intel_lrc.c 106.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135

136 137
#include "gem/i915_gem_context.h"

138
#include "gt/intel_gt.h"
139
#include "i915_drv.h"
140
#include "i915_gem_render_state.h"
141
#include "i915_vgpu.h"
142
#include "intel_engine_pm.h"
143
#include "intel_lrc_reg.h"
144
#include "intel_mocs.h"
145
#include "intel_reset.h"
146
#include "intel_workarounds.h"
147

148 149 150 151 152 153 154 155 156 157 158 159 160
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
161

162
#define GEN8_CTX_STATUS_COMPLETED_MASK \
163
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
164

165 166
#define CTX_DESC_FORCE_RESTORE BIT_ULL(2)

167 168
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
169
#define WA_TAIL_DWORDS 2
170
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
struct virtual_engine {
	struct intel_engine_cs base;
	struct intel_context context;

	/*
	 * We allow only a single request through the virtual engine at a time
	 * (each request in the timeline waits for the completion fence of
	 * the previous before being submitted). By restricting ourselves to
	 * only submitting a single request, each request is placed on to a
	 * physical to maximise load spreading (by virtue of the late greedy
	 * scheduling -- each real engine takes the next available request
	 * upon idling).
	 */
	struct i915_request *request;

	/*
	 * We keep a rbtree of available virtual engines inside each physical
	 * engine, sorted by priority. Here we preallocate the nodes we need
	 * for the virtual engine, indexed by physical_engine->id.
	 */
	struct ve_node {
		struct rb_node rb;
		int prio;
	} nodes[I915_NUM_ENGINES];

197 198 199 200 201 202 203 204 205 206 207 208
	/*
	 * Keep track of bonded pairs -- restrictions upon on our selection
	 * of physical engines any particular request may be submitted to.
	 * If we receive a submit-fence from a master engine, we will only
	 * use one of sibling_mask physical engines.
	 */
	struct ve_bond {
		const struct intel_engine_cs *master;
		intel_engine_mask_t sibling_mask;
	} *bonds;
	unsigned int num_bonds;

209 210 211 212 213 214 215 216 217 218 219
	/* And finally, which physical engines this virtual engine maps onto. */
	unsigned int num_siblings;
	struct intel_engine_cs *siblings[0];
};

static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
{
	GEM_BUG_ON(!intel_engine_is_virtual(engine));
	return container_of(engine, struct virtual_engine, base);
}

220 221
static int execlists_context_deferred_alloc(struct intel_context *ce,
					    struct intel_engine_cs *engine);
222
static void execlists_init_reg_state(u32 *reg_state,
223
				     struct intel_context *ce,
224 225
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine)
{
	return (i915_ggtt_offset(engine->status_page.vma) +
		I915_GEM_HWS_PREEMPT_ADDR);
}

static inline void
ring_set_paused(const struct intel_engine_cs *engine, int state)
{
	/*
	 * We inspect HWS_PREEMPT with a semaphore inside
	 * engine->emit_fini_breadcrumb. If the dword is true,
	 * the ring is paused as the semaphore will busywait
	 * until the dword is false.
	 */
	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
243 244
	if (state)
		wmb();
245 246
}

247 248 249 250 251 252 253
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
254
	return rq->sched.attr.priority;
255 256
}

257 258
static int effective_prio(const struct i915_request *rq)
{
259 260 261 262
	int prio = rq_prio(rq);

	/*
	 * On unwinding the active request, we give it a priority bump
263 264 265
	 * if it has completed waiting on any semaphore. If we know that
	 * the request has already started, we can prevent an unwanted
	 * preempt-to-idle cycle by taking that into account now.
266
	 */
267 268
	if (__i915_request_has_started(rq))
		prio |= I915_PRIORITY_NOSEMAPHORE;
269

270
	/* Restrict mere WAIT boosts from triggering preemption */
271
	BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */
272
	return prio | __NO_PREEMPTION;
273 274
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
static int queue_prio(const struct intel_engine_execlists *execlists)
{
	struct i915_priolist *p;
	struct rb_node *rb;

	rb = rb_first_cached(&execlists->queue);
	if (!rb)
		return INT_MIN;

	/*
	 * As the priolist[] are inverted, with the highest priority in [0],
	 * we have to flip the index value to become priority.
	 */
	p = to_priolist(rb);
	return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
}

292
static inline bool need_preempt(const struct intel_engine_cs *engine,
293 294
				const struct i915_request *rq,
				struct rb_node *rb)
295
{
296
	int last_prio;
297 298 299 300 301 302 303 304 305 306 307 308 309

	/*
	 * Check if the current priority hint merits a preemption attempt.
	 *
	 * We record the highest value priority we saw during rescheduling
	 * prior to this dequeue, therefore we know that if it is strictly
	 * less than the current tail of ESLP[0], we do not need to force
	 * a preempt-to-idle cycle.
	 *
	 * However, the priority hint is a mere hint that we may need to
	 * preempt. If that hint is stale or we may be trying to preempt
	 * ourselves, ignore the request.
	 */
310
	last_prio = effective_prio(rq);
311 312
	if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint,
					 last_prio))
313 314 315 316 317 318
		return false;

	/*
	 * Check against the first request in ELSP[1], it will, thanks to the
	 * power of PI, be the highest priority of that context.
	 */
319 320
	if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
321 322
		return true;

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
	if (rb) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		bool preempt = false;

		if (engine == ve->siblings[0]) { /* only preempt one sibling */
			struct i915_request *next;

			rcu_read_lock();
			next = READ_ONCE(ve->request);
			if (next)
				preempt = rq_prio(next) > last_prio;
			rcu_read_unlock();
		}

		if (preempt)
			return preempt;
	}

342 343 344 345 346 347 348 349 350 351 352 353 354 355
	/*
	 * If the inflight context did not trigger the preemption, then maybe
	 * it was the set of queued requests? Pick the highest priority in
	 * the queue (the first active priolist) and see if it deserves to be
	 * running instead of ELSP[0].
	 *
	 * The highest priority request in the queue can not be either
	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
	 * context, it's priority would not exceed ELSP[0] aka last_prio.
	 */
	return queue_prio(&engine->execlists) > last_prio;
}

__maybe_unused static inline bool
356
assert_priority_queue(const struct i915_request *prev,
357
		      const struct i915_request *next)
358
{
359 360 361 362 363 364 365
	/*
	 * Without preemption, the prev may refer to the still active element
	 * which we refuse to let go.
	 *
	 * Even with preemption, there are times when we think it is better not
	 * to preempt and leave an ostensibly lower priority request in flight.
	 */
366
	if (i915_request_is_active(prev))
367 368 369
		return true;

	return rq_prio(prev) >= rq_prio(next);
370 371
}

372
/*
373 374 375 376 377
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
378 379
 * This is what a descriptor looks like, from LSB to MSB::
 *
380
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
381
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
382
 *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
383 384
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
385 386 387 388 389 390 391 392 393 394 395 396
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
397
 */
398 399
static u64
lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
400
{
401
	struct i915_gem_context *ctx = ce->gem_context;
402
	u64 desc;
403

404 405
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
406

407
	desc = ctx->desc_template;				/* bits  0-11 */
408 409
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

410
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
411
								/* bits 12-31 */
412 413
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

414 415 416 417 418
	/*
	 * The following 32bits are copied into the OA reports (dword 2).
	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
	 * anything below.
	 */
419
	if (INTEL_GEN(engine->i915) >= 11) {
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
435

436
	return desc;
437 438
}

439
static void unwind_wa_tail(struct i915_request *rq)
440 441 442 443 444
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

445
static struct i915_request *
446
__unwind_incomplete_requests(struct intel_engine_cs *engine)
447
{
448
	struct i915_request *rq, *rn, *active = NULL;
449
	struct list_head *uninitialized_var(pl);
450
	int prio = I915_PRIORITY_INVALID;
451

452
	lockdep_assert_held(&engine->active.lock);
453 454

	list_for_each_entry_safe_reverse(rq, rn,
455 456
					 &engine->active.requests,
					 sched.link) {
457 458
		struct intel_engine_cs *owner;

459
		if (i915_request_completed(rq))
460
			continue; /* XXX */
461

462
		__i915_request_unsubmit(rq);
463 464
		unwind_wa_tail(rq);

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
		/*
		 * Push the request back into the queue for later resubmission.
		 * If this request is not native to this physical engine (i.e.
		 * it came from a virtual source), push it back onto the virtual
		 * engine so that it can be moved across onto another physical
		 * engine as load dictates.
		 */
		owner = rq->hw_context->engine;
		if (likely(owner == engine)) {
			GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
			if (rq_prio(rq) != prio) {
				prio = rq_prio(rq);
				pl = i915_sched_lookup_priolist(engine, prio);
			}
			GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
480

481
			list_move(&rq->sched.link, pl);
482 483 484 485 486 487
			active = rq;
		} else {
			rq->engine = owner;
			owner->submit_request(rq);
			active = NULL;
		}
488 489
	}

490
	return active;
491 492
}

493
struct i915_request *
494 495 496 497 498
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

499
	return __unwind_incomplete_requests(engine);
500 501
}

502
static inline void
503
execlists_context_status_change(struct i915_request *rq, unsigned long status)
504
{
505 506 507 508 509 510
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
511

512 513
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
514 515
}

516 517
static inline struct i915_request *
execlists_schedule_in(struct i915_request *rq, int idx)
518
{
519 520
	struct intel_context *ce = rq->hw_context;
	int count;
521

522
	trace_i915_request_in(rq, idx);
523

524 525 526 527 528 529 530 531 532 533 534
	count = intel_context_inflight_count(ce);
	if (!count) {
		intel_context_get(ce);
		ce->inflight = rq->engine;

		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
		intel_engine_context_in(ce->inflight);
	}

	intel_context_inflight_inc(ce);
	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
535

536
	return i915_request_get(rq);
537 538
}

539
static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
540
{
541
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
542 543 544 545 546 547
	struct i915_request *next = READ_ONCE(ve->request);

	if (next && next->execution_mask & ~rq->execution_mask)
		tasklet_schedule(&ve->base.execlists.tasklet);
}

548
static inline void
549
execlists_schedule_out(struct i915_request *rq)
550
{
551 552 553 554
	struct intel_context *ce = rq->hw_context;

	GEM_BUG_ON(!intel_context_inflight_count(ce));

555
	trace_i915_request_out(rq);
556

557 558 559 560 561 562 563 564 565 566 567 568 569 570
	intel_context_inflight_dec(ce);
	if (!intel_context_inflight_count(ce)) {
		intel_engine_context_out(ce->inflight);
		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);

		/*
		 * If this is part of a virtual engine, its next request may
		 * have been blocked waiting for access to the active context.
		 * We have to kick all the siblings again in case we need to
		 * switch (e.g. the next request is not runnable on this
		 * engine). Hopefully, we will already have submitted the next
		 * request before the tasklet runs and do not need to rebuild
		 * each virtual tree and kick everyone again.
		 */
571
		ce->inflight = NULL;
572 573
		if (rq->engine != ce->engine)
			kick_siblings(rq, ce);
574 575

		intel_context_put(ce);
576 577 578
	}

	i915_request_put(rq);
579 580
}

581
static u64 execlists_update_context(const struct i915_request *rq)
582
{
583
	struct intel_context *ce = rq->hw_context;
584
	u64 desc;
585

586 587
	ce->lrc_reg_state[CTX_RING_TAIL + 1] =
		intel_ring_set_tail(rq->ring, rq->tail);
588

589 590 591 592 593 594 595 596 597
	/*
	 * Make sure the context image is complete before we submit it to HW.
	 *
	 * Ostensibly, writes (including the WCB) should be flushed prior to
	 * an uncached write such as our mmio register access, the empirical
	 * evidence (esp. on Braswell) suggests that the WC write into memory
	 * may not be visible to the HW prior to the completion of the UC
	 * register write and that we may begin execution from the context
	 * before its image is complete leading to invalid PD chasing.
598 599 600 601 602
	 *
	 * Furthermore, Braswell, at least, wants a full mb to be sure that
	 * the writes are coherent in memory (visible to the GPU) prior to
	 * execution, and not just visible to other CPUs (as is the result of
	 * wmb).
603
	 */
604
	mb();
605 606 607 608 609

	desc = ce->lrc_desc;
	ce->lrc_desc &= ~CTX_DESC_FORCE_RESTORE;

	return desc;
610 611
}

612
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
613
{
614 615 616 617 618 619 620
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
621 622
}

623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
static __maybe_unused void
trace_ports(const struct intel_engine_execlists *execlists,
	    const char *msg,
	    struct i915_request * const *ports)
{
	const struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	GEM_TRACE("%s: %s { %llx:%lld%s, %llx:%lld }\n",
		  engine->name, msg,
		  ports[0]->fence.context,
		  ports[0]->fence.seqno,
		  i915_request_completed(ports[0]) ? "!" :
		  i915_request_started(ports[0]) ? "*" :
		  "",
		  ports[1] ? ports[1]->fence.context : 0,
		  ports[1] ? ports[1]->fence.seqno : 0);
}

static __maybe_unused bool
assert_pending_valid(const struct intel_engine_execlists *execlists,
		     const char *msg)
{
	struct i915_request * const *port, *rq;
	struct intel_context *ce = NULL;

	trace_ports(execlists, msg, execlists->pending);

	if (execlists->pending[execlists_num_ports(execlists)])
		return false;

	for (port = execlists->pending; (rq = *port); port++) {
		if (ce == rq->hw_context)
			return false;

		ce = rq->hw_context;
		if (i915_request_completed(rq))
			continue;

		if (i915_active_is_idle(&ce->active))
			return false;

		if (!i915_vma_is_pinned(ce->state))
			return false;
	}

	return ce;
}

672
static void execlists_submit_ports(struct intel_engine_cs *engine)
673
{
674
	struct intel_engine_execlists *execlists = &engine->execlists;
675
	unsigned int n;
676

677 678
	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));

679 680 681 682 683 684 685 686
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
687
	GEM_BUG_ON(!intel_wakeref_active(&engine->wakeref));
688

689 690 691 692 693 694 695
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
696
		struct i915_request *rq = execlists->pending[n];
697

698 699 700
		write_desc(execlists,
			   rq ? execlists_update_context(rq) : 0,
			   n);
701
	}
702 703 704 705

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
706 707
}

708
static bool ctx_single_port_submission(const struct intel_context *ce)
709
{
710
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
711
		i915_gem_context_force_single_submission(ce->gem_context));
712
}
713

714 715
static bool can_merge_ctx(const struct intel_context *prev,
			  const struct intel_context *next)
716 717 718
{
	if (prev != next)
		return false;
719

720 721
	if (ctx_single_port_submission(prev))
		return false;
722

723
	return true;
724 725
}

726 727 728
static bool can_merge_rq(const struct i915_request *prev,
			 const struct i915_request *next)
{
729
	GEM_BUG_ON(prev == next);
730 731 732 733 734 735 736 737
	GEM_BUG_ON(!assert_priority_queue(prev, next));

	if (!can_merge_ctx(prev->hw_context, next->hw_context))
		return false;

	return true;
}

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
static void virtual_update_register_offsets(u32 *regs,
					    struct intel_engine_cs *engine)
{
	u32 base = engine->mmio_base;

	/* Must match execlists_init_reg_state()! */

	regs[CTX_CONTEXT_CONTROL] =
		i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base));
	regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base));
	regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base));
	regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base));
	regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base));

	regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base));
	regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base));
	regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base));
	regs[CTX_SECOND_BB_HEAD_U] =
		i915_mmio_reg_offset(RING_SBBADDR_UDW(base));
	regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base));
	regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base));

	regs[CTX_CTX_TIMESTAMP] =
		i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base));
	regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3));
	regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3));
	regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2));
	regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2));
	regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1));
	regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1));
	regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
	regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));

	if (engine->class == RENDER_CLASS) {
		regs[CTX_RCS_INDIRECT_CTX] =
			i915_mmio_reg_offset(RING_INDIRECT_CTX(base));
		regs[CTX_RCS_INDIRECT_CTX_OFFSET] =
			i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base));
		regs[CTX_BB_PER_CTX_PTR] =
			i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base));

		regs[CTX_R_PWR_CLK_STATE] =
			i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE);
	}
}

static bool virtual_matches(const struct virtual_engine *ve,
			    const struct i915_request *rq,
			    const struct intel_engine_cs *engine)
{
788
	const struct intel_engine_cs *inflight;
789

790 791 792
	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
		return false;

793 794 795 796 797 798 799 800 801
	/*
	 * We track when the HW has completed saving the context image
	 * (i.e. when we have seen the final CS event switching out of
	 * the context) and must not overwrite the context image before
	 * then. This restricts us to only using the active engine
	 * while the previous virtualized request is inflight (so
	 * we reuse the register offsets). This is a very small
	 * hystersis on the greedy seelction algorithm.
	 */
802
	inflight = intel_context_inflight(&ve->context);
803
	if (inflight && inflight != engine)
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
		return false;

	return true;
}

static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
				     struct intel_engine_cs *engine)
{
	struct intel_engine_cs *old = ve->siblings[0];

	/* All unattached (rq->engine == old) must already be completed */

	spin_lock(&old->breadcrumbs.irq_lock);
	if (!list_empty(&ve->context.signal_link)) {
		list_move_tail(&ve->context.signal_link,
			       &engine->breadcrumbs.signalers);
		intel_engine_queue_breadcrumbs(engine);
	}
	spin_unlock(&old->breadcrumbs.irq_lock);
}

825 826 827 828 829 830 831 832 833 834 835
static struct i915_request *
last_active(const struct intel_engine_execlists *execlists)
{
	struct i915_request * const *last = execlists->active;

	while (*last && i915_request_completed(*last))
		last++;

	return *last;
}

836
static void defer_request(struct i915_request *rq, struct list_head * const pl)
837
{
838
	LIST_HEAD(list);
839 840 841 842 843 844 845 846

	/*
	 * We want to move the interrupted request to the back of
	 * the round-robin list (i.e. its priority level), but
	 * in doing so, we must then move all requests that were in
	 * flight and were waiting for the interrupted request to
	 * be run after it again.
	 */
847 848
	do {
		struct i915_dependency *p;
849

850 851
		GEM_BUG_ON(i915_request_is_active(rq));
		list_move_tail(&rq->sched.link, pl);
852

853 854 855
		list_for_each_entry(p, &rq->sched.waiters_list, wait_link) {
			struct i915_request *w =
				container_of(p->waiter, typeof(*w), sched);
856

857 858 859
			/* Leave semaphores spinning on the other engines */
			if (w->engine != rq->engine)
				continue;
860

861 862 863
			/* No waiter should start before its signaler */
			GEM_BUG_ON(i915_request_started(w) &&
				   !i915_request_completed(rq));
864

865 866 867
			GEM_BUG_ON(i915_request_is_active(w));
			if (list_empty(&w->sched.link))
				continue; /* Not yet submitted; unready */
868

869 870 871 872 873 874 875 876 877
			if (rq_prio(w) < rq_prio(rq))
				continue;

			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
			list_move_tail(&w->sched.link, &list);
		}

		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
	} while (rq);
878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
}

static void defer_active(struct intel_engine_cs *engine)
{
	struct i915_request *rq;

	rq = __unwind_incomplete_requests(engine);
	if (!rq)
		return;

	defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
}

static bool
need_timeslice(struct intel_engine_cs *engine, const struct i915_request *rq)
{
	int hint;

	if (list_is_last(&rq->sched.link, &engine->active.requests))
		return false;

	hint = max(rq_prio(list_next_entry(rq, sched.link)),
		   engine->execlists.queue_priority_hint);

	return hint >= rq_prio(rq);
}

static bool
enable_timeslice(struct intel_engine_cs *engine)
{
	struct i915_request *last = last_active(&engine->execlists);

	return last && need_timeslice(engine, last);
}

913
static void execlists_dequeue(struct intel_engine_cs *engine)
914
{
915
	struct intel_engine_execlists * const execlists = &engine->execlists;
916 917 918
	struct i915_request **port = execlists->pending;
	struct i915_request ** const last_port = port + execlists->port_mask;
	struct i915_request *last;
919
	struct rb_node *rb;
920 921
	bool submit = false;

922 923
	/*
	 * Hardware submission is through 2 ports. Conceptually each port
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
942
	 */
943

944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	for (rb = rb_first_cached(&execlists->virtual); rb; ) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq = READ_ONCE(ve->request);

		if (!rq) { /* lazily cleanup after another engine handled rq */
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);
			rb = rb_first_cached(&execlists->virtual);
			continue;
		}

		if (!virtual_matches(ve, rq, engine)) {
			rb = rb_next(rb);
			continue;
		}

		break;
	}

964 965 966 967 968 969 970 971 972
	/*
	 * If the queue is higher priority than the last
	 * request in the currently active context, submit afresh.
	 * We will resubmit again afterwards in case we need to split
	 * the active context to interject the preemption request,
	 * i.e. we will retrigger preemption following the ack in case
	 * of trouble.
	 */
	last = last_active(execlists);
C
Chris Wilson 已提交
973
	if (last) {
974
		if (need_preempt(engine, last, rb)) {
975 976 977 978 979 980 981 982 983 984 985 986
			GEM_TRACE("%s: preempting last=%llx:%lld, prio=%d, hint=%d\n",
				  engine->name,
				  last->fence.context,
				  last->fence.seqno,
				  last->sched.attr.priority,
				  execlists->queue_priority_hint);
			/*
			 * Don't let the RING_HEAD advance past the breadcrumb
			 * as we unwind (and until we resubmit) so that we do
			 * not accidentally tell it to go backwards.
			 */
			ring_set_paused(engine, 1);
987

988 989 990 991 992 993 994 995
			/*
			 * Note that we have not stopped the GPU at this point,
			 * so we are unwinding the incomplete requests as they
			 * remain inflight and so by the time we do complete
			 * the preemption, some of the unwound requests may
			 * complete!
			 */
			__unwind_incomplete_requests(engine);
996

997 998 999 1000 1001 1002 1003 1004 1005
			/*
			 * If we need to return to the preempted context, we
			 * need to skip the lite-restore and force it to
			 * reload the RING_TAIL. Otherwise, the HW has a
			 * tendency to ignore us rewinding the TAIL to the
			 * end of an earlier request.
			 */
			last->hw_context->lrc_desc |= CTX_DESC_FORCE_RESTORE;
			last = NULL;
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
		} else if (need_timeslice(engine, last) &&
			   !timer_pending(&engine->execlists.timer)) {
			GEM_TRACE("%s: expired last=%llx:%lld, prio=%d, hint=%d\n",
				  engine->name,
				  last->fence.context,
				  last->fence.seqno,
				  last->sched.attr.priority,
				  execlists->queue_priority_hint);

			ring_set_paused(engine, 1);
			defer_active(engine);

			/*
			 * Unlike for preemption, if we rewind and continue
			 * executing the same context as previously active,
			 * the order of execution will remain the same and
			 * the tail will only advance. We do not need to
			 * force a full context restore, as a lite-restore
			 * is sufficient to resample the monotonic TAIL.
			 *
			 * If we switch to any other context, similarly we
			 * will not rewind TAIL of current context, and
			 * normal save/restore will preserve state and allow
			 * us to later continue executing the same request.
			 */
			last = NULL;
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
		} else {
			/*
			 * Otherwise if we already have a request pending
			 * for execution after the current one, we can
			 * just wait until the next CS event before
			 * queuing more. In either case we will force a
			 * lite-restore preemption event, but if we wait
			 * we hopefully coalesce several updates into a single
			 * submission.
			 */
			if (!list_is_last(&last->sched.link,
					  &engine->active.requests))
				return;

			/*
			 * WaIdleLiteRestore:bdw,skl
			 * Apply the wa NOOPs to prevent
			 * ring:HEAD == rq:TAIL as we resubmit the
			 * request. See gen8_emit_fini_breadcrumb() for
			 * where we prepare the padding after the
			 * end of the request.
			 */
			last->tail = last->wa_tail;
		}
C
Chris Wilson 已提交
1056 1057
	}

1058 1059 1060 1061 1062
	while (rb) { /* XXX virtual is always taking precedence */
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq;

1063
		spin_lock(&ve->base.active.lock);
1064 1065 1066

		rq = ve->request;
		if (unlikely(!rq)) { /* lost the race to a sibling */
1067
			spin_unlock(&ve->base.active.lock);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);
			rb = rb_first_cached(&execlists->virtual);
			continue;
		}

		GEM_BUG_ON(rq != ve->request);
		GEM_BUG_ON(rq->engine != &ve->base);
		GEM_BUG_ON(rq->hw_context != &ve->context);

		if (rq_prio(rq) >= queue_prio(execlists)) {
			if (!virtual_matches(ve, rq, engine)) {
1080
				spin_unlock(&ve->base.active.lock);
1081 1082 1083 1084
				rb = rb_next(rb);
				continue;
			}

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
			if (i915_request_completed(rq)) {
				ve->request = NULL;
				ve->base.execlists.queue_priority_hint = INT_MIN;
				rb_erase_cached(rb, &execlists->virtual);
				RB_CLEAR_NODE(rb);

				rq->engine = engine;
				__i915_request_submit(rq);

				spin_unlock(&ve->base.active.lock);

				rb = rb_first_cached(&execlists->virtual);
				continue;
			}

1100
			if (last && !can_merge_rq(last, rq)) {
1101
				spin_unlock(&ve->base.active.lock);
1102
				return; /* leave this for another */
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
			}

			GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n",
				  engine->name,
				  rq->fence.context,
				  rq->fence.seqno,
				  i915_request_completed(rq) ? "!" :
				  i915_request_started(rq) ? "*" :
				  "",
				  yesno(engine != ve->siblings[0]));

			ve->request = NULL;
			ve->base.execlists.queue_priority_hint = INT_MIN;
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);

1119
			GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1120 1121 1122 1123 1124 1125
			rq->engine = engine;

			if (engine != ve->siblings[0]) {
				u32 *regs = ve->context.lrc_reg_state;
				unsigned int n;

1126
				GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
				virtual_update_register_offsets(regs, engine);

				if (!list_empty(&ve->context.signals))
					virtual_xfer_breadcrumbs(ve, engine);

				/*
				 * Move the bound engine to the top of the list
				 * for future execution. We then kick this
				 * tasklet first before checking others, so that
				 * we preferentially reuse this set of bound
				 * registers.
				 */
				for (n = 1; n < ve->num_siblings; n++) {
					if (ve->siblings[n] == engine) {
						swap(ve->siblings[n],
						     ve->siblings[0]);
						break;
					}
				}

				GEM_BUG_ON(ve->siblings[0] != engine);
			}

			__i915_request_submit(rq);
1151 1152 1153 1154
			if (!i915_request_completed(rq)) {
				submit = true;
				last = rq;
			}
1155 1156
		}

1157
		spin_unlock(&ve->base.active.lock);
1158 1159 1160
		break;
	}

1161
	while ((rb = rb_first_cached(&execlists->queue))) {
1162
		struct i915_priolist *p = to_priolist(rb);
1163
		struct i915_request *rq, *rn;
1164
		int i;
1165

1166
		priolist_for_each_request_consume(rq, rn, p, i) {
1167 1168 1169
			if (i915_request_completed(rq))
				goto skip;

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
1180
			 */
1181
			if (last && !can_merge_rq(last, rq)) {
1182 1183 1184 1185 1186
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
1187
				if (port == last_port)
1188 1189
					goto done;

1190 1191 1192 1193 1194 1195 1196 1197
				/*
				 * We must not populate both ELSP[] with the
				 * same LRCA, i.e. we must submit 2 different
				 * contexts if we submit 2 ELSP.
				 */
				if (last->hw_context == rq->hw_context)
					goto done;

1198 1199 1200 1201 1202 1203 1204
				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
1205
				if (ctx_single_port_submission(last->hw_context) ||
1206
				    ctx_single_port_submission(rq->hw_context))
1207 1208
					goto done;

1209
				*port = execlists_schedule_in(last, port - execlists->pending);
1210 1211
				port++;
			}
1212

1213 1214
			last = rq;
			submit = true;
1215 1216
skip:
			__i915_request_submit(rq);
1217
		}
1218

1219
		rb_erase_cached(&p->node, &execlists->queue);
1220
		i915_priolist_free(p);
1221
	}
1222

1223
done:
1224 1225 1226
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
1227
	 * We choose the priority hint such that if we add a request of greater
1228 1229 1230
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
1231
	 * HW. We derive the priority hint then as the first "hole" in
1232 1233 1234 1235
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
1236
	 * user, see queue_request(), the priority hint is bumped to that
1237 1238 1239
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
1240
	execlists->queue_priority_hint = queue_prio(execlists);
1241 1242 1243
	GEM_TRACE("%s: queue_priority_hint:%d, submit:%s\n",
		  engine->name, execlists->queue_priority_hint,
		  yesno(submit));
1244

1245
	if (submit) {
1246 1247
		*port = execlists_schedule_in(last, port - execlists->pending);
		memset(port + 1, 0, (last_port - port) * sizeof(*port));
1248
		execlists_submit_ports(engine);
1249 1250
	} else {
		ring_set_paused(engine, 0);
1251
	}
1252 1253
}

1254
void
1255
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
1256
{
1257
	struct i915_request * const *port, *rq;
1258

1259 1260 1261
	for (port = execlists->pending; (rq = *port); port++)
		execlists_schedule_out(rq);
	memset(execlists->pending, 0, sizeof(execlists->pending));
1262

1263 1264 1265 1266
	for (port = execlists->active; (rq = *port); port++)
		execlists_schedule_out(rq);
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));
1267 1268
}

1269 1270 1271 1272 1273 1274 1275
static inline void
invalidate_csb_entries(const u32 *first, const u32 *last)
{
	clflush((void *)first);
	clflush((void *)last);
}

1276 1277 1278 1279 1280 1281
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}

1282
static void process_csb(struct intel_engine_cs *engine)
1283
{
1284
	struct intel_engine_execlists * const execlists = &engine->execlists;
1285
	const u32 * const buf = execlists->csb_status;
1286
	const u8 num_entries = execlists->csb_size;
1287
	u8 head, tail;
1288

1289
	lockdep_assert_held(&engine->active.lock);
1290
	GEM_BUG_ON(USES_GUC_SUBMISSION(engine->i915));
1291

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	/*
	 * Note that csb_write, csb_status may be either in HWSP or mmio.
	 * When reading from the csb_write mmio register, we have to be
	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
	 * the low 4bits. As it happens we know the next 4bits are always
	 * zero and so we can simply masked off the low u8 of the register
	 * and treat it identically to reading from the HWSP (without having
	 * to use explicit shifting and masking, and probably bifurcating
	 * the code to handle the legacy mmio read).
	 */
	head = execlists->csb_head;
	tail = READ_ONCE(*execlists->csb_write);
	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
	if (unlikely(head == tail))
		return;
1307

1308 1309 1310 1311 1312 1313 1314 1315 1316
	/*
	 * Hopefully paired with a wmb() in HW!
	 *
	 * We must complete the read of the write pointer before any reads
	 * from the CSB, so that we do not see stale values. Without an rmb
	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
	 * we perform the READ_ONCE(*csb_write).
	 */
	rmb();
1317

1318
	do {
1319 1320
		unsigned int status;

1321
		if (++head == num_entries)
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
			head = 0;

		/*
		 * We are flying near dragons again.
		 *
		 * We hold a reference to the request in execlist_port[]
		 * but no more than that. We are operating in softirq
		 * context and so cannot hold any mutex or sleep. That
		 * prevents us stopping the requests we are processing
		 * in port[] from being retired simultaneously (the
		 * breadcrumb will be complete before we see the
		 * context-switch). As we only hold the reference to the
		 * request, any pointer chasing underneath the request
		 * is subject to a potential use-after-free. Thus we
		 * store all of the bookkeeping within port[] as
		 * required, and avoid using unguarded pointers beneath
		 * request itself. The same applies to the atomic
		 * status notifier.
		 */

1342
		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x\n",
1343
			  engine->name, head,
1344
			  buf[2 * head + 0], buf[2 * head + 1]);
1345

1346
		status = buf[2 * head];
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
		if (status & GEN8_CTX_STATUS_IDLE_ACTIVE) {
			GEM_BUG_ON(*execlists->active);
promote:
			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
			execlists->active =
				memcpy(execlists->inflight,
				       execlists->pending,
				       execlists_num_ports(execlists) *
				       sizeof(*execlists->pending));
			execlists->pending[0] = NULL;

1358 1359 1360
			if (enable_timeslice(engine))
				mod_timer(&execlists->timer, jiffies + 1);

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
			if (!inject_preempt_hang(execlists))
				ring_set_paused(engine, 0);
		} else if (status & GEN8_CTX_STATUS_PREEMPTED) {
			struct i915_request * const *port = execlists->active;

			trace_ports(execlists, "preempted", execlists->active);

			while (*port)
				execlists_schedule_out(*port++);

			goto promote;
		} else if (*execlists->active) {
			struct i915_request *rq = *execlists->active++;

			trace_ports(execlists, "completed",
				    execlists->active - 1);
1377

1378 1379 1380 1381 1382 1383 1384
			/*
			 * We rely on the hardware being strongly
			 * ordered, that the breadcrumb write is
			 * coherent (visible from the CPU) before the
			 * user interrupt and CSB is processed.
			 */
			GEM_BUG_ON(!i915_request_completed(rq));
1385
			execlists_schedule_out(rq);
C
Chris Wilson 已提交
1386

1387 1388
			GEM_BUG_ON(execlists->active - execlists->inflight >
				   execlists_num_ports(execlists));
1389
		}
1390
	} while (head != tail);
1391

1392
	execlists->csb_head = head;
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404

	/*
	 * Gen11 has proven to fail wrt global observation point between
	 * entry and tail update, failing on the ordering and thus
	 * we see an old entry in the context status buffer.
	 *
	 * Forcibly evict out entries for the next gpu csb update,
	 * to increase the odds that we get a fresh entries with non
	 * working hardware. The cost for doing so comes out mostly with
	 * the wash as hardware, working or not, will need to do the
	 * invalidation before.
	 */
1405
	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1406
}
1407

1408
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1409
{
1410
	lockdep_assert_held(&engine->active.lock);
1411

C
Chris Wilson 已提交
1412
	process_csb(engine);
1413
	if (!engine->execlists.pending[0])
1414
		execlists_dequeue(engine);
1415 1416
}

1417 1418 1419 1420 1421 1422 1423 1424 1425
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	unsigned long flags;

1426
	spin_lock_irqsave(&engine->active.lock, flags);
1427
	__execlists_submission_tasklet(engine);
1428
	spin_unlock_irqrestore(&engine->active.lock, flags);
1429 1430
}

1431 1432 1433 1434 1435 1436 1437 1438 1439
static void execlists_submission_timer(struct timer_list *timer)
{
	struct intel_engine_cs *engine =
		from_timer(engine, timer, execlists.timer);

	/* Kick the tasklet for some interrupt coalescing and reset handling */
	tasklet_hi_schedule(&engine->execlists.tasklet);
}

1440
static void queue_request(struct intel_engine_cs *engine,
1441
			  struct i915_sched_node *node,
1442
			  int prio)
1443
{
1444
	GEM_BUG_ON(!list_empty(&node->link));
1445
	list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
}

static void __submit_queue_imm(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	if (reset_in_progress(execlists))
		return; /* defer until we restart the engine following reset */

	if (execlists->tasklet.func == execlists_submission_tasklet)
		__execlists_submission_tasklet(engine);
	else
		tasklet_hi_schedule(&execlists->tasklet);
1459 1460
}

1461 1462
static void submit_queue(struct intel_engine_cs *engine,
			 const struct i915_request *rq)
1463
{
1464 1465 1466 1467 1468 1469 1470
	struct intel_engine_execlists *execlists = &engine->execlists;

	if (rq_prio(rq) <= execlists->queue_priority_hint)
		return;

	execlists->queue_priority_hint = rq_prio(rq);
	__submit_queue_imm(engine);
1471 1472
}

1473
static void execlists_submit_request(struct i915_request *request)
1474
{
1475
	struct intel_engine_cs *engine = request->engine;
1476
	unsigned long flags;
1477

1478
	/* Will be called from irq-context when using foreign fences. */
1479
	spin_lock_irqsave(&engine->active.lock, flags);
1480

1481
	queue_request(engine, &request->sched, rq_prio(request));
1482

1483
	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1484
	GEM_BUG_ON(list_empty(&request->sched.link));
1485

1486
	submit_queue(engine, request);
1487

1488
	spin_unlock_irqrestore(&engine->active.lock, flags);
1489 1490
}

1491
static void __execlists_context_fini(struct intel_context *ce)
1492
{
1493
	intel_ring_put(ce->ring);
1494
	i915_vma_put(ce->state);
1495 1496
}

1497
static void execlists_context_destroy(struct kref *kref)
1498
{
1499 1500
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);

1501
	GEM_BUG_ON(!i915_active_is_idle(&ce->active));
1502
	GEM_BUG_ON(intel_context_is_pinned(ce));
1503 1504 1505 1506 1507 1508 1509

	if (ce->state)
		__execlists_context_fini(ce);

	intel_context_free(ce);
}

1510
static void execlists_context_unpin(struct intel_context *ce)
1511
{
1512
	i915_gem_context_unpin_hw_id(ce->gem_context);
1513
	i915_gem_object_unpin_map(ce->state->obj);
1514 1515
}

1516
static void
1517 1518
__execlists_update_reg_state(struct intel_context *ce,
			     struct intel_engine_cs *engine)
1519 1520
{
	struct intel_ring *ring = ce->ring;
1521 1522 1523 1524
	u32 *regs = ce->lrc_reg_state;

	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1525 1526 1527 1528 1529 1530 1531

	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
	regs[CTX_RING_HEAD + 1] = ring->head;
	regs[CTX_RING_TAIL + 1] = ring->tail;

	/* RPCS */
	if (engine->class == RENDER_CLASS)
1532
		regs[CTX_R_PWR_CLK_STATE + 1] =
1533
			intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1534 1535
}

1536 1537 1538
static int
__execlists_context_pin(struct intel_context *ce,
			struct intel_engine_cs *engine)
1539
{
1540
	void *vaddr;
1541
	int ret;
1542

1543
	GEM_BUG_ON(!ce->gem_context->vm);
1544 1545

	ret = execlists_context_deferred_alloc(ce, engine);
1546 1547
	if (ret)
		goto err;
1548
	GEM_BUG_ON(!ce->state);
1549

1550
	ret = intel_context_active_acquire(ce);
1551
	if (ret)
1552
		goto err;
1553
	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
1554

1555
	vaddr = i915_gem_object_pin_map(ce->state->obj,
1556
					i915_coherent_map_type(engine->i915) |
1557
					I915_MAP_OVERRIDE);
1558 1559
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1560
		goto unpin_active;
1561 1562
	}

1563
	ret = i915_gem_context_pin_hw_id(ce->gem_context);
1564
	if (ret)
1565
		goto unpin_map;
1566

1567
	ce->lrc_desc = lrc_descriptor(ce, engine);
1568
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1569
	__execlists_update_reg_state(ce, engine);
1570

1571
	return 0;
1572

1573
unpin_map:
1574
	i915_gem_object_unpin_map(ce->state->obj);
1575 1576
unpin_active:
	intel_context_active_release(ce);
1577
err:
1578
	return ret;
1579 1580
}

1581
static int execlists_context_pin(struct intel_context *ce)
1582
{
1583
	return __execlists_context_pin(ce, ce->engine);
1584 1585
}

1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
static void execlists_context_reset(struct intel_context *ce)
{
	/*
	 * Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * The contexts that are stilled pinned on resume belong to the
	 * kernel, and are local to each engine. All other contexts will
	 * have their head/tail sanitized upon pinning before use, so they
	 * will never see garbage,
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	intel_ring_reset(ce->ring, 0);
	__execlists_update_reg_state(ce, ce->engine);
}

1608
static const struct intel_context_ops execlists_context_ops = {
1609
	.pin = execlists_context_pin,
1610
	.unpin = execlists_context_unpin,
1611

1612 1613 1614
	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

1615
	.reset = execlists_context_reset,
1616 1617 1618
	.destroy = execlists_context_destroy,
};

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
static int gen8_emit_init_breadcrumb(struct i915_request *rq)
{
	u32 *cs;

	GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Check if we have been preempted before we even get started.
	 *
	 * After this point i915_request_started() reports true, even if
	 * we get preempted and so are no longer running.
	 */
	*cs++ = MI_ARB_CHECK;
	*cs++ = MI_NOOP;

	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
	*cs++ = rq->timeline->hwsp_offset;
	*cs++ = 0;
	*cs++ = rq->fence.seqno - 1;

	intel_ring_advance(rq, cs);
1644 1645 1646 1647

	/* Record the updated position of the request's payload */
	rq->infix = intel_ring_offset(rq, cs);

1648 1649 1650
	return 0;
}

1651 1652 1653
static int emit_pdps(struct i915_request *rq)
{
	const struct intel_engine_cs * const engine = rq->engine;
1654
	struct i915_ppgtt * const ppgtt =
1655
		i915_vm_to_ppgtt(rq->gem_context->vm);
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	int err, i;
	u32 *cs;

	GEM_BUG_ON(intel_vgpu_active(rq->i915));

	/*
	 * Beware ye of the dragons, this sequence is magic!
	 *
	 * Small changes to this sequence can cause anything from
	 * GPU hangs to forcewake errors and machine lockups!
	 */

	/* Flush any residual operations from the context load */
	err = engine->emit_flush(rq, EMIT_FLUSH);
	if (err)
		return err;

	/* Magic required to prevent forcewake errors! */
	err = engine->emit_flush(rq, EMIT_INVALIDATE);
	if (err)
		return err;

	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Ensure the LRI have landed before we invalidate & continue */
	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
	for (i = GEN8_3LVL_PDPES; i--; ) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1686
		u32 base = engine->mmio_base;
1687

1688
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1689
		*cs++ = upper_32_bits(pd_daddr);
1690
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
		*cs++ = lower_32_bits(pd_daddr);
	}
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);

	/* Be doubly sure the LRI have landed before proceeding */
	err = engine->emit_flush(rq, EMIT_FLUSH);
	if (err)
		return err;

	/* Re-invalidate the TLB for luck */
	return engine->emit_flush(rq, EMIT_INVALIDATE);
}

1706
static int execlists_request_alloc(struct i915_request *request)
1707
{
1708
	int ret;
1709

1710
	GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1711

1712 1713
	/*
	 * Flush enough space to reduce the likelihood of waiting after
1714 1715 1716 1717 1718
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1719 1720
	/*
	 * Note that after this point, we have committed to using
1721 1722 1723 1724 1725 1726
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

1727
	/* Unconditionally invalidate GPU caches and TLBs. */
1728
	if (i915_vm_is_4lvl(request->gem_context->vm))
1729 1730 1731 1732 1733 1734
		ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
	else
		ret = emit_pdps(request);
	if (ret)
		return ret;

1735 1736 1737 1738
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1755 1756
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1757
{
1758
	/* NB no one else is allowed to scribble over scratch + 256! */
1759 1760
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1761
	*batch++ = intel_gt_scratch_offset(engine->gt) + 256;
1762 1763 1764 1765 1766 1767
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1768 1769 1770 1771
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1772 1773 1774

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1775
	*batch++ = intel_gt_scratch_offset(engine->gt) + 256;
1776 1777 1778
	*batch++ = 0;

	return batch;
1779 1780
}

1781 1782 1783 1784 1785 1786
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1787
 *
1788 1789
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1790
 *
1791 1792 1793 1794
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1795
 */
1796
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1797
{
1798
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1799
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1800

1801
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1802 1803
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1804

1805 1806
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1807 1808 1809 1810 1811
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
1812
				       intel_gt_scratch_offset(engine->gt) +
1813
				       2 * CACHELINE_BYTES);
1814

C
Chris Wilson 已提交
1815 1816
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1817
	/* Pad to end of cacheline */
1818 1819
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1820 1821 1822 1823 1824 1825 1826

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1827
	return batch;
1828 1829
}

1830 1831 1832 1833 1834 1835
struct lri {
	i915_reg_t reg;
	u32 value;
};

static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1836
{
1837
	GEM_BUG_ON(!count || count > 63);
C
Chris Wilson 已提交
1838

1839 1840 1841 1842 1843 1844
	*batch++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*batch++ = i915_mmio_reg_offset(lri->reg);
		*batch++ = lri->value;
	} while (lri++, --count);
	*batch++ = MI_NOOP;
1845

1846 1847
	return batch;
}
1848

1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	static const struct lri lri[] = {
		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
		{
			COMMON_SLICE_CHICKEN2,
			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
				       0),
		},

		/* BSpec: 11391 */
		{
			FF_SLICE_CHICKEN,
			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
		},

		/* BSpec: 11299 */
		{
			_3D_CHICKEN3,
			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
		}
	};
1873

1874
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1875

1876 1877
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1878

1879
	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1880

1881
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1896 1897 1898 1899 1900 1901
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1902 1903
	}

C
Chris Wilson 已提交
1904 1905
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1906
	/* Pad to end of cacheline */
1907 1908
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1909

1910
	return batch;
1911 1912
}

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1947 1948 1949
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1950
{
1951 1952 1953
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1954

1955
	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
1956 1957
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1958

1959
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1960 1961 1962
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1963 1964
	}

1965
	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1966 1967 1968 1969
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1970
	return 0;
1971 1972 1973 1974

err:
	i915_gem_object_put(obj);
	return err;
1975 1976
}

1977
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1978
{
1979
	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1980 1981
}

1982 1983
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1984
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1985
{
1986
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1987 1988 1989
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1990
	struct page *page;
1991 1992
	void *batch, *batch_ptr;
	unsigned int i;
1993
	int ret;
1994

1995 1996
	if (engine->class != RENDER_CLASS)
		return 0;
1997

1998
	switch (INTEL_GEN(engine->i915)) {
1999 2000
	case 11:
		return 0;
2001
	case 10:
2002 2003 2004
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
2005 2006
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
2007
		wa_bb_fn[1] = NULL;
2008 2009 2010
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
2011
		wa_bb_fn[1] = NULL;
2012 2013 2014
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
2015
		return 0;
2016
	}
2017

2018
	ret = lrc_setup_wa_ctx(engine);
2019 2020 2021 2022 2023
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

2024
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
2025
	batch = batch_ptr = kmap_atomic(page);
2026

2027 2028 2029 2030 2031 2032 2033
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
2034 2035
		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
						  CACHELINE_BYTES))) {
2036 2037 2038
			ret = -EINVAL;
			break;
		}
2039 2040
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
2041
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
2042 2043
	}

2044 2045
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

2046 2047
	kunmap_atomic(batch);
	if (ret)
2048
		lrc_destroy_wa_ctx(engine);
2049 2050 2051 2052

	return ret;
}

2053
static void enable_execlists(struct intel_engine_cs *engine)
2054
{
2055
	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2056

2057 2058 2059 2060
	if (INTEL_GEN(engine->i915) >= 11)
		ENGINE_WRITE(engine,
			     RING_MODE_GEN7,
			     _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
2061
	else
2062 2063 2064
		ENGINE_WRITE(engine,
			     RING_MODE_GEN7,
			     _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
2065

2066
	ENGINE_WRITE(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2067

2068 2069 2070 2071
	ENGINE_WRITE(engine,
		     RING_HWS_PGA,
		     i915_ggtt_offset(engine->status_page.vma));
	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2072 2073
}

2074 2075 2076 2077
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
	bool unexpected = false;

2078
	if (ENGINE_READ(engine, RING_MI_MODE) & STOP_RING) {
2079 2080 2081 2082 2083 2084 2085
		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
		unexpected = true;
	}

	return unexpected;
}

2086
static int execlists_resume(struct intel_engine_cs *engine)
2087
{
2088
	intel_engine_apply_workarounds(engine);
2089
	intel_engine_apply_whitelist(engine);
2090

2091
	intel_mocs_init_engine(engine);
2092

2093
	intel_engine_reset_breadcrumbs(engine);
2094

2095 2096 2097 2098 2099 2100
	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p, NULL);
	}

2101
	enable_execlists(engine);
2102

2103
	return 0;
2104 2105
}

2106
static void execlists_reset_prepare(struct intel_engine_cs *engine)
2107 2108
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
2109
	unsigned long flags;
2110

2111 2112
	GEM_TRACE("%s: depth<-%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
2113 2114 2115 2116 2117 2118

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
2119
	 * calling engine->resume() and also writing the ELSP.
2120 2121 2122 2123
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);
2124
	GEM_BUG_ON(!reset_in_progress(execlists));
2125

2126 2127
	intel_engine_stop_cs(engine);

2128
	/* And flush any current direct submission. */
2129 2130
	spin_lock_irqsave(&engine->active.lock, flags);
	spin_unlock_irqrestore(&engine->active.lock, flags);
2131 2132
}

2133
static void reset_csb_pointers(struct intel_engine_cs *engine)
2134
{
2135
	struct intel_engine_execlists * const execlists = &engine->execlists;
2136 2137
	const unsigned int reset_value = execlists->csb_size - 1;

2138 2139
	ring_set_paused(engine, 0);

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
	/*
	 * After a reset, the HW starts writing into CSB entry [0]. We
	 * therefore have to set our HEAD pointer back one entry so that
	 * the *first* entry we check is entry 0. To complicate this further,
	 * as we don't wait for the first interrupt after reset, we have to
	 * fake the HW write to point back to the last entry so that our
	 * inline comparison of our cached head position against the last HW
	 * write works even before the first interrupt.
	 */
	execlists->csb_head = reset_value;
	WRITE_ONCE(*execlists->csb_write, reset_value);
2151
	wmb(); /* Make sure this is visible to HW (paranoia?) */
2152 2153 2154 2155 2156

	invalidate_csb_entries(&execlists->csb_status[0],
			       &execlists->csb_status[reset_value]);
}

2157 2158
static struct i915_request *active_request(struct i915_request *rq)
{
2159
	const struct list_head * const list = &rq->engine->active.requests;
2160 2161 2162
	const struct intel_context * const context = rq->hw_context;
	struct i915_request *active = NULL;

2163
	list_for_each_entry_from_reverse(rq, list, sched.link) {
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
		if (i915_request_completed(rq))
			break;

		if (rq->hw_context != context)
			break;

		active = rq;
	}

	return active;
}

2176
static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
2177
{
2178
	struct intel_engine_execlists * const execlists = &engine->execlists;
2179
	struct intel_context *ce;
2180
	struct i915_request *rq;
2181
	u32 *regs;
2182

2183 2184 2185
	process_csb(engine); /* drain preemption events */

	/* Following the reset, we need to reload the CSB read/write pointers */
2186
	reset_csb_pointers(engine);
2187 2188 2189 2190 2191 2192

	/*
	 * Save the currently executing context, even if we completed
	 * its request, it was still running at the time of the
	 * reset and will have been clobbered.
	 */
2193 2194 2195
	rq = execlists_active(execlists);
	if (!rq)
		return;
2196

2197
	ce = rq->hw_context;
2198 2199 2200
	GEM_BUG_ON(i915_active_is_idle(&ce->active));
	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
	rq = active_request(rq);
2201

2202 2203 2204 2205 2206 2207 2208 2209 2210
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
2211
	execlists_cancel_port_requests(execlists);
2212

2213 2214
	if (!rq) {
		ce->ring->head = ce->ring->tail;
2215
		goto out_replay;
2216 2217 2218
	}

	ce->ring->head = intel_ring_wrap(ce->ring, rq->head);
2219

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
	/*
	 * If this request hasn't started yet, e.g. it is waiting on a
	 * semaphore, we need to avoid skipping the request or else we
	 * break the signaling chain. However, if the context is corrupt
	 * the request will not restart and we will be stuck with a wedged
	 * device. It is quite often the case that if we issue a reset
	 * while the GPU is loading the context image, that the context
	 * image becomes corrupt.
	 *
	 * Otherwise, if we have not started yet, the request should replay
	 * perfectly and we do not need to flag the result as being erroneous.
	 */
2232
	if (!i915_request_started(rq))
2233
		goto out_replay;
2234

2235 2236
	/*
	 * If the request was innocent, we leave the request in the ELSP
2237 2238 2239 2240 2241 2242 2243 2244 2245
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
2246
	i915_reset_request(rq, stalled);
2247
	if (!stalled)
2248
		goto out_replay;
2249

2250 2251
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
2252 2253 2254 2255 2256 2257
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
2258
	regs = ce->lrc_reg_state;
2259 2260 2261 2262
	if (engine->pinned_default_state) {
		memcpy(regs, /* skip restoring the vanilla PPHWSP */
		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
		       engine->context_size - PAGE_SIZE);
2263
	}
2264
	execlists_init_reg_state(regs, ce, engine, ce->ring);
2265

2266
out_replay:
2267 2268
	GEM_TRACE("%s replay {head:%04x, tail:%04x\n",
		  engine->name, ce->ring->head, ce->ring->tail);
2269 2270 2271
	intel_ring_update_space(ce->ring);
	__execlists_update_reg_state(ce, engine);

2272 2273
	/* Push back any incomplete requests for replay after the reset. */
	__unwind_incomplete_requests(engine);
2274
}
2275

2276 2277 2278 2279 2280 2281
static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
{
	unsigned long flags;

	GEM_TRACE("%s\n", engine->name);

2282
	spin_lock_irqsave(&engine->active.lock, flags);
2283 2284 2285

	__execlists_reset(engine, stalled);

2286
	spin_unlock_irqrestore(&engine->active.lock, flags);
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
}

static void nop_submission_tasklet(unsigned long data)
{
	/* The driver is wedged; don't process any more events. */
}

static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	GEM_TRACE("%s\n", engine->name);

	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
2317
	spin_lock_irqsave(&engine->active.lock, flags);
2318 2319 2320 2321

	__execlists_reset(engine, true);

	/* Mark all executing requests as skipped. */
2322
	list_for_each_entry(rq, &engine->active.requests, sched.link) {
2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
		if (!i915_request_signaled(rq))
			dma_fence_set_error(&rq->fence, -EIO);

		i915_request_mark_complete(rq);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
	while ((rb = rb_first_cached(&execlists->queue))) {
		struct i915_priolist *p = to_priolist(rb);
		int i;

		priolist_for_each_request_consume(rq, rn, p, i) {
			list_del_init(&rq->sched.link);
			__i915_request_submit(rq);
			dma_fence_set_error(&rq->fence, -EIO);
			i915_request_mark_complete(rq);
		}

		rb_erase_cached(&p->node, &execlists->queue);
		i915_priolist_free(p);
	}

2345 2346 2347 2348 2349 2350 2351 2352
	/* Cancel all attached virtual engines */
	while ((rb = rb_first_cached(&execlists->virtual))) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);

		rb_erase_cached(rb, &execlists->virtual);
		RB_CLEAR_NODE(rb);

2353
		spin_lock(&ve->base.active.lock);
2354 2355 2356 2357 2358 2359 2360 2361
		if (ve->request) {
			ve->request->engine = engine;
			__i915_request_submit(ve->request);
			dma_fence_set_error(&ve->request->fence, -EIO);
			i915_request_mark_complete(ve->request);
			ve->base.execlists.queue_priority_hint = INT_MIN;
			ve->request = NULL;
		}
2362
		spin_unlock(&ve->base.active.lock);
2363 2364
	}

2365 2366 2367 2368 2369 2370 2371
	/* Remaining _unready_ requests will be nop'ed when submitted */

	execlists->queue_priority_hint = INT_MIN;
	execlists->queue = RB_ROOT_CACHED;

	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
	execlists->tasklet.func = nop_submission_tasklet;
2372

2373
	spin_unlock_irqrestore(&engine->active.lock, flags);
2374 2375
}

2376 2377
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
2378 2379
	struct intel_engine_execlists * const execlists = &engine->execlists;

2380
	/*
2381 2382 2383
	 * After a GPU reset, we may have requests to replay. Do so now while
	 * we still have the forcewake to be sure that the GPU is not allowed
	 * to sleep before we restart and reload a context.
2384
	 */
2385
	GEM_BUG_ON(!reset_in_progress(execlists));
2386 2387
	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
		execlists->tasklet.func(execlists->tasklet.data);
2388

2389 2390 2391
	if (__tasklet_enable(&execlists->tasklet))
		/* And kick in case we missed a new request submission. */
		tasklet_hi_schedule(&execlists->tasklet);
2392 2393
	GEM_TRACE("%s: depth->%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
2394 2395
}

2396
static int gen8_emit_bb_start(struct i915_request *rq,
2397
			      u64 offset, u32 len,
2398
			      const unsigned int flags)
2399
{
2400
	u32 *cs;
2401

2402
	cs = intel_ring_begin(rq, 4);
2403 2404
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2405

2406 2407 2408 2409 2410 2411 2412
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
2413 2414 2415 2416 2417
	 * we would be fine.  However, for gen8 there is another w/a that
	 * requires us to not preempt inside GPGPU execution, so we keep
	 * arbitration disabled for gen8 batches. Arbitration will be
	 * re-enabled before we close the request
	 * (engine->emit_fini_breadcrumb).
2418
	 */
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

	/* FIXME(BDW+): Address space and security selectors. */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);

	intel_ring_advance(rq, cs);

	return 0;
}

static int gen9_emit_bb_start(struct i915_request *rq,
			      u64 offset, u32 len,
			      const unsigned int flags)
{
	u32 *cs;

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

2442 2443
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

2444
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2445
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2446 2447
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
2448 2449 2450

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
2451

2452
	intel_ring_advance(rq, cs);
2453 2454 2455 2456

	return 0;
}

2457
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2458
{
2459 2460 2461
	ENGINE_WRITE(engine, RING_IMR,
		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
	ENGINE_POSTING_READ(engine, RING_IMR);
2462 2463
}

2464
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2465
{
2466
	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2467 2468
}

2469
static int gen8_emit_flush(struct i915_request *request, u32 mode)
2470
{
2471
	u32 cmd, *cs;
2472

2473 2474 2475
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2476 2477 2478

	cmd = MI_FLUSH_DW + 1;

2479 2480 2481 2482 2483 2484 2485
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2486
	if (mode & EMIT_INVALIDATE) {
2487
		cmd |= MI_INVALIDATE_TLB;
2488
		if (request->engine->class == VIDEO_DECODE_CLASS)
2489
			cmd |= MI_INVALIDATE_BSD;
2490 2491
	}

2492 2493 2494 2495 2496
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
2497 2498 2499 2500

	return 0;
}

2501
static int gen8_emit_flush_render(struct i915_request *request,
2502
				  u32 mode)
2503
{
2504
	struct intel_engine_cs *engine = request->engine;
2505
	u32 scratch_addr =
2506
		intel_gt_scratch_offset(engine->gt) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
2507
	bool vf_flush_wa = false, dc_flush_wa = false;
2508
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
2509
	int len;
2510 2511 2512

	flags |= PIPE_CONTROL_CS_STALL;

2513
	if (mode & EMIT_FLUSH) {
2514 2515
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2516
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2517
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2518 2519
	}

2520
	if (mode & EMIT_INVALIDATE) {
2521 2522 2523 2524 2525 2526 2527 2528 2529
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

2530 2531 2532 2533
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
2534
		if (IS_GEN(request->i915, 9))
2535
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
2536 2537 2538 2539

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
2540
	}
2541

M
Mika Kuoppala 已提交
2542 2543 2544 2545 2546 2547 2548 2549
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

2550 2551 2552
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2553

2554 2555
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
2556

2557 2558 2559
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2560

2561
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2562

2563 2564
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2565

2566
	intel_ring_advance(request, cs);
2567 2568 2569 2570

	return 0;
}

2571 2572 2573 2574 2575
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2576
static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2577
{
C
Chris Wilson 已提交
2578 2579
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2580 2581
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
2582 2583

	return cs;
C
Chris Wilson 已提交
2584
}
2585

2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598
static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs)
{
	*cs++ = MI_SEMAPHORE_WAIT |
		MI_SEMAPHORE_GLOBAL_GTT |
		MI_SEMAPHORE_POLL |
		MI_SEMAPHORE_SAD_EQ_SDD;
	*cs++ = 0;
	*cs++ = intel_hws_preempt_address(request->engine);
	*cs++ = 0;

	return cs;
}

2599
static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
2600
{
2601 2602
	cs = gen8_emit_ggtt_write(cs,
				  request->fence.seqno,
2603 2604
				  request->timeline->hwsp_offset,
				  0);
2605
	*cs++ = MI_USER_INTERRUPT;
2606

2607
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2608
	cs = emit_preempt_busywait(request, cs);
2609

2610
	request->tail = intel_ring_offset(request, cs);
2611
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2612

2613
	return gen8_emit_wa_tail(request, cs);
2614
}
2615

2616
static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2617
{
2618
	/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
2619
	cs = gen8_emit_ggtt_write_rcs(cs,
2620 2621
				      request->fence.seqno,
				      request->timeline->hwsp_offset,
2622 2623
				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2624 2625 2626 2627 2628
				      PIPE_CONTROL_DC_FLUSH_ENABLE);
	cs = gen8_emit_pipe_control(cs,
				    PIPE_CONTROL_FLUSH_ENABLE |
				    PIPE_CONTROL_CS_STALL,
				    0);
2629
	*cs++ = MI_USER_INTERRUPT;
2630

2631
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2632
	cs = emit_preempt_busywait(request, cs);
2633

2634
	request->tail = intel_ring_offset(request, cs);
2635
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2636

2637
	return gen8_emit_wa_tail(request, cs);
2638
}
2639

2640
static int gen8_init_rcs_context(struct i915_request *rq)
2641 2642 2643
{
	int ret;

2644
	ret = intel_engine_emit_ctx_wa(rq);
2645 2646 2647
	if (ret)
		return ret;

2648
	ret = intel_rcs_context_init_mocs(rq);
2649 2650 2651 2652 2653 2654 2655
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2656
	return i915_gem_render_state_emit(rq);
2657 2658
}

2659 2660
static void execlists_park(struct intel_engine_cs *engine)
{
2661
	del_timer_sync(&engine->execlists.timer);
2662 2663 2664
	intel_engine_park(engine);
}

2665
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2666
{
2667
	engine->submit_request = execlists_submit_request;
2668
	engine->cancel_requests = execlists_cancel_requests;
2669
	engine->schedule = i915_schedule;
2670
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2671

2672
	engine->reset.prepare = execlists_reset_prepare;
2673 2674
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2675

2676
	engine->park = execlists_park;
2677
	engine->unpark = NULL;
2678 2679

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2680 2681
	if (!intel_vgpu_active(engine->i915))
		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2682
	if (HAS_LOGICAL_RING_PREEMPTION(engine->i915))
2683
		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2684 2685
}

2686 2687 2688 2689 2690 2691 2692
static void execlists_destroy(struct intel_engine_cs *engine)
{
	intel_engine_cleanup_common(engine);
	lrc_destroy_wa_ctx(engine);
	kfree(engine);
}

2693
static void
2694
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2695 2696
{
	/* Default vfuncs which can be overriden by each engine. */
2697 2698

	engine->destroy = execlists_destroy;
2699
	engine->resume = execlists_resume;
2700 2701 2702 2703

	engine->reset.prepare = execlists_reset_prepare;
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2704

2705
	engine->cops = &execlists_context_ops;
2706 2707
	engine->request_alloc = execlists_request_alloc;

2708
	engine->emit_flush = gen8_emit_flush;
2709 2710
	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
2711

2712
	engine->set_default_submission = intel_execlists_set_default_submission;
2713

2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2725 2726 2727 2728
	if (IS_GEN(engine->i915, 8))
		engine->emit_bb_start = gen8_emit_bb_start;
	else
		engine->emit_bb_start = gen9_emit_bb_start;
2729 2730
}

2731
static inline void
2732
logical_ring_default_irqs(struct intel_engine_cs *engine)
2733
{
2734 2735 2736 2737
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
2738 2739 2740 2741 2742
			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
			[VECS0] = GEN8_VECS_IRQ_SHIFT,
2743 2744 2745 2746 2747
		};

		shift = irq_shifts[engine->id];
	}

2748 2749
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2750 2751
}

2752
int intel_execlists_submission_setup(struct intel_engine_cs *engine)
2753 2754 2755 2756
{
	/* Intentionally left blank. */
	engine->buffer = NULL;

2757 2758
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2759
	timer_setup(&engine->execlists.timer, execlists_submission_timer, 0);
2760 2761 2762

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
2763

2764 2765 2766 2767 2768 2769
	if (engine->class == RENDER_CLASS) {
		engine->init_context = gen8_init_rcs_context;
		engine->emit_flush = gen8_emit_flush_render;
		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
	}

2770
	return 0;
2771 2772
}

2773
int intel_execlists_submission_init(struct intel_engine_cs *engine)
2774
{
2775
	struct intel_engine_execlists * const execlists = &engine->execlists;
2776 2777
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
2778
	u32 base = engine->mmio_base;
2779 2780
	int ret;

2781
	ret = intel_engine_init_common(engine);
2782
	if (ret)
2783
		return ret;
2784

2785
	intel_engine_init_workarounds(engine);
2786 2787 2788 2789 2790 2791 2792 2793 2794
	intel_engine_init_whitelist(engine);

	if (intel_init_workaround_bb(engine))
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed\n");
2795

2796
	if (HAS_LOGICAL_RING_ELSQ(i915)) {
2797
		execlists->submit_reg = uncore->regs +
2798
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
2799
		execlists->ctrl_reg = uncore->regs +
2800
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
2801
	} else {
2802
		execlists->submit_reg = uncore->regs +
2803
			i915_mmio_reg_offset(RING_ELSP(base));
2804
	}
2805

2806
	execlists->csb_status =
2807
		&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2808

2809
	execlists->csb_write =
2810
		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
2811

2812
	if (INTEL_GEN(i915) < 11)
2813 2814 2815
		execlists->csb_size = GEN8_CSB_ENTRIES;
	else
		execlists->csb_size = GEN11_CSB_ENTRIES;
2816

2817
	reset_csb_pointers(engine);
2818

2819 2820 2821
	return 0;
}

2822
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2823 2824 2825
{
	u32 indirect_ctx_offset;

2826
	switch (INTEL_GEN(engine->i915)) {
2827
	default:
2828
		MISSING_CASE(INTEL_GEN(engine->i915));
2829
		/* fall through */
2830 2831 2832 2833
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2834 2835 2836 2837
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2851
static void execlists_init_reg_state(u32 *regs,
2852
				     struct intel_context *ce,
2853 2854
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2855
{
2856
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->gem_context->vm);
2857
	bool rcs = engine->class == RENDER_CLASS;
2858
	u32 base = engine->mmio_base;
2859

2860 2861
	/*
	 * A context is actually a big batch buffer with several
2862 2863 2864 2865 2866
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
2867 2868
	 *
	 * Must keep consistent with virtual_update_register_offsets().
2869 2870 2871 2872
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

2873
	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
2874
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2875
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2876
	if (INTEL_GEN(engine->i915) < 11) {
2877 2878 2879 2880
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
					    CTX_CTRL_RS_CTX_ENABLE);
	}
2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2893 2894
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2895 2896 2897
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2898
		if (wa_ctx->indirect_ctx.size) {
2899
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2900

2901
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2902 2903
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2904

2905
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2906
				intel_lr_indirect_ctx_offset(engine) << 6;
2907 2908 2909 2910 2911
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2912

2913
			regs[CTX_BB_PER_CTX_PTR + 1] =
2914
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2915
		}
2916
	}
2917 2918 2919 2920

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2921
	/* PDP values well be assigned later if needed */
2922 2923 2924 2925 2926 2927 2928 2929
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
2930

2931
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
2932 2933 2934 2935
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2936
		ASSIGN_CTX_PML4(ppgtt, regs);
2937
	} else {
2938 2939 2940 2941
		ASSIGN_CTX_PDP(ppgtt, regs, 3);
		ASSIGN_CTX_PDP(ppgtt, regs, 2);
		ASSIGN_CTX_PDP(ppgtt, regs, 1);
		ASSIGN_CTX_PDP(ppgtt, regs, 0);
2942 2943
	}

2944 2945
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2946
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
2947

2948
		i915_oa_init_reg_state(engine, ce, regs);
2949
	}
2950 2951

	regs[CTX_END] = MI_BATCH_BUFFER_END;
2952
	if (INTEL_GEN(engine->i915) >= 10)
2953
		regs[CTX_END] |= BIT(0);
2954 2955 2956
}

static int
2957
populate_lr_context(struct intel_context *ce,
2958 2959 2960 2961 2962
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2963
	u32 *regs;
2964 2965 2966 2967 2968 2969 2970 2971 2972
	int ret;

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
2984 2985 2986 2987
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
2988 2989 2990 2991 2992

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2993 2994
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2995
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2996
	execlists_init_reg_state(regs, ce, engine, ring);
2997 2998 2999
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
3000

3001
	ret = 0;
3002
err_unpin_ctx:
3003 3004 3005
	__i915_gem_object_flush_map(ctx_obj,
				    LRC_HEADER_PAGES * PAGE_SIZE,
				    engine->context_size);
3006
	i915_gem_object_unpin_map(ctx_obj);
3007
	return ret;
3008 3009
}

3010
static struct intel_timeline *
3011
get_timeline(struct i915_gem_context *ctx, struct intel_gt *gt)
3012
{
3013
	if (ctx->timeline)
3014
		return intel_timeline_get(ctx->timeline);
3015
	else
3016
		return intel_timeline_create(gt, NULL);
3017 3018 3019 3020
}

static int execlists_context_deferred_alloc(struct intel_context *ce,
					    struct intel_engine_cs *engine)
3021
{
3022
	struct drm_i915_gem_object *ctx_obj;
3023
	struct i915_vma *vma;
3024
	u32 context_size;
3025
	struct intel_ring *ring;
3026
	struct intel_timeline *timeline;
3027 3028
	int ret;

3029 3030
	if (ce->state)
		return 0;
3031

3032
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
3033

3034 3035 3036 3037 3038
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
3039

3040
	ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
3041 3042
	if (IS_ERR(ctx_obj))
		return PTR_ERR(ctx_obj);
3043

3044
	vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL);
3045 3046 3047 3048 3049
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

3050
	timeline = get_timeline(ce->gem_context, engine->gt);
3051 3052 3053 3054 3055
	if (IS_ERR(timeline)) {
		ret = PTR_ERR(timeline);
		goto error_deref_obj;
	}

3056 3057 3058
	ring = intel_engine_create_ring(engine,
					timeline,
					ce->gem_context->ring_size);
3059
	intel_timeline_put(timeline);
3060 3061
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
3062
		goto error_deref_obj;
3063 3064
	}

3065
	ret = populate_lr_context(ce, ctx_obj, engine, ring);
3066 3067
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
3068
		goto error_ring_free;
3069 3070
	}

3071
	ce->ring = ring;
3072
	ce->state = vma;
3073 3074

	return 0;
3075

3076
error_ring_free:
3077
	intel_ring_put(ring);
3078
error_deref_obj:
3079
	i915_gem_object_put(ctx_obj);
3080
	return ret;
3081
}
3082

3083 3084 3085 3086 3087
static struct list_head *virtual_queue(struct virtual_engine *ve)
{
	return &ve->base.execlists.default_priolist.requests[0];
}

3088 3089 3090 3091 3092 3093
static void virtual_context_destroy(struct kref *kref)
{
	struct virtual_engine *ve =
		container_of(kref, typeof(*ve), context.ref);
	unsigned int n;

3094
	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3095
	GEM_BUG_ON(ve->request);
3096
	GEM_BUG_ON(ve->context.inflight);
3097 3098 3099 3100 3101 3102 3103 3104

	for (n = 0; n < ve->num_siblings; n++) {
		struct intel_engine_cs *sibling = ve->siblings[n];
		struct rb_node *node = &ve->nodes[sibling->id].rb;

		if (RB_EMPTY_NODE(node))
			continue;

3105
		spin_lock_irq(&sibling->active.lock);
3106 3107 3108 3109 3110

		/* Detachment is lazily performed in the execlists tasklet */
		if (!RB_EMPTY_NODE(node))
			rb_erase_cached(node, &sibling->execlists.virtual);

3111
		spin_unlock_irq(&sibling->active.lock);
3112 3113 3114 3115 3116 3117
	}
	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));

	if (ve->context.state)
		__execlists_context_fini(&ve->context);

3118
	kfree(ve->bonds);
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
	kfree(ve);
}

static void virtual_engine_initial_hint(struct virtual_engine *ve)
{
	int swp;

	/*
	 * Pick a random sibling on starting to help spread the load around.
	 *
	 * New contexts are typically created with exactly the same order
	 * of siblings, and often started in batches. Due to the way we iterate
	 * the array of sibling when submitting requests, sibling[0] is
	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
	 * randomised across the system, we also help spread the load by the
	 * first engine we inspect being different each time.
	 *
	 * NB This does not force us to execute on this engine, it will just
	 * typically be the first we inspect for submission.
	 */
	swp = prandom_u32_max(ve->num_siblings);
	if (!swp)
		return;

	swap(ve->siblings[swp], ve->siblings[0]);
	virtual_update_register_offsets(ve->context.lrc_reg_state,
					ve->siblings[0]);
}

static int virtual_context_pin(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	int err;

	/* Note: we must use a real engine class for setting up reg state */
	err = __execlists_context_pin(ce, ve->siblings[0]);
	if (err)
		return err;

	virtual_engine_initial_hint(ve);
	return 0;
}

static void virtual_context_enter(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	unsigned int n;

	for (n = 0; n < ve->num_siblings; n++)
		intel_engine_pm_get(ve->siblings[n]);
}

static void virtual_context_exit(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	unsigned int n;

	for (n = 0; n < ve->num_siblings; n++)
		intel_engine_pm_put(ve->siblings[n]);
}

static const struct intel_context_ops virtual_context_ops = {
	.pin = virtual_context_pin,
	.unpin = execlists_context_unpin,

	.enter = virtual_context_enter,
	.exit = virtual_context_exit,

	.destroy = virtual_context_destroy,
};

3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
{
	struct i915_request *rq;
	intel_engine_mask_t mask;

	rq = READ_ONCE(ve->request);
	if (!rq)
		return 0;

	/* The rq is ready for submission; rq->execution_mask is now stable. */
	mask = rq->execution_mask;
	if (unlikely(!mask)) {
		/* Invalid selection, submit to a random engine in error */
		i915_request_skip(rq, -ENODEV);
		mask = ve->siblings[0]->mask;
	}

	GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n",
		  ve->base.name,
		  rq->fence.context, rq->fence.seqno,
		  mask, ve->base.execlists.queue_priority_hint);

	return mask;
}

3215 3216 3217 3218
static void virtual_submission_tasklet(unsigned long data)
{
	struct virtual_engine * const ve = (struct virtual_engine *)data;
	const int prio = ve->base.execlists.queue_priority_hint;
3219
	intel_engine_mask_t mask;
3220 3221
	unsigned int n;

3222 3223 3224 3225 3226 3227
	rcu_read_lock();
	mask = virtual_submission_mask(ve);
	rcu_read_unlock();
	if (unlikely(!mask))
		return;

3228 3229 3230 3231 3232 3233 3234
	local_irq_disable();
	for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
		struct intel_engine_cs *sibling = ve->siblings[n];
		struct ve_node * const node = &ve->nodes[sibling->id];
		struct rb_node **parent, *rb;
		bool first;

3235 3236
		if (unlikely(!(mask & sibling->mask))) {
			if (!RB_EMPTY_NODE(&node->rb)) {
3237
				spin_lock(&sibling->active.lock);
3238 3239 3240
				rb_erase_cached(&node->rb,
						&sibling->execlists.virtual);
				RB_CLEAR_NODE(&node->rb);
3241
				spin_unlock(&sibling->active.lock);
3242 3243 3244 3245
			}
			continue;
		}

3246
		spin_lock(&sibling->active.lock);
3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289

		if (!RB_EMPTY_NODE(&node->rb)) {
			/*
			 * Cheat and avoid rebalancing the tree if we can
			 * reuse this node in situ.
			 */
			first = rb_first_cached(&sibling->execlists.virtual) ==
				&node->rb;
			if (prio == node->prio || (prio > node->prio && first))
				goto submit_engine;

			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
		}

		rb = NULL;
		first = true;
		parent = &sibling->execlists.virtual.rb_root.rb_node;
		while (*parent) {
			struct ve_node *other;

			rb = *parent;
			other = rb_entry(rb, typeof(*other), rb);
			if (prio > other->prio) {
				parent = &rb->rb_left;
			} else {
				parent = &rb->rb_right;
				first = false;
			}
		}

		rb_link_node(&node->rb, rb, parent);
		rb_insert_color_cached(&node->rb,
				       &sibling->execlists.virtual,
				       first);

submit_engine:
		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
		node->prio = prio;
		if (first && prio > sibling->execlists.queue_priority_hint) {
			sibling->execlists.queue_priority_hint = prio;
			tasklet_hi_schedule(&sibling->execlists.tasklet);
		}

3290
		spin_unlock(&sibling->active.lock);
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306
	}
	local_irq_enable();
}

static void virtual_submit_request(struct i915_request *rq)
{
	struct virtual_engine *ve = to_virtual_engine(rq->engine);

	GEM_TRACE("%s: rq=%llx:%lld\n",
		  ve->base.name,
		  rq->fence.context,
		  rq->fence.seqno);

	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);

	GEM_BUG_ON(ve->request);
3307 3308
	GEM_BUG_ON(!list_empty(virtual_queue(ve)));

3309 3310 3311
	ve->base.execlists.queue_priority_hint = rq_prio(rq);
	WRITE_ONCE(ve->request, rq);

3312 3313
	list_move_tail(&rq->sched.link, virtual_queue(ve));

3314 3315 3316
	tasklet_schedule(&ve->base.execlists.tasklet);
}

3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348
static struct ve_bond *
virtual_find_bond(struct virtual_engine *ve,
		  const struct intel_engine_cs *master)
{
	int i;

	for (i = 0; i < ve->num_bonds; i++) {
		if (ve->bonds[i].master == master)
			return &ve->bonds[i];
	}

	return NULL;
}

static void
virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
{
	struct virtual_engine *ve = to_virtual_engine(rq->engine);
	struct ve_bond *bond;

	bond = virtual_find_bond(ve, to_request(signal)->engine);
	if (bond) {
		intel_engine_mask_t old, new, cmp;

		cmp = READ_ONCE(rq->execution_mask);
		do {
			old = cmp;
			new = cmp & bond->sibling_mask;
		} while ((cmp = cmpxchg(&rq->execution_mask, old, new)) != old);
	}
}

3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
struct intel_context *
intel_execlists_create_virtual(struct i915_gem_context *ctx,
			       struct intel_engine_cs **siblings,
			       unsigned int count)
{
	struct virtual_engine *ve;
	unsigned int n;
	int err;

	if (count == 0)
		return ERR_PTR(-EINVAL);

	if (count == 1)
		return intel_context_create(ctx, siblings[0]);

	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
	if (!ve)
		return ERR_PTR(-ENOMEM);

	ve->base.i915 = ctx->i915;
3369
	ve->base.gt = siblings[0]->gt;
3370 3371 3372 3373 3374 3375
	ve->base.id = -1;
	ve->base.class = OTHER_CLASS;
	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
	ve->base.flags = I915_ENGINE_IS_VIRTUAL;

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
	/*
	 * The decision on whether to submit a request using semaphores
	 * depends on the saturated state of the engine. We only compute
	 * this during HW submission of the request, and we need for this
	 * state to be globally applied to all requests being submitted
	 * to this engine. Virtual engines encompass more than one physical
	 * engine and so we cannot accurately tell in advance if one of those
	 * engines is already saturated and so cannot afford to use a semaphore
	 * and be pessimized in priority for doing so -- if we are the only
	 * context using semaphores after all other clients have stopped, we
	 * will be starved on the saturated system. Such a global switch for
	 * semaphores is less than ideal, but alas is the current compromise.
	 */
	ve->base.saturated = ALL_ENGINES;

3391 3392
	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");

3393
	intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
3394 3395 3396 3397 3398 3399 3400 3401

	intel_engine_init_execlists(&ve->base);

	ve->base.cops = &virtual_context_ops;
	ve->base.request_alloc = execlists_request_alloc;

	ve->base.schedule = i915_schedule;
	ve->base.submit_request = virtual_submit_request;
3402
	ve->base.bond_execute = virtual_bond_execute;
3403

3404
	INIT_LIST_HEAD(virtual_queue(ve));
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
	ve->base.execlists.queue_priority_hint = INT_MIN;
	tasklet_init(&ve->base.execlists.tasklet,
		     virtual_submission_tasklet,
		     (unsigned long)ve);

	intel_context_init(&ve->context, ctx, &ve->base);

	for (n = 0; n < count; n++) {
		struct intel_engine_cs *sibling = siblings[n];

		GEM_BUG_ON(!is_power_of_2(sibling->mask));
		if (sibling->mask & ve->base.mask) {
			DRM_DEBUG("duplicate %s entry in load balancer\n",
				  sibling->name);
			err = -EINVAL;
			goto err_put;
		}

		/*
		 * The virtual engine implementation is tightly coupled to
		 * the execlists backend -- we push out request directly
		 * into a tree inside each physical engine. We could support
		 * layering if we handle cloning of the requests and
		 * submitting a copy into each backend.
		 */
		if (sibling->execlists.tasklet.func !=
		    execlists_submission_tasklet) {
			err = -ENODEV;
			goto err_put;
		}

		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);

		ve->siblings[ve->num_siblings++] = sibling;
		ve->base.mask |= sibling->mask;

		/*
		 * All physical engines must be compatible for their emission
		 * functions (as we build the instructions during request
		 * construction and do not alter them before submission
		 * on the physical engine). We use the engine class as a guide
		 * here, although that could be refined.
		 */
		if (ve->base.class != OTHER_CLASS) {
			if (ve->base.class != sibling->class) {
				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
					  sibling->class, ve->base.class);
				err = -EINVAL;
				goto err_put;
			}
			continue;
		}

		ve->base.class = sibling->class;
		ve->base.uabi_class = sibling->uabi_class;
		snprintf(ve->base.name, sizeof(ve->base.name),
			 "v%dx%d", ve->base.class, count);
		ve->base.context_size = sibling->context_size;

		ve->base.emit_bb_start = sibling->emit_bb_start;
		ve->base.emit_flush = sibling->emit_flush;
		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
		ve->base.emit_fini_breadcrumb_dw =
			sibling->emit_fini_breadcrumb_dw;
	}

	return &ve->context;

err_put:
	intel_context_put(&ve->context);
	return ERR_PTR(err);
}

struct intel_context *
intel_execlists_clone_virtual(struct i915_gem_context *ctx,
			      struct intel_engine_cs *src)
{
	struct virtual_engine *se = to_virtual_engine(src);
	struct intel_context *dst;

	dst = intel_execlists_create_virtual(ctx,
					     se->siblings,
					     se->num_siblings);
	if (IS_ERR(dst))
		return dst;

3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506
	if (se->num_bonds) {
		struct virtual_engine *de = to_virtual_engine(dst->engine);

		de->bonds = kmemdup(se->bonds,
				    sizeof(*se->bonds) * se->num_bonds,
				    GFP_KERNEL);
		if (!de->bonds) {
			intel_context_put(dst);
			return ERR_PTR(-ENOMEM);
		}

		de->num_bonds = se->num_bonds;
	}

3507 3508 3509
	return dst;
}

3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
				     const struct intel_engine_cs *master,
				     const struct intel_engine_cs *sibling)
{
	struct virtual_engine *ve = to_virtual_engine(engine);
	struct ve_bond *bond;
	int n;

	/* Sanity check the sibling is part of the virtual engine */
	for (n = 0; n < ve->num_siblings; n++)
		if (sibling == ve->siblings[n])
			break;
	if (n == ve->num_siblings)
		return -EINVAL;

	bond = virtual_find_bond(ve, master);
	if (bond) {
		bond->sibling_mask |= sibling->mask;
		return 0;
	}

	bond = krealloc(ve->bonds,
			sizeof(*bond) * (ve->num_bonds + 1),
			GFP_KERNEL);
	if (!bond)
		return -ENOMEM;

	bond[ve->num_bonds].master = master;
	bond[ve->num_bonds].sibling_mask = sibling->mask;

	ve->bonds = bond;
	ve->num_bonds++;

	return 0;
}

3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
void intel_execlists_show_requests(struct intel_engine_cs *engine,
				   struct drm_printer *m,
				   void (*show_request)(struct drm_printer *m,
							struct i915_request *rq,
							const char *prefix),
				   unsigned int max)
{
	const struct intel_engine_execlists *execlists = &engine->execlists;
	struct i915_request *rq, *last;
	unsigned long flags;
	unsigned int count;
	struct rb_node *rb;

3559
	spin_lock_irqsave(&engine->active.lock, flags);
3560 3561 3562

	last = NULL;
	count = 0;
3563
	list_for_each_entry(rq, &engine->active.requests, sched.link) {
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579
		if (count++ < max - 1)
			show_request(m, rq, "\t\tE ");
		else
			last = rq;
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d executing requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tE ");
	}

	last = NULL;
	count = 0;
3580 3581 3582
	if (execlists->queue_priority_hint != INT_MIN)
		drm_printf(m, "\t\tQueue priority hint: %d\n",
			   execlists->queue_priority_hint);
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		int i;

		priolist_for_each_request(rq, p, i) {
			if (count++ < max - 1)
				show_request(m, rq, "\t\tQ ");
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d queued requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tQ ");
	}

3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
	last = NULL;
	count = 0;
	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq = READ_ONCE(ve->request);

		if (rq) {
			if (count++ < max - 1)
				show_request(m, rq, "\t\tV ");
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d virtual requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tV ");
	}

3626
	spin_unlock_irqrestore(&engine->active.lock, flags);
3627 3628
}

3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
void intel_lr_context_reset(struct intel_engine_cs *engine,
			    struct intel_context *ce,
			    u32 head,
			    bool scrub)
{
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	if (scrub) {
		u32 *regs = ce->lrc_reg_state;

		if (engine->pinned_default_state) {
			memcpy(regs, /* skip restoring the vanilla PPHWSP */
			       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
			       engine->context_size - PAGE_SIZE);
		}
		execlists_init_reg_state(regs, ce, engine, ce->ring);
	}

	/* Rerun the request; its payload has been neutered (if guilty). */
	ce->ring->head = head;
	intel_ring_update_space(ce->ring);

	__execlists_update_reg_state(ce, engine);
}

3660
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3661
#include "selftest_lrc.c"
3662
#endif