intel_lrc.c 104.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135

136 137
#include "gem/i915_gem_context.h"

138
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "i915_vgpu.h"
141
#include "intel_engine_pm.h"
142
#include "intel_lrc_reg.h"
143
#include "intel_mocs.h"
144
#include "intel_reset.h"
145
#include "intel_workarounds.h"
146

147 148 149 150 151 152 153 154 155 156 157 158 159
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
160

161
#define GEN8_CTX_STATUS_COMPLETED_MASK \
162
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
163

164 165
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
166
#define WA_TAIL_DWORDS 2
167
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
168

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
struct virtual_engine {
	struct intel_engine_cs base;
	struct intel_context context;

	/*
	 * We allow only a single request through the virtual engine at a time
	 * (each request in the timeline waits for the completion fence of
	 * the previous before being submitted). By restricting ourselves to
	 * only submitting a single request, each request is placed on to a
	 * physical to maximise load spreading (by virtue of the late greedy
	 * scheduling -- each real engine takes the next available request
	 * upon idling).
	 */
	struct i915_request *request;

	/*
	 * We keep a rbtree of available virtual engines inside each physical
	 * engine, sorted by priority. Here we preallocate the nodes we need
	 * for the virtual engine, indexed by physical_engine->id.
	 */
	struct ve_node {
		struct rb_node rb;
		int prio;
	} nodes[I915_NUM_ENGINES];

194 195 196 197 198 199 200 201 202 203 204 205
	/*
	 * Keep track of bonded pairs -- restrictions upon on our selection
	 * of physical engines any particular request may be submitted to.
	 * If we receive a submit-fence from a master engine, we will only
	 * use one of sibling_mask physical engines.
	 */
	struct ve_bond {
		const struct intel_engine_cs *master;
		intel_engine_mask_t sibling_mask;
	} *bonds;
	unsigned int num_bonds;

206 207 208 209 210 211 212 213 214 215 216
	/* And finally, which physical engines this virtual engine maps onto. */
	unsigned int num_siblings;
	struct intel_engine_cs *siblings[0];
};

static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
{
	GEM_BUG_ON(!intel_engine_is_virtual(engine));
	return container_of(engine, struct virtual_engine, base);
}

217 218
static int execlists_context_deferred_alloc(struct intel_context *ce,
					    struct intel_engine_cs *engine);
219
static void execlists_init_reg_state(u32 *reg_state,
220
				     struct intel_context *ce,
221 222
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
223

224 225 226 227 228 229 230
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
231
	return rq->sched.attr.priority;
232 233
}

234 235
static int effective_prio(const struct i915_request *rq)
{
236 237 238 239
	int prio = rq_prio(rq);

	/*
	 * On unwinding the active request, we give it a priority bump
240 241 242
	 * if it has completed waiting on any semaphore. If we know that
	 * the request has already started, we can prevent an unwanted
	 * preempt-to-idle cycle by taking that into account now.
243
	 */
244 245
	if (__i915_request_has_started(rq))
		prio |= I915_PRIORITY_NOSEMAPHORE;
246

247
	/* Restrict mere WAIT boosts from triggering preemption */
248
	return prio | __NO_PREEMPTION;
249 250
}

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
static int queue_prio(const struct intel_engine_execlists *execlists)
{
	struct i915_priolist *p;
	struct rb_node *rb;

	rb = rb_first_cached(&execlists->queue);
	if (!rb)
		return INT_MIN;

	/*
	 * As the priolist[] are inverted, with the highest priority in [0],
	 * we have to flip the index value to become priority.
	 */
	p = to_priolist(rb);
	return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
}

268
static inline bool need_preempt(const struct intel_engine_cs *engine,
269 270
				const struct i915_request *rq,
				struct rb_node *rb)
271
{
272
	int last_prio;
273

274
	if (!engine->preempt_context)
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
		return false;

	if (i915_request_completed(rq))
		return false;

	/*
	 * Check if the current priority hint merits a preemption attempt.
	 *
	 * We record the highest value priority we saw during rescheduling
	 * prior to this dequeue, therefore we know that if it is strictly
	 * less than the current tail of ESLP[0], we do not need to force
	 * a preempt-to-idle cycle.
	 *
	 * However, the priority hint is a mere hint that we may need to
	 * preempt. If that hint is stale or we may be trying to preempt
	 * ourselves, ignore the request.
	 */
292
	last_prio = effective_prio(rq);
293 294
	if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint,
					 last_prio))
295 296 297 298 299 300
		return false;

	/*
	 * Check against the first request in ELSP[1], it will, thanks to the
	 * power of PI, be the highest priority of that context.
	 */
301 302
	if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
303 304
		return true;

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
	if (rb) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		bool preempt = false;

		if (engine == ve->siblings[0]) { /* only preempt one sibling */
			struct i915_request *next;

			rcu_read_lock();
			next = READ_ONCE(ve->request);
			if (next)
				preempt = rq_prio(next) > last_prio;
			rcu_read_unlock();
		}

		if (preempt)
			return preempt;
	}

324 325 326 327 328 329 330 331 332 333 334 335 336 337
	/*
	 * If the inflight context did not trigger the preemption, then maybe
	 * it was the set of queued requests? Pick the highest priority in
	 * the queue (the first active priolist) and see if it deserves to be
	 * running instead of ELSP[0].
	 *
	 * The highest priority request in the queue can not be either
	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
	 * context, it's priority would not exceed ELSP[0] aka last_prio.
	 */
	return queue_prio(&engine->execlists) > last_prio;
}

__maybe_unused static inline bool
338
assert_priority_queue(const struct i915_request *prev,
339
		      const struct i915_request *next)
340
{
341 342
	const struct intel_engine_execlists *execlists =
		&prev->engine->execlists;
343 344 345 346 347 348 349 350 351 352 353 354

	/*
	 * Without preemption, the prev may refer to the still active element
	 * which we refuse to let go.
	 *
	 * Even with preemption, there are times when we think it is better not
	 * to preempt and leave an ostensibly lower priority request in flight.
	 */
	if (port_request(execlists->port) == prev)
		return true;

	return rq_prio(prev) >= rq_prio(next);
355 356
}

357
/*
358 359 360 361 362
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
363 364
 * This is what a descriptor looks like, from LSB to MSB::
 *
365
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
366
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
367
 *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
368 369
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
370 371 372 373 374 375 376 377 378 379 380 381
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
382
 */
383 384
static u64
lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
385
{
386
	struct i915_gem_context *ctx = ce->gem_context;
387
	u64 desc;
388

389 390
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
391

392
	desc = ctx->desc_template;				/* bits  0-11 */
393 394
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

395
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
396
								/* bits 12-31 */
397 398
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

399 400 401 402 403
	/*
	 * The following 32bits are copied into the OA reports (dword 2).
	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
	 * anything below.
	 */
404
	if (INTEL_GEN(engine->i915) >= 11) {
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
420

421
	return desc;
422 423
}

424
static void unwind_wa_tail(struct i915_request *rq)
425 426 427 428 429
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

430
static struct i915_request *
431
__unwind_incomplete_requests(struct intel_engine_cs *engine)
432
{
433
	struct i915_request *rq, *rn, *active = NULL;
434
	struct list_head *uninitialized_var(pl);
435
	int prio = I915_PRIORITY_INVALID;
436

437
	lockdep_assert_held(&engine->active.lock);
438 439

	list_for_each_entry_safe_reverse(rq, rn,
440 441
					 &engine->active.requests,
					 sched.link) {
442 443
		struct intel_engine_cs *owner;

444
		if (i915_request_completed(rq))
445
			break;
446

447
		__i915_request_unsubmit(rq);
448 449
		unwind_wa_tail(rq);

450
		GEM_BUG_ON(rq->hw_context->inflight);
451

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
		/*
		 * Push the request back into the queue for later resubmission.
		 * If this request is not native to this physical engine (i.e.
		 * it came from a virtual source), push it back onto the virtual
		 * engine so that it can be moved across onto another physical
		 * engine as load dictates.
		 */
		owner = rq->hw_context->engine;
		if (likely(owner == engine)) {
			GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
			if (rq_prio(rq) != prio) {
				prio = rq_prio(rq);
				pl = i915_sched_lookup_priolist(engine, prio);
			}
			GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
467

468
			list_move(&rq->sched.link, pl);
469 470 471 472 473 474
			active = rq;
		} else {
			rq->engine = owner;
			owner->submit_request(rq);
			active = NULL;
		}
475 476
	}

477
	return active;
478 479
}

480
struct i915_request *
481 482 483 484 485
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

486
	return __unwind_incomplete_requests(engine);
487 488
}

489
static inline void
490
execlists_context_status_change(struct i915_request *rq, unsigned long status)
491
{
492 493 494 495 496 497
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
498

499 500
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
501 502
}

503 504 505 506 507 508 509 510 511 512 513 514 515
inline void
execlists_user_begin(struct intel_engine_execlists *execlists,
		     const struct execlist_port *port)
{
	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
}

inline void
execlists_user_end(struct intel_engine_execlists *execlists)
{
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
}

516
static inline void
517
execlists_context_schedule_in(struct i915_request *rq)
518
{
519
	GEM_BUG_ON(rq->hw_context->inflight);
520

521
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
522
	intel_engine_context_in(rq->engine);
523
	rq->hw_context->inflight = rq->engine;
524 525
}

526 527 528 529 530 531 532 533 534
static void kick_siblings(struct i915_request *rq)
{
	struct virtual_engine *ve = to_virtual_engine(rq->hw_context->engine);
	struct i915_request *next = READ_ONCE(ve->request);

	if (next && next->execution_mask & ~rq->execution_mask)
		tasklet_schedule(&ve->base.execlists.tasklet);
}

535
static inline void
536
execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
537
{
538
	rq->hw_context->inflight = NULL;
539
	intel_engine_context_out(rq->engine);
540 541
	execlists_context_status_change(rq, status);
	trace_i915_request_out(rq);
542 543 544 545 546 547 548 549 550 551 552 553

	/*
	 * If this is part of a virtual engine, its next request may have
	 * been blocked waiting for access to the active context. We have
	 * to kick all the siblings again in case we need to switch (e.g.
	 * the next request is not runnable on this engine). Hopefully,
	 * we will already have submitted the next request before the
	 * tasklet runs and do not need to rebuild each virtual tree
	 * and kick everyone again.
	 */
	if (rq->engine != rq->hw_context->engine)
		kick_siblings(rq);
554 555
}

556
static u64 execlists_update_context(struct i915_request *rq)
557
{
558
	struct intel_context *ce = rq->hw_context;
559

560 561
	ce->lrc_reg_state[CTX_RING_TAIL + 1] =
		intel_ring_set_tail(rq->ring, rq->tail);
562

563 564 565 566 567 568 569 570 571
	/*
	 * Make sure the context image is complete before we submit it to HW.
	 *
	 * Ostensibly, writes (including the WCB) should be flushed prior to
	 * an uncached write such as our mmio register access, the empirical
	 * evidence (esp. on Braswell) suggests that the WC write into memory
	 * may not be visible to the HW prior to the completion of the UC
	 * register write and that we may begin execution from the context
	 * before its image is complete leading to invalid PD chasing.
572 573 574 575 576
	 *
	 * Furthermore, Braswell, at least, wants a full mb to be sure that
	 * the writes are coherent in memory (visible to the GPU) prior to
	 * execution, and not just visible to other CPUs (as is the result of
	 * wmb).
577
	 */
578
	mb();
579
	return ce->lrc_desc;
580 581
}

582
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
583
{
584 585 586 587 588 589 590
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
591 592
}

593
static void execlists_submit_ports(struct intel_engine_cs *engine)
594
{
595 596
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
597
	unsigned int n;
598

599 600 601 602 603 604 605 606
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
607
	GEM_BUG_ON(!intel_wakeref_active(&engine->wakeref));
608

609 610 611 612 613 614 615
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
616
		struct i915_request *rq;
617 618 619 620 621 622 623
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
624
				execlists_context_schedule_in(rq);
625 626 627
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
628

629
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
630
				  engine->name, n,
631
				  port[n].context_id, count,
632
				  rq->fence.context, rq->fence.seqno,
633
				  hwsp_seqno(rq),
634
				  rq_prio(rq));
635 636 637 638
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
639

640
		write_desc(execlists, desc, n);
641
	}
642 643 644 645 646 647

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
648 649
}

650
static bool ctx_single_port_submission(const struct intel_context *ce)
651
{
652
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
653
		i915_gem_context_force_single_submission(ce->gem_context));
654
}
655

656 657
static bool can_merge_ctx(const struct intel_context *prev,
			  const struct intel_context *next)
658 659 660
{
	if (prev != next)
		return false;
661

662 663
	if (ctx_single_port_submission(prev))
		return false;
664

665
	return true;
666 667
}

668 669 670 671 672 673 674 675 676 677 678
static bool can_merge_rq(const struct i915_request *prev,
			 const struct i915_request *next)
{
	GEM_BUG_ON(!assert_priority_queue(prev, next));

	if (!can_merge_ctx(prev->hw_context, next->hw_context))
		return false;

	return true;
}

679
static void port_assign(struct execlist_port *port, struct i915_request *rq)
680 681 682 683
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
684
		i915_request_put(port_request(port));
685

686
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
687 688
}

C
Chris Wilson 已提交
689 690
static void inject_preempt_context(struct intel_engine_cs *engine)
{
691
	struct intel_engine_execlists *execlists = &engine->execlists;
692
	struct intel_context *ce = engine->preempt_context;
C
Chris Wilson 已提交
693 694
	unsigned int n;

695
	GEM_BUG_ON(execlists->preempt_complete_status !=
696
		   upper_32_bits(ce->lrc_desc));
697

698 699 700 701
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
702
	GEM_TRACE("%s\n", engine->name);
703 704 705 706 707 708 709 710
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
711

712 713
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
	execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
714 715

	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
716 717 718 719 720 721
}

static void complete_preempt_context(struct intel_engine_execlists *execlists)
{
	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));

722 723 724
	if (inject_preempt_hang(execlists))
		return;

725
	execlists_cancel_port_requests(execlists);
726 727
	__unwind_incomplete_requests(container_of(execlists,
						  struct intel_engine_cs,
728
						  execlists));
C
Chris Wilson 已提交
729 730
}

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
static void virtual_update_register_offsets(u32 *regs,
					    struct intel_engine_cs *engine)
{
	u32 base = engine->mmio_base;

	/* Must match execlists_init_reg_state()! */

	regs[CTX_CONTEXT_CONTROL] =
		i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base));
	regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base));
	regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base));
	regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base));
	regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base));

	regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base));
	regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base));
	regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base));
	regs[CTX_SECOND_BB_HEAD_U] =
		i915_mmio_reg_offset(RING_SBBADDR_UDW(base));
	regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base));
	regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base));

	regs[CTX_CTX_TIMESTAMP] =
		i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base));
	regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3));
	regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3));
	regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2));
	regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2));
	regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1));
	regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1));
	regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
	regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));

	if (engine->class == RENDER_CLASS) {
		regs[CTX_RCS_INDIRECT_CTX] =
			i915_mmio_reg_offset(RING_INDIRECT_CTX(base));
		regs[CTX_RCS_INDIRECT_CTX_OFFSET] =
			i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base));
		regs[CTX_BB_PER_CTX_PTR] =
			i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base));

		regs[CTX_R_PWR_CLK_STATE] =
			i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE);
	}
}

static bool virtual_matches(const struct virtual_engine *ve,
			    const struct i915_request *rq,
			    const struct intel_engine_cs *engine)
{
781
	const struct intel_engine_cs *inflight;
782

783 784 785
	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
		return false;

786 787 788 789 790 791 792 793 794
	/*
	 * We track when the HW has completed saving the context image
	 * (i.e. when we have seen the final CS event switching out of
	 * the context) and must not overwrite the context image before
	 * then. This restricts us to only using the active engine
	 * while the previous virtualized request is inflight (so
	 * we reuse the register offsets). This is a very small
	 * hystersis on the greedy seelction algorithm.
	 */
795 796
	inflight = READ_ONCE(ve->context.inflight);
	if (inflight && inflight != engine)
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
		return false;

	return true;
}

static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
				     struct intel_engine_cs *engine)
{
	struct intel_engine_cs *old = ve->siblings[0];

	/* All unattached (rq->engine == old) must already be completed */

	spin_lock(&old->breadcrumbs.irq_lock);
	if (!list_empty(&ve->context.signal_link)) {
		list_move_tail(&ve->context.signal_link,
			       &engine->breadcrumbs.signalers);
		intel_engine_queue_breadcrumbs(engine);
	}
	spin_unlock(&old->breadcrumbs.irq_lock);
}

818
static void execlists_dequeue(struct intel_engine_cs *engine)
819
{
820 821
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
822 823
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
824
	struct i915_request *last = port_request(port);
825
	struct rb_node *rb;
826 827
	bool submit = false;

828 829
	/*
	 * Hardware submission is through 2 ports. Conceptually each port
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
848
	 */
849

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
	for (rb = rb_first_cached(&execlists->virtual); rb; ) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq = READ_ONCE(ve->request);

		if (!rq) { /* lazily cleanup after another engine handled rq */
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);
			rb = rb_first_cached(&execlists->virtual);
			continue;
		}

		if (!virtual_matches(ve, rq, engine)) {
			rb = rb_next(rb);
			continue;
		}

		break;
	}

C
Chris Wilson 已提交
870 871 872 873 874 875 876
	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
877 878
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
879
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
880

881 882 883 884 885 886 887 888
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
889
			return;
890

891
		if (need_preempt(engine, last, rb)) {
C
Chris Wilson 已提交
892
			inject_preempt_context(engine);
893
			return;
C
Chris Wilson 已提交
894
		}
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
918
			return;
919 920 921 922 923

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
924
		 * request. See gen8_emit_fini_breadcrumb() for
925 926 927 928
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
929 930
	}

931 932 933 934 935
	while (rb) { /* XXX virtual is always taking precedence */
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq;

936
		spin_lock(&ve->base.active.lock);
937 938 939

		rq = ve->request;
		if (unlikely(!rq)) { /* lost the race to a sibling */
940
			spin_unlock(&ve->base.active.lock);
941 942 943 944 945 946 947 948 949 950 951 952
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);
			rb = rb_first_cached(&execlists->virtual);
			continue;
		}

		GEM_BUG_ON(rq != ve->request);
		GEM_BUG_ON(rq->engine != &ve->base);
		GEM_BUG_ON(rq->hw_context != &ve->context);

		if (rq_prio(rq) >= queue_prio(execlists)) {
			if (!virtual_matches(ve, rq, engine)) {
953
				spin_unlock(&ve->base.active.lock);
954 955 956 957 958
				rb = rb_next(rb);
				continue;
			}

			if (last && !can_merge_rq(last, rq)) {
959
				spin_unlock(&ve->base.active.lock);
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
				return; /* leave this rq for another engine */
			}

			GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n",
				  engine->name,
				  rq->fence.context,
				  rq->fence.seqno,
				  i915_request_completed(rq) ? "!" :
				  i915_request_started(rq) ? "*" :
				  "",
				  yesno(engine != ve->siblings[0]));

			ve->request = NULL;
			ve->base.execlists.queue_priority_hint = INT_MIN;
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);

977
			GEM_BUG_ON(!(rq->execution_mask & engine->mask));
978 979 980 981 982 983
			rq->engine = engine;

			if (engine != ve->siblings[0]) {
				u32 *regs = ve->context.lrc_reg_state;
				unsigned int n;

984
				GEM_BUG_ON(READ_ONCE(ve->context.inflight));
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
				virtual_update_register_offsets(regs, engine);

				if (!list_empty(&ve->context.signals))
					virtual_xfer_breadcrumbs(ve, engine);

				/*
				 * Move the bound engine to the top of the list
				 * for future execution. We then kick this
				 * tasklet first before checking others, so that
				 * we preferentially reuse this set of bound
				 * registers.
				 */
				for (n = 1; n < ve->num_siblings; n++) {
					if (ve->siblings[n] == engine) {
						swap(ve->siblings[n],
						     ve->siblings[0]);
						break;
					}
				}

				GEM_BUG_ON(ve->siblings[0] != engine);
			}

			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
			submit = true;
			last = rq;
		}

1014
		spin_unlock(&ve->base.active.lock);
1015 1016 1017
		break;
	}

1018
	while ((rb = rb_first_cached(&execlists->queue))) {
1019
		struct i915_priolist *p = to_priolist(rb);
1020
		struct i915_request *rq, *rn;
1021
		int i;
1022

1023
		priolist_for_each_request_consume(rq, rn, p, i) {
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
1034
			 */
1035
			if (last && !can_merge_rq(last, rq)) {
1036 1037 1038 1039 1040
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
1041
				if (port == last_port)
1042 1043
					goto done;

1044 1045 1046 1047 1048 1049 1050 1051
				/*
				 * We must not populate both ELSP[] with the
				 * same LRCA, i.e. we must submit 2 different
				 * contexts if we submit 2 ELSP.
				 */
				if (last->hw_context == rq->hw_context)
					goto done;

1052 1053 1054 1055 1056 1057 1058
				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
1059
				if (ctx_single_port_submission(last->hw_context) ||
1060
				    ctx_single_port_submission(rq->hw_context))
1061 1062 1063 1064 1065 1066
					goto done;


				if (submit)
					port_assign(port, last);
				port++;
1067 1068

				GEM_BUG_ON(port_isset(port));
1069
			}
1070

1071 1072
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
1073

1074 1075
			last = rq;
			submit = true;
1076
		}
1077

1078
		rb_erase_cached(&p->node, &execlists->queue);
1079
		i915_priolist_free(p);
1080
	}
1081

1082
done:
1083 1084 1085
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
1086
	 * We choose the priority hint such that if we add a request of greater
1087 1088 1089
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
1090
	 * HW. We derive the priority hint then as the first "hole" in
1091 1092 1093 1094
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
1095
	 * user, see queue_request(), the priority hint is bumped to that
1096 1097 1098
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
1099
	execlists->queue_priority_hint = queue_prio(execlists);
1100

1101
	if (submit) {
1102
		port_assign(port, last);
1103 1104
		execlists_submit_ports(engine);
	}
1105 1106

	/* We must always keep the beast fed if we have work piled up */
1107 1108
	GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
		   !port_isset(execlists->port));
1109

1110 1111
	/* Re-evaluate the executing context setup after each preemptive kick */
	if (last)
1112
		execlists_user_begin(execlists, execlists->port);
1113

1114 1115 1116 1117
	/* If the engine is now idle, so should be the flag; and vice versa. */
	GEM_BUG_ON(execlists_is_active(&engine->execlists,
				       EXECLISTS_ACTIVE_USER) ==
		   !port_isset(engine->execlists.port));
1118 1119
}

1120
void
1121
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
1122
{
1123
	struct execlist_port *port = execlists->port;
1124
	unsigned int num_ports = execlists_num_ports(execlists);
1125

1126
	while (num_ports-- && port_isset(port)) {
1127
		struct i915_request *rq = port_request(port);
1128

1129
		GEM_TRACE("%s:port%u fence %llx:%lld, (current %d)\n",
1130 1131 1132
			  rq->engine->name,
			  (unsigned int)(port - execlists->port),
			  rq->fence.context, rq->fence.seqno,
1133
			  hwsp_seqno(rq));
1134

1135
		GEM_BUG_ON(!execlists->active);
1136 1137 1138 1139
		execlists_context_schedule_out(rq,
					       i915_request_completed(rq) ?
					       INTEL_CONTEXT_SCHEDULE_OUT :
					       INTEL_CONTEXT_SCHEDULE_PREEMPTED);
1140

1141
		i915_request_put(rq);
1142

1143 1144 1145
		memset(port, 0, sizeof(*port));
		port++;
	}
1146

1147
	execlists_clear_all_active(execlists);
1148 1149
}

1150 1151 1152 1153 1154 1155 1156
static inline void
invalidate_csb_entries(const u32 *first, const u32 *last)
{
	clflush((void *)first);
	clflush((void *)last);
}

1157 1158 1159 1160 1161 1162
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}

1163
static void process_csb(struct intel_engine_cs *engine)
1164
{
1165
	struct intel_engine_execlists * const execlists = &engine->execlists;
1166
	struct execlist_port *port = execlists->port;
1167
	const u32 * const buf = execlists->csb_status;
1168
	const u8 num_entries = execlists->csb_size;
1169
	u8 head, tail;
1170

1171
	lockdep_assert_held(&engine->active.lock);
1172

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	/*
	 * Note that csb_write, csb_status may be either in HWSP or mmio.
	 * When reading from the csb_write mmio register, we have to be
	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
	 * the low 4bits. As it happens we know the next 4bits are always
	 * zero and so we can simply masked off the low u8 of the register
	 * and treat it identically to reading from the HWSP (without having
	 * to use explicit shifting and masking, and probably bifurcating
	 * the code to handle the legacy mmio read).
	 */
	head = execlists->csb_head;
	tail = READ_ONCE(*execlists->csb_write);
	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
	if (unlikely(head == tail))
		return;
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197
	/*
	 * Hopefully paired with a wmb() in HW!
	 *
	 * We must complete the read of the write pointer before any reads
	 * from the CSB, so that we do not see stale values. Without an rmb
	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
	 * we perform the READ_ONCE(*csb_write).
	 */
	rmb();
1198

1199
	do {
1200 1201 1202 1203
		struct i915_request *rq;
		unsigned int status;
		unsigned int count;

1204
		if (++head == num_entries)
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
			head = 0;

		/*
		 * We are flying near dragons again.
		 *
		 * We hold a reference to the request in execlist_port[]
		 * but no more than that. We are operating in softirq
		 * context and so cannot hold any mutex or sleep. That
		 * prevents us stopping the requests we are processing
		 * in port[] from being retired simultaneously (the
		 * breadcrumb will be complete before we see the
		 * context-switch). As we only hold the reference to the
		 * request, any pointer chasing underneath the request
		 * is subject to a potential use-after-free. Thus we
		 * store all of the bookkeeping within port[] as
		 * required, and avoid using unguarded pointers beneath
		 * request itself. The same applies to the atomic
		 * status notifier.
		 */

		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
			  engine->name, head,
1227
			  buf[2 * head + 0], buf[2 * head + 1],
1228 1229
			  execlists->active);

1230
		status = buf[2 * head];
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
		if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
			      GEN8_CTX_STATUS_PREEMPTED))
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_HWACK);
		if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
			execlists_clear_active(execlists,
					       EXECLISTS_ACTIVE_HWACK);

		if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
			continue;

		/* We should never get a COMPLETED | IDLE_ACTIVE! */
		GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

		if (status & GEN8_CTX_STATUS_COMPLETE &&
		    buf[2*head + 1] == execlists->preempt_complete_status) {
			GEM_TRACE("%s preempt-idle\n", engine->name);
			complete_preempt_context(execlists);
			continue;
1250
		}
1251

1252 1253 1254 1255
		if (status & GEN8_CTX_STATUS_PREEMPTED &&
		    execlists_is_active(execlists,
					EXECLISTS_ACTIVE_PREEMPT))
			continue;
1256

1257 1258
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
1259

1260
		rq = port_unpack(port, &count);
1261
		GEM_TRACE("%s out[0]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
1262 1263 1264 1265
			  engine->name,
			  port->context_id, count,
			  rq ? rq->fence.context : 0,
			  rq ? rq->fence.seqno : 0,
1266
			  rq ? hwsp_seqno(rq) : 0,
1267 1268 1269 1270 1271 1272 1273
			  rq ? rq_prio(rq) : 0);

		/* Check the context/desc id for this event matches */
		GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

		GEM_BUG_ON(count == 0);
		if (--count == 0) {
1274
			/*
1275 1276 1277 1278 1279 1280
			 * On the final event corresponding to the
			 * submission of this context, we expect either
			 * an element-switch event or a completion
			 * event (and on completion, the active-idle
			 * marker). No more preemptions, lite-restore
			 * or otherwise.
1281
			 */
1282 1283 1284 1285 1286
			GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
			GEM_BUG_ON(port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
			GEM_BUG_ON(!port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1287

1288 1289 1290 1291 1292 1293 1294
			/*
			 * We rely on the hardware being strongly
			 * ordered, that the breadcrumb write is
			 * coherent (visible from the CPU) before the
			 * user interrupt and CSB is processed.
			 */
			GEM_BUG_ON(!i915_request_completed(rq));
C
Chris Wilson 已提交
1295

1296 1297 1298
			execlists_context_schedule_out(rq,
						       INTEL_CONTEXT_SCHEDULE_OUT);
			i915_request_put(rq);
1299

1300 1301
			GEM_TRACE("%s completed ctx=%d\n",
				  engine->name, port->context_id);
1302

1303 1304 1305 1306 1307 1308 1309
			port = execlists_port_complete(execlists, port);
			if (port_isset(port))
				execlists_user_begin(execlists, port);
			else
				execlists_user_end(execlists);
		} else {
			port_set(port, port_pack(rq, count));
1310
		}
1311
	} while (head != tail);
1312

1313
	execlists->csb_head = head;
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

	/*
	 * Gen11 has proven to fail wrt global observation point between
	 * entry and tail update, failing on the ordering and thus
	 * we see an old entry in the context status buffer.
	 *
	 * Forcibly evict out entries for the next gpu csb update,
	 * to increase the odds that we get a fresh entries with non
	 * working hardware. The cost for doing so comes out mostly with
	 * the wash as hardware, working or not, will need to do the
	 * invalidation before.
	 */
1326
	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1327
}
1328

1329
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1330
{
1331
	lockdep_assert_held(&engine->active.lock);
1332

C
Chris Wilson 已提交
1333
	process_csb(engine);
1334 1335
	if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
		execlists_dequeue(engine);
1336 1337
}

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	unsigned long flags;

	GEM_TRACE("%s awake?=%d, active=%x\n",
		  engine->name,
1349
		  !!intel_wakeref_active(&engine->wakeref),
1350 1351
		  engine->execlists.active);

1352
	spin_lock_irqsave(&engine->active.lock, flags);
1353
	__execlists_submission_tasklet(engine);
1354
	spin_unlock_irqrestore(&engine->active.lock, flags);
1355 1356
}

1357
static void queue_request(struct intel_engine_cs *engine,
1358
			  struct i915_sched_node *node,
1359
			  int prio)
1360
{
1361
	GEM_BUG_ON(!list_empty(&node->link));
1362
	list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
}

static void __submit_queue_imm(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	if (reset_in_progress(execlists))
		return; /* defer until we restart the engine following reset */

	if (execlists->tasklet.func == execlists_submission_tasklet)
		__execlists_submission_tasklet(engine);
	else
		tasklet_hi_schedule(&execlists->tasklet);
1376 1377
}

1378 1379
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
1380 1381
	if (prio > engine->execlists.queue_priority_hint) {
		engine->execlists.queue_priority_hint = prio;
1382 1383
		__submit_queue_imm(engine);
	}
1384 1385
}

1386
static void execlists_submit_request(struct i915_request *request)
1387
{
1388
	struct intel_engine_cs *engine = request->engine;
1389
	unsigned long flags;
1390

1391
	/* Will be called from irq-context when using foreign fences. */
1392
	spin_lock_irqsave(&engine->active.lock, flags);
1393

1394
	queue_request(engine, &request->sched, rq_prio(request));
1395

1396
	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1397
	GEM_BUG_ON(list_empty(&request->sched.link));
1398

1399 1400
	submit_queue(engine, rq_prio(request));

1401
	spin_unlock_irqrestore(&engine->active.lock, flags);
1402 1403
}

1404
static void __execlists_context_fini(struct intel_context *ce)
1405
{
1406
	intel_ring_put(ce->ring);
1407 1408 1409

	GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
	i915_gem_object_put(ce->state->obj);
1410 1411
}

1412
static void execlists_context_destroy(struct kref *kref)
1413
{
1414 1415
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);

1416
	GEM_BUG_ON(intel_context_is_pinned(ce));
1417 1418 1419 1420 1421 1422 1423

	if (ce->state)
		__execlists_context_fini(ce);

	intel_context_free(ce);
}

1424
static void execlists_context_unpin(struct intel_context *ce)
1425
{
1426
	i915_gem_context_unpin_hw_id(ce->gem_context);
1427
	i915_gem_object_unpin_map(ce->state->obj);
1428
	intel_ring_unpin(ce->ring);
1429 1430
}

1431
static void
1432 1433
__execlists_update_reg_state(struct intel_context *ce,
			     struct intel_engine_cs *engine)
1434 1435
{
	struct intel_ring *ring = ce->ring;
1436 1437 1438 1439
	u32 *regs = ce->lrc_reg_state;

	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1440 1441 1442 1443 1444 1445 1446

	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
	regs[CTX_RING_HEAD + 1] = ring->head;
	regs[CTX_RING_TAIL + 1] = ring->tail;

	/* RPCS */
	if (engine->class == RENDER_CLASS)
1447
		regs[CTX_R_PWR_CLK_STATE + 1] =
1448
			intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1449 1450
}

1451 1452 1453
static int
__execlists_context_pin(struct intel_context *ce,
			struct intel_engine_cs *engine)
1454
{
1455
	void *vaddr;
1456
	int ret;
1457

1458
	GEM_BUG_ON(!ce->gem_context->vm);
1459 1460

	ret = execlists_context_deferred_alloc(ce, engine);
1461 1462
	if (ret)
		goto err;
1463
	GEM_BUG_ON(!ce->state);
1464

1465 1466 1467 1468
	ret = intel_context_active_acquire(ce,
					   engine->i915->ggtt.pin_bias |
					   PIN_OFFSET_BIAS |
					   PIN_HIGH);
1469
	if (ret)
1470
		goto err;
1471

1472
	vaddr = i915_gem_object_pin_map(ce->state->obj,
1473
					i915_coherent_map_type(engine->i915) |
1474
					I915_MAP_OVERRIDE);
1475 1476
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1477
		goto unpin_active;
1478 1479
	}

1480
	ret = intel_ring_pin(ce->ring);
1481
	if (ret)
1482
		goto unpin_map;
1483

1484
	ret = i915_gem_context_pin_hw_id(ce->gem_context);
1485 1486 1487
	if (ret)
		goto unpin_ring;

1488
	ce->lrc_desc = lrc_descriptor(ce, engine);
1489
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1490
	__execlists_update_reg_state(ce, engine);
1491

1492
	return 0;
1493

1494 1495
unpin_ring:
	intel_ring_unpin(ce->ring);
1496
unpin_map:
1497
	i915_gem_object_unpin_map(ce->state->obj);
1498 1499
unpin_active:
	intel_context_active_release(ce);
1500
err:
1501
	return ret;
1502 1503
}

1504
static int execlists_context_pin(struct intel_context *ce)
1505
{
1506
	return __execlists_context_pin(ce, ce->engine);
1507 1508
}

1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
static void execlists_context_reset(struct intel_context *ce)
{
	/*
	 * Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * The contexts that are stilled pinned on resume belong to the
	 * kernel, and are local to each engine. All other contexts will
	 * have their head/tail sanitized upon pinning before use, so they
	 * will never see garbage,
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	intel_ring_reset(ce->ring, 0);
	__execlists_update_reg_state(ce, ce->engine);
}

1531
static const struct intel_context_ops execlists_context_ops = {
1532
	.pin = execlists_context_pin,
1533
	.unpin = execlists_context_unpin,
1534

1535 1536 1537
	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

1538
	.reset = execlists_context_reset,
1539 1540 1541
	.destroy = execlists_context_destroy,
};

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
static int gen8_emit_init_breadcrumb(struct i915_request *rq)
{
	u32 *cs;

	GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Check if we have been preempted before we even get started.
	 *
	 * After this point i915_request_started() reports true, even if
	 * we get preempted and so are no longer running.
	 */
	*cs++ = MI_ARB_CHECK;
	*cs++ = MI_NOOP;

	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
	*cs++ = rq->timeline->hwsp_offset;
	*cs++ = 0;
	*cs++ = rq->fence.seqno - 1;

	intel_ring_advance(rq, cs);
1567 1568 1569 1570

	/* Record the updated position of the request's payload */
	rq->infix = intel_ring_offset(rq, cs);

1571 1572 1573
	return 0;
}

1574 1575 1576
static int emit_pdps(struct i915_request *rq)
{
	const struct intel_engine_cs * const engine = rq->engine;
1577
	struct i915_ppgtt * const ppgtt =
1578
		i915_vm_to_ppgtt(rq->gem_context->vm);
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	int err, i;
	u32 *cs;

	GEM_BUG_ON(intel_vgpu_active(rq->i915));

	/*
	 * Beware ye of the dragons, this sequence is magic!
	 *
	 * Small changes to this sequence can cause anything from
	 * GPU hangs to forcewake errors and machine lockups!
	 */

	/* Flush any residual operations from the context load */
	err = engine->emit_flush(rq, EMIT_FLUSH);
	if (err)
		return err;

	/* Magic required to prevent forcewake errors! */
	err = engine->emit_flush(rq, EMIT_INVALIDATE);
	if (err)
		return err;

	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Ensure the LRI have landed before we invalidate & continue */
	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
	for (i = GEN8_3LVL_PDPES; i--; ) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1609
		u32 base = engine->mmio_base;
1610

1611
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1612
		*cs++ = upper_32_bits(pd_daddr);
1613
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
		*cs++ = lower_32_bits(pd_daddr);
	}
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);

	/* Be doubly sure the LRI have landed before proceeding */
	err = engine->emit_flush(rq, EMIT_FLUSH);
	if (err)
		return err;

	/* Re-invalidate the TLB for luck */
	return engine->emit_flush(rq, EMIT_INVALIDATE);
}

1629
static int execlists_request_alloc(struct i915_request *request)
1630
{
1631
	int ret;
1632

1633
	GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1634

1635 1636
	/*
	 * Flush enough space to reduce the likelihood of waiting after
1637 1638 1639 1640 1641
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1642 1643
	/*
	 * Note that after this point, we have committed to using
1644 1645 1646 1647 1648 1649
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

1650
	/* Unconditionally invalidate GPU caches and TLBs. */
1651
	if (i915_vm_is_4lvl(request->gem_context->vm))
1652 1653 1654 1655 1656 1657
		ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
	else
		ret = emit_pdps(request);
	if (ret)
		return ret;

1658 1659 1660 1661
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1678 1679
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1680
{
1681
	/* NB no one else is allowed to scribble over scratch + 256! */
1682 1683
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1684
	*batch++ = i915_scratch_offset(engine->i915) + 256;
1685 1686 1687 1688 1689 1690
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1691 1692 1693 1694
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1695 1696 1697

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1698
	*batch++ = i915_scratch_offset(engine->i915) + 256;
1699 1700 1701
	*batch++ = 0;

	return batch;
1702 1703
}

1704 1705 1706 1707 1708 1709
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1710
 *
1711 1712
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1713
 *
1714 1715 1716 1717
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1718
 */
1719
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1720
{
1721
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1722
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1723

1724
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1725 1726
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1727

1728 1729
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1730 1731 1732 1733 1734
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
1735
				       i915_scratch_offset(engine->i915) +
1736
				       2 * CACHELINE_BYTES);
1737

C
Chris Wilson 已提交
1738 1739
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1740
	/* Pad to end of cacheline */
1741 1742
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1743 1744 1745 1746 1747 1748 1749

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1750
	return batch;
1751 1752
}

1753 1754 1755 1756 1757 1758
struct lri {
	i915_reg_t reg;
	u32 value;
};

static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1759
{
1760
	GEM_BUG_ON(!count || count > 63);
C
Chris Wilson 已提交
1761

1762 1763 1764 1765 1766 1767
	*batch++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*batch++ = i915_mmio_reg_offset(lri->reg);
		*batch++ = lri->value;
	} while (lri++, --count);
	*batch++ = MI_NOOP;
1768

1769 1770
	return batch;
}
1771

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	static const struct lri lri[] = {
		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
		{
			COMMON_SLICE_CHICKEN2,
			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
				       0),
		},

		/* BSpec: 11391 */
		{
			FF_SLICE_CHICKEN,
			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
		},

		/* BSpec: 11299 */
		{
			_3D_CHICKEN3,
			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
		}
	};
1796

1797
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1798

1799 1800
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1801

1802
	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1803

1804
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1819 1820 1821 1822 1823 1824
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1825 1826
	}

C
Chris Wilson 已提交
1827 1828
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1829
	/* Pad to end of cacheline */
1830 1831
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1832

1833
	return batch;
1834 1835
}

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1870 1871 1872
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1873
{
1874 1875 1876
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1877

1878
	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
1879 1880
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1881

1882
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1883 1884 1885
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1886 1887
	}

1888
	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1889 1890 1891 1892
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1893
	return 0;
1894 1895 1896 1897

err:
	i915_gem_object_put(obj);
	return err;
1898 1899
}

1900
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1901
{
1902
	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1903 1904
}

1905 1906
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1907
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1908
{
1909
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1910 1911 1912
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1913
	struct page *page;
1914 1915
	void *batch, *batch_ptr;
	unsigned int i;
1916
	int ret;
1917

1918 1919
	if (engine->class != RENDER_CLASS)
		return 0;
1920

1921
	switch (INTEL_GEN(engine->i915)) {
1922 1923
	case 11:
		return 0;
1924
	case 10:
1925 1926 1927
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1928 1929
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1930
		wa_bb_fn[1] = NULL;
1931 1932 1933
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1934
		wa_bb_fn[1] = NULL;
1935 1936 1937
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1938
		return 0;
1939
	}
1940

1941
	ret = lrc_setup_wa_ctx(engine);
1942 1943 1944 1945 1946
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1947
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1948
	batch = batch_ptr = kmap_atomic(page);
1949

1950 1951 1952 1953 1954 1955 1956
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1957 1958
		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
						  CACHELINE_BYTES))) {
1959 1960 1961
			ret = -EINVAL;
			break;
		}
1962 1963
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1964
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1965 1966
	}

1967 1968
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1969 1970
	kunmap_atomic(batch);
	if (ret)
1971
		lrc_destroy_wa_ctx(engine);
1972 1973 1974 1975

	return ret;
}

1976
static void enable_execlists(struct intel_engine_cs *engine)
1977
{
1978
	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
1979

1980 1981 1982 1983
	if (INTEL_GEN(engine->i915) >= 11)
		ENGINE_WRITE(engine,
			     RING_MODE_GEN7,
			     _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1984
	else
1985 1986 1987
		ENGINE_WRITE(engine,
			     RING_MODE_GEN7,
			     _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1988

1989
	ENGINE_WRITE(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1990

1991 1992 1993 1994
	ENGINE_WRITE(engine,
		     RING_HWS_PGA,
		     i915_ggtt_offset(engine->status_page.vma));
	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
1995 1996
}

1997 1998 1999 2000
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
	bool unexpected = false;

2001
	if (ENGINE_READ(engine, RING_MI_MODE) & STOP_RING) {
2002 2003 2004 2005 2006 2007 2008
		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
		unexpected = true;
	}

	return unexpected;
}

2009
static int execlists_resume(struct intel_engine_cs *engine)
2010
{
2011
	intel_engine_apply_workarounds(engine);
2012
	intel_engine_apply_whitelist(engine);
2013

2014
	intel_mocs_init_engine(engine);
2015

2016
	intel_engine_reset_breadcrumbs(engine);
2017

2018 2019 2020 2021 2022 2023
	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p, NULL);
	}

2024
	enable_execlists(engine);
2025

2026
	return 0;
2027 2028
}

2029
static void execlists_reset_prepare(struct intel_engine_cs *engine)
2030 2031
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
2032
	unsigned long flags;
2033

2034 2035
	GEM_TRACE("%s: depth<-%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
2036 2037 2038 2039 2040 2041

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
2042
	 * calling engine->resume() and also writing the ELSP.
2043 2044 2045 2046
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);
2047
	GEM_BUG_ON(!reset_in_progress(execlists));
2048

2049 2050
	intel_engine_stop_cs(engine);

2051
	/* And flush any current direct submission. */
2052 2053
	spin_lock_irqsave(&engine->active.lock, flags);
	spin_unlock_irqrestore(&engine->active.lock, flags);
2054 2055
}

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
static bool lrc_regs_ok(const struct i915_request *rq)
{
	const struct intel_ring *ring = rq->ring;
	const u32 *regs = rq->hw_context->lrc_reg_state;

	/* Quick spot check for the common signs of context corruption */

	if (regs[CTX_RING_BUFFER_CONTROL + 1] !=
	    (RING_CTL_SIZE(ring->size) | RING_VALID))
		return false;

	if (regs[CTX_RING_BUFFER_START + 1] != i915_ggtt_offset(ring->vma))
		return false;

	return true;
}

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
static void reset_csb_pointers(struct intel_engine_execlists *execlists)
{
	const unsigned int reset_value = execlists->csb_size - 1;

	/*
	 * After a reset, the HW starts writing into CSB entry [0]. We
	 * therefore have to set our HEAD pointer back one entry so that
	 * the *first* entry we check is entry 0. To complicate this further,
	 * as we don't wait for the first interrupt after reset, we have to
	 * fake the HW write to point back to the last entry so that our
	 * inline comparison of our cached head position against the last HW
	 * write works even before the first interrupt.
	 */
	execlists->csb_head = reset_value;
	WRITE_ONCE(*execlists->csb_write, reset_value);
2088
	wmb(); /* Make sure this is visible to HW (paranoia?) */
2089 2090 2091 2092 2093

	invalidate_csb_entries(&execlists->csb_status[0],
			       &execlists->csb_status[reset_value]);
}

2094 2095
static struct i915_request *active_request(struct i915_request *rq)
{
2096
	const struct list_head * const list = &rq->engine->active.requests;
2097 2098 2099
	const struct intel_context * const context = rq->hw_context;
	struct i915_request *active = NULL;

2100
	list_for_each_entry_from_reverse(rq, list, sched.link) {
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
		if (i915_request_completed(rq))
			break;

		if (rq->hw_context != context)
			break;

		active = rq;
	}

	return active;
}

2113
static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
2114
{
2115
	struct intel_engine_execlists * const execlists = &engine->execlists;
2116
	struct intel_context *ce;
2117
	struct i915_request *rq;
2118
	u32 *regs;
2119

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	process_csb(engine); /* drain preemption events */

	/* Following the reset, we need to reload the CSB read/write pointers */
	reset_csb_pointers(&engine->execlists);

	/*
	 * Save the currently executing context, even if we completed
	 * its request, it was still running at the time of the
	 * reset and will have been clobbered.
	 */
	if (!port_isset(execlists->port))
		goto out_clear;

2133 2134
	rq = port_request(execlists->port);
	ce = rq->hw_context;
2135

2136 2137 2138 2139 2140 2141 2142 2143 2144
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
2145
	execlists_cancel_port_requests(execlists);
2146

2147
	rq = active_request(rq);
2148
	if (!rq)
2149 2150
		goto out_replay;

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
	/*
	 * If this request hasn't started yet, e.g. it is waiting on a
	 * semaphore, we need to avoid skipping the request or else we
	 * break the signaling chain. However, if the context is corrupt
	 * the request will not restart and we will be stuck with a wedged
	 * device. It is quite often the case that if we issue a reset
	 * while the GPU is loading the context image, that the context
	 * image becomes corrupt.
	 *
	 * Otherwise, if we have not started yet, the request should replay
	 * perfectly and we do not need to flag the result as being erroneous.
	 */
	if (!i915_request_started(rq) && lrc_regs_ok(rq))
2164
		goto out_replay;
2165

2166 2167
	/*
	 * If the request was innocent, we leave the request in the ELSP
2168 2169 2170 2171 2172 2173 2174 2175 2176
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
2177
	i915_reset_request(rq, stalled);
2178
	if (!stalled && lrc_regs_ok(rq))
2179
		goto out_replay;
2180

2181 2182
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
2183 2184 2185 2186 2187 2188
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
2189
	regs = ce->lrc_reg_state;
2190 2191 2192 2193
	if (engine->pinned_default_state) {
		memcpy(regs, /* skip restoring the vanilla PPHWSP */
		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
		       engine->context_size - PAGE_SIZE);
2194
	}
2195
	execlists_init_reg_state(regs, ce, engine, ce->ring);
2196

2197
out_replay:
2198
	/* Rerun the request; its payload has been neutered (if guilty). */
2199 2200 2201 2202 2203
	ce->ring->head =
		rq ? intel_ring_wrap(ce->ring, rq->head) : ce->ring->tail;
	intel_ring_update_space(ce->ring);
	__execlists_update_reg_state(ce, engine);

2204 2205 2206
	/* Push back any incomplete requests for replay after the reset. */
	__unwind_incomplete_requests(engine);

2207 2208 2209
out_clear:
	execlists_clear_all_active(execlists);
}
2210

2211 2212 2213 2214 2215 2216
static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
{
	unsigned long flags;

	GEM_TRACE("%s\n", engine->name);

2217
	spin_lock_irqsave(&engine->active.lock, flags);
2218 2219 2220

	__execlists_reset(engine, stalled);

2221
	spin_unlock_irqrestore(&engine->active.lock, flags);
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
}

static void nop_submission_tasklet(unsigned long data)
{
	/* The driver is wedged; don't process any more events. */
}

static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	GEM_TRACE("%s\n", engine->name);

	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
2252
	spin_lock_irqsave(&engine->active.lock, flags);
2253 2254 2255 2256

	__execlists_reset(engine, true);

	/* Mark all executing requests as skipped. */
2257
	list_for_each_entry(rq, &engine->active.requests, sched.link) {
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
		if (!i915_request_signaled(rq))
			dma_fence_set_error(&rq->fence, -EIO);

		i915_request_mark_complete(rq);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
	while ((rb = rb_first_cached(&execlists->queue))) {
		struct i915_priolist *p = to_priolist(rb);
		int i;

		priolist_for_each_request_consume(rq, rn, p, i) {
			list_del_init(&rq->sched.link);
			__i915_request_submit(rq);
			dma_fence_set_error(&rq->fence, -EIO);
			i915_request_mark_complete(rq);
		}

		rb_erase_cached(&p->node, &execlists->queue);
		i915_priolist_free(p);
	}

2280 2281 2282 2283 2284 2285 2286 2287
	/* Cancel all attached virtual engines */
	while ((rb = rb_first_cached(&execlists->virtual))) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);

		rb_erase_cached(rb, &execlists->virtual);
		RB_CLEAR_NODE(rb);

2288
		spin_lock(&ve->base.active.lock);
2289 2290 2291 2292 2293 2294 2295 2296
		if (ve->request) {
			ve->request->engine = engine;
			__i915_request_submit(ve->request);
			dma_fence_set_error(&ve->request->fence, -EIO);
			i915_request_mark_complete(ve->request);
			ve->base.execlists.queue_priority_hint = INT_MIN;
			ve->request = NULL;
		}
2297
		spin_unlock(&ve->base.active.lock);
2298 2299
	}

2300 2301 2302 2303 2304 2305 2306 2307
	/* Remaining _unready_ requests will be nop'ed when submitted */

	execlists->queue_priority_hint = INT_MIN;
	execlists->queue = RB_ROOT_CACHED;
	GEM_BUG_ON(port_isset(execlists->port));

	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
	execlists->tasklet.func = nop_submission_tasklet;
2308

2309
	spin_unlock_irqrestore(&engine->active.lock, flags);
2310 2311
}

2312 2313
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
2314 2315
	struct intel_engine_execlists * const execlists = &engine->execlists;

2316
	/*
2317 2318 2319
	 * After a GPU reset, we may have requests to replay. Do so now while
	 * we still have the forcewake to be sure that the GPU is not allowed
	 * to sleep before we restart and reload a context.
2320
	 */
2321
	GEM_BUG_ON(!reset_in_progress(execlists));
2322 2323
	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
		execlists->tasklet.func(execlists->tasklet.data);
2324

2325 2326 2327
	if (__tasklet_enable(&execlists->tasklet))
		/* And kick in case we missed a new request submission. */
		tasklet_hi_schedule(&execlists->tasklet);
2328 2329
	GEM_TRACE("%s: depth->%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
2330 2331
}

2332
static int gen8_emit_bb_start(struct i915_request *rq,
2333
			      u64 offset, u32 len,
2334
			      const unsigned int flags)
2335
{
2336
	u32 *cs;
2337

2338
	cs = intel_ring_begin(rq, 4);
2339 2340
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2341

2342 2343 2344 2345 2346 2347 2348
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
2349 2350 2351 2352 2353
	 * we would be fine.  However, for gen8 there is another w/a that
	 * requires us to not preempt inside GPGPU execution, so we keep
	 * arbitration disabled for gen8 batches. Arbitration will be
	 * re-enabled before we close the request
	 * (engine->emit_fini_breadcrumb).
2354
	 */
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

	/* FIXME(BDW+): Address space and security selectors. */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);

	intel_ring_advance(rq, cs);

	return 0;
}

static int gen9_emit_bb_start(struct i915_request *rq,
			      u64 offset, u32 len,
			      const unsigned int flags)
{
	u32 *cs;

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

2378 2379
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

2380
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2381
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2382 2383
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
2384 2385 2386

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
2387

2388
	intel_ring_advance(rq, cs);
2389 2390 2391 2392

	return 0;
}

2393
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2394
{
2395 2396 2397
	ENGINE_WRITE(engine, RING_IMR,
		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
	ENGINE_POSTING_READ(engine, RING_IMR);
2398 2399
}

2400
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2401
{
2402
	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2403 2404
}

2405
static int gen8_emit_flush(struct i915_request *request, u32 mode)
2406
{
2407
	u32 cmd, *cs;
2408

2409 2410 2411
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2412 2413 2414

	cmd = MI_FLUSH_DW + 1;

2415 2416 2417 2418 2419 2420 2421
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2422
	if (mode & EMIT_INVALIDATE) {
2423
		cmd |= MI_INVALIDATE_TLB;
2424
		if (request->engine->class == VIDEO_DECODE_CLASS)
2425
			cmd |= MI_INVALIDATE_BSD;
2426 2427
	}

2428 2429 2430 2431 2432
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
2433 2434 2435 2436

	return 0;
}

2437
static int gen8_emit_flush_render(struct i915_request *request,
2438
				  u32 mode)
2439
{
2440
	struct intel_engine_cs *engine = request->engine;
2441
	u32 scratch_addr =
2442
		i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
2443
	bool vf_flush_wa = false, dc_flush_wa = false;
2444
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
2445
	int len;
2446 2447 2448

	flags |= PIPE_CONTROL_CS_STALL;

2449
	if (mode & EMIT_FLUSH) {
2450 2451
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2452
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2453
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2454 2455
	}

2456
	if (mode & EMIT_INVALIDATE) {
2457 2458 2459 2460 2461 2462 2463 2464 2465
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

2466 2467 2468 2469
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
2470
		if (IS_GEN(request->i915, 9))
2471
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
2472 2473 2474 2475

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
2476
	}
2477

M
Mika Kuoppala 已提交
2478 2479 2480 2481 2482 2483 2484 2485
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

2486 2487 2488
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2489

2490 2491
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
2492

2493 2494 2495
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2496

2497
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2498

2499 2500
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2501

2502
	intel_ring_advance(request, cs);
2503 2504 2505 2506

	return 0;
}

2507 2508 2509 2510 2511
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2512
static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2513
{
C
Chris Wilson 已提交
2514 2515
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2516 2517
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
2518 2519

	return cs;
C
Chris Wilson 已提交
2520
}
2521

2522
static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
2523
{
2524 2525
	cs = gen8_emit_ggtt_write(cs,
				  request->fence.seqno,
2526 2527
				  request->timeline->hwsp_offset,
				  0);
2528

2529
	*cs++ = MI_USER_INTERRUPT;
2530
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2531

2532
	request->tail = intel_ring_offset(request, cs);
2533
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2534

2535
	return gen8_emit_wa_tail(request, cs);
2536
}
2537

2538
static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2539
{
2540
	/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
2541
	cs = gen8_emit_ggtt_write_rcs(cs,
2542 2543
				      request->fence.seqno,
				      request->timeline->hwsp_offset,
2544 2545
				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2546 2547 2548 2549 2550
				      PIPE_CONTROL_DC_FLUSH_ENABLE);
	cs = gen8_emit_pipe_control(cs,
				    PIPE_CONTROL_FLUSH_ENABLE |
				    PIPE_CONTROL_CS_STALL,
				    0);
2551

2552
	*cs++ = MI_USER_INTERRUPT;
2553
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2554

2555
	request->tail = intel_ring_offset(request, cs);
2556
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2557

2558
	return gen8_emit_wa_tail(request, cs);
2559
}
2560

2561
static int gen8_init_rcs_context(struct i915_request *rq)
2562 2563 2564
{
	int ret;

2565
	ret = intel_engine_emit_ctx_wa(rq);
2566 2567 2568
	if (ret)
		return ret;

2569
	ret = intel_rcs_context_init_mocs(rq);
2570 2571 2572 2573 2574 2575 2576
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2577
	return i915_gem_render_state_emit(rq);
2578 2579
}

2580 2581 2582 2583 2584
static void execlists_park(struct intel_engine_cs *engine)
{
	intel_engine_park(engine);
}

2585
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2586
{
2587
	engine->submit_request = execlists_submit_request;
2588
	engine->cancel_requests = execlists_cancel_requests;
2589
	engine->schedule = i915_schedule;
2590
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2591

2592
	engine->reset.prepare = execlists_reset_prepare;
2593 2594
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2595

2596
	engine->park = execlists_park;
2597
	engine->unpark = NULL;
2598 2599

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2600 2601
	if (!intel_vgpu_active(engine->i915))
		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2602 2603
	if (engine->preempt_context &&
	    HAS_LOGICAL_RING_PREEMPTION(engine->i915))
2604
		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2605 2606
}

2607 2608 2609 2610 2611 2612 2613
static void execlists_destroy(struct intel_engine_cs *engine)
{
	intel_engine_cleanup_common(engine);
	lrc_destroy_wa_ctx(engine);
	kfree(engine);
}

2614
static void
2615
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2616 2617
{
	/* Default vfuncs which can be overriden by each engine. */
2618 2619

	engine->destroy = execlists_destroy;
2620
	engine->resume = execlists_resume;
2621 2622 2623 2624

	engine->reset.prepare = execlists_reset_prepare;
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2625

2626
	engine->cops = &execlists_context_ops;
2627 2628
	engine->request_alloc = execlists_request_alloc;

2629
	engine->emit_flush = gen8_emit_flush;
2630 2631
	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
2632

2633
	engine->set_default_submission = intel_execlists_set_default_submission;
2634

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2646 2647 2648 2649
	if (IS_GEN(engine->i915, 8))
		engine->emit_bb_start = gen8_emit_bb_start;
	else
		engine->emit_bb_start = gen9_emit_bb_start;
2650 2651
}

2652
static inline void
2653
logical_ring_default_irqs(struct intel_engine_cs *engine)
2654
{
2655 2656 2657 2658
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
2659 2660 2661 2662 2663
			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
			[VECS0] = GEN8_VECS_IRQ_SHIFT,
2664 2665 2666 2667 2668
		};

		shift = irq_shifts[engine->id];
	}

2669 2670
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2671 2672
}

2673
int intel_execlists_submission_setup(struct intel_engine_cs *engine)
2674 2675 2676 2677
{
	/* Intentionally left blank. */
	engine->buffer = NULL;

2678 2679
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2680 2681 2682

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
2683

2684 2685 2686 2687 2688 2689
	if (engine->class == RENDER_CLASS) {
		engine->init_context = gen8_init_rcs_context;
		engine->emit_flush = gen8_emit_flush_render;
		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
	}

2690
	return 0;
2691 2692
}

2693
int intel_execlists_submission_init(struct intel_engine_cs *engine)
2694
{
2695
	struct intel_engine_execlists * const execlists = &engine->execlists;
2696 2697
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
2698
	u32 base = engine->mmio_base;
2699 2700
	int ret;

2701
	ret = intel_engine_init_common(engine);
2702
	if (ret)
2703
		return ret;
2704

2705
	intel_engine_init_workarounds(engine);
2706 2707 2708 2709 2710 2711 2712 2713 2714
	intel_engine_init_whitelist(engine);

	if (intel_init_workaround_bb(engine))
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed\n");
2715

2716
	if (HAS_LOGICAL_RING_ELSQ(i915)) {
2717
		execlists->submit_reg = uncore->regs +
2718
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
2719
		execlists->ctrl_reg = uncore->regs +
2720
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
2721
	} else {
2722
		execlists->submit_reg = uncore->regs +
2723
			i915_mmio_reg_offset(RING_ELSP(base));
2724
	}
2725

2726
	execlists->preempt_complete_status = ~0u;
2727
	if (engine->preempt_context)
2728
		execlists->preempt_complete_status =
2729
			upper_32_bits(engine->preempt_context->lrc_desc);
2730

2731
	execlists->csb_status =
2732
		&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2733

2734
	execlists->csb_write =
2735
		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
2736

2737
	if (INTEL_GEN(i915) < 11)
2738 2739 2740
		execlists->csb_size = GEN8_CSB_ENTRIES;
	else
		execlists->csb_size = GEN11_CSB_ENTRIES;
2741

2742
	reset_csb_pointers(execlists);
2743

2744 2745 2746
	return 0;
}

2747
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2748 2749 2750
{
	u32 indirect_ctx_offset;

2751
	switch (INTEL_GEN(engine->i915)) {
2752
	default:
2753
		MISSING_CASE(INTEL_GEN(engine->i915));
2754
		/* fall through */
2755 2756 2757 2758
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2759 2760 2761 2762
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2776
static void execlists_init_reg_state(u32 *regs,
2777
				     struct intel_context *ce,
2778 2779
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2780
{
2781
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->gem_context->vm);
2782
	bool rcs = engine->class == RENDER_CLASS;
2783
	u32 base = engine->mmio_base;
2784

2785 2786
	/*
	 * A context is actually a big batch buffer with several
2787 2788 2789 2790 2791
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
2792 2793
	 *
	 * Must keep consistent with virtual_update_register_offsets().
2794 2795 2796 2797
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

2798
	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
2799
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2800
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2801
	if (INTEL_GEN(engine->i915) < 11) {
2802 2803 2804 2805
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
					    CTX_CTRL_RS_CTX_ENABLE);
	}
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2818 2819
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2820 2821 2822
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2823
		if (wa_ctx->indirect_ctx.size) {
2824
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2825

2826
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2827 2828
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2829

2830
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2831
				intel_lr_indirect_ctx_offset(engine) << 6;
2832 2833 2834 2835 2836
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2837

2838
			regs[CTX_BB_PER_CTX_PTR + 1] =
2839
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2840
		}
2841
	}
2842 2843 2844 2845

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2846
	/* PDP values well be assigned later if needed */
2847 2848 2849 2850 2851 2852 2853 2854
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
2855

2856
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
2857 2858 2859 2860
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2861
		ASSIGN_CTX_PML4(ppgtt, regs);
2862
	} else {
2863 2864 2865 2866
		ASSIGN_CTX_PDP(ppgtt, regs, 3);
		ASSIGN_CTX_PDP(ppgtt, regs, 2);
		ASSIGN_CTX_PDP(ppgtt, regs, 1);
		ASSIGN_CTX_PDP(ppgtt, regs, 0);
2867 2868
	}

2869 2870
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2871
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
2872

2873
		i915_oa_init_reg_state(engine, ce, regs);
2874
	}
2875 2876

	regs[CTX_END] = MI_BATCH_BUFFER_END;
2877
	if (INTEL_GEN(engine->i915) >= 10)
2878
		regs[CTX_END] |= BIT(0);
2879 2880 2881
}

static int
2882
populate_lr_context(struct intel_context *ce,
2883 2884 2885 2886 2887
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2888
	u32 *regs;
2889 2890 2891 2892 2893 2894 2895 2896 2897
	int ret;

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
2909 2910 2911 2912
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
2913 2914 2915 2916 2917

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2918 2919
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2920
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2921
	execlists_init_reg_state(regs, ce, engine, ring);
2922 2923 2924
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2925 2926
	if (ce->gem_context == engine->i915->preempt_context &&
	    INTEL_GEN(engine->i915) < 11)
2927 2928 2929
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2930

2931
	ret = 0;
2932
err_unpin_ctx:
2933 2934 2935
	__i915_gem_object_flush_map(ctx_obj,
				    LRC_HEADER_PAGES * PAGE_SIZE,
				    engine->context_size);
2936
	i915_gem_object_unpin_map(ctx_obj);
2937
	return ret;
2938 2939
}

2940 2941
static struct i915_timeline *get_timeline(struct i915_gem_context *ctx)
{
2942 2943 2944 2945
	if (ctx->timeline)
		return i915_timeline_get(ctx->timeline);
	else
		return i915_timeline_create(ctx->i915, NULL);
2946 2947 2948 2949
}

static int execlists_context_deferred_alloc(struct intel_context *ce,
					    struct intel_engine_cs *engine)
2950
{
2951
	struct drm_i915_gem_object *ctx_obj;
2952
	struct i915_vma *vma;
2953
	u32 context_size;
2954
	struct intel_ring *ring;
2955
	struct i915_timeline *timeline;
2956 2957
	int ret;

2958 2959
	if (ce->state)
		return 0;
2960

2961
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2962

2963 2964 2965 2966 2967
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2968

2969
	ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
2970 2971
	if (IS_ERR(ctx_obj))
		return PTR_ERR(ctx_obj);
2972

2973
	vma = i915_vma_instance(ctx_obj, &engine->i915->ggtt.vm, NULL);
2974 2975 2976 2977 2978
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2979
	timeline = get_timeline(ce->gem_context);
2980 2981 2982 2983 2984
	if (IS_ERR(timeline)) {
		ret = PTR_ERR(timeline);
		goto error_deref_obj;
	}

2985 2986 2987
	ring = intel_engine_create_ring(engine,
					timeline,
					ce->gem_context->ring_size);
2988
	i915_timeline_put(timeline);
2989 2990
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2991
		goto error_deref_obj;
2992 2993
	}

2994
	ret = populate_lr_context(ce, ctx_obj, engine, ring);
2995 2996
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2997
		goto error_ring_free;
2998 2999
	}

3000
	ce->ring = ring;
3001
	ce->state = vma;
3002 3003

	return 0;
3004

3005
error_ring_free:
3006
	intel_ring_put(ring);
3007
error_deref_obj:
3008
	i915_gem_object_put(ctx_obj);
3009
	return ret;
3010
}
3011

3012 3013 3014 3015 3016
static struct list_head *virtual_queue(struct virtual_engine *ve)
{
	return &ve->base.execlists.default_priolist.requests[0];
}

3017 3018 3019 3020 3021 3022
static void virtual_context_destroy(struct kref *kref)
{
	struct virtual_engine *ve =
		container_of(kref, typeof(*ve), context.ref);
	unsigned int n;

3023
	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3024
	GEM_BUG_ON(ve->request);
3025
	GEM_BUG_ON(ve->context.inflight);
3026 3027 3028 3029 3030 3031 3032 3033

	for (n = 0; n < ve->num_siblings; n++) {
		struct intel_engine_cs *sibling = ve->siblings[n];
		struct rb_node *node = &ve->nodes[sibling->id].rb;

		if (RB_EMPTY_NODE(node))
			continue;

3034
		spin_lock_irq(&sibling->active.lock);
3035 3036 3037 3038 3039

		/* Detachment is lazily performed in the execlists tasklet */
		if (!RB_EMPTY_NODE(node))
			rb_erase_cached(node, &sibling->execlists.virtual);

3040
		spin_unlock_irq(&sibling->active.lock);
3041 3042 3043 3044 3045 3046
	}
	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));

	if (ve->context.state)
		__execlists_context_fini(&ve->context);

3047
	kfree(ve->bonds);
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
	kfree(ve);
}

static void virtual_engine_initial_hint(struct virtual_engine *ve)
{
	int swp;

	/*
	 * Pick a random sibling on starting to help spread the load around.
	 *
	 * New contexts are typically created with exactly the same order
	 * of siblings, and often started in batches. Due to the way we iterate
	 * the array of sibling when submitting requests, sibling[0] is
	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
	 * randomised across the system, we also help spread the load by the
	 * first engine we inspect being different each time.
	 *
	 * NB This does not force us to execute on this engine, it will just
	 * typically be the first we inspect for submission.
	 */
	swp = prandom_u32_max(ve->num_siblings);
	if (!swp)
		return;

	swap(ve->siblings[swp], ve->siblings[0]);
	virtual_update_register_offsets(ve->context.lrc_reg_state,
					ve->siblings[0]);
}

static int virtual_context_pin(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	int err;

	/* Note: we must use a real engine class for setting up reg state */
	err = __execlists_context_pin(ce, ve->siblings[0]);
	if (err)
		return err;

	virtual_engine_initial_hint(ve);
	return 0;
}

static void virtual_context_enter(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	unsigned int n;

	for (n = 0; n < ve->num_siblings; n++)
		intel_engine_pm_get(ve->siblings[n]);
}

static void virtual_context_exit(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	unsigned int n;

	ce->saturated = 0;
	for (n = 0; n < ve->num_siblings; n++)
		intel_engine_pm_put(ve->siblings[n]);
}

static const struct intel_context_ops virtual_context_ops = {
	.pin = virtual_context_pin,
	.unpin = execlists_context_unpin,

	.enter = virtual_context_enter,
	.exit = virtual_context_exit,

	.destroy = virtual_context_destroy,
};

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
{
	struct i915_request *rq;
	intel_engine_mask_t mask;

	rq = READ_ONCE(ve->request);
	if (!rq)
		return 0;

	/* The rq is ready for submission; rq->execution_mask is now stable. */
	mask = rq->execution_mask;
	if (unlikely(!mask)) {
		/* Invalid selection, submit to a random engine in error */
		i915_request_skip(rq, -ENODEV);
		mask = ve->siblings[0]->mask;
	}

	GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n",
		  ve->base.name,
		  rq->fence.context, rq->fence.seqno,
		  mask, ve->base.execlists.queue_priority_hint);

	return mask;
}

3145 3146 3147 3148
static void virtual_submission_tasklet(unsigned long data)
{
	struct virtual_engine * const ve = (struct virtual_engine *)data;
	const int prio = ve->base.execlists.queue_priority_hint;
3149
	intel_engine_mask_t mask;
3150 3151
	unsigned int n;

3152 3153 3154 3155 3156 3157
	rcu_read_lock();
	mask = virtual_submission_mask(ve);
	rcu_read_unlock();
	if (unlikely(!mask))
		return;

3158 3159 3160 3161 3162 3163 3164
	local_irq_disable();
	for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
		struct intel_engine_cs *sibling = ve->siblings[n];
		struct ve_node * const node = &ve->nodes[sibling->id];
		struct rb_node **parent, *rb;
		bool first;

3165 3166
		if (unlikely(!(mask & sibling->mask))) {
			if (!RB_EMPTY_NODE(&node->rb)) {
3167
				spin_lock(&sibling->active.lock);
3168 3169 3170
				rb_erase_cached(&node->rb,
						&sibling->execlists.virtual);
				RB_CLEAR_NODE(&node->rb);
3171
				spin_unlock(&sibling->active.lock);
3172 3173 3174 3175
			}
			continue;
		}

3176
		spin_lock(&sibling->active.lock);
3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219

		if (!RB_EMPTY_NODE(&node->rb)) {
			/*
			 * Cheat and avoid rebalancing the tree if we can
			 * reuse this node in situ.
			 */
			first = rb_first_cached(&sibling->execlists.virtual) ==
				&node->rb;
			if (prio == node->prio || (prio > node->prio && first))
				goto submit_engine;

			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
		}

		rb = NULL;
		first = true;
		parent = &sibling->execlists.virtual.rb_root.rb_node;
		while (*parent) {
			struct ve_node *other;

			rb = *parent;
			other = rb_entry(rb, typeof(*other), rb);
			if (prio > other->prio) {
				parent = &rb->rb_left;
			} else {
				parent = &rb->rb_right;
				first = false;
			}
		}

		rb_link_node(&node->rb, rb, parent);
		rb_insert_color_cached(&node->rb,
				       &sibling->execlists.virtual,
				       first);

submit_engine:
		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
		node->prio = prio;
		if (first && prio > sibling->execlists.queue_priority_hint) {
			sibling->execlists.queue_priority_hint = prio;
			tasklet_hi_schedule(&sibling->execlists.tasklet);
		}

3220
		spin_unlock(&sibling->active.lock);
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
	}
	local_irq_enable();
}

static void virtual_submit_request(struct i915_request *rq)
{
	struct virtual_engine *ve = to_virtual_engine(rq->engine);

	GEM_TRACE("%s: rq=%llx:%lld\n",
		  ve->base.name,
		  rq->fence.context,
		  rq->fence.seqno);

	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);

	GEM_BUG_ON(ve->request);
3237 3238
	GEM_BUG_ON(!list_empty(virtual_queue(ve)));

3239 3240 3241
	ve->base.execlists.queue_priority_hint = rq_prio(rq);
	WRITE_ONCE(ve->request, rq);

3242 3243
	list_move_tail(&rq->sched.link, virtual_queue(ve));

3244 3245 3246
	tasklet_schedule(&ve->base.execlists.tasklet);
}

3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
static struct ve_bond *
virtual_find_bond(struct virtual_engine *ve,
		  const struct intel_engine_cs *master)
{
	int i;

	for (i = 0; i < ve->num_bonds; i++) {
		if (ve->bonds[i].master == master)
			return &ve->bonds[i];
	}

	return NULL;
}

static void
virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
{
	struct virtual_engine *ve = to_virtual_engine(rq->engine);
	struct ve_bond *bond;

	bond = virtual_find_bond(ve, to_request(signal)->engine);
	if (bond) {
		intel_engine_mask_t old, new, cmp;

		cmp = READ_ONCE(rq->execution_mask);
		do {
			old = cmp;
			new = cmp & bond->sibling_mask;
		} while ((cmp = cmpxchg(&rq->execution_mask, old, new)) != old);
	}
}

3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
struct intel_context *
intel_execlists_create_virtual(struct i915_gem_context *ctx,
			       struct intel_engine_cs **siblings,
			       unsigned int count)
{
	struct virtual_engine *ve;
	unsigned int n;
	int err;

	if (count == 0)
		return ERR_PTR(-EINVAL);

	if (count == 1)
		return intel_context_create(ctx, siblings[0]);

	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
	if (!ve)
		return ERR_PTR(-ENOMEM);

	ve->base.i915 = ctx->i915;
	ve->base.id = -1;
	ve->base.class = OTHER_CLASS;
	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
	ve->base.flags = I915_ENGINE_IS_VIRTUAL;

	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");

3307
	intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
3308 3309 3310 3311 3312 3313 3314 3315

	intel_engine_init_execlists(&ve->base);

	ve->base.cops = &virtual_context_ops;
	ve->base.request_alloc = execlists_request_alloc;

	ve->base.schedule = i915_schedule;
	ve->base.submit_request = virtual_submit_request;
3316
	ve->base.bond_execute = virtual_bond_execute;
3317

3318
	INIT_LIST_HEAD(virtual_queue(ve));
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
	ve->base.execlists.queue_priority_hint = INT_MIN;
	tasklet_init(&ve->base.execlists.tasklet,
		     virtual_submission_tasklet,
		     (unsigned long)ve);

	intel_context_init(&ve->context, ctx, &ve->base);

	for (n = 0; n < count; n++) {
		struct intel_engine_cs *sibling = siblings[n];

		GEM_BUG_ON(!is_power_of_2(sibling->mask));
		if (sibling->mask & ve->base.mask) {
			DRM_DEBUG("duplicate %s entry in load balancer\n",
				  sibling->name);
			err = -EINVAL;
			goto err_put;
		}

		/*
		 * The virtual engine implementation is tightly coupled to
		 * the execlists backend -- we push out request directly
		 * into a tree inside each physical engine. We could support
		 * layering if we handle cloning of the requests and
		 * submitting a copy into each backend.
		 */
		if (sibling->execlists.tasklet.func !=
		    execlists_submission_tasklet) {
			err = -ENODEV;
			goto err_put;
		}

		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);

		ve->siblings[ve->num_siblings++] = sibling;
		ve->base.mask |= sibling->mask;

		/*
		 * All physical engines must be compatible for their emission
		 * functions (as we build the instructions during request
		 * construction and do not alter them before submission
		 * on the physical engine). We use the engine class as a guide
		 * here, although that could be refined.
		 */
		if (ve->base.class != OTHER_CLASS) {
			if (ve->base.class != sibling->class) {
				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
					  sibling->class, ve->base.class);
				err = -EINVAL;
				goto err_put;
			}
			continue;
		}

		ve->base.class = sibling->class;
		ve->base.uabi_class = sibling->uabi_class;
		snprintf(ve->base.name, sizeof(ve->base.name),
			 "v%dx%d", ve->base.class, count);
		ve->base.context_size = sibling->context_size;

		ve->base.emit_bb_start = sibling->emit_bb_start;
		ve->base.emit_flush = sibling->emit_flush;
		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
		ve->base.emit_fini_breadcrumb_dw =
			sibling->emit_fini_breadcrumb_dw;
	}

	return &ve->context;

err_put:
	intel_context_put(&ve->context);
	return ERR_PTR(err);
}

struct intel_context *
intel_execlists_clone_virtual(struct i915_gem_context *ctx,
			      struct intel_engine_cs *src)
{
	struct virtual_engine *se = to_virtual_engine(src);
	struct intel_context *dst;

	dst = intel_execlists_create_virtual(ctx,
					     se->siblings,
					     se->num_siblings);
	if (IS_ERR(dst))
		return dst;

3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
	if (se->num_bonds) {
		struct virtual_engine *de = to_virtual_engine(dst->engine);

		de->bonds = kmemdup(se->bonds,
				    sizeof(*se->bonds) * se->num_bonds,
				    GFP_KERNEL);
		if (!de->bonds) {
			intel_context_put(dst);
			return ERR_PTR(-ENOMEM);
		}

		de->num_bonds = se->num_bonds;
	}

3421 3422 3423
	return dst;
}

3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
				     const struct intel_engine_cs *master,
				     const struct intel_engine_cs *sibling)
{
	struct virtual_engine *ve = to_virtual_engine(engine);
	struct ve_bond *bond;
	int n;

	/* Sanity check the sibling is part of the virtual engine */
	for (n = 0; n < ve->num_siblings; n++)
		if (sibling == ve->siblings[n])
			break;
	if (n == ve->num_siblings)
		return -EINVAL;

	bond = virtual_find_bond(ve, master);
	if (bond) {
		bond->sibling_mask |= sibling->mask;
		return 0;
	}

	bond = krealloc(ve->bonds,
			sizeof(*bond) * (ve->num_bonds + 1),
			GFP_KERNEL);
	if (!bond)
		return -ENOMEM;

	bond[ve->num_bonds].master = master;
	bond[ve->num_bonds].sibling_mask = sibling->mask;

	ve->bonds = bond;
	ve->num_bonds++;

	return 0;
}

3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
void intel_execlists_show_requests(struct intel_engine_cs *engine,
				   struct drm_printer *m,
				   void (*show_request)(struct drm_printer *m,
							struct i915_request *rq,
							const char *prefix),
				   unsigned int max)
{
	const struct intel_engine_execlists *execlists = &engine->execlists;
	struct i915_request *rq, *last;
	unsigned long flags;
	unsigned int count;
	struct rb_node *rb;

3473
	spin_lock_irqsave(&engine->active.lock, flags);
3474 3475 3476

	last = NULL;
	count = 0;
3477
	list_for_each_entry(rq, &engine->active.requests, sched.link) {
3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
		if (count++ < max - 1)
			show_request(m, rq, "\t\tE ");
		else
			last = rq;
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d executing requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tE ");
	}

	last = NULL;
	count = 0;
3494 3495 3496
	if (execlists->queue_priority_hint != INT_MIN)
		drm_printf(m, "\t\tQueue priority hint: %d\n",
			   execlists->queue_priority_hint);
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		int i;

		priolist_for_each_request(rq, p, i) {
			if (count++ < max - 1)
				show_request(m, rq, "\t\tQ ");
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d queued requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tQ ");
	}

3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539
	last = NULL;
	count = 0;
	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq = READ_ONCE(ve->request);

		if (rq) {
			if (count++ < max - 1)
				show_request(m, rq, "\t\tV ");
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d virtual requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tV ");
	}

3540
	spin_unlock_irqrestore(&engine->active.lock, flags);
3541 3542
}

3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
void intel_lr_context_reset(struct intel_engine_cs *engine,
			    struct intel_context *ce,
			    u32 head,
			    bool scrub)
{
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	if (scrub) {
		u32 *regs = ce->lrc_reg_state;

		if (engine->pinned_default_state) {
			memcpy(regs, /* skip restoring the vanilla PPHWSP */
			       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
			       engine->context_size - PAGE_SIZE);
		}
		execlists_init_reg_state(regs, ce, engine, ce->ring);
	}

	/* Rerun the request; its payload has been neutered (if guilty). */
	ce->ring->head = head;
	intel_ring_update_space(ce->ring);

	__execlists_update_reg_state(ce, engine);
}

3574
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3575
#include "selftest_lrc.c"
3576
#endif