intel_lrc.c 118.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135

136 137
#include "gem/i915_gem_context.h"

138
#include "i915_drv.h"
139
#include "i915_perf.h"
140
#include "i915_trace.h"
141
#include "i915_vgpu.h"
142
#include "intel_engine_pm.h"
143
#include "intel_gt.h"
144
#include "intel_gt_pm.h"
145
#include "intel_lrc_reg.h"
146
#include "intel_mocs.h"
147
#include "intel_reset.h"
148
#include "intel_workarounds.h"
149

150 151 152 153 154 155 156 157 158 159 160 161 162
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
163

164
#define GEN8_CTX_STATUS_COMPLETED_MASK \
165
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
166

167 168
#define CTX_DESC_FORCE_RESTORE BIT_ULL(2)

169 170 171 172 173 174 175
#define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
#define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
#define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
#define GEN12_IDLE_CTX_ID		0x7FF
#define GEN12_CSB_CTX_VALID(csb_dw) \
	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)

176 177
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
178
#define WA_TAIL_DWORDS 2
179
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
struct virtual_engine {
	struct intel_engine_cs base;
	struct intel_context context;

	/*
	 * We allow only a single request through the virtual engine at a time
	 * (each request in the timeline waits for the completion fence of
	 * the previous before being submitted). By restricting ourselves to
	 * only submitting a single request, each request is placed on to a
	 * physical to maximise load spreading (by virtue of the late greedy
	 * scheduling -- each real engine takes the next available request
	 * upon idling).
	 */
	struct i915_request *request;

	/*
	 * We keep a rbtree of available virtual engines inside each physical
	 * engine, sorted by priority. Here we preallocate the nodes we need
	 * for the virtual engine, indexed by physical_engine->id.
	 */
	struct ve_node {
		struct rb_node rb;
		int prio;
	} nodes[I915_NUM_ENGINES];

206 207 208 209 210 211 212 213 214 215 216 217
	/*
	 * Keep track of bonded pairs -- restrictions upon on our selection
	 * of physical engines any particular request may be submitted to.
	 * If we receive a submit-fence from a master engine, we will only
	 * use one of sibling_mask physical engines.
	 */
	struct ve_bond {
		const struct intel_engine_cs *master;
		intel_engine_mask_t sibling_mask;
	} *bonds;
	unsigned int num_bonds;

218 219 220 221 222 223 224 225 226 227 228
	/* And finally, which physical engines this virtual engine maps onto. */
	unsigned int num_siblings;
	struct intel_engine_cs *siblings[0];
};

static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
{
	GEM_BUG_ON(!intel_engine_is_virtual(engine));
	return container_of(engine, struct virtual_engine, base);
}

229 230 231
static int __execlists_context_alloc(struct intel_context *ce,
				     struct intel_engine_cs *engine);

232
static void execlists_init_reg_state(u32 *reg_state,
233
				     struct intel_context *ce,
234 235
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
236

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine)
{
	return (i915_ggtt_offset(engine->status_page.vma) +
		I915_GEM_HWS_PREEMPT_ADDR);
}

static inline void
ring_set_paused(const struct intel_engine_cs *engine, int state)
{
	/*
	 * We inspect HWS_PREEMPT with a semaphore inside
	 * engine->emit_fini_breadcrumb. If the dword is true,
	 * the ring is paused as the semaphore will busywait
	 * until the dword is false.
	 */
	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
253 254
	if (state)
		wmb();
255 256
}

257 258 259 260 261 262 263
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
264
	return rq->sched.attr.priority;
265 266
}

267 268
static int effective_prio(const struct i915_request *rq)
{
269 270
	int prio = rq_prio(rq);

271 272 273 274 275 276 277 278 279 280 281
	/*
	 * If this request is special and must not be interrupted at any
	 * cost, so be it. Note we are only checking the most recent request
	 * in the context and so may be masking an earlier vip request. It
	 * is hoped that under the conditions where nopreempt is used, this
	 * will not matter (i.e. all requests to that context will be
	 * nopreempt for as long as desired).
	 */
	if (i915_request_has_nopreempt(rq))
		prio = I915_PRIORITY_UNPREEMPTABLE;

282 283
	/*
	 * On unwinding the active request, we give it a priority bump
284 285 286
	 * if it has completed waiting on any semaphore. If we know that
	 * the request has already started, we can prevent an unwanted
	 * preempt-to-idle cycle by taking that into account now.
287
	 */
288 289
	if (__i915_request_has_started(rq))
		prio |= I915_PRIORITY_NOSEMAPHORE;
290

291
	/* Restrict mere WAIT boosts from triggering preemption */
292
	BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */
293
	return prio | __NO_PREEMPTION;
294 295
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
static int queue_prio(const struct intel_engine_execlists *execlists)
{
	struct i915_priolist *p;
	struct rb_node *rb;

	rb = rb_first_cached(&execlists->queue);
	if (!rb)
		return INT_MIN;

	/*
	 * As the priolist[] are inverted, with the highest priority in [0],
	 * we have to flip the index value to become priority.
	 */
	p = to_priolist(rb);
	return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
}

313
static inline bool need_preempt(const struct intel_engine_cs *engine,
314 315
				const struct i915_request *rq,
				struct rb_node *rb)
316
{
317
	int last_prio;
318

319 320 321
	if (!intel_engine_has_semaphores(engine))
		return false;

322 323 324 325 326 327 328 329 330 331 332 333
	/*
	 * Check if the current priority hint merits a preemption attempt.
	 *
	 * We record the highest value priority we saw during rescheduling
	 * prior to this dequeue, therefore we know that if it is strictly
	 * less than the current tail of ESLP[0], we do not need to force
	 * a preempt-to-idle cycle.
	 *
	 * However, the priority hint is a mere hint that we may need to
	 * preempt. If that hint is stale or we may be trying to preempt
	 * ourselves, ignore the request.
	 */
334
	last_prio = effective_prio(rq);
335 336
	if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint,
					 last_prio))
337 338 339 340 341 342
		return false;

	/*
	 * Check against the first request in ELSP[1], it will, thanks to the
	 * power of PI, be the highest priority of that context.
	 */
343 344
	if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
345 346
		return true;

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
	if (rb) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		bool preempt = false;

		if (engine == ve->siblings[0]) { /* only preempt one sibling */
			struct i915_request *next;

			rcu_read_lock();
			next = READ_ONCE(ve->request);
			if (next)
				preempt = rq_prio(next) > last_prio;
			rcu_read_unlock();
		}

		if (preempt)
			return preempt;
	}

366 367 368 369 370 371 372 373 374 375 376 377 378 379
	/*
	 * If the inflight context did not trigger the preemption, then maybe
	 * it was the set of queued requests? Pick the highest priority in
	 * the queue (the first active priolist) and see if it deserves to be
	 * running instead of ELSP[0].
	 *
	 * The highest priority request in the queue can not be either
	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
	 * context, it's priority would not exceed ELSP[0] aka last_prio.
	 */
	return queue_prio(&engine->execlists) > last_prio;
}

__maybe_unused static inline bool
380
assert_priority_queue(const struct i915_request *prev,
381
		      const struct i915_request *next)
382
{
383 384 385 386 387 388 389
	/*
	 * Without preemption, the prev may refer to the still active element
	 * which we refuse to let go.
	 *
	 * Even with preemption, there are times when we think it is better not
	 * to preempt and leave an ostensibly lower priority request in flight.
	 */
390
	if (i915_request_is_active(prev))
391 392 393
		return true;

	return rq_prio(prev) >= rq_prio(next);
394 395
}

396
/*
397 398 399 400 401
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
402 403
 * This is what a descriptor looks like, from LSB to MSB::
 *
404
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
405
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
406
 *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
407 408
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
409 410 411 412 413 414 415 416 417 418 419 420
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
421
 */
422 423
static u64
lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
424
{
425
	struct i915_gem_context *ctx = ce->gem_context;
426
	u64 desc;
427

428 429
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
430

431 432 433 434 435 436 437 438
	desc = INTEL_LEGACY_32B_CONTEXT;
	if (i915_vm_is_4lvl(ce->vm))
		desc = INTEL_LEGACY_64B_CONTEXT;
	desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;

	desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
	if (IS_GEN(engine->i915, 8))
		desc |= GEN8_CTX_L3LLC_COHERENT;
439

440
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
441
								/* bits 12-31 */
442 443 444 445 446
	/*
	 * The following 32bits are copied into the OA reports (dword 2).
	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
	 * anything below.
	 */
447
	if (INTEL_GEN(engine->i915) >= 11) {
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
463

464
	return desc;
465 466
}

467
static void unwind_wa_tail(struct i915_request *rq)
468 469 470 471 472
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

473
static struct i915_request *
474
__unwind_incomplete_requests(struct intel_engine_cs *engine)
475
{
476
	struct i915_request *rq, *rn, *active = NULL;
477
	struct list_head *uninitialized_var(pl);
478
	int prio = I915_PRIORITY_INVALID;
479

480
	lockdep_assert_held(&engine->active.lock);
481 482

	list_for_each_entry_safe_reverse(rq, rn,
483 484
					 &engine->active.requests,
					 sched.link) {
485 486
		struct intel_engine_cs *owner;

487
		if (i915_request_completed(rq))
488
			continue; /* XXX */
489

490
		__i915_request_unsubmit(rq);
491 492
		unwind_wa_tail(rq);

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
		/*
		 * Push the request back into the queue for later resubmission.
		 * If this request is not native to this physical engine (i.e.
		 * it came from a virtual source), push it back onto the virtual
		 * engine so that it can be moved across onto another physical
		 * engine as load dictates.
		 */
		owner = rq->hw_context->engine;
		if (likely(owner == engine)) {
			GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
			if (rq_prio(rq) != prio) {
				prio = rq_prio(rq);
				pl = i915_sched_lookup_priolist(engine, prio);
			}
			GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
508

509
			list_move(&rq->sched.link, pl);
510 511
			active = rq;
		} else {
512 513 514 515 516 517 518 519 520 521 522 523 524
			/*
			 * Decouple the virtual breadcrumb before moving it
			 * back to the virtual engine -- we don't want the
			 * request to complete in the background and try
			 * and cancel the breadcrumb on the virtual engine
			 * (instead of the old engine where it is linked)!
			 */
			if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
				     &rq->fence.flags)) {
				spin_lock(&rq->lock);
				i915_request_cancel_breadcrumb(rq);
				spin_unlock(&rq->lock);
			}
525 526 527 528
			rq->engine = owner;
			owner->submit_request(rq);
			active = NULL;
		}
529 530
	}

531
	return active;
532 533
}

534
struct i915_request *
535 536 537 538 539
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

540
	return __unwind_incomplete_requests(engine);
541 542
}

543
static inline void
544
execlists_context_status_change(struct i915_request *rq, unsigned long status)
545
{
546 547 548 549 550 551
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
552

553 554
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
555 556
}

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
static inline struct intel_engine_cs *
__execlists_schedule_in(struct i915_request *rq)
{
	struct intel_engine_cs * const engine = rq->engine;
	struct intel_context * const ce = rq->hw_context;

	intel_context_get(ce);

	intel_gt_pm_get(engine->gt);
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
	intel_engine_context_in(engine);

	return engine;
}

572 573
static inline struct i915_request *
execlists_schedule_in(struct i915_request *rq, int idx)
574
{
575 576
	struct intel_context * const ce = rq->hw_context;
	struct intel_engine_cs *old;
577

578
	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
579
	trace_i915_request_in(rq, idx);
580

581 582 583 584 585 586 587
	old = READ_ONCE(ce->inflight);
	do {
		if (!old) {
			WRITE_ONCE(ce->inflight, __execlists_schedule_in(rq));
			break;
		}
	} while (!try_cmpxchg(&ce->inflight, &old, ptr_inc(old)));
588 589 590

	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
	return i915_request_get(rq);
591 592
}

593
static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
594
{
595
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
596 597 598 599 600 601
	struct i915_request *next = READ_ONCE(ve->request);

	if (next && next->execution_mask & ~rq->execution_mask)
		tasklet_schedule(&ve->base.execlists.tasklet);
}

602
static inline void
603 604
__execlists_schedule_out(struct i915_request *rq,
			 struct intel_engine_cs * const engine)
605
{
606
	struct intel_context * const ce = rq->hw_context;
607

608 609 610
	intel_engine_context_out(engine);
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
	intel_gt_pm_put(engine->gt);
611

612 613 614 615 616 617 618 619 620 621 622
	/*
	 * If this is part of a virtual engine, its next request may
	 * have been blocked waiting for access to the active context.
	 * We have to kick all the siblings again in case we need to
	 * switch (e.g. the next request is not runnable on this
	 * engine). Hopefully, we will already have submitted the next
	 * request before the tasklet runs and do not need to rebuild
	 * each virtual tree and kick everyone again.
	 */
	if (ce->engine != engine)
		kick_siblings(rq, ce);
623

624 625
	intel_context_put(ce);
}
626

627 628 629 630 631
static inline void
execlists_schedule_out(struct i915_request *rq)
{
	struct intel_context * const ce = rq->hw_context;
	struct intel_engine_cs *cur, *old;
632

633 634 635 636 637 638 639 640
	trace_i915_request_out(rq);

	old = READ_ONCE(ce->inflight);
	do
		cur = ptr_unmask_bits(old, 2) ? ptr_dec(old) : NULL;
	while (!try_cmpxchg(&ce->inflight, &old, cur));
	if (!cur)
		__execlists_schedule_out(rq, old);
641 642

	i915_request_put(rq);
643 644
}

645
static u64 execlists_update_context(const struct i915_request *rq)
646
{
647
	struct intel_context *ce = rq->hw_context;
648
	u64 desc;
649

650 651
	ce->lrc_reg_state[CTX_RING_TAIL + 1] =
		intel_ring_set_tail(rq->ring, rq->tail);
652

653 654 655 656 657 658 659 660 661
	/*
	 * Make sure the context image is complete before we submit it to HW.
	 *
	 * Ostensibly, writes (including the WCB) should be flushed prior to
	 * an uncached write such as our mmio register access, the empirical
	 * evidence (esp. on Braswell) suggests that the WC write into memory
	 * may not be visible to the HW prior to the completion of the UC
	 * register write and that we may begin execution from the context
	 * before its image is complete leading to invalid PD chasing.
662 663 664 665 666
	 *
	 * Furthermore, Braswell, at least, wants a full mb to be sure that
	 * the writes are coherent in memory (visible to the GPU) prior to
	 * execution, and not just visible to other CPUs (as is the result of
	 * wmb).
667
	 */
668
	mb();
669 670 671 672 673

	desc = ce->lrc_desc;
	ce->lrc_desc &= ~CTX_DESC_FORCE_RESTORE;

	return desc;
674 675
}

676
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
677
{
678 679 680 681 682 683 684
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
685 686
}

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
static __maybe_unused void
trace_ports(const struct intel_engine_execlists *execlists,
	    const char *msg,
	    struct i915_request * const *ports)
{
	const struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	GEM_TRACE("%s: %s { %llx:%lld%s, %llx:%lld }\n",
		  engine->name, msg,
		  ports[0]->fence.context,
		  ports[0]->fence.seqno,
		  i915_request_completed(ports[0]) ? "!" :
		  i915_request_started(ports[0]) ? "*" :
		  "",
		  ports[1] ? ports[1]->fence.context : 0,
		  ports[1] ? ports[1]->fence.seqno : 0);
}

static __maybe_unused bool
assert_pending_valid(const struct intel_engine_execlists *execlists,
		     const char *msg)
{
	struct i915_request * const *port, *rq;
	struct intel_context *ce = NULL;

	trace_ports(execlists, msg, execlists->pending);

715 716 717
	if (!execlists->pending[0])
		return false;

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
	if (execlists->pending[execlists_num_ports(execlists)])
		return false;

	for (port = execlists->pending; (rq = *port); port++) {
		if (ce == rq->hw_context)
			return false;

		ce = rq->hw_context;
		if (i915_request_completed(rq))
			continue;

		if (i915_active_is_idle(&ce->active))
			return false;

		if (!i915_vma_is_pinned(ce->state))
			return false;
	}

	return ce;
}

739
static void execlists_submit_ports(struct intel_engine_cs *engine)
740
{
741
	struct intel_engine_execlists *execlists = &engine->execlists;
742
	unsigned int n;
743

744 745
	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));

746 747 748 749 750 751 752 753
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
754
	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
755

756 757 758 759 760 761 762
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
763
		struct i915_request *rq = execlists->pending[n];
764

765 766 767
		write_desc(execlists,
			   rq ? execlists_update_context(rq) : 0,
			   n);
768
	}
769 770 771 772

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
773 774
}

775
static bool ctx_single_port_submission(const struct intel_context *ce)
776
{
777
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
778
		i915_gem_context_force_single_submission(ce->gem_context));
779
}
780

781 782
static bool can_merge_ctx(const struct intel_context *prev,
			  const struct intel_context *next)
783 784 785
{
	if (prev != next)
		return false;
786

787 788
	if (ctx_single_port_submission(prev))
		return false;
789

790
	return true;
791 792
}

793 794 795
static bool can_merge_rq(const struct i915_request *prev,
			 const struct i915_request *next)
{
796
	GEM_BUG_ON(prev == next);
797 798 799 800 801 802 803 804
	GEM_BUG_ON(!assert_priority_queue(prev, next));

	if (!can_merge_ctx(prev->hw_context, next->hw_context))
		return false;

	return true;
}

805 806 807 808 809
static void virtual_update_register_offsets(u32 *regs,
					    struct intel_engine_cs *engine)
{
	u32 base = engine->mmio_base;

810 811 812
	/* Refactor so that we only have one place that knows all the offsets! */
	GEM_WARN_ON(INTEL_GEN(engine->i915) >= 12);

813 814
	/* Must match execlists_init_reg_state()! */

815
	/* Common part */
816 817 818 819 820 821 822 823 824 825
	regs[CTX_CONTEXT_CONTROL] =
		i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base));
	regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base));
	regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base));
	regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base));
	regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base));

	regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base));
	regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base));
	regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base));
826

827 828 829 830 831
	regs[CTX_SECOND_BB_HEAD_U] =
		i915_mmio_reg_offset(RING_SBBADDR_UDW(base));
	regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base));
	regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base));

832
	/* PPGTT part */
833 834
	regs[CTX_CTX_TIMESTAMP] =
		i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base));
835

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3));
	regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3));
	regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2));
	regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2));
	regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1));
	regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1));
	regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
	regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));

	if (engine->class == RENDER_CLASS) {
		regs[CTX_RCS_INDIRECT_CTX] =
			i915_mmio_reg_offset(RING_INDIRECT_CTX(base));
		regs[CTX_RCS_INDIRECT_CTX_OFFSET] =
			i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base));
		regs[CTX_BB_PER_CTX_PTR] =
			i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base));

		regs[CTX_R_PWR_CLK_STATE] =
			i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE);
	}
}

static bool virtual_matches(const struct virtual_engine *ve,
			    const struct i915_request *rq,
			    const struct intel_engine_cs *engine)
{
862
	const struct intel_engine_cs *inflight;
863

864 865 866
	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
		return false;

867 868 869 870 871 872 873 874 875
	/*
	 * We track when the HW has completed saving the context image
	 * (i.e. when we have seen the final CS event switching out of
	 * the context) and must not overwrite the context image before
	 * then. This restricts us to only using the active engine
	 * while the previous virtualized request is inflight (so
	 * we reuse the register offsets). This is a very small
	 * hystersis on the greedy seelction algorithm.
	 */
876
	inflight = intel_context_inflight(&ve->context);
877
	if (inflight && inflight != engine)
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
		return false;

	return true;
}

static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
				     struct intel_engine_cs *engine)
{
	struct intel_engine_cs *old = ve->siblings[0];

	/* All unattached (rq->engine == old) must already be completed */

	spin_lock(&old->breadcrumbs.irq_lock);
	if (!list_empty(&ve->context.signal_link)) {
		list_move_tail(&ve->context.signal_link,
			       &engine->breadcrumbs.signalers);
		intel_engine_queue_breadcrumbs(engine);
	}
	spin_unlock(&old->breadcrumbs.irq_lock);
}

899 900 901 902 903 904 905 906 907 908 909
static struct i915_request *
last_active(const struct intel_engine_execlists *execlists)
{
	struct i915_request * const *last = execlists->active;

	while (*last && i915_request_completed(*last))
		last++;

	return *last;
}

910
static void defer_request(struct i915_request *rq, struct list_head * const pl)
911
{
912
	LIST_HEAD(list);
913 914 915 916 917 918 919 920

	/*
	 * We want to move the interrupted request to the back of
	 * the round-robin list (i.e. its priority level), but
	 * in doing so, we must then move all requests that were in
	 * flight and were waiting for the interrupted request to
	 * be run after it again.
	 */
921 922
	do {
		struct i915_dependency *p;
923

924 925
		GEM_BUG_ON(i915_request_is_active(rq));
		list_move_tail(&rq->sched.link, pl);
926

927 928 929
		list_for_each_entry(p, &rq->sched.waiters_list, wait_link) {
			struct i915_request *w =
				container_of(p->waiter, typeof(*w), sched);
930

931 932 933
			/* Leave semaphores spinning on the other engines */
			if (w->engine != rq->engine)
				continue;
934

935 936 937
			/* No waiter should start before its signaler */
			GEM_BUG_ON(i915_request_started(w) &&
				   !i915_request_completed(rq));
938

939 940 941
			GEM_BUG_ON(i915_request_is_active(w));
			if (list_empty(&w->sched.link))
				continue; /* Not yet submitted; unready */
942

943 944 945 946 947 948 949 950 951
			if (rq_prio(w) < rq_prio(rq))
				continue;

			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
			list_move_tail(&w->sched.link, &list);
		}

		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
	} while (rq);
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
}

static void defer_active(struct intel_engine_cs *engine)
{
	struct i915_request *rq;

	rq = __unwind_incomplete_requests(engine);
	if (!rq)
		return;

	defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
}

static bool
need_timeslice(struct intel_engine_cs *engine, const struct i915_request *rq)
{
	int hint;

970 971 972
	if (!intel_engine_has_semaphores(engine))
		return false;

973 974 975 976 977 978
	if (list_is_last(&rq->sched.link, &engine->active.requests))
		return false;

	hint = max(rq_prio(list_next_entry(rq, sched.link)),
		   engine->execlists.queue_priority_hint);

979
	return hint >= effective_prio(rq);
980 981
}

982 983 984 985 986 987 988 989 990
static int
switch_prio(struct intel_engine_cs *engine, const struct i915_request *rq)
{
	if (list_is_last(&rq->sched.link, &engine->active.requests))
		return INT_MIN;

	return rq_prio(list_next_entry(rq, sched.link));
}

991
static bool
992
enable_timeslice(const struct intel_engine_execlists *execlists)
993
{
994 995 996 997
	const struct i915_request *rq = *execlists->active;

	if (i915_request_completed(rq))
		return false;
998

999
	return execlists->switch_priority_hint >= effective_prio(rq);
1000 1001
}

1002 1003 1004 1005 1006
static void record_preemption(struct intel_engine_execlists *execlists)
{
	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
}

1007
static void execlists_dequeue(struct intel_engine_cs *engine)
1008
{
1009
	struct intel_engine_execlists * const execlists = &engine->execlists;
1010 1011 1012
	struct i915_request **port = execlists->pending;
	struct i915_request ** const last_port = port + execlists->port_mask;
	struct i915_request *last;
1013
	struct rb_node *rb;
1014 1015
	bool submit = false;

1016 1017
	/*
	 * Hardware submission is through 2 ports. Conceptually each port
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
1036
	 */
1037

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	for (rb = rb_first_cached(&execlists->virtual); rb; ) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq = READ_ONCE(ve->request);

		if (!rq) { /* lazily cleanup after another engine handled rq */
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);
			rb = rb_first_cached(&execlists->virtual);
			continue;
		}

		if (!virtual_matches(ve, rq, engine)) {
			rb = rb_next(rb);
			continue;
		}

		break;
	}

1058 1059 1060 1061 1062 1063 1064 1065 1066
	/*
	 * If the queue is higher priority than the last
	 * request in the currently active context, submit afresh.
	 * We will resubmit again afterwards in case we need to split
	 * the active context to interject the preemption request,
	 * i.e. we will retrigger preemption following the ack in case
	 * of trouble.
	 */
	last = last_active(execlists);
C
Chris Wilson 已提交
1067
	if (last) {
1068
		if (need_preempt(engine, last, rb)) {
1069 1070 1071 1072 1073 1074
			GEM_TRACE("%s: preempting last=%llx:%lld, prio=%d, hint=%d\n",
				  engine->name,
				  last->fence.context,
				  last->fence.seqno,
				  last->sched.attr.priority,
				  execlists->queue_priority_hint);
1075 1076
			record_preemption(execlists);

1077 1078 1079 1080 1081 1082
			/*
			 * Don't let the RING_HEAD advance past the breadcrumb
			 * as we unwind (and until we resubmit) so that we do
			 * not accidentally tell it to go backwards.
			 */
			ring_set_paused(engine, 1);
1083

1084 1085 1086 1087 1088 1089 1090 1091
			/*
			 * Note that we have not stopped the GPU at this point,
			 * so we are unwinding the incomplete requests as they
			 * remain inflight and so by the time we do complete
			 * the preemption, some of the unwound requests may
			 * complete!
			 */
			__unwind_incomplete_requests(engine);
1092

1093 1094 1095 1096 1097 1098 1099 1100 1101
			/*
			 * If we need to return to the preempted context, we
			 * need to skip the lite-restore and force it to
			 * reload the RING_TAIL. Otherwise, the HW has a
			 * tendency to ignore us rewinding the TAIL to the
			 * end of an earlier request.
			 */
			last->hw_context->lrc_desc |= CTX_DESC_FORCE_RESTORE;
			last = NULL;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
		} else if (need_timeslice(engine, last) &&
			   !timer_pending(&engine->execlists.timer)) {
			GEM_TRACE("%s: expired last=%llx:%lld, prio=%d, hint=%d\n",
				  engine->name,
				  last->fence.context,
				  last->fence.seqno,
				  last->sched.attr.priority,
				  execlists->queue_priority_hint);

			ring_set_paused(engine, 1);
			defer_active(engine);

			/*
			 * Unlike for preemption, if we rewind and continue
			 * executing the same context as previously active,
			 * the order of execution will remain the same and
			 * the tail will only advance. We do not need to
			 * force a full context restore, as a lite-restore
			 * is sufficient to resample the monotonic TAIL.
			 *
			 * If we switch to any other context, similarly we
			 * will not rewind TAIL of current context, and
			 * normal save/restore will preserve state and allow
			 * us to later continue executing the same request.
			 */
			last = NULL;
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
		} else {
			/*
			 * Otherwise if we already have a request pending
			 * for execution after the current one, we can
			 * just wait until the next CS event before
			 * queuing more. In either case we will force a
			 * lite-restore preemption event, but if we wait
			 * we hopefully coalesce several updates into a single
			 * submission.
			 */
			if (!list_is_last(&last->sched.link,
					  &engine->active.requests))
				return;

			/*
			 * WaIdleLiteRestore:bdw,skl
			 * Apply the wa NOOPs to prevent
			 * ring:HEAD == rq:TAIL as we resubmit the
			 * request. See gen8_emit_fini_breadcrumb() for
			 * where we prepare the padding after the
			 * end of the request.
			 */
			last->tail = last->wa_tail;
		}
C
Chris Wilson 已提交
1152 1153
	}

1154 1155 1156 1157 1158
	while (rb) { /* XXX virtual is always taking precedence */
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq;

1159
		spin_lock(&ve->base.active.lock);
1160 1161 1162

		rq = ve->request;
		if (unlikely(!rq)) { /* lost the race to a sibling */
1163
			spin_unlock(&ve->base.active.lock);
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);
			rb = rb_first_cached(&execlists->virtual);
			continue;
		}

		GEM_BUG_ON(rq != ve->request);
		GEM_BUG_ON(rq->engine != &ve->base);
		GEM_BUG_ON(rq->hw_context != &ve->context);

		if (rq_prio(rq) >= queue_prio(execlists)) {
			if (!virtual_matches(ve, rq, engine)) {
1176
				spin_unlock(&ve->base.active.lock);
1177 1178 1179 1180
				rb = rb_next(rb);
				continue;
			}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
			if (i915_request_completed(rq)) {
				ve->request = NULL;
				ve->base.execlists.queue_priority_hint = INT_MIN;
				rb_erase_cached(rb, &execlists->virtual);
				RB_CLEAR_NODE(rb);

				rq->engine = engine;
				__i915_request_submit(rq);

				spin_unlock(&ve->base.active.lock);

				rb = rb_first_cached(&execlists->virtual);
				continue;
			}

1196
			if (last && !can_merge_rq(last, rq)) {
1197
				spin_unlock(&ve->base.active.lock);
1198
				return; /* leave this for another */
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
			}

			GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n",
				  engine->name,
				  rq->fence.context,
				  rq->fence.seqno,
				  i915_request_completed(rq) ? "!" :
				  i915_request_started(rq) ? "*" :
				  "",
				  yesno(engine != ve->siblings[0]));

			ve->request = NULL;
			ve->base.execlists.queue_priority_hint = INT_MIN;
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);

1215
			GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1216 1217 1218 1219 1220 1221
			rq->engine = engine;

			if (engine != ve->siblings[0]) {
				u32 *regs = ve->context.lrc_reg_state;
				unsigned int n;

1222
				GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1223 1224 1225 1226

				if (!intel_engine_has_relative_mmio(engine))
					virtual_update_register_offsets(regs,
									engine);
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

				if (!list_empty(&ve->context.signals))
					virtual_xfer_breadcrumbs(ve, engine);

				/*
				 * Move the bound engine to the top of the list
				 * for future execution. We then kick this
				 * tasklet first before checking others, so that
				 * we preferentially reuse this set of bound
				 * registers.
				 */
				for (n = 1; n < ve->num_siblings; n++) {
					if (ve->siblings[n] == engine) {
						swap(ve->siblings[n],
						     ve->siblings[0]);
						break;
					}
				}

				GEM_BUG_ON(ve->siblings[0] != engine);
			}

			__i915_request_submit(rq);
1250 1251 1252 1253
			if (!i915_request_completed(rq)) {
				submit = true;
				last = rq;
			}
1254 1255
		}

1256
		spin_unlock(&ve->base.active.lock);
1257 1258 1259
		break;
	}

1260
	while ((rb = rb_first_cached(&execlists->queue))) {
1261
		struct i915_priolist *p = to_priolist(rb);
1262
		struct i915_request *rq, *rn;
1263
		int i;
1264

1265
		priolist_for_each_request_consume(rq, rn, p, i) {
1266 1267 1268
			if (i915_request_completed(rq))
				goto skip;

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
1279
			 */
1280
			if (last && !can_merge_rq(last, rq)) {
1281 1282 1283 1284 1285
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
1286
				if (port == last_port)
1287 1288
					goto done;

1289 1290 1291 1292 1293 1294 1295 1296
				/*
				 * We must not populate both ELSP[] with the
				 * same LRCA, i.e. we must submit 2 different
				 * contexts if we submit 2 ELSP.
				 */
				if (last->hw_context == rq->hw_context)
					goto done;

1297 1298 1299 1300 1301 1302 1303
				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
1304
				if (ctx_single_port_submission(last->hw_context) ||
1305
				    ctx_single_port_submission(rq->hw_context))
1306 1307
					goto done;

1308
				*port = execlists_schedule_in(last, port - execlists->pending);
1309 1310
				port++;
			}
1311

1312 1313
			last = rq;
			submit = true;
1314 1315
skip:
			__i915_request_submit(rq);
1316
		}
1317

1318
		rb_erase_cached(&p->node, &execlists->queue);
1319
		i915_priolist_free(p);
1320
	}
1321

1322
done:
1323 1324 1325
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
1326
	 * We choose the priority hint such that if we add a request of greater
1327 1328 1329
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
1330
	 * HW. We derive the priority hint then as the first "hole" in
1331 1332 1333 1334
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
1335
	 * user, see queue_request(), the priority hint is bumped to that
1336 1337 1338
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
1339
	execlists->queue_priority_hint = queue_prio(execlists);
1340 1341 1342
	GEM_TRACE("%s: queue_priority_hint:%d, submit:%s\n",
		  engine->name, execlists->queue_priority_hint,
		  yesno(submit));
1343

1344
	if (submit) {
1345 1346
		*port = execlists_schedule_in(last, port - execlists->pending);
		memset(port + 1, 0, (last_port - port) * sizeof(*port));
1347 1348
		execlists->switch_priority_hint =
			switch_prio(engine, *execlists->pending);
1349
		execlists_submit_ports(engine);
1350 1351
	} else {
		ring_set_paused(engine, 0);
1352
	}
1353 1354
}

1355 1356
static void
cancel_port_requests(struct intel_engine_execlists * const execlists)
1357
{
1358
	struct i915_request * const *port, *rq;
1359

1360 1361 1362
	for (port = execlists->pending; (rq = *port); port++)
		execlists_schedule_out(rq);
	memset(execlists->pending, 0, sizeof(execlists->pending));
1363

1364 1365 1366 1367
	for (port = execlists->active; (rq = *port); port++)
		execlists_schedule_out(rq);
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));
1368 1369
}

1370 1371 1372 1373 1374 1375 1376
static inline void
invalidate_csb_entries(const u32 *first, const u32 *last)
{
	clflush((void *)first);
	clflush((void *)last);
}

1377 1378 1379 1380 1381 1382
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}

1383 1384 1385 1386 1387 1388 1389
enum csb_step {
	CSB_NOP,
	CSB_PROMOTE,
	CSB_PREEMPT,
	CSB_COMPLETE,
};

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
/*
 * Starting with Gen12, the status has a new format:
 *
 *     bit  0:     switched to new queue
 *     bit  1:     reserved
 *     bit  2:     semaphore wait mode (poll or signal), only valid when
 *                 switch detail is set to "wait on semaphore"
 *     bits 3-5:   engine class
 *     bits 6-11:  engine instance
 *     bits 12-14: reserved
 *     bits 15-25: sw context id of the lrc the GT switched to
 *     bits 26-31: sw counter of the lrc the GT switched to
 *     bits 32-35: context switch detail
 *                  - 0: ctx complete
 *                  - 1: wait on sync flip
 *                  - 2: wait on vblank
 *                  - 3: wait on scanline
 *                  - 4: wait on semaphore
 *                  - 5: context preempted (not on SEMAPHORE_WAIT or
 *                       WAIT_FOR_EVENT)
 *     bit  36:    reserved
 *     bits 37-43: wait detail (for switch detail 1 to 4)
 *     bits 44-46: reserved
 *     bits 47-57: sw context id of the lrc the GT switched away from
 *     bits 58-63: sw counter of the lrc the GT switched away from
 */
static inline enum csb_step
gen12_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
{
	u32 lower_dw = csb[0];
	u32 upper_dw = csb[1];
	bool ctx_to_valid = GEN12_CSB_CTX_VALID(lower_dw);
	bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_dw);
	bool new_queue = lower_dw & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE;

	if (!ctx_away_valid && ctx_to_valid)
		return CSB_PROMOTE;

	/*
	 * The context switch detail is not guaranteed to be 5 when a preemption
	 * occurs, so we can't just check for that. The check below works for
	 * all the cases we care about, including preemptions of WAIT
	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
	 * would require some extra handling, but we don't support that.
	 */
	if (new_queue && ctx_away_valid)
		return CSB_PREEMPT;

	/*
	 * switch detail = 5 is covered by the case above and we do not expect a
	 * context switch on an unsuccessful wait instruction since we always
	 * use polling mode.
	 */
	GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_dw));

	if (*execlists->active) {
		GEM_BUG_ON(!ctx_away_valid);
		return CSB_COMPLETE;
	}

	return CSB_NOP;
}

1453
static inline enum csb_step
1454
gen8_csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
{
	unsigned int status = *csb;

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return CSB_PROMOTE;

	if (status & GEN8_CTX_STATUS_PREEMPTED)
		return CSB_PREEMPT;

	if (*execlists->active)
		return CSB_COMPLETE;

	return CSB_NOP;
}

1470
static void process_csb(struct intel_engine_cs *engine)
1471
{
1472
	struct intel_engine_execlists * const execlists = &engine->execlists;
1473
	const u32 * const buf = execlists->csb_status;
1474
	const u8 num_entries = execlists->csb_size;
1475
	u8 head, tail;
1476

1477
	GEM_BUG_ON(USES_GUC_SUBMISSION(engine->i915));
1478

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	/*
	 * Note that csb_write, csb_status may be either in HWSP or mmio.
	 * When reading from the csb_write mmio register, we have to be
	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
	 * the low 4bits. As it happens we know the next 4bits are always
	 * zero and so we can simply masked off the low u8 of the register
	 * and treat it identically to reading from the HWSP (without having
	 * to use explicit shifting and masking, and probably bifurcating
	 * the code to handle the legacy mmio read).
	 */
	head = execlists->csb_head;
	tail = READ_ONCE(*execlists->csb_write);
	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
	if (unlikely(head == tail))
		return;
1494

1495 1496 1497 1498 1499 1500 1501 1502 1503
	/*
	 * Hopefully paired with a wmb() in HW!
	 *
	 * We must complete the read of the write pointer before any reads
	 * from the CSB, so that we do not see stale values. Without an rmb
	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
	 * we perform the READ_ONCE(*csb_write).
	 */
	rmb();
1504

1505
	do {
1506 1507
		enum csb_step csb_step;

1508
		if (++head == num_entries)
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
			head = 0;

		/*
		 * We are flying near dragons again.
		 *
		 * We hold a reference to the request in execlist_port[]
		 * but no more than that. We are operating in softirq
		 * context and so cannot hold any mutex or sleep. That
		 * prevents us stopping the requests we are processing
		 * in port[] from being retired simultaneously (the
		 * breadcrumb will be complete before we see the
		 * context-switch). As we only hold the reference to the
		 * request, any pointer chasing underneath the request
		 * is subject to a potential use-after-free. Thus we
		 * store all of the bookkeeping within port[] as
		 * required, and avoid using unguarded pointers beneath
		 * request itself. The same applies to the atomic
		 * status notifier.
		 */

1529
		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x\n",
1530
			  engine->name, head,
1531
			  buf[2 * head + 0], buf[2 * head + 1]);
1532

1533 1534 1535 1536 1537 1538
		if (INTEL_GEN(engine->i915) >= 12)
			csb_step = gen12_csb_parse(execlists, buf + 2 * head);
		else
			csb_step = gen8_csb_parse(execlists, buf + 2 * head);

		switch (csb_step) {
1539 1540 1541 1542 1543 1544 1545 1546
		case CSB_PREEMPT: /* cancel old inflight, prepare for switch */
			trace_ports(execlists, "preempted", execlists->active);

			while (*execlists->active)
				execlists_schedule_out(*execlists->active++);

			/* fallthrough */
		case CSB_PROMOTE: /* switch pending to inflight */
1547 1548 1549 1550 1551 1552 1553
			GEM_BUG_ON(*execlists->active);
			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
			execlists->active =
				memcpy(execlists->inflight,
				       execlists->pending,
				       execlists_num_ports(execlists) *
				       sizeof(*execlists->pending));
1554

1555
			if (enable_timeslice(execlists))
1556 1557
				mod_timer(&execlists->timer, jiffies + 1);

1558 1559
			if (!inject_preempt_hang(execlists))
				ring_set_paused(engine, 0);
1560 1561

			WRITE_ONCE(execlists->pending[0], NULL);
1562
			break;
1563

1564 1565
		case CSB_COMPLETE: /* port0 completed, advanced to port1 */
			trace_ports(execlists, "completed", execlists->active);
1566

1567 1568 1569 1570 1571 1572
			/*
			 * We rely on the hardware being strongly
			 * ordered, that the breadcrumb write is
			 * coherent (visible from the CPU) before the
			 * user interrupt and CSB is processed.
			 */
1573 1574
			GEM_BUG_ON(!i915_request_completed(*execlists->active) &&
				   !reset_in_progress(execlists));
1575
			execlists_schedule_out(*execlists->active++);
C
Chris Wilson 已提交
1576

1577 1578
			GEM_BUG_ON(execlists->active - execlists->inflight >
				   execlists_num_ports(execlists));
1579 1580 1581 1582
			break;

		case CSB_NOP:
			break;
1583
		}
1584
	} while (head != tail);
1585

1586
	execlists->csb_head = head;
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598

	/*
	 * Gen11 has proven to fail wrt global observation point between
	 * entry and tail update, failing on the ordering and thus
	 * we see an old entry in the context status buffer.
	 *
	 * Forcibly evict out entries for the next gpu csb update,
	 * to increase the odds that we get a fresh entries with non
	 * working hardware. The cost for doing so comes out mostly with
	 * the wash as hardware, working or not, will need to do the
	 * invalidation before.
	 */
1599
	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1600
}
1601

1602
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1603
{
1604
	lockdep_assert_held(&engine->active.lock);
1605
	if (!engine->execlists.pending[0])
1606
		execlists_dequeue(engine);
1607 1608
}

1609 1610 1611 1612 1613 1614 1615 1616 1617
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	unsigned long flags;

1618 1619 1620 1621 1622 1623
	process_csb(engine);
	if (!READ_ONCE(engine->execlists.pending[0])) {
		spin_lock_irqsave(&engine->active.lock, flags);
		__execlists_submission_tasklet(engine);
		spin_unlock_irqrestore(&engine->active.lock, flags);
	}
1624 1625
}

1626 1627 1628 1629 1630 1631 1632 1633 1634
static void execlists_submission_timer(struct timer_list *timer)
{
	struct intel_engine_cs *engine =
		from_timer(engine, timer, execlists.timer);

	/* Kick the tasklet for some interrupt coalescing and reset handling */
	tasklet_hi_schedule(&engine->execlists.tasklet);
}

1635
static void queue_request(struct intel_engine_cs *engine,
1636
			  struct i915_sched_node *node,
1637
			  int prio)
1638
{
1639
	GEM_BUG_ON(!list_empty(&node->link));
1640
	list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
}

static void __submit_queue_imm(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	if (reset_in_progress(execlists))
		return; /* defer until we restart the engine following reset */

	if (execlists->tasklet.func == execlists_submission_tasklet)
		__execlists_submission_tasklet(engine);
	else
		tasklet_hi_schedule(&execlists->tasklet);
1654 1655
}

1656 1657
static void submit_queue(struct intel_engine_cs *engine,
			 const struct i915_request *rq)
1658
{
1659 1660 1661 1662 1663 1664 1665
	struct intel_engine_execlists *execlists = &engine->execlists;

	if (rq_prio(rq) <= execlists->queue_priority_hint)
		return;

	execlists->queue_priority_hint = rq_prio(rq);
	__submit_queue_imm(engine);
1666 1667
}

1668
static void execlists_submit_request(struct i915_request *request)
1669
{
1670
	struct intel_engine_cs *engine = request->engine;
1671
	unsigned long flags;
1672

1673
	/* Will be called from irq-context when using foreign fences. */
1674
	spin_lock_irqsave(&engine->active.lock, flags);
1675

1676
	queue_request(engine, &request->sched, rq_prio(request));
1677

1678
	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1679
	GEM_BUG_ON(list_empty(&request->sched.link));
1680

1681
	submit_queue(engine, request);
1682

1683
	spin_unlock_irqrestore(&engine->active.lock, flags);
1684 1685
}

1686
static void __execlists_context_fini(struct intel_context *ce)
1687
{
1688
	intel_ring_put(ce->ring);
1689
	i915_vma_put(ce->state);
1690 1691
}

1692
static void execlists_context_destroy(struct kref *kref)
1693
{
1694 1695
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);

1696
	GEM_BUG_ON(!i915_active_is_idle(&ce->active));
1697
	GEM_BUG_ON(intel_context_is_pinned(ce));
1698 1699 1700 1701

	if (ce->state)
		__execlists_context_fini(ce);

1702
	intel_context_fini(ce);
1703 1704 1705
	intel_context_free(ce);
}

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
static void
set_redzone(void *vaddr, const struct intel_engine_cs *engine)
{
	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return;

	vaddr += LRC_HEADER_PAGES * PAGE_SIZE;
	vaddr += engine->context_size;

	memset(vaddr, POISON_INUSE, I915_GTT_PAGE_SIZE);
}

static void
check_redzone(const void *vaddr, const struct intel_engine_cs *engine)
{
	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		return;

	vaddr += LRC_HEADER_PAGES * PAGE_SIZE;
	vaddr += engine->context_size;

	if (memchr_inv(vaddr, POISON_INUSE, I915_GTT_PAGE_SIZE))
		dev_err_once(engine->i915->drm.dev,
			     "%s context redzone overwritten!\n",
			     engine->name);
}

1733
static void execlists_context_unpin(struct intel_context *ce)
1734
{
1735 1736 1737
	check_redzone((void *)ce->lrc_reg_state - LRC_STATE_PN * PAGE_SIZE,
		      ce->engine);

1738
	i915_gem_context_unpin_hw_id(ce->gem_context);
1739
	i915_gem_object_unpin_map(ce->state->obj);
1740
	intel_ring_reset(ce->ring, ce->ring->tail);
1741 1742
}

1743
static void
1744 1745
__execlists_update_reg_state(struct intel_context *ce,
			     struct intel_engine_cs *engine)
1746 1747
{
	struct intel_ring *ring = ce->ring;
1748 1749 1750 1751
	u32 *regs = ce->lrc_reg_state;

	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1752 1753 1754 1755 1756 1757

	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
	regs[CTX_RING_HEAD + 1] = ring->head;
	regs[CTX_RING_TAIL + 1] = ring->tail;

	/* RPCS */
1758
	if (engine->class == RENDER_CLASS) {
1759
		regs[CTX_R_PWR_CLK_STATE + 1] =
1760
			intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1761 1762 1763

		i915_oa_init_reg_state(engine, ce, regs);
	}
1764 1765
}

1766 1767 1768
static int
__execlists_context_pin(struct intel_context *ce,
			struct intel_engine_cs *engine)
1769
{
1770
	void *vaddr;
1771
	int ret;
1772

1773
	GEM_BUG_ON(!ce->state);
1774

1775
	ret = intel_context_active_acquire(ce);
1776
	if (ret)
1777
		goto err;
1778
	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
1779

1780
	vaddr = i915_gem_object_pin_map(ce->state->obj,
1781
					i915_coherent_map_type(engine->i915) |
1782
					I915_MAP_OVERRIDE);
1783 1784
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1785
		goto unpin_active;
1786 1787
	}

1788
	ret = i915_gem_context_pin_hw_id(ce->gem_context);
1789
	if (ret)
1790
		goto unpin_map;
1791

1792
	ce->lrc_desc = lrc_descriptor(ce, engine);
1793
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1794
	__execlists_update_reg_state(ce, engine);
1795

1796
	return 0;
1797

1798
unpin_map:
1799
	i915_gem_object_unpin_map(ce->state->obj);
1800 1801
unpin_active:
	intel_context_active_release(ce);
1802
err:
1803
	return ret;
1804 1805
}

1806
static int execlists_context_pin(struct intel_context *ce)
1807
{
1808
	return __execlists_context_pin(ce, ce->engine);
1809 1810
}

1811 1812 1813 1814 1815
static int execlists_context_alloc(struct intel_context *ce)
{
	return __execlists_context_alloc(ce, ce->engine);
}

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
static void execlists_context_reset(struct intel_context *ce)
{
	/*
	 * Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * The contexts that are stilled pinned on resume belong to the
	 * kernel, and are local to each engine. All other contexts will
	 * have their head/tail sanitized upon pinning before use, so they
	 * will never see garbage,
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	intel_ring_reset(ce->ring, 0);
	__execlists_update_reg_state(ce, ce->engine);
}

1838
static const struct intel_context_ops execlists_context_ops = {
1839 1840
	.alloc = execlists_context_alloc,

1841
	.pin = execlists_context_pin,
1842
	.unpin = execlists_context_unpin,
1843

1844 1845 1846
	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

1847
	.reset = execlists_context_reset,
1848 1849 1850
	.destroy = execlists_context_destroy,
};

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
static int gen8_emit_init_breadcrumb(struct i915_request *rq)
{
	u32 *cs;

	GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Check if we have been preempted before we even get started.
	 *
	 * After this point i915_request_started() reports true, even if
	 * we get preempted and so are no longer running.
	 */
	*cs++ = MI_ARB_CHECK;
	*cs++ = MI_NOOP;

	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
	*cs++ = rq->timeline->hwsp_offset;
	*cs++ = 0;
	*cs++ = rq->fence.seqno - 1;

	intel_ring_advance(rq, cs);
1876 1877 1878 1879

	/* Record the updated position of the request's payload */
	rq->infix = intel_ring_offset(rq, cs);

1880 1881 1882
	return 0;
}

1883
static int execlists_request_alloc(struct i915_request *request)
1884
{
1885
	int ret;
1886

1887
	GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1888

1889 1890
	/*
	 * Flush enough space to reduce the likelihood of waiting after
1891 1892 1893 1894 1895
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1896 1897
	/*
	 * Note that after this point, we have committed to using
1898 1899 1900 1901 1902 1903
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

1904
	/* Unconditionally invalidate GPU caches and TLBs. */
1905
	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1906 1907 1908
	if (ret)
		return ret;

1909 1910 1911 1912
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1929 1930
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1931
{
1932
	/* NB no one else is allowed to scribble over scratch + 256! */
1933 1934
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1935 1936
	*batch++ = intel_gt_scratch_offset(engine->gt,
					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1937 1938 1939 1940 1941 1942
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1943 1944 1945 1946
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1947 1948 1949

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1950 1951
	*batch++ = intel_gt_scratch_offset(engine->gt,
					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1952 1953 1954
	*batch++ = 0;

	return batch;
1955 1956
}

1957 1958 1959 1960 1961 1962
static u32 slm_offset(struct intel_engine_cs *engine)
{
	return intel_gt_scratch_offset(engine->gt,
				       INTEL_GT_SCRATCH_FIELD_CLEAR_SLM_WA);
}

1963 1964 1965 1966 1967 1968
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1969
 *
1970 1971
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1972
 *
1973 1974 1975 1976
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1977
 */
1978
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1979
{
1980
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1981
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1982

1983
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1984 1985
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1986

1987 1988
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1989 1990 1991 1992 1993
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
1994
				       slm_offset(engine));
1995

C
Chris Wilson 已提交
1996 1997
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1998
	/* Pad to end of cacheline */
1999 2000
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
2001 2002 2003 2004 2005 2006 2007

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

2008
	return batch;
2009 2010
}

2011 2012 2013 2014 2015 2016
struct lri {
	i915_reg_t reg;
	u32 value;
};

static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
2017
{
2018
	GEM_BUG_ON(!count || count > 63);
C
Chris Wilson 已提交
2019

2020 2021 2022 2023 2024 2025
	*batch++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*batch++ = i915_mmio_reg_offset(lri->reg);
		*batch++ = lri->value;
	} while (lri++, --count);
	*batch++ = MI_NOOP;
2026

2027 2028
	return batch;
}
2029

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	static const struct lri lri[] = {
		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
		{
			COMMON_SLICE_CHICKEN2,
			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
				       0),
		},

		/* BSpec: 11391 */
		{
			FF_SLICE_CHICKEN,
			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
		},

		/* BSpec: 11299 */
		{
			_3D_CHICKEN3,
			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
		}
	};
2054

2055
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2056

2057 2058
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
2059

2060
	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
2061

2062
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
2077 2078 2079 2080 2081 2082
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
2083 2084
	}

C
Chris Wilson 已提交
2085 2086
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

2087
	/* Pad to end of cacheline */
2088 2089
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
2090

2091
	return batch;
2092 2093
}

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

2128 2129 2130
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
2131
{
2132 2133 2134
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
2135

2136
	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
2137 2138
	if (IS_ERR(obj))
		return PTR_ERR(obj);
2139

2140
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
2141 2142 2143
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
2144 2145
	}

2146
	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2147 2148 2149 2150
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
2151
	return 0;
2152 2153 2154 2155

err:
	i915_gem_object_put(obj);
	return err;
2156 2157
}

2158
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
2159
{
2160
	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
2161 2162
}

2163 2164
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

2165
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
2166
{
2167
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2168 2169 2170
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
2171
	struct page *page;
2172 2173
	void *batch, *batch_ptr;
	unsigned int i;
2174
	int ret;
2175

2176 2177
	if (engine->class != RENDER_CLASS)
		return 0;
2178

2179
	switch (INTEL_GEN(engine->i915)) {
2180
	case 12:
2181 2182
	case 11:
		return 0;
2183
	case 10:
2184 2185 2186
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
2187 2188
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
2189
		wa_bb_fn[1] = NULL;
2190 2191 2192
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
2193
		wa_bb_fn[1] = NULL;
2194 2195 2196
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
2197
		return 0;
2198
	}
2199

2200
	ret = lrc_setup_wa_ctx(engine);
2201 2202 2203 2204 2205
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

2206
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
2207
	batch = batch_ptr = kmap_atomic(page);
2208

2209 2210 2211 2212 2213 2214 2215
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
2216 2217
		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
						  CACHELINE_BYTES))) {
2218 2219 2220
			ret = -EINVAL;
			break;
		}
2221 2222
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
2223
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
2224 2225
	}

2226 2227
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

2228 2229
	kunmap_atomic(batch);
	if (ret)
2230
		lrc_destroy_wa_ctx(engine);
2231 2232 2233 2234

	return ret;
}

2235
static void enable_execlists(struct intel_engine_cs *engine)
2236
{
2237 2238 2239 2240
	u32 mode;

	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);

2241
	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2242

2243
	if (INTEL_GEN(engine->i915) >= 11)
2244
		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2245
	else
2246 2247
		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2248

2249
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2250

2251 2252 2253
	ENGINE_WRITE_FW(engine,
			RING_HWS_PGA,
			i915_ggtt_offset(engine->status_page.vma));
2254
	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2255 2256
}

2257 2258 2259 2260
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
	bool unexpected = false;

2261
	if (ENGINE_READ_FW(engine, RING_MI_MODE) & STOP_RING) {
2262 2263 2264 2265 2266 2267 2268
		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
		unexpected = true;
	}

	return unexpected;
}

2269
static int execlists_resume(struct intel_engine_cs *engine)
2270
{
2271
	intel_engine_apply_workarounds(engine);
2272
	intel_engine_apply_whitelist(engine);
2273

2274
	intel_mocs_init_engine(engine);
2275

2276
	intel_engine_reset_breadcrumbs(engine);
2277

2278 2279 2280 2281 2282 2283
	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p, NULL);
	}

2284
	enable_execlists(engine);
2285

2286
	return 0;
2287 2288
}

2289
static void execlists_reset_prepare(struct intel_engine_cs *engine)
2290 2291
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
2292
	unsigned long flags;
2293

2294 2295
	GEM_TRACE("%s: depth<-%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
2296 2297 2298 2299 2300 2301

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
2302
	 * calling engine->resume() and also writing the ELSP.
2303 2304 2305 2306
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);
2307
	GEM_BUG_ON(!reset_in_progress(execlists));
2308

2309
	/* And flush any current direct submission. */
2310 2311
	spin_lock_irqsave(&engine->active.lock, flags);
	spin_unlock_irqrestore(&engine->active.lock, flags);
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325

	/*
	 * We stop engines, otherwise we might get failed reset and a
	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
	 * from system hang if batchbuffer is progressing when
	 * the reset is issued, regardless of READY_TO_RESET ack.
	 * Thus assume it is best to stop engines on all gens
	 * where we have a gpu reset.
	 *
	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
	 *
	 * FIXME: Wa for more modern gens needs to be validated
	 */
	intel_engine_stop_cs(engine);
2326 2327
}

2328
static void reset_csb_pointers(struct intel_engine_cs *engine)
2329
{
2330
	struct intel_engine_execlists * const execlists = &engine->execlists;
2331 2332
	const unsigned int reset_value = execlists->csb_size - 1;

2333 2334
	ring_set_paused(engine, 0);

2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
	/*
	 * After a reset, the HW starts writing into CSB entry [0]. We
	 * therefore have to set our HEAD pointer back one entry so that
	 * the *first* entry we check is entry 0. To complicate this further,
	 * as we don't wait for the first interrupt after reset, we have to
	 * fake the HW write to point back to the last entry so that our
	 * inline comparison of our cached head position against the last HW
	 * write works even before the first interrupt.
	 */
	execlists->csb_head = reset_value;
	WRITE_ONCE(*execlists->csb_write, reset_value);
2346
	wmb(); /* Make sure this is visible to HW (paranoia?) */
2347 2348 2349 2350 2351

	invalidate_csb_entries(&execlists->csb_status[0],
			       &execlists->csb_status[reset_value]);
}

2352 2353
static struct i915_request *active_request(struct i915_request *rq)
{
2354 2355
	const struct list_head * const list = &rq->timeline->requests;
	const struct intel_context * const ce = rq->hw_context;
2356 2357
	struct i915_request *active = NULL;

2358
	list_for_each_entry_from_reverse(rq, list, link) {
2359 2360 2361
		if (i915_request_completed(rq))
			break;

2362
		if (rq->hw_context != ce)
2363 2364 2365 2366 2367 2368 2369 2370
			break;

		active = rq;
	}

	return active;
}

2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
static void __execlists_reset_reg_state(const struct intel_context *ce,
					const struct intel_engine_cs *engine)
{
	u32 *regs = ce->lrc_reg_state;

	if (INTEL_GEN(engine->i915) >= 9) {
		regs[GEN9_CTX_RING_MI_MODE + 1] &= ~STOP_RING;
		regs[GEN9_CTX_RING_MI_MODE + 1] |= STOP_RING << 16;
	}
}

2382
static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
2383
{
2384
	struct intel_engine_execlists * const execlists = &engine->execlists;
2385
	struct intel_context *ce;
2386
	struct i915_request *rq;
2387
	u32 *regs;
2388

2389 2390 2391
	process_csb(engine); /* drain preemption events */

	/* Following the reset, we need to reload the CSB read/write pointers */
2392
	reset_csb_pointers(engine);
2393 2394 2395 2396 2397 2398

	/*
	 * Save the currently executing context, even if we completed
	 * its request, it was still running at the time of the
	 * reset and will have been clobbered.
	 */
2399 2400
	rq = execlists_active(execlists);
	if (!rq)
2401
		goto unwind;
2402

2403
	ce = rq->hw_context;
2404 2405
	GEM_BUG_ON(i915_active_is_idle(&ce->active));
	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
2406 2407 2408 2409 2410

	/* Proclaim we have exclusive access to the context image! */
	GEM_BUG_ON(!intel_context_is_pinned(ce));
	mutex_acquire(&ce->pin_mutex.dep_map, 2, 0, _THIS_IP_);

2411 2412 2413
	rq = active_request(rq);
	if (!rq) {
		ce->ring->head = ce->ring->tail;
2414
		goto out_replay;
2415 2416 2417
	}

	ce->ring->head = intel_ring_wrap(ce->ring, rq->head);
2418

2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	/*
	 * If this request hasn't started yet, e.g. it is waiting on a
	 * semaphore, we need to avoid skipping the request or else we
	 * break the signaling chain. However, if the context is corrupt
	 * the request will not restart and we will be stuck with a wedged
	 * device. It is quite often the case that if we issue a reset
	 * while the GPU is loading the context image, that the context
	 * image becomes corrupt.
	 *
	 * Otherwise, if we have not started yet, the request should replay
	 * perfectly and we do not need to flag the result as being erroneous.
	 */
2431
	if (!i915_request_started(rq))
2432
		goto out_replay;
2433

2434 2435
	/*
	 * If the request was innocent, we leave the request in the ELSP
2436 2437 2438 2439 2440 2441 2442 2443 2444
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
2445
	__i915_request_reset(rq, stalled);
2446
	if (!stalled)
2447
		goto out_replay;
2448

2449 2450
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
2451 2452 2453 2454 2455 2456
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
2457
	regs = ce->lrc_reg_state;
2458 2459 2460 2461
	if (engine->pinned_default_state) {
		memcpy(regs, /* skip restoring the vanilla PPHWSP */
		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
		       engine->context_size - PAGE_SIZE);
2462
	}
2463
	execlists_init_reg_state(regs, ce, engine, ce->ring);
2464

2465
out_replay:
2466 2467
	GEM_TRACE("%s replay {head:%04x, tail:%04x\n",
		  engine->name, ce->ring->head, ce->ring->tail);
2468
	intel_ring_update_space(ce->ring);
2469
	__execlists_reset_reg_state(ce, engine);
2470
	__execlists_update_reg_state(ce, engine);
2471
	mutex_release(&ce->pin_mutex.dep_map, 0, _THIS_IP_);
2472

2473
unwind:
2474
	/* Push back any incomplete requests for replay after the reset. */
2475
	cancel_port_requests(execlists);
2476
	__unwind_incomplete_requests(engine);
2477
}
2478

2479 2480 2481 2482 2483 2484
static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
{
	unsigned long flags;

	GEM_TRACE("%s\n", engine->name);

2485
	spin_lock_irqsave(&engine->active.lock, flags);
2486 2487 2488

	__execlists_reset(engine, stalled);

2489
	spin_unlock_irqrestore(&engine->active.lock, flags);
2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
}

static void nop_submission_tasklet(unsigned long data)
{
	/* The driver is wedged; don't process any more events. */
}

static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	GEM_TRACE("%s\n", engine->name);

	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
2520
	spin_lock_irqsave(&engine->active.lock, flags);
2521 2522 2523 2524

	__execlists_reset(engine, true);

	/* Mark all executing requests as skipped. */
2525
	list_for_each_entry(rq, &engine->active.requests, sched.link) {
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
		if (!i915_request_signaled(rq))
			dma_fence_set_error(&rq->fence, -EIO);

		i915_request_mark_complete(rq);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
	while ((rb = rb_first_cached(&execlists->queue))) {
		struct i915_priolist *p = to_priolist(rb);
		int i;

		priolist_for_each_request_consume(rq, rn, p, i) {
			list_del_init(&rq->sched.link);
			__i915_request_submit(rq);
			dma_fence_set_error(&rq->fence, -EIO);
			i915_request_mark_complete(rq);
		}

		rb_erase_cached(&p->node, &execlists->queue);
		i915_priolist_free(p);
	}

2548 2549 2550 2551 2552 2553 2554 2555
	/* Cancel all attached virtual engines */
	while ((rb = rb_first_cached(&execlists->virtual))) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);

		rb_erase_cached(rb, &execlists->virtual);
		RB_CLEAR_NODE(rb);

2556
		spin_lock(&ve->base.active.lock);
2557 2558 2559 2560 2561 2562 2563 2564
		if (ve->request) {
			ve->request->engine = engine;
			__i915_request_submit(ve->request);
			dma_fence_set_error(&ve->request->fence, -EIO);
			i915_request_mark_complete(ve->request);
			ve->base.execlists.queue_priority_hint = INT_MIN;
			ve->request = NULL;
		}
2565
		spin_unlock(&ve->base.active.lock);
2566 2567
	}

2568 2569 2570 2571 2572 2573 2574
	/* Remaining _unready_ requests will be nop'ed when submitted */

	execlists->queue_priority_hint = INT_MIN;
	execlists->queue = RB_ROOT_CACHED;

	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
	execlists->tasklet.func = nop_submission_tasklet;
2575

2576
	spin_unlock_irqrestore(&engine->active.lock, flags);
2577 2578
}

2579 2580
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
2581 2582
	struct intel_engine_execlists * const execlists = &engine->execlists;

2583
	/*
2584 2585 2586
	 * After a GPU reset, we may have requests to replay. Do so now while
	 * we still have the forcewake to be sure that the GPU is not allowed
	 * to sleep before we restart and reload a context.
2587
	 */
2588
	GEM_BUG_ON(!reset_in_progress(execlists));
2589 2590
	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
		execlists->tasklet.func(execlists->tasklet.data);
2591

2592 2593 2594
	if (__tasklet_enable(&execlists->tasklet))
		/* And kick in case we missed a new request submission. */
		tasklet_hi_schedule(&execlists->tasklet);
2595 2596
	GEM_TRACE("%s: depth->%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
2597 2598
}

2599
static int gen8_emit_bb_start(struct i915_request *rq,
2600
			      u64 offset, u32 len,
2601
			      const unsigned int flags)
2602
{
2603
	u32 *cs;
2604

2605
	cs = intel_ring_begin(rq, 4);
2606 2607
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2608

2609 2610 2611 2612 2613 2614 2615
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
2616 2617 2618 2619 2620
	 * we would be fine.  However, for gen8 there is another w/a that
	 * requires us to not preempt inside GPGPU execution, so we keep
	 * arbitration disabled for gen8 batches. Arbitration will be
	 * re-enabled before we close the request
	 * (engine->emit_fini_breadcrumb).
2621
	 */
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

	/* FIXME(BDW+): Address space and security selectors. */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);

	intel_ring_advance(rq, cs);

	return 0;
}

static int gen9_emit_bb_start(struct i915_request *rq,
			      u64 offset, u32 len,
			      const unsigned int flags)
{
	u32 *cs;

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

2645 2646
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

2647
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2648
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2649 2650
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
2651 2652 2653

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
2654

2655
	intel_ring_advance(rq, cs);
2656 2657 2658 2659

	return 0;
}

2660
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2661
{
2662 2663 2664
	ENGINE_WRITE(engine, RING_IMR,
		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
	ENGINE_POSTING_READ(engine, RING_IMR);
2665 2666
}

2667
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2668
{
2669
	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2670 2671
}

2672
static int gen8_emit_flush(struct i915_request *request, u32 mode)
2673
{
2674
	u32 cmd, *cs;
2675

2676 2677 2678
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2679 2680 2681

	cmd = MI_FLUSH_DW + 1;

2682 2683 2684 2685 2686 2687 2688
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2689
	if (mode & EMIT_INVALIDATE) {
2690
		cmd |= MI_INVALIDATE_TLB;
2691
		if (request->engine->class == VIDEO_DECODE_CLASS)
2692
			cmd |= MI_INVALIDATE_BSD;
2693 2694
	}

2695 2696 2697 2698 2699
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
2700 2701 2702 2703

	return 0;
}

2704
static int gen8_emit_flush_render(struct i915_request *request,
2705
				  u32 mode)
2706
{
2707
	struct intel_engine_cs *engine = request->engine;
2708
	u32 scratch_addr =
2709 2710
		intel_gt_scratch_offset(engine->gt,
					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
M
Mika Kuoppala 已提交
2711
	bool vf_flush_wa = false, dc_flush_wa = false;
2712
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
2713
	int len;
2714 2715 2716

	flags |= PIPE_CONTROL_CS_STALL;

2717
	if (mode & EMIT_FLUSH) {
2718 2719
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2720
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2721
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2722 2723
	}

2724
	if (mode & EMIT_INVALIDATE) {
2725 2726 2727 2728 2729 2730 2731 2732 2733
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

2734 2735 2736 2737
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
2738
		if (IS_GEN(request->i915, 9))
2739
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
2740 2741 2742 2743

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
2744
	}
2745

M
Mika Kuoppala 已提交
2746 2747 2748 2749 2750 2751 2752 2753
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

2754 2755 2756
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2757

2758 2759
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
2760

2761 2762 2763
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2764

2765
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2766

2767 2768
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2769

2770
	intel_ring_advance(request, cs);
2771 2772 2773 2774

	return 0;
}

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
static int gen11_emit_flush_render(struct i915_request *request,
				   u32 mode)
{
	struct intel_engine_cs *engine = request->engine;
	const u32 scratch_addr =
		intel_gt_scratch_offset(engine->gt,
					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);

	if (mode & EMIT_FLUSH) {
		u32 *cs;
		u32 flags = 0;

		flags |= PIPE_CONTROL_CS_STALL;

		flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

		cs = intel_ring_begin(request, 6);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

		cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
		intel_ring_advance(request, cs);
	}

	if (mode & EMIT_INVALIDATE) {
		u32 *cs;
		u32 flags = 0;

		flags |= PIPE_CONTROL_CS_STALL;

2811
		flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

		cs = intel_ring_begin(request, 6);
		if (IS_ERR(cs))
			return PTR_ERR(cs);

		cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
		intel_ring_advance(request, cs);
	}

	return 0;
}

2832 2833 2834 2835 2836
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2837
static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2838
{
C
Chris Wilson 已提交
2839 2840
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2841 2842
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
2843 2844

	return cs;
C
Chris Wilson 已提交
2845
}
2846

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs)
{
	*cs++ = MI_SEMAPHORE_WAIT |
		MI_SEMAPHORE_GLOBAL_GTT |
		MI_SEMAPHORE_POLL |
		MI_SEMAPHORE_SAD_EQ_SDD;
	*cs++ = 0;
	*cs++ = intel_hws_preempt_address(request->engine);
	*cs++ = 0;

	return cs;
}

2860 2861 2862
static __always_inline u32*
gen8_emit_fini_breadcrumb_footer(struct i915_request *request,
				 u32 *cs)
C
Chris Wilson 已提交
2863
{
2864
	*cs++ = MI_USER_INTERRUPT;
2865

2866
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2867 2868
	if (intel_engine_has_semaphores(request->engine))
		cs = emit_preempt_busywait(request, cs);
2869

2870
	request->tail = intel_ring_offset(request, cs);
2871
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2872

2873
	return gen8_emit_wa_tail(request, cs);
2874
}
2875

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
{
	cs = gen8_emit_ggtt_write(cs,
				  request->fence.seqno,
				  request->timeline->hwsp_offset,
				  0);

	return gen8_emit_fini_breadcrumb_footer(request, cs);
}

2886
static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2887
{
2888 2889 2890 2891 2892 2893 2894
	cs = gen8_emit_pipe_control(cs,
				    PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				    PIPE_CONTROL_DEPTH_CACHE_FLUSH |
				    PIPE_CONTROL_DC_FLUSH_ENABLE,
				    0);

	/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
2895
	cs = gen8_emit_ggtt_write_rcs(cs,
2896 2897
				      request->fence.seqno,
				      request->timeline->hwsp_offset,
2898 2899
				      PIPE_CONTROL_FLUSH_ENABLE |
				      PIPE_CONTROL_CS_STALL);
2900

2901 2902
	return gen8_emit_fini_breadcrumb_footer(request, cs);
}
2903

2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921
/*
 * Note that the CS instruction pre-parser will not stall on the breadcrumb
 * flush and will continue pre-fetching the instructions after it before the
 * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
 * BB_START/END instructions, so, even though we might pre-fetch the pre-amble
 * of the next request before the memory has been flushed, we're guaranteed that
 * we won't access the batch itself too early.
 * However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
 * so, if the current request is modifying an instruction in the next request on
 * the same intel_context, we might pre-fetch and then execute the pre-update
 * instruction. To avoid this, the users of self-modifying code should either
 * disable the parser around the code emitting the memory writes, via a new flag
 * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
 * the in-kernel use-cases we've opted to use a separate context, see
 * reloc_gpu() as an example.
 * All the above applies only to the instructions themselves. Non-inline data
 * used by the instructions is not pre-fetched.
 */
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
static u32 *gen11_emit_fini_breadcrumb_rcs(struct i915_request *request,
					   u32 *cs)
{
	cs = gen8_emit_ggtt_write_rcs(cs,
				      request->fence.seqno,
				      request->timeline->hwsp_offset,
				      PIPE_CONTROL_CS_STALL |
				      PIPE_CONTROL_TILE_CACHE_FLUSH |
				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
				      PIPE_CONTROL_DC_FLUSH_ENABLE |
				      PIPE_CONTROL_FLUSH_ENABLE);
C
Chris Wilson 已提交
2934

2935
	return gen8_emit_fini_breadcrumb_footer(request, cs);
2936
}
2937

2938 2939
static void execlists_park(struct intel_engine_cs *engine)
{
2940
	del_timer(&engine->execlists.timer);
2941 2942
}

2943
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2944
{
2945
	engine->submit_request = execlists_submit_request;
2946
	engine->cancel_requests = execlists_cancel_requests;
2947
	engine->schedule = i915_schedule;
2948
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2949

2950
	engine->reset.prepare = execlists_reset_prepare;
2951 2952
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2953

2954
	engine->park = execlists_park;
2955
	engine->unpark = NULL;
2956 2957

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2958
	if (!intel_vgpu_active(engine->i915)) {
2959
		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2960 2961 2962
		if (HAS_LOGICAL_RING_PREEMPTION(engine->i915))
			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
	}
2963 2964 2965

	if (engine->class != COPY_ENGINE_CLASS && INTEL_GEN(engine->i915) >= 12)
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
2966 2967
}

2968 2969 2970 2971 2972 2973 2974
static void execlists_destroy(struct intel_engine_cs *engine)
{
	intel_engine_cleanup_common(engine);
	lrc_destroy_wa_ctx(engine);
	kfree(engine);
}

2975
static void
2976
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2977 2978
{
	/* Default vfuncs which can be overriden by each engine. */
2979 2980

	engine->destroy = execlists_destroy;
2981
	engine->resume = execlists_resume;
2982 2983 2984 2985

	engine->reset.prepare = execlists_reset_prepare;
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2986

2987
	engine->cops = &execlists_context_ops;
2988 2989
	engine->request_alloc = execlists_request_alloc;

2990
	engine->emit_flush = gen8_emit_flush;
2991 2992
	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
2993

2994
	engine->set_default_submission = intel_execlists_set_default_submission;
2995

2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
3007 3008 3009 3010
	if (IS_GEN(engine->i915, 8))
		engine->emit_bb_start = gen8_emit_bb_start;
	else
		engine->emit_bb_start = gen9_emit_bb_start;
3011 3012
}

3013
static inline void
3014
logical_ring_default_irqs(struct intel_engine_cs *engine)
3015
{
3016 3017 3018 3019
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
3020 3021 3022 3023 3024
			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
			[VECS0] = GEN8_VECS_IRQ_SHIFT,
3025 3026 3027 3028 3029
		};

		shift = irq_shifts[engine->id];
	}

3030 3031
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3032 3033
}

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
static void rcs_submission_override(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 12:
	case 11:
		engine->emit_flush = gen11_emit_flush_render;
		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
		break;
	default:
		engine->emit_flush = gen8_emit_flush_render;
		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
		break;
	}
}

3049
int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3050
{
3051 3052
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
3053
	timer_setup(&engine->execlists.timer, execlists_submission_timer, 0);
3054 3055 3056

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
3057

3058 3059
	if (engine->class == RENDER_CLASS)
		rcs_submission_override(engine);
3060

3061
	return 0;
3062 3063
}

3064
int intel_execlists_submission_init(struct intel_engine_cs *engine)
3065
{
3066
	struct intel_engine_execlists * const execlists = &engine->execlists;
3067 3068
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
3069
	u32 base = engine->mmio_base;
3070 3071
	int ret;

3072
	ret = intel_engine_init_common(engine);
3073
	if (ret)
3074
		return ret;
3075

3076 3077 3078 3079 3080 3081 3082
	if (intel_init_workaround_bb(engine))
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed\n");
3083

3084
	if (HAS_LOGICAL_RING_ELSQ(i915)) {
3085
		execlists->submit_reg = uncore->regs +
3086
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3087
		execlists->ctrl_reg = uncore->regs +
3088
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3089
	} else {
3090
		execlists->submit_reg = uncore->regs +
3091
			i915_mmio_reg_offset(RING_ELSP(base));
3092
	}
3093

3094
	execlists->csb_status =
3095
		&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3096

3097
	execlists->csb_write =
3098
		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
3099

3100
	if (INTEL_GEN(i915) < 11)
3101 3102 3103
		execlists->csb_size = GEN8_CSB_ENTRIES;
	else
		execlists->csb_size = GEN11_CSB_ENTRIES;
3104

3105
	reset_csb_pointers(engine);
3106

3107 3108 3109
	return 0;
}

3110
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
3111 3112 3113
{
	u32 indirect_ctx_offset;

3114
	switch (INTEL_GEN(engine->i915)) {
3115
	default:
3116
		MISSING_CASE(INTEL_GEN(engine->i915));
3117
		/* fall through */
3118 3119 3120 3121
	case 12:
		indirect_ctx_offset =
			GEN12_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
3122 3123 3124 3125
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
3126 3127 3128 3129
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

3143

3144 3145 3146 3147
static void init_common_reg_state(u32 * const regs,
				  struct i915_ppgtt * const ppgtt,
				  struct intel_engine_cs *engine,
				  struct intel_ring *ring)
3148
{
3149
	const u32 base = engine->mmio_base;
3150

3151
	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
3152
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
3153
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
3154
	if (INTEL_GEN(engine->i915) < 11) {
3155 3156 3157 3158
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
					    CTX_CTRL_RS_CTX_ENABLE);
	}
3159 3160 3161 3162 3163 3164 3165 3166
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
3167
}
3168

3169 3170 3171 3172 3173 3174 3175 3176
static void init_wa_bb_reg_state(u32 * const regs,
				 struct intel_engine_cs *engine,
				 u32 pos_bb_per_ctx)
{
	struct i915_ctx_workarounds * const wa_ctx = &engine->wa_ctx;
	const u32 base = engine->mmio_base;
	const u32 pos_indirect_ctx = pos_bb_per_ctx + 2;
	const u32 pos_indirect_ctx_offset = pos_indirect_ctx + 2;
3177

3178 3179 3180 3181 3182
	CTX_REG(regs, pos_indirect_ctx, RING_INDIRECT_CTX(base), 0);
	CTX_REG(regs, pos_indirect_ctx_offset,
		RING_INDIRECT_CTX_OFFSET(base), 0);
	if (wa_ctx->indirect_ctx.size) {
		const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
3183

3184 3185 3186
		regs[pos_indirect_ctx + 1] =
			(ggtt_offset + wa_ctx->indirect_ctx.offset) |
			(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
3187

3188 3189
		regs[pos_indirect_ctx_offset + 1] =
			intel_lr_indirect_ctx_offset(engine) << 6;
3190
	}
3191

3192 3193 3194
	CTX_REG(regs, pos_bb_per_ctx, RING_BB_PER_CTX_PTR(base), 0);
	if (wa_ctx->per_ctx.size) {
		const u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
3195

3196 3197 3198 3199 3200 3201 3202 3203
		regs[pos_bb_per_ctx + 1] =
			(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
	}
}

static void init_ppgtt_reg_state(u32 *regs, u32 base,
				 struct i915_ppgtt *ppgtt)
{
3204
	/* PDP values well be assigned later if needed */
3205 3206 3207 3208 3209 3210 3211 3212
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
3213

3214
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
3215 3216 3217 3218
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
3219
		ASSIGN_CTX_PML4(ppgtt, regs);
3220
	} else {
3221 3222 3223 3224
		ASSIGN_CTX_PDP(ppgtt, regs, 3);
		ASSIGN_CTX_PDP(ppgtt, regs, 2);
		ASSIGN_CTX_PDP(ppgtt, regs, 1);
		ASSIGN_CTX_PDP(ppgtt, regs, 0);
3225
	}
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
}

static struct i915_ppgtt *vm_alias(struct i915_address_space *vm)
{
	if (i915_is_ggtt(vm))
		return i915_vm_to_ggtt(vm)->alias;
	else
		return i915_vm_to_ppgtt(vm);
}

static void gen8_init_reg_state(u32 * const regs,
				struct intel_context *ce,
				struct intel_engine_cs *engine,
				struct intel_ring *ring)
{
	struct i915_ppgtt * const ppgtt = vm_alias(ce->vm);
	const bool rcs = engine->class == RENDER_CLASS;
	const u32 base = engine->mmio_base;
	const u32 lri_base =
		intel_engine_has_relative_mmio(engine) ? MI_LRI_CS_MMIO : 0;

	regs[CTX_LRI_HEADER_0] =
		MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
		MI_LRI_FORCE_POSTED |
		lri_base;

	init_common_reg_state(regs, ppgtt, engine, ring);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs)
		init_wa_bb_reg_state(regs, engine, CTX_BB_PER_CTX_PTR);

	regs[CTX_LRI_HEADER_1] =
		MI_LOAD_REGISTER_IMM(9) |
		MI_LRI_FORCE_POSTED |
		lri_base;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);

	init_ppgtt_reg_state(regs, base, ppgtt);
3267

3268
	if (rcs) {
3269
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1) | lri_base;
3270
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
3271
	}
3272 3273

	regs[CTX_END] = MI_BATCH_BUFFER_END;
3274
	if (INTEL_GEN(engine->i915) >= 10)
3275
		regs[CTX_END] |= BIT(0);
3276 3277
}

3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
static void gen12_init_reg_state(u32 * const regs,
				 struct intel_context *ce,
				 struct intel_engine_cs *engine,
				 struct intel_ring *ring)
{
	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(ce->vm);
	const bool rcs = engine->class == RENDER_CLASS;
	const u32 base = engine->mmio_base;
	const u32 lri_base =
		intel_engine_has_relative_mmio(engine) ? MI_LRI_CS_MMIO : 0;

	regs[CTX_LRI_HEADER_0] =
		MI_LOAD_REGISTER_IMM(rcs ? 11 : 9) |
		MI_LRI_FORCE_POSTED |
		lri_base;

	init_common_reg_state(regs, ppgtt, engine, ring);

	/* We want ctx_ptr for all engines to be set */
	init_wa_bb_reg_state(regs, engine, GEN12_CTX_BB_PER_CTX_PTR);

	regs[CTX_LRI_HEADER_1] =
		MI_LOAD_REGISTER_IMM(9) |
		MI_LRI_FORCE_POSTED |
		lri_base;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);

	init_ppgtt_reg_state(regs, base, ppgtt);

	if (rcs) {
		regs[GEN12_CTX_LRI_HEADER_3] =
			MI_LOAD_REGISTER_IMM(1) | lri_base;
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);

		/* TODO: oa_init_reg_state ? */
	}
}

static void execlists_init_reg_state(u32 *regs,
				     struct intel_context *ce,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
{
	/*
	 * A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 *
	 * Must keep consistent with virtual_update_register_offsets().
	 */
	if (INTEL_GEN(engine->i915) >= 12)
		gen12_init_reg_state(regs, ce, engine, ring);
	else
		gen8_init_reg_state(regs, ce, engine, ring);
}

3338
static int
3339
populate_lr_context(struct intel_context *ce,
3340 3341 3342 3343 3344
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
3345
	u32 *regs;
3346 3347 3348 3349 3350 3351 3352 3353 3354
	int ret;

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}

3355 3356
	set_redzone(vaddr, engine);

3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
3368 3369 3370 3371
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
3372 3373 3374 3375 3376

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

3377 3378
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
3379
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
3380
	execlists_init_reg_state(regs, ce, engine, ring);
3381 3382 3383
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
3384

3385
	ret = 0;
3386
err_unpin_ctx:
3387 3388 3389
	__i915_gem_object_flush_map(ctx_obj,
				    LRC_HEADER_PAGES * PAGE_SIZE,
				    engine->context_size);
3390
	i915_gem_object_unpin_map(ctx_obj);
3391
	return ret;
3392 3393
}

3394 3395
static int __execlists_context_alloc(struct intel_context *ce,
				     struct intel_engine_cs *engine)
3396
{
3397
	struct drm_i915_gem_object *ctx_obj;
3398
	struct intel_ring *ring;
3399
	struct i915_vma *vma;
3400
	u32 context_size;
3401 3402
	int ret;

3403
	GEM_BUG_ON(ce->state);
3404
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
3405

3406 3407 3408 3409 3410
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
3411 3412
	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
		context_size += I915_GTT_PAGE_SIZE; /* for redzone */
3413

3414
	ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
3415 3416
	if (IS_ERR(ctx_obj))
		return PTR_ERR(ctx_obj);
3417

3418
	vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL);
3419 3420 3421 3422 3423
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
	if (!ce->timeline) {
		struct intel_timeline *tl;

		tl = intel_timeline_create(engine->gt, NULL);
		if (IS_ERR(tl)) {
			ret = PTR_ERR(tl);
			goto error_deref_obj;
		}

		ce->timeline = tl;
3434 3435
	}

3436
	ring = intel_engine_create_ring(engine, (unsigned long)ce->ring);
3437 3438
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
3439
		goto error_deref_obj;
3440 3441
	}

3442
	ret = populate_lr_context(ce, ctx_obj, engine, ring);
3443 3444
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
3445
		goto error_ring_free;
3446 3447
	}

3448
	ce->ring = ring;
3449
	ce->state = vma;
3450 3451

	return 0;
3452

3453
error_ring_free:
3454
	intel_ring_put(ring);
3455
error_deref_obj:
3456
	i915_gem_object_put(ctx_obj);
3457
	return ret;
3458
}
3459

3460 3461 3462 3463 3464
static struct list_head *virtual_queue(struct virtual_engine *ve)
{
	return &ve->base.execlists.default_priolist.requests[0];
}

3465 3466 3467 3468 3469 3470
static void virtual_context_destroy(struct kref *kref)
{
	struct virtual_engine *ve =
		container_of(kref, typeof(*ve), context.ref);
	unsigned int n;

3471
	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3472
	GEM_BUG_ON(ve->request);
3473
	GEM_BUG_ON(ve->context.inflight);
3474 3475 3476 3477 3478 3479 3480 3481

	for (n = 0; n < ve->num_siblings; n++) {
		struct intel_engine_cs *sibling = ve->siblings[n];
		struct rb_node *node = &ve->nodes[sibling->id].rb;

		if (RB_EMPTY_NODE(node))
			continue;

3482
		spin_lock_irq(&sibling->active.lock);
3483 3484 3485 3486 3487

		/* Detachment is lazily performed in the execlists tasklet */
		if (!RB_EMPTY_NODE(node))
			rb_erase_cached(node, &sibling->execlists.virtual);

3488
		spin_unlock_irq(&sibling->active.lock);
3489 3490 3491 3492 3493
	}
	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));

	if (ve->context.state)
		__execlists_context_fini(&ve->context);
3494
	intel_context_fini(&ve->context);
3495

3496
	kfree(ve->bonds);
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521
	kfree(ve);
}

static void virtual_engine_initial_hint(struct virtual_engine *ve)
{
	int swp;

	/*
	 * Pick a random sibling on starting to help spread the load around.
	 *
	 * New contexts are typically created with exactly the same order
	 * of siblings, and often started in batches. Due to the way we iterate
	 * the array of sibling when submitting requests, sibling[0] is
	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
	 * randomised across the system, we also help spread the load by the
	 * first engine we inspect being different each time.
	 *
	 * NB This does not force us to execute on this engine, it will just
	 * typically be the first we inspect for submission.
	 */
	swp = prandom_u32_max(ve->num_siblings);
	if (!swp)
		return;

	swap(ve->siblings[swp], ve->siblings[0]);
3522 3523 3524
	if (!intel_engine_has_relative_mmio(ve->siblings[0]))
		virtual_update_register_offsets(ve->context.lrc_reg_state,
						ve->siblings[0]);
3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
}

static int virtual_context_pin(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	int err;

	/* Note: we must use a real engine class for setting up reg state */
	err = __execlists_context_pin(ce, ve->siblings[0]);
	if (err)
		return err;

	virtual_engine_initial_hint(ve);
	return 0;
}

static void virtual_context_enter(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	unsigned int n;

	for (n = 0; n < ve->num_siblings; n++)
		intel_engine_pm_get(ve->siblings[n]);
3548 3549

	intel_timeline_enter(ce->timeline);
3550 3551 3552 3553 3554 3555 3556
}

static void virtual_context_exit(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	unsigned int n;

3557 3558
	intel_timeline_exit(ce->timeline);

3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
	for (n = 0; n < ve->num_siblings; n++)
		intel_engine_pm_put(ve->siblings[n]);
}

static const struct intel_context_ops virtual_context_ops = {
	.pin = virtual_context_pin,
	.unpin = execlists_context_unpin,

	.enter = virtual_context_enter,
	.exit = virtual_context_exit,

	.destroy = virtual_context_destroy,
};

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597
static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
{
	struct i915_request *rq;
	intel_engine_mask_t mask;

	rq = READ_ONCE(ve->request);
	if (!rq)
		return 0;

	/* The rq is ready for submission; rq->execution_mask is now stable. */
	mask = rq->execution_mask;
	if (unlikely(!mask)) {
		/* Invalid selection, submit to a random engine in error */
		i915_request_skip(rq, -ENODEV);
		mask = ve->siblings[0]->mask;
	}

	GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n",
		  ve->base.name,
		  rq->fence.context, rq->fence.seqno,
		  mask, ve->base.execlists.queue_priority_hint);

	return mask;
}

3598 3599 3600 3601
static void virtual_submission_tasklet(unsigned long data)
{
	struct virtual_engine * const ve = (struct virtual_engine *)data;
	const int prio = ve->base.execlists.queue_priority_hint;
3602
	intel_engine_mask_t mask;
3603 3604
	unsigned int n;

3605 3606 3607 3608 3609 3610
	rcu_read_lock();
	mask = virtual_submission_mask(ve);
	rcu_read_unlock();
	if (unlikely(!mask))
		return;

3611 3612 3613 3614 3615 3616 3617
	local_irq_disable();
	for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
		struct intel_engine_cs *sibling = ve->siblings[n];
		struct ve_node * const node = &ve->nodes[sibling->id];
		struct rb_node **parent, *rb;
		bool first;

3618 3619
		if (unlikely(!(mask & sibling->mask))) {
			if (!RB_EMPTY_NODE(&node->rb)) {
3620
				spin_lock(&sibling->active.lock);
3621 3622 3623
				rb_erase_cached(&node->rb,
						&sibling->execlists.virtual);
				RB_CLEAR_NODE(&node->rb);
3624
				spin_unlock(&sibling->active.lock);
3625 3626 3627 3628
			}
			continue;
		}

3629
		spin_lock(&sibling->active.lock);
3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672

		if (!RB_EMPTY_NODE(&node->rb)) {
			/*
			 * Cheat and avoid rebalancing the tree if we can
			 * reuse this node in situ.
			 */
			first = rb_first_cached(&sibling->execlists.virtual) ==
				&node->rb;
			if (prio == node->prio || (prio > node->prio && first))
				goto submit_engine;

			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
		}

		rb = NULL;
		first = true;
		parent = &sibling->execlists.virtual.rb_root.rb_node;
		while (*parent) {
			struct ve_node *other;

			rb = *parent;
			other = rb_entry(rb, typeof(*other), rb);
			if (prio > other->prio) {
				parent = &rb->rb_left;
			} else {
				parent = &rb->rb_right;
				first = false;
			}
		}

		rb_link_node(&node->rb, rb, parent);
		rb_insert_color_cached(&node->rb,
				       &sibling->execlists.virtual,
				       first);

submit_engine:
		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
		node->prio = prio;
		if (first && prio > sibling->execlists.queue_priority_hint) {
			sibling->execlists.queue_priority_hint = prio;
			tasklet_hi_schedule(&sibling->execlists.tasklet);
		}

3673
		spin_unlock(&sibling->active.lock);
3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689
	}
	local_irq_enable();
}

static void virtual_submit_request(struct i915_request *rq)
{
	struct virtual_engine *ve = to_virtual_engine(rq->engine);

	GEM_TRACE("%s: rq=%llx:%lld\n",
		  ve->base.name,
		  rq->fence.context,
		  rq->fence.seqno);

	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);

	GEM_BUG_ON(ve->request);
3690 3691
	GEM_BUG_ON(!list_empty(virtual_queue(ve)));

3692 3693 3694
	ve->base.execlists.queue_priority_hint = rq_prio(rq);
	WRITE_ONCE(ve->request, rq);

3695 3696
	list_move_tail(&rq->sched.link, virtual_queue(ve));

3697 3698 3699
	tasklet_schedule(&ve->base.execlists.tasklet);
}

3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
static struct ve_bond *
virtual_find_bond(struct virtual_engine *ve,
		  const struct intel_engine_cs *master)
{
	int i;

	for (i = 0; i < ve->num_bonds; i++) {
		if (ve->bonds[i].master == master)
			return &ve->bonds[i];
	}

	return NULL;
}

static void
virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
{
	struct virtual_engine *ve = to_virtual_engine(rq->engine);
	struct ve_bond *bond;

	bond = virtual_find_bond(ve, to_request(signal)->engine);
	if (bond) {
		intel_engine_mask_t old, new, cmp;

		cmp = READ_ONCE(rq->execution_mask);
		do {
			old = cmp;
			new = cmp & bond->sibling_mask;
		} while ((cmp = cmpxchg(&rq->execution_mask, old, new)) != old);
	}
}

3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
struct intel_context *
intel_execlists_create_virtual(struct i915_gem_context *ctx,
			       struct intel_engine_cs **siblings,
			       unsigned int count)
{
	struct virtual_engine *ve;
	unsigned int n;
	int err;

	if (count == 0)
		return ERR_PTR(-EINVAL);

	if (count == 1)
		return intel_context_create(ctx, siblings[0]);

	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
	if (!ve)
		return ERR_PTR(-ENOMEM);

	ve->base.i915 = ctx->i915;
3752
	ve->base.gt = siblings[0]->gt;
3753 3754 3755 3756 3757
	ve->base.id = -1;
	ve->base.class = OTHER_CLASS;
	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;

3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
	/*
	 * The decision on whether to submit a request using semaphores
	 * depends on the saturated state of the engine. We only compute
	 * this during HW submission of the request, and we need for this
	 * state to be globally applied to all requests being submitted
	 * to this engine. Virtual engines encompass more than one physical
	 * engine and so we cannot accurately tell in advance if one of those
	 * engines is already saturated and so cannot afford to use a semaphore
	 * and be pessimized in priority for doing so -- if we are the only
	 * context using semaphores after all other clients have stopped, we
	 * will be starved on the saturated system. Such a global switch for
	 * semaphores is less than ideal, but alas is the current compromise.
	 */
	ve->base.saturated = ALL_ENGINES;

3773 3774
	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");

3775
	intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
3776 3777 3778 3779 3780 3781 3782 3783

	intel_engine_init_execlists(&ve->base);

	ve->base.cops = &virtual_context_ops;
	ve->base.request_alloc = execlists_request_alloc;

	ve->base.schedule = i915_schedule;
	ve->base.submit_request = virtual_submit_request;
3784
	ve->base.bond_execute = virtual_bond_execute;
3785

3786
	INIT_LIST_HEAD(virtual_queue(ve));
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852
	ve->base.execlists.queue_priority_hint = INT_MIN;
	tasklet_init(&ve->base.execlists.tasklet,
		     virtual_submission_tasklet,
		     (unsigned long)ve);

	intel_context_init(&ve->context, ctx, &ve->base);

	for (n = 0; n < count; n++) {
		struct intel_engine_cs *sibling = siblings[n];

		GEM_BUG_ON(!is_power_of_2(sibling->mask));
		if (sibling->mask & ve->base.mask) {
			DRM_DEBUG("duplicate %s entry in load balancer\n",
				  sibling->name);
			err = -EINVAL;
			goto err_put;
		}

		/*
		 * The virtual engine implementation is tightly coupled to
		 * the execlists backend -- we push out request directly
		 * into a tree inside each physical engine. We could support
		 * layering if we handle cloning of the requests and
		 * submitting a copy into each backend.
		 */
		if (sibling->execlists.tasklet.func !=
		    execlists_submission_tasklet) {
			err = -ENODEV;
			goto err_put;
		}

		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);

		ve->siblings[ve->num_siblings++] = sibling;
		ve->base.mask |= sibling->mask;

		/*
		 * All physical engines must be compatible for their emission
		 * functions (as we build the instructions during request
		 * construction and do not alter them before submission
		 * on the physical engine). We use the engine class as a guide
		 * here, although that could be refined.
		 */
		if (ve->base.class != OTHER_CLASS) {
			if (ve->base.class != sibling->class) {
				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
					  sibling->class, ve->base.class);
				err = -EINVAL;
				goto err_put;
			}
			continue;
		}

		ve->base.class = sibling->class;
		ve->base.uabi_class = sibling->uabi_class;
		snprintf(ve->base.name, sizeof(ve->base.name),
			 "v%dx%d", ve->base.class, count);
		ve->base.context_size = sibling->context_size;

		ve->base.emit_bb_start = sibling->emit_bb_start;
		ve->base.emit_flush = sibling->emit_flush;
		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
		ve->base.emit_fini_breadcrumb_dw =
			sibling->emit_fini_breadcrumb_dw;
3853 3854

		ve->base.flags = sibling->flags;
3855 3856
	}

3857 3858
	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;

3859 3860 3861 3862 3863 3864
	err = __execlists_context_alloc(&ve->context, siblings[0]);
	if (err)
		goto err_put;

	__set_bit(CONTEXT_ALLOC_BIT, &ve->context.flags);

3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
	return &ve->context;

err_put:
	intel_context_put(&ve->context);
	return ERR_PTR(err);
}

struct intel_context *
intel_execlists_clone_virtual(struct i915_gem_context *ctx,
			      struct intel_engine_cs *src)
{
	struct virtual_engine *se = to_virtual_engine(src);
	struct intel_context *dst;

	dst = intel_execlists_create_virtual(ctx,
					     se->siblings,
					     se->num_siblings);
	if (IS_ERR(dst))
		return dst;

3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
	if (se->num_bonds) {
		struct virtual_engine *de = to_virtual_engine(dst->engine);

		de->bonds = kmemdup(se->bonds,
				    sizeof(*se->bonds) * se->num_bonds,
				    GFP_KERNEL);
		if (!de->bonds) {
			intel_context_put(dst);
			return ERR_PTR(-ENOMEM);
		}

		de->num_bonds = se->num_bonds;
	}

3899 3900 3901
	return dst;
}

3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
				     const struct intel_engine_cs *master,
				     const struct intel_engine_cs *sibling)
{
	struct virtual_engine *ve = to_virtual_engine(engine);
	struct ve_bond *bond;
	int n;

	/* Sanity check the sibling is part of the virtual engine */
	for (n = 0; n < ve->num_siblings; n++)
		if (sibling == ve->siblings[n])
			break;
	if (n == ve->num_siblings)
		return -EINVAL;

	bond = virtual_find_bond(ve, master);
	if (bond) {
		bond->sibling_mask |= sibling->mask;
		return 0;
	}

	bond = krealloc(ve->bonds,
			sizeof(*bond) * (ve->num_bonds + 1),
			GFP_KERNEL);
	if (!bond)
		return -ENOMEM;

	bond[ve->num_bonds].master = master;
	bond[ve->num_bonds].sibling_mask = sibling->mask;

	ve->bonds = bond;
	ve->num_bonds++;

	return 0;
}

3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
struct intel_engine_cs *
intel_virtual_engine_get_sibling(struct intel_engine_cs *engine,
				 unsigned int sibling)
{
	struct virtual_engine *ve = to_virtual_engine(engine);

	if (sibling >= ve->num_siblings)
		return NULL;

	return ve->siblings[sibling];
}

3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
void intel_execlists_show_requests(struct intel_engine_cs *engine,
				   struct drm_printer *m,
				   void (*show_request)(struct drm_printer *m,
							struct i915_request *rq,
							const char *prefix),
				   unsigned int max)
{
	const struct intel_engine_execlists *execlists = &engine->execlists;
	struct i915_request *rq, *last;
	unsigned long flags;
	unsigned int count;
	struct rb_node *rb;

3963
	spin_lock_irqsave(&engine->active.lock, flags);
3964 3965 3966

	last = NULL;
	count = 0;
3967
	list_for_each_entry(rq, &engine->active.requests, sched.link) {
3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
		if (count++ < max - 1)
			show_request(m, rq, "\t\tE ");
		else
			last = rq;
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d executing requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tE ");
	}

	last = NULL;
	count = 0;
3984 3985 3986
	if (execlists->queue_priority_hint != INT_MIN)
		drm_printf(m, "\t\tQueue priority hint: %d\n",
			   execlists->queue_priority_hint);
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006
	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		int i;

		priolist_for_each_request(rq, p, i) {
			if (count++ < max - 1)
				show_request(m, rq, "\t\tQ ");
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d queued requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tQ ");
	}

4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029
	last = NULL;
	count = 0;
	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq = READ_ONCE(ve->request);

		if (rq) {
			if (count++ < max - 1)
				show_request(m, rq, "\t\tV ");
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d virtual requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tV ");
	}

4030
	spin_unlock_irqrestore(&engine->active.lock, flags);
4031 4032
}

4033 4034 4035 4036 4037
void intel_lr_context_reset(struct intel_engine_cs *engine,
			    struct intel_context *ce,
			    u32 head,
			    bool scrub)
{
4038 4039 4040
	GEM_BUG_ON(!intel_context_is_pinned(ce));
	mutex_acquire(&ce->pin_mutex.dep_map, 2, 0, _THIS_IP_);

4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	if (scrub) {
		u32 *regs = ce->lrc_reg_state;

		if (engine->pinned_default_state) {
			memcpy(regs, /* skip restoring the vanilla PPHWSP */
			       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
			       engine->context_size - PAGE_SIZE);
		}
		execlists_init_reg_state(regs, ce, engine, ce->ring);
	}

	/* Rerun the request; its payload has been neutered (if guilty). */
	ce->ring->head = head;
	intel_ring_update_space(ce->ring);

	__execlists_update_reg_state(ce, engine);
4065
	mutex_release(&ce->pin_mutex.dep_map, 0, _THIS_IP_);
4066 4067
}

4068
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4069
#include "selftest_lrc.c"
4070
#endif