irq_data_get_irq_chip(&desc->irq_data);
4823
	if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
			host_irq, guest_gsi);
		mutex_unlock(&kvm->lock);
		return -ENOENT;
	}

	/*
	 * See if we already have an entry for this guest IRQ number.
	 * If it's mapped to a hardware IRQ number, that's an error,
	 * otherwise re-use this entry.
	 */
	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq) {
			if (pimap->mapped[i].r_hwirq) {
				mutex_unlock(&kvm->lock);
				return -EINVAL;
			}
			break;
		}
	}

	if (i == KVMPPC_PIRQ_MAPPED) {
		mutex_unlock(&kvm->lock);
		return -EAGAIN;		/* table is full */
	}

	irq_map = &pimap->mapped[i];

	irq_map->v_hwirq = guest_gsi;
	irq_map->desc = desc;

4855 4856 4857 4858 4859 4860 4861
	/*
	 * Order the above two stores before the next to serialize with
	 * the KVM real mode handler.
	 */
	smp_wmb();
	irq_map->r_hwirq = desc->irq_data.hwirq;

4862 4863 4864
	if (i == pimap->n_mapped)
		pimap->n_mapped++;

4865 4866 4867 4868 4869 4870
	if (xive_enabled())
		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
	else
		kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
	if (rc)
		irq_map->r_hwirq = 0;
4871

4872 4873 4874 4875 4876 4877 4878 4879 4880
	mutex_unlock(&kvm->lock);

	return 0;
}

static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
{
	struct irq_desc *desc;
	struct kvmppc_passthru_irqmap *pimap;
4881
	int i, rc = 0;
4882

4883 4884 4885
	if (!kvm_irq_bypass)
		return 0;

4886 4887 4888 4889 4890
	desc = irq_to_desc(host_irq);
	if (!desc)
		return -EIO;

	mutex_lock(&kvm->lock);
4891 4892
	if (!kvm->arch.pimap)
		goto unlock;
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905

	pimap = kvm->arch.pimap;

	for (i = 0; i < pimap->n_mapped; i++) {
		if (guest_gsi == pimap->mapped[i].v_hwirq)
			break;
	}

	if (i == pimap->n_mapped) {
		mutex_unlock(&kvm->lock);
		return -ENODEV;
	}

4906 4907 4908 4909
	if (xive_enabled())
		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
	else
		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4910

4911
	/* invalidate the entry (what do do on error from the above ?) */
4912 4913 4914 4915 4916 4917
	pimap->mapped[i].r_hwirq = 0;

	/*
	 * We don't free this structure even when the count goes to
	 * zero. The structure is freed when we destroy the VM.
	 */
4918
 unlock:
4919
	mutex_unlock(&kvm->lock);
4920
	return rc;
4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
}

static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
					     struct irq_bypass_producer *prod)
{
	int ret = 0;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = prod;

	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);

	return ret;
}

static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
					      struct irq_bypass_producer *prod)
{
	int ret;
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	irqfd->producer = NULL;

	/*
	 * When producer of consumer is unregistered, we change back to
	 * default external interrupt handling mode - KVM real mode
	 * will switch back to host.
	 */
	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
	if (ret)
		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
			prod->irq, irqfd->gsi, ret);
}
4959 4960
#endif

4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975
static long kvm_arch_vm_ioctl_hv(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm __maybe_unused = filp->private_data;
	void __user *argp = (void __user *)arg;
	long r;

	switch (ioctl) {

	case KVM_PPC_ALLOCATE_HTAB: {
		u32 htab_order;

		r = -EFAULT;
		if (get_user(htab_order, (u32 __user *)argp))
			break;
4976
		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992
		if (r)
			break;
		r = 0;
		break;
	}

	case KVM_PPC_GET_HTAB_FD: {
		struct kvm_get_htab_fd ghf;

		r = -EFAULT;
		if (copy_from_user(&ghf, argp, sizeof(ghf)))
			break;
		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
		break;
	}

4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014
	case KVM_PPC_RESIZE_HPT_PREPARE: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
		break;
	}

	case KVM_PPC_RESIZE_HPT_COMMIT: {
		struct kvm_ppc_resize_hpt rhpt;

		r = -EFAULT;
		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
			break;

		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
		break;
	}

5015 5016 5017 5018 5019 5020 5021
	default:
		r = -ENOTTY;
	}

	return r;
}

5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
/*
 * List of hcall numbers to enable by default.
 * For compatibility with old userspace, we enable by default
 * all hcalls that were implemented before the hcall-enabling
 * facility was added.  Note this list should not include H_RTAS.
 */
static unsigned int default_hcall_list[] = {
	H_REMOVE,
	H_ENTER,
	H_READ,
	H_PROTECT,
	H_BULK_REMOVE,
	H_GET_TCE,
	H_PUT_TCE,
	H_SET_DABR,
	H_SET_XDABR,
	H_CEDE,
	H_PROD,
	H_CONFER,
	H_REGISTER_VPA,
#ifdef CONFIG_KVM_XICS
	H_EOI,
	H_CPPR,
	H_IPI,
	H_IPOLL,
	H_XIRR,
	H_XIRR_X,
#endif
	0
};

static void init_default_hcalls(void)
{
	int i;
5056
	unsigned int hcall;
5057

5058 5059 5060 5061 5062
	for (i = 0; default_hcall_list[i]; ++i) {
		hcall = default_hcall_list[i];
		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
		__set_bit(hcall / 4, default_enabled_hcalls);
	}
5063 5064
}

5065 5066
static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
{
5067
	unsigned long lpcr;
5068
	int radix;
5069
	int err;
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079

	/* If not on a POWER9, reject it */
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -ENODEV;

	/* If any unknown flags set, reject it */
	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
		return -EINVAL;

	/* GR (guest radix) bit in process_table field must match */
5080
	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5081
	if (!!(cfg->process_table & PATB_GR) != radix)
5082 5083 5084 5085 5086 5087
		return -EINVAL;

	/* Process table size field must be reasonable, i.e. <= 24 */
	if ((cfg->process_table & PRTS_MASK) > 24)
		return -EINVAL;

5088 5089 5090 5091
	/* We can change a guest to/from radix now, if the host is radix */
	if (radix && !radix_enabled())
		return -EINVAL;

5092
	mutex_lock(&kvm->lock);
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
	if (radix != kvm_is_radix(kvm)) {
		if (kvm->arch.mmu_ready) {
			kvm->arch.mmu_ready = 0;
			/* order mmu_ready vs. vcpus_running */
			smp_mb();
			if (atomic_read(&kvm->arch.vcpus_running)) {
				kvm->arch.mmu_ready = 1;
				err = -EBUSY;
				goto out_unlock;
			}
		}
		if (radix)
			err = kvmppc_switch_mmu_to_radix(kvm);
		else
			err = kvmppc_switch_mmu_to_hpt(kvm);
		if (err)
			goto out_unlock;
	}

5112 5113 5114 5115 5116
	kvm->arch.process_table = cfg->process_table;
	kvmppc_setup_partition_table(kvm);

	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5117
	err = 0;
5118

5119 5120 5121
 out_unlock:
	mutex_unlock(&kvm->lock);
	return err;
5122 5123
}

5124
static struct kvmppc_ops kvm_ops_hv = {
5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
	.get_one_reg = kvmppc_get_one_reg_hv,
	.set_one_reg = kvmppc_set_one_reg_hv,
	.vcpu_load   = kvmppc_core_vcpu_load_hv,
	.vcpu_put    = kvmppc_core_vcpu_put_hv,
	.set_msr     = kvmppc_set_msr_hv,
	.vcpu_run    = kvmppc_vcpu_run_hv,
	.vcpu_create = kvmppc_core_vcpu_create_hv,
	.vcpu_free   = kvmppc_core_vcpu_free_hv,
	.check_requests = kvmppc_core_check_requests_hv,
	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
	.flush_memslot  = kvmppc_core_flush_memslot_hv,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
	.unmap_hva_range = kvm_unmap_hva_range_hv,
	.age_hva  = kvm_age_hva_hv,
	.test_age_hva = kvm_test_age_hva_hv,
	.set_spte_hva = kvm_set_spte_hva_hv,
	.mmu_destroy  = kvmppc_mmu_destroy_hv,
	.free_memslot = kvmppc_core_free_memslot_hv,
	.create_memslot = kvmppc_core_create_memslot_hv,
	.init_vm =  kvmppc_core_init_vm_hv,
	.destroy_vm = kvmppc_core_destroy_vm_hv,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
	.emulate_op = kvmppc_core_emulate_op_hv,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
5155
	.hcall_implemented = kvmppc_hcall_impl_hv,
5156 5157 5158 5159
#ifdef CONFIG_KVM_XICS
	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
#endif
5160 5161
	.configure_mmu = kvmhv_configure_mmu,
	.get_rmmu_info = kvmhv_get_rmmu_info,
5162
	.set_smt_mode = kvmhv_set_smt_mode,
5163 5164
};

5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
static int kvm_init_subcore_bitmap(void)
{
	int i, j;
	int nr_cores = cpu_nr_cores();
	struct sibling_subcore_state *sibling_subcore_state;

	for (i = 0; i < nr_cores; i++) {
		int first_cpu = i * threads_per_core;
		int node = cpu_to_node(first_cpu);

		/* Ignore if it is already allocated. */
5176
		if (paca_ptrs[first_cpu]->sibling_subcore_state)
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190
			continue;

		sibling_subcore_state =
			kmalloc_node(sizeof(struct sibling_subcore_state),
							GFP_KERNEL, node);
		if (!sibling_subcore_state)
			return -ENOMEM;

		memset(sibling_subcore_state, 0,
				sizeof(struct sibling_subcore_state));

		for (j = 0; j < threads_per_core; j++) {
			int cpu = first_cpu + j;

5191 5192
			paca_ptrs[cpu]->sibling_subcore_state =
						sibling_subcore_state;
5193 5194 5195 5196 5197
		}
	}
	return 0;
}

5198 5199 5200 5201 5202
static int kvmppc_radix_possible(void)
{
	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
}

5203
static int kvmppc_book3s_init_hv(void)
5204 5205
{
	int r;
5206 5207 5208 5209 5210
	/*
	 * FIXME!! Do we need to check on all cpus ?
	 */
	r = kvmppc_core_check_processor_compat_hv();
	if (r < 0)
5211
		return -ENODEV;
5212

5213 5214 5215 5216
	r = kvmhv_nested_init();
	if (r)
		return r;

5217 5218 5219 5220
	r = kvm_init_subcore_bitmap();
	if (r)
		return r;

5221 5222
	/*
	 * We need a way of accessing the XICS interrupt controller,
5223
	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5224 5225 5226
	 * indirectly, via OPAL.
	 */
#ifdef CONFIG_SMP
5227 5228
	if (!xive_enabled() && !kvmhv_on_pseries() &&
	    !local_paca->kvm_hstate.xics_phys) {
5229 5230 5231 5232 5233 5234 5235
		struct device_node *np;

		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
		if (!np) {
			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
			return -ENODEV;
		}
5236 5237
		/* presence of intc confirmed - node can be dropped again */
		of_node_put(np);
5238 5239 5240
	}
#endif

5241 5242
	kvm_ops_hv.owner = THIS_MODULE;
	kvmppc_hv_ops = &kvm_ops_hv;
5243

5244 5245
	init_default_hcalls();

5246 5247
	init_vcore_lists();

5248
	r = kvmppc_mmu_hv_init();
5249 5250 5251 5252 5253
	if (r)
		return r;

	if (kvmppc_radix_possible())
		r = kvmppc_radix_init();
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266

	/*
	 * POWER9 chips before version 2.02 can't have some threads in
	 * HPT mode and some in radix mode on the same core.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		unsigned int pvr = mfspr(SPRN_PVR);
		if ((pvr >> 16) == PVR_POWER9 &&
		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
			no_mixing_hpt_and_radix = true;
	}

5267 5268 5269
	return r;
}

5270
static void kvmppc_book3s_exit_hv(void)
5271
{
5272
	kvmppc_free_host_rm_ops();
5273 5274
	if (kvmppc_radix_possible())
		kvmppc_radix_exit();
5275
	kvmppc_hv_ops = NULL;
5276
	kvmhv_nested_exit();
5277 5278
}

5279 5280
module_init(kvmppc_book3s_init_hv);
module_exit(kvmppc_book3s_exit_hv);
5281
MODULE_LICENSE("GPL");
5282 5283
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");