intel_lrc.c 108.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135

136 137
#include "gem/i915_gem_context.h"

138
#include "i915_drv.h"
139
#include "i915_perf.h"
140
#include "i915_trace.h"
141
#include "i915_vgpu.h"
142
#include "intel_engine_pm.h"
143
#include "intel_gt.h"
144
#include "intel_gt_pm.h"
145
#include "intel_lrc_reg.h"
146
#include "intel_mocs.h"
147
#include "intel_reset.h"
148
#include "intel_workarounds.h"
149

150 151 152 153 154 155 156 157 158 159 160 161 162
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
163

164
#define GEN8_CTX_STATUS_COMPLETED_MASK \
165
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
166

167 168
#define CTX_DESC_FORCE_RESTORE BIT_ULL(2)

169 170
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
171
#define WA_TAIL_DWORDS 2
172
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
173

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
struct virtual_engine {
	struct intel_engine_cs base;
	struct intel_context context;

	/*
	 * We allow only a single request through the virtual engine at a time
	 * (each request in the timeline waits for the completion fence of
	 * the previous before being submitted). By restricting ourselves to
	 * only submitting a single request, each request is placed on to a
	 * physical to maximise load spreading (by virtue of the late greedy
	 * scheduling -- each real engine takes the next available request
	 * upon idling).
	 */
	struct i915_request *request;

	/*
	 * We keep a rbtree of available virtual engines inside each physical
	 * engine, sorted by priority. Here we preallocate the nodes we need
	 * for the virtual engine, indexed by physical_engine->id.
	 */
	struct ve_node {
		struct rb_node rb;
		int prio;
	} nodes[I915_NUM_ENGINES];

199 200 201 202 203 204 205 206 207 208 209 210
	/*
	 * Keep track of bonded pairs -- restrictions upon on our selection
	 * of physical engines any particular request may be submitted to.
	 * If we receive a submit-fence from a master engine, we will only
	 * use one of sibling_mask physical engines.
	 */
	struct ve_bond {
		const struct intel_engine_cs *master;
		intel_engine_mask_t sibling_mask;
	} *bonds;
	unsigned int num_bonds;

211 212 213 214 215 216 217 218 219 220 221
	/* And finally, which physical engines this virtual engine maps onto. */
	unsigned int num_siblings;
	struct intel_engine_cs *siblings[0];
};

static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
{
	GEM_BUG_ON(!intel_engine_is_virtual(engine));
	return container_of(engine, struct virtual_engine, base);
}

222 223 224
static int __execlists_context_alloc(struct intel_context *ce,
				     struct intel_engine_cs *engine);

225
static void execlists_init_reg_state(u32 *reg_state,
226
				     struct intel_context *ce,
227 228
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
229

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine)
{
	return (i915_ggtt_offset(engine->status_page.vma) +
		I915_GEM_HWS_PREEMPT_ADDR);
}

static inline void
ring_set_paused(const struct intel_engine_cs *engine, int state)
{
	/*
	 * We inspect HWS_PREEMPT with a semaphore inside
	 * engine->emit_fini_breadcrumb. If the dword is true,
	 * the ring is paused as the semaphore will busywait
	 * until the dword is false.
	 */
	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
246 247
	if (state)
		wmb();
248 249
}

250 251 252 253 254 255 256
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
257
	return rq->sched.attr.priority;
258 259
}

260 261
static int effective_prio(const struct i915_request *rq)
{
262 263
	int prio = rq_prio(rq);

264 265 266 267 268 269 270 271 272 273 274
	/*
	 * If this request is special and must not be interrupted at any
	 * cost, so be it. Note we are only checking the most recent request
	 * in the context and so may be masking an earlier vip request. It
	 * is hoped that under the conditions where nopreempt is used, this
	 * will not matter (i.e. all requests to that context will be
	 * nopreempt for as long as desired).
	 */
	if (i915_request_has_nopreempt(rq))
		prio = I915_PRIORITY_UNPREEMPTABLE;

275 276
	/*
	 * On unwinding the active request, we give it a priority bump
277 278 279
	 * if it has completed waiting on any semaphore. If we know that
	 * the request has already started, we can prevent an unwanted
	 * preempt-to-idle cycle by taking that into account now.
280
	 */
281 282
	if (__i915_request_has_started(rq))
		prio |= I915_PRIORITY_NOSEMAPHORE;
283

284
	/* Restrict mere WAIT boosts from triggering preemption */
285
	BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */
286
	return prio | __NO_PREEMPTION;
287 288
}

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static int queue_prio(const struct intel_engine_execlists *execlists)
{
	struct i915_priolist *p;
	struct rb_node *rb;

	rb = rb_first_cached(&execlists->queue);
	if (!rb)
		return INT_MIN;

	/*
	 * As the priolist[] are inverted, with the highest priority in [0],
	 * we have to flip the index value to become priority.
	 */
	p = to_priolist(rb);
	return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
}

306
static inline bool need_preempt(const struct intel_engine_cs *engine,
307 308
				const struct i915_request *rq,
				struct rb_node *rb)
309
{
310
	int last_prio;
311

312 313 314
	if (!intel_engine_has_semaphores(engine))
		return false;

315 316 317 318 319 320 321 322 323 324 325 326
	/*
	 * Check if the current priority hint merits a preemption attempt.
	 *
	 * We record the highest value priority we saw during rescheduling
	 * prior to this dequeue, therefore we know that if it is strictly
	 * less than the current tail of ESLP[0], we do not need to force
	 * a preempt-to-idle cycle.
	 *
	 * However, the priority hint is a mere hint that we may need to
	 * preempt. If that hint is stale or we may be trying to preempt
	 * ourselves, ignore the request.
	 */
327
	last_prio = effective_prio(rq);
328 329
	if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint,
					 last_prio))
330 331 332 333 334 335
		return false;

	/*
	 * Check against the first request in ELSP[1], it will, thanks to the
	 * power of PI, be the highest priority of that context.
	 */
336 337
	if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
338 339
		return true;

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
	if (rb) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		bool preempt = false;

		if (engine == ve->siblings[0]) { /* only preempt one sibling */
			struct i915_request *next;

			rcu_read_lock();
			next = READ_ONCE(ve->request);
			if (next)
				preempt = rq_prio(next) > last_prio;
			rcu_read_unlock();
		}

		if (preempt)
			return preempt;
	}

359 360 361 362 363 364 365 366 367 368 369 370 371 372
	/*
	 * If the inflight context did not trigger the preemption, then maybe
	 * it was the set of queued requests? Pick the highest priority in
	 * the queue (the first active priolist) and see if it deserves to be
	 * running instead of ELSP[0].
	 *
	 * The highest priority request in the queue can not be either
	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
	 * context, it's priority would not exceed ELSP[0] aka last_prio.
	 */
	return queue_prio(&engine->execlists) > last_prio;
}

__maybe_unused static inline bool
373
assert_priority_queue(const struct i915_request *prev,
374
		      const struct i915_request *next)
375
{
376 377 378 379 380 381 382
	/*
	 * Without preemption, the prev may refer to the still active element
	 * which we refuse to let go.
	 *
	 * Even with preemption, there are times when we think it is better not
	 * to preempt and leave an ostensibly lower priority request in flight.
	 */
383
	if (i915_request_is_active(prev))
384 385 386
		return true;

	return rq_prio(prev) >= rq_prio(next);
387 388
}

389
/*
390 391 392 393 394
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
395 396
 * This is what a descriptor looks like, from LSB to MSB::
 *
397
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
398
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
399
 *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
400 401
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
402 403 404 405 406 407 408 409 410 411 412 413
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
414
 */
415 416
static u64
lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
417
{
418
	struct i915_gem_context *ctx = ce->gem_context;
419
	u64 desc;
420

421 422
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
423

424 425 426 427 428 429 430 431
	desc = INTEL_LEGACY_32B_CONTEXT;
	if (i915_vm_is_4lvl(ce->vm))
		desc = INTEL_LEGACY_64B_CONTEXT;
	desc <<= GEN8_CTX_ADDRESSING_MODE_SHIFT;

	desc |= GEN8_CTX_VALID | GEN8_CTX_PRIVILEGE;
	if (IS_GEN(engine->i915, 8))
		desc |= GEN8_CTX_L3LLC_COHERENT;
432

433
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
434
								/* bits 12-31 */
435 436 437 438 439
	/*
	 * The following 32bits are copied into the OA reports (dword 2).
	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
	 * anything below.
	 */
440
	if (INTEL_GEN(engine->i915) >= 11) {
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
456

457
	return desc;
458 459
}

460
static void unwind_wa_tail(struct i915_request *rq)
461 462 463 464 465
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

466
static struct i915_request *
467
__unwind_incomplete_requests(struct intel_engine_cs *engine)
468
{
469
	struct i915_request *rq, *rn, *active = NULL;
470
	struct list_head *uninitialized_var(pl);
471
	int prio = I915_PRIORITY_INVALID;
472

473
	lockdep_assert_held(&engine->active.lock);
474 475

	list_for_each_entry_safe_reverse(rq, rn,
476 477
					 &engine->active.requests,
					 sched.link) {
478 479
		struct intel_engine_cs *owner;

480
		if (i915_request_completed(rq))
481
			continue; /* XXX */
482

483
		__i915_request_unsubmit(rq);
484 485
		unwind_wa_tail(rq);

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
		/*
		 * Push the request back into the queue for later resubmission.
		 * If this request is not native to this physical engine (i.e.
		 * it came from a virtual source), push it back onto the virtual
		 * engine so that it can be moved across onto another physical
		 * engine as load dictates.
		 */
		owner = rq->hw_context->engine;
		if (likely(owner == engine)) {
			GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
			if (rq_prio(rq) != prio) {
				prio = rq_prio(rq);
				pl = i915_sched_lookup_priolist(engine, prio);
			}
			GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
501

502
			list_move(&rq->sched.link, pl);
503 504
			active = rq;
		} else {
505 506 507 508 509 510 511 512 513 514 515 516 517
			/*
			 * Decouple the virtual breadcrumb before moving it
			 * back to the virtual engine -- we don't want the
			 * request to complete in the background and try
			 * and cancel the breadcrumb on the virtual engine
			 * (instead of the old engine where it is linked)!
			 */
			if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
				     &rq->fence.flags)) {
				spin_lock(&rq->lock);
				i915_request_cancel_breadcrumb(rq);
				spin_unlock(&rq->lock);
			}
518 519 520 521
			rq->engine = owner;
			owner->submit_request(rq);
			active = NULL;
		}
522 523
	}

524
	return active;
525 526
}

527
struct i915_request *
528 529 530 531 532
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

533
	return __unwind_incomplete_requests(engine);
534 535
}

536
static inline void
537
execlists_context_status_change(struct i915_request *rq, unsigned long status)
538
{
539 540 541 542 543 544
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
545

546 547
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
548 549
}

550 551
static inline struct i915_request *
execlists_schedule_in(struct i915_request *rq, int idx)
552
{
553 554
	struct intel_context *ce = rq->hw_context;
	int count;
555

556
	trace_i915_request_in(rq, idx);
557

558 559 560 561 562
	count = intel_context_inflight_count(ce);
	if (!count) {
		intel_context_get(ce);
		ce->inflight = rq->engine;

563
		intel_gt_pm_get(ce->inflight->gt);
564 565 566 567 568 569
		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
		intel_engine_context_in(ce->inflight);
	}

	intel_context_inflight_inc(ce);
	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
570

571
	return i915_request_get(rq);
572 573
}

574
static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
575
{
576
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
577 578 579 580 581 582
	struct i915_request *next = READ_ONCE(ve->request);

	if (next && next->execution_mask & ~rq->execution_mask)
		tasklet_schedule(&ve->base.execlists.tasklet);
}

583
static inline void
584
execlists_schedule_out(struct i915_request *rq)
585
{
586 587 588 589
	struct intel_context *ce = rq->hw_context;

	GEM_BUG_ON(!intel_context_inflight_count(ce));

590
	trace_i915_request_out(rq);
591

592 593 594 595
	intel_context_inflight_dec(ce);
	if (!intel_context_inflight_count(ce)) {
		intel_engine_context_out(ce->inflight);
		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
596
		intel_gt_pm_put(ce->inflight->gt);
597 598 599 600 601 602 603 604 605 606

		/*
		 * If this is part of a virtual engine, its next request may
		 * have been blocked waiting for access to the active context.
		 * We have to kick all the siblings again in case we need to
		 * switch (e.g. the next request is not runnable on this
		 * engine). Hopefully, we will already have submitted the next
		 * request before the tasklet runs and do not need to rebuild
		 * each virtual tree and kick everyone again.
		 */
607
		ce->inflight = NULL;
608 609
		if (rq->engine != ce->engine)
			kick_siblings(rq, ce);
610 611

		intel_context_put(ce);
612 613 614
	}

	i915_request_put(rq);
615 616
}

617
static u64 execlists_update_context(const struct i915_request *rq)
618
{
619
	struct intel_context *ce = rq->hw_context;
620
	u64 desc;
621

622 623
	ce->lrc_reg_state[CTX_RING_TAIL + 1] =
		intel_ring_set_tail(rq->ring, rq->tail);
624

625 626 627 628 629 630 631 632 633
	/*
	 * Make sure the context image is complete before we submit it to HW.
	 *
	 * Ostensibly, writes (including the WCB) should be flushed prior to
	 * an uncached write such as our mmio register access, the empirical
	 * evidence (esp. on Braswell) suggests that the WC write into memory
	 * may not be visible to the HW prior to the completion of the UC
	 * register write and that we may begin execution from the context
	 * before its image is complete leading to invalid PD chasing.
634 635 636 637 638
	 *
	 * Furthermore, Braswell, at least, wants a full mb to be sure that
	 * the writes are coherent in memory (visible to the GPU) prior to
	 * execution, and not just visible to other CPUs (as is the result of
	 * wmb).
639
	 */
640
	mb();
641 642 643 644 645

	desc = ce->lrc_desc;
	ce->lrc_desc &= ~CTX_DESC_FORCE_RESTORE;

	return desc;
646 647
}

648
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
649
{
650 651 652 653 654 655 656
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
657 658
}

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
static __maybe_unused void
trace_ports(const struct intel_engine_execlists *execlists,
	    const char *msg,
	    struct i915_request * const *ports)
{
	const struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	GEM_TRACE("%s: %s { %llx:%lld%s, %llx:%lld }\n",
		  engine->name, msg,
		  ports[0]->fence.context,
		  ports[0]->fence.seqno,
		  i915_request_completed(ports[0]) ? "!" :
		  i915_request_started(ports[0]) ? "*" :
		  "",
		  ports[1] ? ports[1]->fence.context : 0,
		  ports[1] ? ports[1]->fence.seqno : 0);
}

static __maybe_unused bool
assert_pending_valid(const struct intel_engine_execlists *execlists,
		     const char *msg)
{
	struct i915_request * const *port, *rq;
	struct intel_context *ce = NULL;

	trace_ports(execlists, msg, execlists->pending);

	if (execlists->pending[execlists_num_ports(execlists)])
		return false;

	for (port = execlists->pending; (rq = *port); port++) {
		if (ce == rq->hw_context)
			return false;

		ce = rq->hw_context;
		if (i915_request_completed(rq))
			continue;

		if (i915_active_is_idle(&ce->active))
			return false;

		if (!i915_vma_is_pinned(ce->state))
			return false;
	}

	return ce;
}

708
static void execlists_submit_ports(struct intel_engine_cs *engine)
709
{
710
	struct intel_engine_execlists *execlists = &engine->execlists;
711
	unsigned int n;
712

713 714
	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));

715 716 717 718 719 720 721 722
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
723
	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
724

725 726 727 728 729 730 731
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
732
		struct i915_request *rq = execlists->pending[n];
733

734 735 736
		write_desc(execlists,
			   rq ? execlists_update_context(rq) : 0,
			   n);
737
	}
738 739 740 741

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
742 743
}

744
static bool ctx_single_port_submission(const struct intel_context *ce)
745
{
746
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
747
		i915_gem_context_force_single_submission(ce->gem_context));
748
}
749

750 751
static bool can_merge_ctx(const struct intel_context *prev,
			  const struct intel_context *next)
752 753 754
{
	if (prev != next)
		return false;
755

756 757
	if (ctx_single_port_submission(prev))
		return false;
758

759
	return true;
760 761
}

762 763 764
static bool can_merge_rq(const struct i915_request *prev,
			 const struct i915_request *next)
{
765
	GEM_BUG_ON(prev == next);
766 767 768 769 770 771 772 773
	GEM_BUG_ON(!assert_priority_queue(prev, next));

	if (!can_merge_ctx(prev->hw_context, next->hw_context))
		return false;

	return true;
}

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
static void virtual_update_register_offsets(u32 *regs,
					    struct intel_engine_cs *engine)
{
	u32 base = engine->mmio_base;

	/* Must match execlists_init_reg_state()! */

	regs[CTX_CONTEXT_CONTROL] =
		i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base));
	regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base));
	regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base));
	regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base));
	regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base));

	regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base));
	regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base));
	regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base));
	regs[CTX_SECOND_BB_HEAD_U] =
		i915_mmio_reg_offset(RING_SBBADDR_UDW(base));
	regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base));
	regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base));

	regs[CTX_CTX_TIMESTAMP] =
		i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base));
	regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3));
	regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3));
	regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2));
	regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2));
	regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1));
	regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1));
	regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
	regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));

	if (engine->class == RENDER_CLASS) {
		regs[CTX_RCS_INDIRECT_CTX] =
			i915_mmio_reg_offset(RING_INDIRECT_CTX(base));
		regs[CTX_RCS_INDIRECT_CTX_OFFSET] =
			i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base));
		regs[CTX_BB_PER_CTX_PTR] =
			i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base));

		regs[CTX_R_PWR_CLK_STATE] =
			i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE);
	}
}

static bool virtual_matches(const struct virtual_engine *ve,
			    const struct i915_request *rq,
			    const struct intel_engine_cs *engine)
{
824
	const struct intel_engine_cs *inflight;
825

826 827 828
	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
		return false;

829 830 831 832 833 834 835 836 837
	/*
	 * We track when the HW has completed saving the context image
	 * (i.e. when we have seen the final CS event switching out of
	 * the context) and must not overwrite the context image before
	 * then. This restricts us to only using the active engine
	 * while the previous virtualized request is inflight (so
	 * we reuse the register offsets). This is a very small
	 * hystersis on the greedy seelction algorithm.
	 */
838
	inflight = intel_context_inflight(&ve->context);
839
	if (inflight && inflight != engine)
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
		return false;

	return true;
}

static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
				     struct intel_engine_cs *engine)
{
	struct intel_engine_cs *old = ve->siblings[0];

	/* All unattached (rq->engine == old) must already be completed */

	spin_lock(&old->breadcrumbs.irq_lock);
	if (!list_empty(&ve->context.signal_link)) {
		list_move_tail(&ve->context.signal_link,
			       &engine->breadcrumbs.signalers);
		intel_engine_queue_breadcrumbs(engine);
	}
	spin_unlock(&old->breadcrumbs.irq_lock);
}

861 862 863 864 865 866 867 868 869 870 871
static struct i915_request *
last_active(const struct intel_engine_execlists *execlists)
{
	struct i915_request * const *last = execlists->active;

	while (*last && i915_request_completed(*last))
		last++;

	return *last;
}

872
static void defer_request(struct i915_request *rq, struct list_head * const pl)
873
{
874
	LIST_HEAD(list);
875 876 877 878 879 880 881 882

	/*
	 * We want to move the interrupted request to the back of
	 * the round-robin list (i.e. its priority level), but
	 * in doing so, we must then move all requests that were in
	 * flight and were waiting for the interrupted request to
	 * be run after it again.
	 */
883 884
	do {
		struct i915_dependency *p;
885

886 887
		GEM_BUG_ON(i915_request_is_active(rq));
		list_move_tail(&rq->sched.link, pl);
888

889 890 891
		list_for_each_entry(p, &rq->sched.waiters_list, wait_link) {
			struct i915_request *w =
				container_of(p->waiter, typeof(*w), sched);
892

893 894 895
			/* Leave semaphores spinning on the other engines */
			if (w->engine != rq->engine)
				continue;
896

897 898 899
			/* No waiter should start before its signaler */
			GEM_BUG_ON(i915_request_started(w) &&
				   !i915_request_completed(rq));
900

901 902 903
			GEM_BUG_ON(i915_request_is_active(w));
			if (list_empty(&w->sched.link))
				continue; /* Not yet submitted; unready */
904

905 906 907 908 909 910 911 912 913
			if (rq_prio(w) < rq_prio(rq))
				continue;

			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
			list_move_tail(&w->sched.link, &list);
		}

		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
	} while (rq);
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
}

static void defer_active(struct intel_engine_cs *engine)
{
	struct i915_request *rq;

	rq = __unwind_incomplete_requests(engine);
	if (!rq)
		return;

	defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
}

static bool
need_timeslice(struct intel_engine_cs *engine, const struct i915_request *rq)
{
	int hint;

932 933 934
	if (!intel_engine_has_semaphores(engine))
		return false;

935 936 937 938 939 940
	if (list_is_last(&rq->sched.link, &engine->active.requests))
		return false;

	hint = max(rq_prio(list_next_entry(rq, sched.link)),
		   engine->execlists.queue_priority_hint);

941
	return hint >= effective_prio(rq);
942 943 944 945 946 947 948 949 950 951
}

static bool
enable_timeslice(struct intel_engine_cs *engine)
{
	struct i915_request *last = last_active(&engine->execlists);

	return last && need_timeslice(engine, last);
}

952 953 954 955 956
static void record_preemption(struct intel_engine_execlists *execlists)
{
	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
}

957
static void execlists_dequeue(struct intel_engine_cs *engine)
958
{
959
	struct intel_engine_execlists * const execlists = &engine->execlists;
960 961 962
	struct i915_request **port = execlists->pending;
	struct i915_request ** const last_port = port + execlists->port_mask;
	struct i915_request *last;
963
	struct rb_node *rb;
964 965
	bool submit = false;

966 967
	/*
	 * Hardware submission is through 2 ports. Conceptually each port
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
986
	 */
987

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	for (rb = rb_first_cached(&execlists->virtual); rb; ) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq = READ_ONCE(ve->request);

		if (!rq) { /* lazily cleanup after another engine handled rq */
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);
			rb = rb_first_cached(&execlists->virtual);
			continue;
		}

		if (!virtual_matches(ve, rq, engine)) {
			rb = rb_next(rb);
			continue;
		}

		break;
	}

1008 1009 1010 1011 1012 1013 1014 1015 1016
	/*
	 * If the queue is higher priority than the last
	 * request in the currently active context, submit afresh.
	 * We will resubmit again afterwards in case we need to split
	 * the active context to interject the preemption request,
	 * i.e. we will retrigger preemption following the ack in case
	 * of trouble.
	 */
	last = last_active(execlists);
C
Chris Wilson 已提交
1017
	if (last) {
1018
		if (need_preempt(engine, last, rb)) {
1019 1020 1021 1022 1023 1024
			GEM_TRACE("%s: preempting last=%llx:%lld, prio=%d, hint=%d\n",
				  engine->name,
				  last->fence.context,
				  last->fence.seqno,
				  last->sched.attr.priority,
				  execlists->queue_priority_hint);
1025 1026
			record_preemption(execlists);

1027 1028 1029 1030 1031 1032
			/*
			 * Don't let the RING_HEAD advance past the breadcrumb
			 * as we unwind (and until we resubmit) so that we do
			 * not accidentally tell it to go backwards.
			 */
			ring_set_paused(engine, 1);
1033

1034 1035 1036 1037 1038 1039 1040 1041
			/*
			 * Note that we have not stopped the GPU at this point,
			 * so we are unwinding the incomplete requests as they
			 * remain inflight and so by the time we do complete
			 * the preemption, some of the unwound requests may
			 * complete!
			 */
			__unwind_incomplete_requests(engine);
1042

1043 1044 1045 1046 1047 1048 1049 1050 1051
			/*
			 * If we need to return to the preempted context, we
			 * need to skip the lite-restore and force it to
			 * reload the RING_TAIL. Otherwise, the HW has a
			 * tendency to ignore us rewinding the TAIL to the
			 * end of an earlier request.
			 */
			last->hw_context->lrc_desc |= CTX_DESC_FORCE_RESTORE;
			last = NULL;
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
		} else if (need_timeslice(engine, last) &&
			   !timer_pending(&engine->execlists.timer)) {
			GEM_TRACE("%s: expired last=%llx:%lld, prio=%d, hint=%d\n",
				  engine->name,
				  last->fence.context,
				  last->fence.seqno,
				  last->sched.attr.priority,
				  execlists->queue_priority_hint);

			ring_set_paused(engine, 1);
			defer_active(engine);

			/*
			 * Unlike for preemption, if we rewind and continue
			 * executing the same context as previously active,
			 * the order of execution will remain the same and
			 * the tail will only advance. We do not need to
			 * force a full context restore, as a lite-restore
			 * is sufficient to resample the monotonic TAIL.
			 *
			 * If we switch to any other context, similarly we
			 * will not rewind TAIL of current context, and
			 * normal save/restore will preserve state and allow
			 * us to later continue executing the same request.
			 */
			last = NULL;
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
		} else {
			/*
			 * Otherwise if we already have a request pending
			 * for execution after the current one, we can
			 * just wait until the next CS event before
			 * queuing more. In either case we will force a
			 * lite-restore preemption event, but if we wait
			 * we hopefully coalesce several updates into a single
			 * submission.
			 */
			if (!list_is_last(&last->sched.link,
					  &engine->active.requests))
				return;

			/*
			 * WaIdleLiteRestore:bdw,skl
			 * Apply the wa NOOPs to prevent
			 * ring:HEAD == rq:TAIL as we resubmit the
			 * request. See gen8_emit_fini_breadcrumb() for
			 * where we prepare the padding after the
			 * end of the request.
			 */
			last->tail = last->wa_tail;
		}
C
Chris Wilson 已提交
1102 1103
	}

1104 1105 1106 1107 1108
	while (rb) { /* XXX virtual is always taking precedence */
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq;

1109
		spin_lock(&ve->base.active.lock);
1110 1111 1112

		rq = ve->request;
		if (unlikely(!rq)) { /* lost the race to a sibling */
1113
			spin_unlock(&ve->base.active.lock);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);
			rb = rb_first_cached(&execlists->virtual);
			continue;
		}

		GEM_BUG_ON(rq != ve->request);
		GEM_BUG_ON(rq->engine != &ve->base);
		GEM_BUG_ON(rq->hw_context != &ve->context);

		if (rq_prio(rq) >= queue_prio(execlists)) {
			if (!virtual_matches(ve, rq, engine)) {
1126
				spin_unlock(&ve->base.active.lock);
1127 1128 1129 1130
				rb = rb_next(rb);
				continue;
			}

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
			if (i915_request_completed(rq)) {
				ve->request = NULL;
				ve->base.execlists.queue_priority_hint = INT_MIN;
				rb_erase_cached(rb, &execlists->virtual);
				RB_CLEAR_NODE(rb);

				rq->engine = engine;
				__i915_request_submit(rq);

				spin_unlock(&ve->base.active.lock);

				rb = rb_first_cached(&execlists->virtual);
				continue;
			}

1146
			if (last && !can_merge_rq(last, rq)) {
1147
				spin_unlock(&ve->base.active.lock);
1148
				return; /* leave this for another */
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
			}

			GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n",
				  engine->name,
				  rq->fence.context,
				  rq->fence.seqno,
				  i915_request_completed(rq) ? "!" :
				  i915_request_started(rq) ? "*" :
				  "",
				  yesno(engine != ve->siblings[0]));

			ve->request = NULL;
			ve->base.execlists.queue_priority_hint = INT_MIN;
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);

1165
			GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1166 1167 1168 1169 1170 1171
			rq->engine = engine;

			if (engine != ve->siblings[0]) {
				u32 *regs = ve->context.lrc_reg_state;
				unsigned int n;

1172
				GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
				virtual_update_register_offsets(regs, engine);

				if (!list_empty(&ve->context.signals))
					virtual_xfer_breadcrumbs(ve, engine);

				/*
				 * Move the bound engine to the top of the list
				 * for future execution. We then kick this
				 * tasklet first before checking others, so that
				 * we preferentially reuse this set of bound
				 * registers.
				 */
				for (n = 1; n < ve->num_siblings; n++) {
					if (ve->siblings[n] == engine) {
						swap(ve->siblings[n],
						     ve->siblings[0]);
						break;
					}
				}

				GEM_BUG_ON(ve->siblings[0] != engine);
			}

			__i915_request_submit(rq);
1197 1198 1199 1200
			if (!i915_request_completed(rq)) {
				submit = true;
				last = rq;
			}
1201 1202
		}

1203
		spin_unlock(&ve->base.active.lock);
1204 1205 1206
		break;
	}

1207
	while ((rb = rb_first_cached(&execlists->queue))) {
1208
		struct i915_priolist *p = to_priolist(rb);
1209
		struct i915_request *rq, *rn;
1210
		int i;
1211

1212
		priolist_for_each_request_consume(rq, rn, p, i) {
1213 1214 1215
			if (i915_request_completed(rq))
				goto skip;

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
1226
			 */
1227
			if (last && !can_merge_rq(last, rq)) {
1228 1229 1230 1231 1232
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
1233
				if (port == last_port)
1234 1235
					goto done;

1236 1237 1238 1239 1240 1241 1242 1243
				/*
				 * We must not populate both ELSP[] with the
				 * same LRCA, i.e. we must submit 2 different
				 * contexts if we submit 2 ELSP.
				 */
				if (last->hw_context == rq->hw_context)
					goto done;

1244 1245 1246 1247 1248 1249 1250
				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
1251
				if (ctx_single_port_submission(last->hw_context) ||
1252
				    ctx_single_port_submission(rq->hw_context))
1253 1254
					goto done;

1255
				*port = execlists_schedule_in(last, port - execlists->pending);
1256 1257
				port++;
			}
1258

1259 1260
			last = rq;
			submit = true;
1261 1262
skip:
			__i915_request_submit(rq);
1263
		}
1264

1265
		rb_erase_cached(&p->node, &execlists->queue);
1266
		i915_priolist_free(p);
1267
	}
1268

1269
done:
1270 1271 1272
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
1273
	 * We choose the priority hint such that if we add a request of greater
1274 1275 1276
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
1277
	 * HW. We derive the priority hint then as the first "hole" in
1278 1279 1280 1281
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
1282
	 * user, see queue_request(), the priority hint is bumped to that
1283 1284 1285
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
1286
	execlists->queue_priority_hint = queue_prio(execlists);
1287 1288 1289
	GEM_TRACE("%s: queue_priority_hint:%d, submit:%s\n",
		  engine->name, execlists->queue_priority_hint,
		  yesno(submit));
1290

1291
	if (submit) {
1292 1293
		*port = execlists_schedule_in(last, port - execlists->pending);
		memset(port + 1, 0, (last_port - port) * sizeof(*port));
1294
		execlists_submit_ports(engine);
1295 1296
	} else {
		ring_set_paused(engine, 0);
1297
	}
1298 1299
}

1300
void
1301
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
1302
{
1303
	struct i915_request * const *port, *rq;
1304

1305 1306 1307
	for (port = execlists->pending; (rq = *port); port++)
		execlists_schedule_out(rq);
	memset(execlists->pending, 0, sizeof(execlists->pending));
1308

1309 1310 1311 1312
	for (port = execlists->active; (rq = *port); port++)
		execlists_schedule_out(rq);
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));
1313 1314
}

1315 1316 1317 1318 1319 1320 1321
static inline void
invalidate_csb_entries(const u32 *first, const u32 *last)
{
	clflush((void *)first);
	clflush((void *)last);
}

1322 1323 1324 1325 1326 1327
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
enum csb_step {
	CSB_NOP,
	CSB_PROMOTE,
	CSB_PREEMPT,
	CSB_COMPLETE,
};

static inline enum csb_step
csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
{
	unsigned int status = *csb;

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return CSB_PROMOTE;

	if (status & GEN8_CTX_STATUS_PREEMPTED)
		return CSB_PREEMPT;

	if (*execlists->active)
		return CSB_COMPLETE;

	return CSB_NOP;
}

1352
static void process_csb(struct intel_engine_cs *engine)
1353
{
1354
	struct intel_engine_execlists * const execlists = &engine->execlists;
1355
	const u32 * const buf = execlists->csb_status;
1356
	const u8 num_entries = execlists->csb_size;
1357
	u8 head, tail;
1358

1359
	lockdep_assert_held(&engine->active.lock);
1360
	GEM_BUG_ON(USES_GUC_SUBMISSION(engine->i915));
1361

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	/*
	 * Note that csb_write, csb_status may be either in HWSP or mmio.
	 * When reading from the csb_write mmio register, we have to be
	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
	 * the low 4bits. As it happens we know the next 4bits are always
	 * zero and so we can simply masked off the low u8 of the register
	 * and treat it identically to reading from the HWSP (without having
	 * to use explicit shifting and masking, and probably bifurcating
	 * the code to handle the legacy mmio read).
	 */
	head = execlists->csb_head;
	tail = READ_ONCE(*execlists->csb_write);
	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
	if (unlikely(head == tail))
		return;
1377

1378 1379 1380 1381 1382 1383 1384 1385 1386
	/*
	 * Hopefully paired with a wmb() in HW!
	 *
	 * We must complete the read of the write pointer before any reads
	 * from the CSB, so that we do not see stale values. Without an rmb
	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
	 * we perform the READ_ONCE(*csb_write).
	 */
	rmb();
1387

1388
	do {
1389
		if (++head == num_entries)
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
			head = 0;

		/*
		 * We are flying near dragons again.
		 *
		 * We hold a reference to the request in execlist_port[]
		 * but no more than that. We are operating in softirq
		 * context and so cannot hold any mutex or sleep. That
		 * prevents us stopping the requests we are processing
		 * in port[] from being retired simultaneously (the
		 * breadcrumb will be complete before we see the
		 * context-switch). As we only hold the reference to the
		 * request, any pointer chasing underneath the request
		 * is subject to a potential use-after-free. Thus we
		 * store all of the bookkeeping within port[] as
		 * required, and avoid using unguarded pointers beneath
		 * request itself. The same applies to the atomic
		 * status notifier.
		 */

1410
		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x\n",
1411
			  engine->name, head,
1412
			  buf[2 * head + 0], buf[2 * head + 1]);
1413

1414 1415 1416 1417 1418 1419 1420 1421 1422
		switch (csb_parse(execlists, buf + 2 * head)) {
		case CSB_PREEMPT: /* cancel old inflight, prepare for switch */
			trace_ports(execlists, "preempted", execlists->active);

			while (*execlists->active)
				execlists_schedule_out(*execlists->active++);

			/* fallthrough */
		case CSB_PROMOTE: /* switch pending to inflight */
1423 1424 1425 1426 1427 1428 1429 1430 1431
			GEM_BUG_ON(*execlists->active);
			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
			execlists->active =
				memcpy(execlists->inflight,
				       execlists->pending,
				       execlists_num_ports(execlists) *
				       sizeof(*execlists->pending));
			execlists->pending[0] = NULL;

1432 1433
			trace_ports(execlists, "promoted", execlists->active);

1434 1435 1436
			if (enable_timeslice(engine))
				mod_timer(&execlists->timer, jiffies + 1);

1437 1438
			if (!inject_preempt_hang(execlists))
				ring_set_paused(engine, 0);
1439
			break;
1440

1441 1442
		case CSB_COMPLETE: /* port0 completed, advanced to port1 */
			trace_ports(execlists, "completed", execlists->active);
1443

1444 1445 1446 1447 1448 1449
			/*
			 * We rely on the hardware being strongly
			 * ordered, that the breadcrumb write is
			 * coherent (visible from the CPU) before the
			 * user interrupt and CSB is processed.
			 */
1450 1451
			GEM_BUG_ON(!i915_request_completed(*execlists->active) &&
				   !reset_in_progress(execlists));
1452
			execlists_schedule_out(*execlists->active++);
C
Chris Wilson 已提交
1453

1454 1455
			GEM_BUG_ON(execlists->active - execlists->inflight >
				   execlists_num_ports(execlists));
1456 1457 1458 1459
			break;

		case CSB_NOP:
			break;
1460
		}
1461
	} while (head != tail);
1462

1463
	execlists->csb_head = head;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

	/*
	 * Gen11 has proven to fail wrt global observation point between
	 * entry and tail update, failing on the ordering and thus
	 * we see an old entry in the context status buffer.
	 *
	 * Forcibly evict out entries for the next gpu csb update,
	 * to increase the odds that we get a fresh entries with non
	 * working hardware. The cost for doing so comes out mostly with
	 * the wash as hardware, working or not, will need to do the
	 * invalidation before.
	 */
1476
	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1477
}
1478

1479
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1480
{
1481
	lockdep_assert_held(&engine->active.lock);
1482

C
Chris Wilson 已提交
1483
	process_csb(engine);
1484
	if (!engine->execlists.pending[0])
1485
		execlists_dequeue(engine);
1486 1487
}

1488 1489 1490 1491 1492 1493 1494 1495 1496
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	unsigned long flags;

1497
	spin_lock_irqsave(&engine->active.lock, flags);
1498
	__execlists_submission_tasklet(engine);
1499
	spin_unlock_irqrestore(&engine->active.lock, flags);
1500 1501
}

1502 1503 1504 1505 1506 1507 1508 1509 1510
static void execlists_submission_timer(struct timer_list *timer)
{
	struct intel_engine_cs *engine =
		from_timer(engine, timer, execlists.timer);

	/* Kick the tasklet for some interrupt coalescing and reset handling */
	tasklet_hi_schedule(&engine->execlists.tasklet);
}

1511
static void queue_request(struct intel_engine_cs *engine,
1512
			  struct i915_sched_node *node,
1513
			  int prio)
1514
{
1515
	GEM_BUG_ON(!list_empty(&node->link));
1516
	list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
}

static void __submit_queue_imm(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	if (reset_in_progress(execlists))
		return; /* defer until we restart the engine following reset */

	if (execlists->tasklet.func == execlists_submission_tasklet)
		__execlists_submission_tasklet(engine);
	else
		tasklet_hi_schedule(&execlists->tasklet);
1530 1531
}

1532 1533
static void submit_queue(struct intel_engine_cs *engine,
			 const struct i915_request *rq)
1534
{
1535 1536 1537 1538 1539 1540 1541
	struct intel_engine_execlists *execlists = &engine->execlists;

	if (rq_prio(rq) <= execlists->queue_priority_hint)
		return;

	execlists->queue_priority_hint = rq_prio(rq);
	__submit_queue_imm(engine);
1542 1543
}

1544
static void execlists_submit_request(struct i915_request *request)
1545
{
1546
	struct intel_engine_cs *engine = request->engine;
1547
	unsigned long flags;
1548

1549
	/* Will be called from irq-context when using foreign fences. */
1550
	spin_lock_irqsave(&engine->active.lock, flags);
1551

1552
	queue_request(engine, &request->sched, rq_prio(request));
1553

1554
	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1555
	GEM_BUG_ON(list_empty(&request->sched.link));
1556

1557
	submit_queue(engine, request);
1558

1559
	spin_unlock_irqrestore(&engine->active.lock, flags);
1560 1561
}

1562
static void __execlists_context_fini(struct intel_context *ce)
1563
{
1564
	intel_ring_put(ce->ring);
1565
	i915_vma_put(ce->state);
1566 1567
}

1568
static void execlists_context_destroy(struct kref *kref)
1569
{
1570 1571
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);

1572
	GEM_BUG_ON(!i915_active_is_idle(&ce->active));
1573
	GEM_BUG_ON(intel_context_is_pinned(ce));
1574 1575 1576 1577

	if (ce->state)
		__execlists_context_fini(ce);

1578
	intel_context_fini(ce);
1579 1580 1581
	intel_context_free(ce);
}

1582
static void execlists_context_unpin(struct intel_context *ce)
1583
{
1584
	i915_gem_context_unpin_hw_id(ce->gem_context);
1585
	i915_gem_object_unpin_map(ce->state->obj);
1586 1587
}

1588
static void
1589 1590
__execlists_update_reg_state(struct intel_context *ce,
			     struct intel_engine_cs *engine)
1591 1592
{
	struct intel_ring *ring = ce->ring;
1593 1594 1595 1596
	u32 *regs = ce->lrc_reg_state;

	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1597 1598 1599 1600 1601 1602

	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
	regs[CTX_RING_HEAD + 1] = ring->head;
	regs[CTX_RING_TAIL + 1] = ring->tail;

	/* RPCS */
1603
	if (engine->class == RENDER_CLASS) {
1604
		regs[CTX_R_PWR_CLK_STATE + 1] =
1605
			intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1606 1607 1608

		i915_oa_init_reg_state(engine, ce, regs);
	}
1609 1610
}

1611 1612 1613
static int
__execlists_context_pin(struct intel_context *ce,
			struct intel_engine_cs *engine)
1614
{
1615
	void *vaddr;
1616
	int ret;
1617

1618
	GEM_BUG_ON(!ce->state);
1619

1620
	ret = intel_context_active_acquire(ce);
1621
	if (ret)
1622
		goto err;
1623
	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
1624

1625
	vaddr = i915_gem_object_pin_map(ce->state->obj,
1626
					i915_coherent_map_type(engine->i915) |
1627
					I915_MAP_OVERRIDE);
1628 1629
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1630
		goto unpin_active;
1631 1632
	}

1633
	ret = i915_gem_context_pin_hw_id(ce->gem_context);
1634
	if (ret)
1635
		goto unpin_map;
1636

1637
	ce->lrc_desc = lrc_descriptor(ce, engine);
1638
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1639
	__execlists_update_reg_state(ce, engine);
1640

1641
	return 0;
1642

1643
unpin_map:
1644
	i915_gem_object_unpin_map(ce->state->obj);
1645 1646
unpin_active:
	intel_context_active_release(ce);
1647
err:
1648
	return ret;
1649 1650
}

1651
static int execlists_context_pin(struct intel_context *ce)
1652
{
1653
	return __execlists_context_pin(ce, ce->engine);
1654 1655
}

1656 1657 1658 1659 1660
static int execlists_context_alloc(struct intel_context *ce)
{
	return __execlists_context_alloc(ce, ce->engine);
}

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
static void execlists_context_reset(struct intel_context *ce)
{
	/*
	 * Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * The contexts that are stilled pinned on resume belong to the
	 * kernel, and are local to each engine. All other contexts will
	 * have their head/tail sanitized upon pinning before use, so they
	 * will never see garbage,
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	intel_ring_reset(ce->ring, 0);
	__execlists_update_reg_state(ce, ce->engine);
}

1683
static const struct intel_context_ops execlists_context_ops = {
1684 1685
	.alloc = execlists_context_alloc,

1686
	.pin = execlists_context_pin,
1687
	.unpin = execlists_context_unpin,
1688

1689 1690 1691
	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

1692
	.reset = execlists_context_reset,
1693 1694 1695
	.destroy = execlists_context_destroy,
};

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
static int gen8_emit_init_breadcrumb(struct i915_request *rq)
{
	u32 *cs;

	GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Check if we have been preempted before we even get started.
	 *
	 * After this point i915_request_started() reports true, even if
	 * we get preempted and so are no longer running.
	 */
	*cs++ = MI_ARB_CHECK;
	*cs++ = MI_NOOP;

	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
	*cs++ = rq->timeline->hwsp_offset;
	*cs++ = 0;
	*cs++ = rq->fence.seqno - 1;

	intel_ring_advance(rq, cs);
1721 1722 1723 1724

	/* Record the updated position of the request's payload */
	rq->infix = intel_ring_offset(rq, cs);

1725 1726 1727
	return 0;
}

1728 1729 1730
static int emit_pdps(struct i915_request *rq)
{
	const struct intel_engine_cs * const engine = rq->engine;
1731
	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->hw_context->vm);
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	int err, i;
	u32 *cs;

	GEM_BUG_ON(intel_vgpu_active(rq->i915));

	/*
	 * Beware ye of the dragons, this sequence is magic!
	 *
	 * Small changes to this sequence can cause anything from
	 * GPU hangs to forcewake errors and machine lockups!
	 */

	/* Flush any residual operations from the context load */
	err = engine->emit_flush(rq, EMIT_FLUSH);
	if (err)
		return err;

	/* Magic required to prevent forcewake errors! */
	err = engine->emit_flush(rq, EMIT_INVALIDATE);
	if (err)
		return err;

	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Ensure the LRI have landed before we invalidate & continue */
	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
	for (i = GEN8_3LVL_PDPES; i--; ) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1762
		u32 base = engine->mmio_base;
1763

1764
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1765
		*cs++ = upper_32_bits(pd_daddr);
1766
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
		*cs++ = lower_32_bits(pd_daddr);
	}
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);

	/* Be doubly sure the LRI have landed before proceeding */
	err = engine->emit_flush(rq, EMIT_FLUSH);
	if (err)
		return err;

	/* Re-invalidate the TLB for luck */
	return engine->emit_flush(rq, EMIT_INVALIDATE);
}

1782
static int execlists_request_alloc(struct i915_request *request)
1783
{
1784
	int ret;
1785

1786
	GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1787

1788 1789
	/*
	 * Flush enough space to reduce the likelihood of waiting after
1790 1791 1792 1793 1794
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1795 1796
	/*
	 * Note that after this point, we have committed to using
1797 1798 1799 1800 1801 1802
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

1803
	/* Unconditionally invalidate GPU caches and TLBs. */
1804
	if (i915_vm_is_4lvl(request->hw_context->vm))
1805 1806 1807 1808 1809 1810
		ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
	else
		ret = emit_pdps(request);
	if (ret)
		return ret;

1811 1812 1813 1814
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1831 1832
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1833
{
1834
	/* NB no one else is allowed to scribble over scratch + 256! */
1835 1836
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1837 1838
	*batch++ = intel_gt_scratch_offset(engine->gt,
					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1839 1840 1841 1842 1843 1844
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1845 1846 1847 1848
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1849 1850 1851

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1852 1853
	*batch++ = intel_gt_scratch_offset(engine->gt,
					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1854 1855 1856
	*batch++ = 0;

	return batch;
1857 1858
}

1859 1860 1861 1862 1863 1864
static u32 slm_offset(struct intel_engine_cs *engine)
{
	return intel_gt_scratch_offset(engine->gt,
				       INTEL_GT_SCRATCH_FIELD_CLEAR_SLM_WA);
}

1865 1866 1867 1868 1869 1870
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1871
 *
1872 1873
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1874
 *
1875 1876 1877 1878
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1879
 */
1880
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1881
{
1882
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1883
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1884

1885
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1886 1887
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1888

1889 1890
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1891 1892 1893 1894 1895
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
1896
				       slm_offset(engine));
1897

C
Chris Wilson 已提交
1898 1899
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1900
	/* Pad to end of cacheline */
1901 1902
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1903 1904 1905 1906 1907 1908 1909

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1910
	return batch;
1911 1912
}

1913 1914 1915 1916 1917 1918
struct lri {
	i915_reg_t reg;
	u32 value;
};

static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1919
{
1920
	GEM_BUG_ON(!count || count > 63);
C
Chris Wilson 已提交
1921

1922 1923 1924 1925 1926 1927
	*batch++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*batch++ = i915_mmio_reg_offset(lri->reg);
		*batch++ = lri->value;
	} while (lri++, --count);
	*batch++ = MI_NOOP;
1928

1929 1930
	return batch;
}
1931

1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	static const struct lri lri[] = {
		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
		{
			COMMON_SLICE_CHICKEN2,
			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
				       0),
		},

		/* BSpec: 11391 */
		{
			FF_SLICE_CHICKEN,
			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
		},

		/* BSpec: 11299 */
		{
			_3D_CHICKEN3,
			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
		}
	};
1956

1957
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1958

1959 1960
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1961

1962
	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1963

1964
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1979 1980 1981 1982 1983 1984
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1985 1986
	}

C
Chris Wilson 已提交
1987 1988
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1989
	/* Pad to end of cacheline */
1990 1991
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1992

1993
	return batch;
1994 1995
}

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

2030 2031 2032
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
2033
{
2034 2035 2036
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
2037

2038
	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
2039 2040
	if (IS_ERR(obj))
		return PTR_ERR(obj);
2041

2042
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
2043 2044 2045
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
2046 2047
	}

2048
	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2049 2050 2051 2052
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
2053
	return 0;
2054 2055 2056 2057

err:
	i915_gem_object_put(obj);
	return err;
2058 2059
}

2060
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
2061
{
2062
	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
2063 2064
}

2065 2066
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

2067
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
2068
{
2069
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2070 2071 2072
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
2073
	struct page *page;
2074 2075
	void *batch, *batch_ptr;
	unsigned int i;
2076
	int ret;
2077

2078 2079
	if (engine->class != RENDER_CLASS)
		return 0;
2080

2081
	switch (INTEL_GEN(engine->i915)) {
2082 2083
	case 11:
		return 0;
2084
	case 10:
2085 2086 2087
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
2088 2089
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
2090
		wa_bb_fn[1] = NULL;
2091 2092 2093
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
2094
		wa_bb_fn[1] = NULL;
2095 2096 2097
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
2098
		return 0;
2099
	}
2100

2101
	ret = lrc_setup_wa_ctx(engine);
2102 2103 2104 2105 2106
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

2107
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
2108
	batch = batch_ptr = kmap_atomic(page);
2109

2110 2111 2112 2113 2114 2115 2116
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
2117 2118
		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
						  CACHELINE_BYTES))) {
2119 2120 2121
			ret = -EINVAL;
			break;
		}
2122 2123
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
2124
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
2125 2126
	}

2127 2128
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

2129 2130
	kunmap_atomic(batch);
	if (ret)
2131
		lrc_destroy_wa_ctx(engine);
2132 2133 2134 2135

	return ret;
}

2136
static void enable_execlists(struct intel_engine_cs *engine)
2137
{
2138 2139 2140 2141
	u32 mode;

	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);

2142
	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2143

2144
	if (INTEL_GEN(engine->i915) >= 11)
2145
		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2146
	else
2147 2148
		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2149

2150
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2151

2152 2153 2154
	ENGINE_WRITE_FW(engine,
			RING_HWS_PGA,
			i915_ggtt_offset(engine->status_page.vma));
2155
	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2156 2157
}

2158 2159 2160 2161
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
	bool unexpected = false;

2162
	if (ENGINE_READ_FW(engine, RING_MI_MODE) & STOP_RING) {
2163 2164 2165 2166 2167 2168 2169
		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
		unexpected = true;
	}

	return unexpected;
}

2170
static int execlists_resume(struct intel_engine_cs *engine)
2171
{
2172
	intel_engine_apply_workarounds(engine);
2173
	intel_engine_apply_whitelist(engine);
2174

2175
	intel_mocs_init_engine(engine);
2176

2177
	intel_engine_reset_breadcrumbs(engine);
2178

2179 2180 2181 2182 2183 2184
	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p, NULL);
	}

2185
	enable_execlists(engine);
2186

2187
	return 0;
2188 2189
}

2190
static void execlists_reset_prepare(struct intel_engine_cs *engine)
2191 2192
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
2193
	unsigned long flags;
2194

2195 2196
	GEM_TRACE("%s: depth<-%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
2197 2198 2199 2200 2201 2202

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
2203
	 * calling engine->resume() and also writing the ELSP.
2204 2205 2206 2207
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);
2208
	GEM_BUG_ON(!reset_in_progress(execlists));
2209

2210
	/* And flush any current direct submission. */
2211 2212
	spin_lock_irqsave(&engine->active.lock, flags);
	spin_unlock_irqrestore(&engine->active.lock, flags);
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226

	/*
	 * We stop engines, otherwise we might get failed reset and a
	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
	 * from system hang if batchbuffer is progressing when
	 * the reset is issued, regardless of READY_TO_RESET ack.
	 * Thus assume it is best to stop engines on all gens
	 * where we have a gpu reset.
	 *
	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
	 *
	 * FIXME: Wa for more modern gens needs to be validated
	 */
	intel_engine_stop_cs(engine);
2227 2228
}

2229
static void reset_csb_pointers(struct intel_engine_cs *engine)
2230
{
2231
	struct intel_engine_execlists * const execlists = &engine->execlists;
2232 2233
	const unsigned int reset_value = execlists->csb_size - 1;

2234 2235
	ring_set_paused(engine, 0);

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
	/*
	 * After a reset, the HW starts writing into CSB entry [0]. We
	 * therefore have to set our HEAD pointer back one entry so that
	 * the *first* entry we check is entry 0. To complicate this further,
	 * as we don't wait for the first interrupt after reset, we have to
	 * fake the HW write to point back to the last entry so that our
	 * inline comparison of our cached head position against the last HW
	 * write works even before the first interrupt.
	 */
	execlists->csb_head = reset_value;
	WRITE_ONCE(*execlists->csb_write, reset_value);
2247
	wmb(); /* Make sure this is visible to HW (paranoia?) */
2248 2249 2250 2251 2252

	invalidate_csb_entries(&execlists->csb_status[0],
			       &execlists->csb_status[reset_value]);
}

2253 2254
static struct i915_request *active_request(struct i915_request *rq)
{
2255 2256
	const struct list_head * const list = &rq->timeline->requests;
	const struct intel_context * const ce = rq->hw_context;
2257 2258
	struct i915_request *active = NULL;

2259
	list_for_each_entry_from_reverse(rq, list, link) {
2260 2261 2262
		if (i915_request_completed(rq))
			break;

2263
		if (rq->hw_context != ce)
2264 2265 2266 2267 2268 2269 2270 2271
			break;

		active = rq;
	}

	return active;
}

2272
static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
2273
{
2274
	struct intel_engine_execlists * const execlists = &engine->execlists;
2275
	struct intel_context *ce;
2276
	struct i915_request *rq;
2277
	u32 *regs;
2278

2279 2280 2281
	process_csb(engine); /* drain preemption events */

	/* Following the reset, we need to reload the CSB read/write pointers */
2282
	reset_csb_pointers(engine);
2283 2284 2285 2286 2287 2288

	/*
	 * Save the currently executing context, even if we completed
	 * its request, it was still running at the time of the
	 * reset and will have been clobbered.
	 */
2289 2290
	rq = execlists_active(execlists);
	if (!rq)
2291
		goto unwind;
2292

2293
	ce = rq->hw_context;
2294 2295 2296 2297 2298
	GEM_BUG_ON(i915_active_is_idle(&ce->active));
	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
	rq = active_request(rq);
	if (!rq) {
		ce->ring->head = ce->ring->tail;
2299
		goto out_replay;
2300 2301 2302
	}

	ce->ring->head = intel_ring_wrap(ce->ring, rq->head);
2303

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
	/*
	 * If this request hasn't started yet, e.g. it is waiting on a
	 * semaphore, we need to avoid skipping the request or else we
	 * break the signaling chain. However, if the context is corrupt
	 * the request will not restart and we will be stuck with a wedged
	 * device. It is quite often the case that if we issue a reset
	 * while the GPU is loading the context image, that the context
	 * image becomes corrupt.
	 *
	 * Otherwise, if we have not started yet, the request should replay
	 * perfectly and we do not need to flag the result as being erroneous.
	 */
2316
	if (!i915_request_started(rq))
2317
		goto out_replay;
2318

2319 2320
	/*
	 * If the request was innocent, we leave the request in the ELSP
2321 2322 2323 2324 2325 2326 2327 2328 2329
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
2330
	__i915_request_reset(rq, stalled);
2331
	if (!stalled)
2332
		goto out_replay;
2333

2334 2335
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
2336 2337 2338 2339 2340 2341
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
2342
	regs = ce->lrc_reg_state;
2343 2344 2345 2346
	if (engine->pinned_default_state) {
		memcpy(regs, /* skip restoring the vanilla PPHWSP */
		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
		       engine->context_size - PAGE_SIZE);
2347
	}
2348
	execlists_init_reg_state(regs, ce, engine, ce->ring);
2349

2350
out_replay:
2351 2352
	GEM_TRACE("%s replay {head:%04x, tail:%04x\n",
		  engine->name, ce->ring->head, ce->ring->tail);
2353 2354 2355
	intel_ring_update_space(ce->ring);
	__execlists_update_reg_state(ce, engine);

2356
unwind:
2357
	/* Push back any incomplete requests for replay after the reset. */
2358
	execlists_cancel_port_requests(execlists);
2359
	__unwind_incomplete_requests(engine);
2360
}
2361

2362 2363 2364 2365 2366 2367
static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
{
	unsigned long flags;

	GEM_TRACE("%s\n", engine->name);

2368
	spin_lock_irqsave(&engine->active.lock, flags);
2369 2370 2371

	__execlists_reset(engine, stalled);

2372
	spin_unlock_irqrestore(&engine->active.lock, flags);
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
}

static void nop_submission_tasklet(unsigned long data)
{
	/* The driver is wedged; don't process any more events. */
}

static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	GEM_TRACE("%s\n", engine->name);

	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
2403
	spin_lock_irqsave(&engine->active.lock, flags);
2404 2405 2406 2407

	__execlists_reset(engine, true);

	/* Mark all executing requests as skipped. */
2408
	list_for_each_entry(rq, &engine->active.requests, sched.link) {
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
		if (!i915_request_signaled(rq))
			dma_fence_set_error(&rq->fence, -EIO);

		i915_request_mark_complete(rq);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
	while ((rb = rb_first_cached(&execlists->queue))) {
		struct i915_priolist *p = to_priolist(rb);
		int i;

		priolist_for_each_request_consume(rq, rn, p, i) {
			list_del_init(&rq->sched.link);
			__i915_request_submit(rq);
			dma_fence_set_error(&rq->fence, -EIO);
			i915_request_mark_complete(rq);
		}

		rb_erase_cached(&p->node, &execlists->queue);
		i915_priolist_free(p);
	}

2431 2432 2433 2434 2435 2436 2437 2438
	/* Cancel all attached virtual engines */
	while ((rb = rb_first_cached(&execlists->virtual))) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);

		rb_erase_cached(rb, &execlists->virtual);
		RB_CLEAR_NODE(rb);

2439
		spin_lock(&ve->base.active.lock);
2440 2441 2442 2443 2444 2445 2446 2447
		if (ve->request) {
			ve->request->engine = engine;
			__i915_request_submit(ve->request);
			dma_fence_set_error(&ve->request->fence, -EIO);
			i915_request_mark_complete(ve->request);
			ve->base.execlists.queue_priority_hint = INT_MIN;
			ve->request = NULL;
		}
2448
		spin_unlock(&ve->base.active.lock);
2449 2450
	}

2451 2452 2453 2454 2455 2456 2457
	/* Remaining _unready_ requests will be nop'ed when submitted */

	execlists->queue_priority_hint = INT_MIN;
	execlists->queue = RB_ROOT_CACHED;

	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
	execlists->tasklet.func = nop_submission_tasklet;
2458

2459
	spin_unlock_irqrestore(&engine->active.lock, flags);
2460 2461
}

2462 2463
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
2464 2465
	struct intel_engine_execlists * const execlists = &engine->execlists;

2466
	/*
2467 2468 2469
	 * After a GPU reset, we may have requests to replay. Do so now while
	 * we still have the forcewake to be sure that the GPU is not allowed
	 * to sleep before we restart and reload a context.
2470
	 */
2471
	GEM_BUG_ON(!reset_in_progress(execlists));
2472 2473
	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
		execlists->tasklet.func(execlists->tasklet.data);
2474

2475 2476 2477
	if (__tasklet_enable(&execlists->tasklet))
		/* And kick in case we missed a new request submission. */
		tasklet_hi_schedule(&execlists->tasklet);
2478 2479
	GEM_TRACE("%s: depth->%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
2480 2481
}

2482
static int gen8_emit_bb_start(struct i915_request *rq,
2483
			      u64 offset, u32 len,
2484
			      const unsigned int flags)
2485
{
2486
	u32 *cs;
2487

2488
	cs = intel_ring_begin(rq, 4);
2489 2490
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2491

2492 2493 2494 2495 2496 2497 2498
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
2499 2500 2501 2502 2503
	 * we would be fine.  However, for gen8 there is another w/a that
	 * requires us to not preempt inside GPGPU execution, so we keep
	 * arbitration disabled for gen8 batches. Arbitration will be
	 * re-enabled before we close the request
	 * (engine->emit_fini_breadcrumb).
2504
	 */
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

	/* FIXME(BDW+): Address space and security selectors. */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);

	intel_ring_advance(rq, cs);

	return 0;
}

static int gen9_emit_bb_start(struct i915_request *rq,
			      u64 offset, u32 len,
			      const unsigned int flags)
{
	u32 *cs;

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

2528 2529
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

2530
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2531
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2532 2533
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
2534 2535 2536

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
2537

2538
	intel_ring_advance(rq, cs);
2539 2540 2541 2542

	return 0;
}

2543
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2544
{
2545 2546 2547
	ENGINE_WRITE(engine, RING_IMR,
		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
	ENGINE_POSTING_READ(engine, RING_IMR);
2548 2549
}

2550
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2551
{
2552
	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2553 2554
}

2555
static int gen8_emit_flush(struct i915_request *request, u32 mode)
2556
{
2557
	u32 cmd, *cs;
2558

2559 2560 2561
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2562 2563 2564

	cmd = MI_FLUSH_DW + 1;

2565 2566 2567 2568 2569 2570 2571
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2572
	if (mode & EMIT_INVALIDATE) {
2573
		cmd |= MI_INVALIDATE_TLB;
2574
		if (request->engine->class == VIDEO_DECODE_CLASS)
2575
			cmd |= MI_INVALIDATE_BSD;
2576 2577
	}

2578 2579 2580 2581 2582
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
2583 2584 2585 2586

	return 0;
}

2587
static int gen8_emit_flush_render(struct i915_request *request,
2588
				  u32 mode)
2589
{
2590
	struct intel_engine_cs *engine = request->engine;
2591
	u32 scratch_addr =
2592 2593
		intel_gt_scratch_offset(engine->gt,
					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
M
Mika Kuoppala 已提交
2594
	bool vf_flush_wa = false, dc_flush_wa = false;
2595
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
2596
	int len;
2597 2598 2599

	flags |= PIPE_CONTROL_CS_STALL;

2600
	if (mode & EMIT_FLUSH) {
2601 2602
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2603
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2604
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2605 2606
	}

2607
	if (mode & EMIT_INVALIDATE) {
2608 2609 2610 2611 2612 2613 2614 2615 2616
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

2617 2618 2619 2620
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
2621
		if (IS_GEN(request->i915, 9))
2622
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
2623 2624 2625 2626

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
2627
	}
2628

M
Mika Kuoppala 已提交
2629 2630 2631 2632 2633 2634 2635 2636
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

2637 2638 2639
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2640

2641 2642
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
2643

2644 2645 2646
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2647

2648
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2649

2650 2651
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2652

2653
	intel_ring_advance(request, cs);
2654 2655 2656 2657

	return 0;
}

2658 2659 2660 2661 2662
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2663
static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2664
{
C
Chris Wilson 已提交
2665 2666
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2667 2668
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
2669 2670

	return cs;
C
Chris Wilson 已提交
2671
}
2672

2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs)
{
	*cs++ = MI_SEMAPHORE_WAIT |
		MI_SEMAPHORE_GLOBAL_GTT |
		MI_SEMAPHORE_POLL |
		MI_SEMAPHORE_SAD_EQ_SDD;
	*cs++ = 0;
	*cs++ = intel_hws_preempt_address(request->engine);
	*cs++ = 0;

	return cs;
}

2686
static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
2687
{
2688 2689
	cs = gen8_emit_ggtt_write(cs,
				  request->fence.seqno,
2690 2691
				  request->timeline->hwsp_offset,
				  0);
2692
	*cs++ = MI_USER_INTERRUPT;
2693

2694
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2695 2696
	if (intel_engine_has_semaphores(request->engine))
		cs = emit_preempt_busywait(request, cs);
2697

2698
	request->tail = intel_ring_offset(request, cs);
2699
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2700

2701
	return gen8_emit_wa_tail(request, cs);
2702
}
2703

2704
static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2705
{
2706
	/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
2707
	cs = gen8_emit_ggtt_write_rcs(cs,
2708 2709
				      request->fence.seqno,
				      request->timeline->hwsp_offset,
2710 2711
				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2712 2713 2714 2715 2716
				      PIPE_CONTROL_DC_FLUSH_ENABLE);
	cs = gen8_emit_pipe_control(cs,
				    PIPE_CONTROL_FLUSH_ENABLE |
				    PIPE_CONTROL_CS_STALL,
				    0);
2717
	*cs++ = MI_USER_INTERRUPT;
2718

2719
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2720 2721
	if (intel_engine_has_semaphores(request->engine))
		cs = emit_preempt_busywait(request, cs);
2722

2723
	request->tail = intel_ring_offset(request, cs);
2724
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2725

2726
	return gen8_emit_wa_tail(request, cs);
2727
}
2728

2729 2730
static void execlists_park(struct intel_engine_cs *engine)
{
2731
	del_timer_sync(&engine->execlists.timer);
2732 2733
}

2734
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2735
{
2736
	engine->submit_request = execlists_submit_request;
2737
	engine->cancel_requests = execlists_cancel_requests;
2738
	engine->schedule = i915_schedule;
2739
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2740

2741
	engine->reset.prepare = execlists_reset_prepare;
2742 2743
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2744

2745
	engine->park = execlists_park;
2746
	engine->unpark = NULL;
2747 2748

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2749
	if (!intel_vgpu_active(engine->i915)) {
2750
		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2751 2752 2753
		if (HAS_LOGICAL_RING_PREEMPTION(engine->i915))
			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
	}
2754 2755
}

2756 2757 2758 2759 2760 2761 2762
static void execlists_destroy(struct intel_engine_cs *engine)
{
	intel_engine_cleanup_common(engine);
	lrc_destroy_wa_ctx(engine);
	kfree(engine);
}

2763
static void
2764
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2765 2766
{
	/* Default vfuncs which can be overriden by each engine. */
2767 2768

	engine->destroy = execlists_destroy;
2769
	engine->resume = execlists_resume;
2770 2771 2772 2773

	engine->reset.prepare = execlists_reset_prepare;
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2774

2775
	engine->cops = &execlists_context_ops;
2776 2777
	engine->request_alloc = execlists_request_alloc;

2778
	engine->emit_flush = gen8_emit_flush;
2779 2780
	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
2781

2782
	engine->set_default_submission = intel_execlists_set_default_submission;
2783

2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2795 2796 2797 2798
	if (IS_GEN(engine->i915, 8))
		engine->emit_bb_start = gen8_emit_bb_start;
	else
		engine->emit_bb_start = gen9_emit_bb_start;
2799 2800
}

2801
static inline void
2802
logical_ring_default_irqs(struct intel_engine_cs *engine)
2803
{
2804 2805 2806 2807
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
2808 2809 2810 2811 2812
			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
			[VECS0] = GEN8_VECS_IRQ_SHIFT,
2813 2814 2815 2816 2817
		};

		shift = irq_shifts[engine->id];
	}

2818 2819
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2820 2821
}

2822
int intel_execlists_submission_setup(struct intel_engine_cs *engine)
2823 2824 2825 2826
{
	/* Intentionally left blank. */
	engine->buffer = NULL;

2827 2828
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2829
	timer_setup(&engine->execlists.timer, execlists_submission_timer, 0);
2830 2831 2832

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
2833

2834 2835 2836 2837 2838
	if (engine->class == RENDER_CLASS) {
		engine->emit_flush = gen8_emit_flush_render;
		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
	}

2839
	return 0;
2840 2841
}

2842
int intel_execlists_submission_init(struct intel_engine_cs *engine)
2843
{
2844
	struct intel_engine_execlists * const execlists = &engine->execlists;
2845 2846
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
2847
	u32 base = engine->mmio_base;
2848 2849
	int ret;

2850
	ret = intel_engine_init_common(engine);
2851
	if (ret)
2852
		return ret;
2853

2854 2855 2856 2857 2858 2859 2860
	if (intel_init_workaround_bb(engine))
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed\n");
2861

2862
	if (HAS_LOGICAL_RING_ELSQ(i915)) {
2863
		execlists->submit_reg = uncore->regs +
2864
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
2865
		execlists->ctrl_reg = uncore->regs +
2866
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
2867
	} else {
2868
		execlists->submit_reg = uncore->regs +
2869
			i915_mmio_reg_offset(RING_ELSP(base));
2870
	}
2871

2872
	execlists->csb_status =
2873
		&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2874

2875
	execlists->csb_write =
2876
		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
2877

2878
	if (INTEL_GEN(i915) < 11)
2879 2880 2881
		execlists->csb_size = GEN8_CSB_ENTRIES;
	else
		execlists->csb_size = GEN11_CSB_ENTRIES;
2882

2883
	reset_csb_pointers(engine);
2884

2885 2886 2887
	return 0;
}

2888
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2889 2890 2891
{
	u32 indirect_ctx_offset;

2892
	switch (INTEL_GEN(engine->i915)) {
2893
	default:
2894
		MISSING_CASE(INTEL_GEN(engine->i915));
2895
		/* fall through */
2896 2897 2898 2899
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2900 2901 2902 2903
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2917
static void execlists_init_reg_state(u32 *regs,
2918
				     struct intel_context *ce,
2919 2920
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2921
{
2922
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
2923
	bool rcs = engine->class == RENDER_CLASS;
2924
	u32 base = engine->mmio_base;
2925

2926 2927
	/*
	 * A context is actually a big batch buffer with several
2928 2929 2930 2931 2932
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
2933 2934
	 *
	 * Must keep consistent with virtual_update_register_offsets().
2935 2936 2937 2938
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

2939
	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
2940
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2941
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2942
	if (INTEL_GEN(engine->i915) < 11) {
2943 2944 2945 2946
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
					    CTX_CTRL_RS_CTX_ENABLE);
	}
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2959 2960
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2961 2962 2963
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2964
		if (wa_ctx->indirect_ctx.size) {
2965
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2966

2967
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2968 2969
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2970

2971
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2972
				intel_lr_indirect_ctx_offset(engine) << 6;
2973 2974 2975 2976 2977
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2978

2979
			regs[CTX_BB_PER_CTX_PTR + 1] =
2980
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2981
		}
2982
	}
2983 2984 2985 2986

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2987
	/* PDP values well be assigned later if needed */
2988 2989 2990 2991 2992 2993 2994 2995
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
2996

2997
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
2998 2999 3000 3001
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
3002
		ASSIGN_CTX_PML4(ppgtt, regs);
3003
	} else {
3004 3005 3006 3007
		ASSIGN_CTX_PDP(ppgtt, regs, 3);
		ASSIGN_CTX_PDP(ppgtt, regs, 2);
		ASSIGN_CTX_PDP(ppgtt, regs, 1);
		ASSIGN_CTX_PDP(ppgtt, regs, 0);
3008 3009
	}

3010 3011
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
3012
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
3013
	}
3014 3015

	regs[CTX_END] = MI_BATCH_BUFFER_END;
3016
	if (INTEL_GEN(engine->i915) >= 10)
3017
		regs[CTX_END] |= BIT(0);
3018 3019 3020
}

static int
3021
populate_lr_context(struct intel_context *ce,
3022 3023 3024 3025 3026
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
3027
	u32 *regs;
3028 3029 3030 3031 3032 3033 3034 3035 3036
	int ret;

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}

3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
3048 3049 3050 3051
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
3052 3053 3054 3055 3056

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

3057 3058
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
3059
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
3060
	execlists_init_reg_state(regs, ce, engine, ring);
3061 3062 3063
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
3064

3065
	ret = 0;
3066
err_unpin_ctx:
3067 3068 3069
	__i915_gem_object_flush_map(ctx_obj,
				    LRC_HEADER_PAGES * PAGE_SIZE,
				    engine->context_size);
3070
	i915_gem_object_unpin_map(ctx_obj);
3071
	return ret;
3072 3073
}

3074
static struct intel_timeline *
3075
get_timeline(struct i915_gem_context *ctx, struct intel_gt *gt)
3076
{
3077
	if (ctx->timeline)
3078
		return intel_timeline_get(ctx->timeline);
3079
	else
3080
		return intel_timeline_create(gt, NULL);
3081 3082
}

3083 3084
static int __execlists_context_alloc(struct intel_context *ce,
				     struct intel_engine_cs *engine)
3085
{
3086
	struct drm_i915_gem_object *ctx_obj;
3087
	struct i915_vma *vma;
3088
	u32 context_size;
3089
	struct intel_ring *ring;
3090
	struct intel_timeline *timeline;
3091 3092
	int ret;

3093
	GEM_BUG_ON(ce->state);
3094
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
3095

3096 3097 3098 3099 3100
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
3101

3102
	ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
3103 3104
	if (IS_ERR(ctx_obj))
		return PTR_ERR(ctx_obj);
3105

3106
	vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL);
3107 3108 3109 3110 3111
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

3112
	timeline = get_timeline(ce->gem_context, engine->gt);
3113 3114 3115 3116 3117
	if (IS_ERR(timeline)) {
		ret = PTR_ERR(timeline);
		goto error_deref_obj;
	}

3118 3119
	ring = intel_engine_create_ring(engine, timeline,
					(unsigned long)ce->ring);
3120
	intel_timeline_put(timeline);
3121 3122
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
3123
		goto error_deref_obj;
3124 3125
	}

3126
	ret = populate_lr_context(ce, ctx_obj, engine, ring);
3127 3128
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
3129
		goto error_ring_free;
3130 3131
	}

3132
	ce->ring = ring;
3133
	ce->state = vma;
3134 3135

	return 0;
3136

3137
error_ring_free:
3138
	intel_ring_put(ring);
3139
error_deref_obj:
3140
	i915_gem_object_put(ctx_obj);
3141
	return ret;
3142
}
3143

3144 3145 3146 3147 3148
static struct list_head *virtual_queue(struct virtual_engine *ve)
{
	return &ve->base.execlists.default_priolist.requests[0];
}

3149 3150 3151 3152 3153 3154
static void virtual_context_destroy(struct kref *kref)
{
	struct virtual_engine *ve =
		container_of(kref, typeof(*ve), context.ref);
	unsigned int n;

3155
	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3156
	GEM_BUG_ON(ve->request);
3157
	GEM_BUG_ON(ve->context.inflight);
3158 3159 3160 3161 3162 3163 3164 3165

	for (n = 0; n < ve->num_siblings; n++) {
		struct intel_engine_cs *sibling = ve->siblings[n];
		struct rb_node *node = &ve->nodes[sibling->id].rb;

		if (RB_EMPTY_NODE(node))
			continue;

3166
		spin_lock_irq(&sibling->active.lock);
3167 3168 3169 3170 3171

		/* Detachment is lazily performed in the execlists tasklet */
		if (!RB_EMPTY_NODE(node))
			rb_erase_cached(node, &sibling->execlists.virtual);

3172
		spin_unlock_irq(&sibling->active.lock);
3173 3174 3175 3176 3177
	}
	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));

	if (ve->context.state)
		__execlists_context_fini(&ve->context);
3178
	intel_context_fini(&ve->context);
3179

3180
	kfree(ve->bonds);
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
	kfree(ve);
}

static void virtual_engine_initial_hint(struct virtual_engine *ve)
{
	int swp;

	/*
	 * Pick a random sibling on starting to help spread the load around.
	 *
	 * New contexts are typically created with exactly the same order
	 * of siblings, and often started in batches. Due to the way we iterate
	 * the array of sibling when submitting requests, sibling[0] is
	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
	 * randomised across the system, we also help spread the load by the
	 * first engine we inspect being different each time.
	 *
	 * NB This does not force us to execute on this engine, it will just
	 * typically be the first we inspect for submission.
	 */
	swp = prandom_u32_max(ve->num_siblings);
	if (!swp)
		return;

	swap(ve->siblings[swp], ve->siblings[0]);
	virtual_update_register_offsets(ve->context.lrc_reg_state,
					ve->siblings[0]);
}

static int virtual_context_pin(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	int err;

	/* Note: we must use a real engine class for setting up reg state */
	err = __execlists_context_pin(ce, ve->siblings[0]);
	if (err)
		return err;

	virtual_engine_initial_hint(ve);
	return 0;
}

static void virtual_context_enter(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	unsigned int n;

	for (n = 0; n < ve->num_siblings; n++)
		intel_engine_pm_get(ve->siblings[n]);
}

static void virtual_context_exit(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	unsigned int n;

	for (n = 0; n < ve->num_siblings; n++)
		intel_engine_pm_put(ve->siblings[n]);
}

static const struct intel_context_ops virtual_context_ops = {
	.pin = virtual_context_pin,
	.unpin = execlists_context_unpin,

	.enter = virtual_context_enter,
	.exit = virtual_context_exit,

	.destroy = virtual_context_destroy,
};

3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
{
	struct i915_request *rq;
	intel_engine_mask_t mask;

	rq = READ_ONCE(ve->request);
	if (!rq)
		return 0;

	/* The rq is ready for submission; rq->execution_mask is now stable. */
	mask = rq->execution_mask;
	if (unlikely(!mask)) {
		/* Invalid selection, submit to a random engine in error */
		i915_request_skip(rq, -ENODEV);
		mask = ve->siblings[0]->mask;
	}

	GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n",
		  ve->base.name,
		  rq->fence.context, rq->fence.seqno,
		  mask, ve->base.execlists.queue_priority_hint);

	return mask;
}

3277 3278 3279 3280
static void virtual_submission_tasklet(unsigned long data)
{
	struct virtual_engine * const ve = (struct virtual_engine *)data;
	const int prio = ve->base.execlists.queue_priority_hint;
3281
	intel_engine_mask_t mask;
3282 3283
	unsigned int n;

3284 3285 3286 3287 3288 3289
	rcu_read_lock();
	mask = virtual_submission_mask(ve);
	rcu_read_unlock();
	if (unlikely(!mask))
		return;

3290 3291 3292 3293 3294 3295 3296
	local_irq_disable();
	for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
		struct intel_engine_cs *sibling = ve->siblings[n];
		struct ve_node * const node = &ve->nodes[sibling->id];
		struct rb_node **parent, *rb;
		bool first;

3297 3298
		if (unlikely(!(mask & sibling->mask))) {
			if (!RB_EMPTY_NODE(&node->rb)) {
3299
				spin_lock(&sibling->active.lock);
3300 3301 3302
				rb_erase_cached(&node->rb,
						&sibling->execlists.virtual);
				RB_CLEAR_NODE(&node->rb);
3303
				spin_unlock(&sibling->active.lock);
3304 3305 3306 3307
			}
			continue;
		}

3308
		spin_lock(&sibling->active.lock);
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351

		if (!RB_EMPTY_NODE(&node->rb)) {
			/*
			 * Cheat and avoid rebalancing the tree if we can
			 * reuse this node in situ.
			 */
			first = rb_first_cached(&sibling->execlists.virtual) ==
				&node->rb;
			if (prio == node->prio || (prio > node->prio && first))
				goto submit_engine;

			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
		}

		rb = NULL;
		first = true;
		parent = &sibling->execlists.virtual.rb_root.rb_node;
		while (*parent) {
			struct ve_node *other;

			rb = *parent;
			other = rb_entry(rb, typeof(*other), rb);
			if (prio > other->prio) {
				parent = &rb->rb_left;
			} else {
				parent = &rb->rb_right;
				first = false;
			}
		}

		rb_link_node(&node->rb, rb, parent);
		rb_insert_color_cached(&node->rb,
				       &sibling->execlists.virtual,
				       first);

submit_engine:
		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
		node->prio = prio;
		if (first && prio > sibling->execlists.queue_priority_hint) {
			sibling->execlists.queue_priority_hint = prio;
			tasklet_hi_schedule(&sibling->execlists.tasklet);
		}

3352
		spin_unlock(&sibling->active.lock);
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368
	}
	local_irq_enable();
}

static void virtual_submit_request(struct i915_request *rq)
{
	struct virtual_engine *ve = to_virtual_engine(rq->engine);

	GEM_TRACE("%s: rq=%llx:%lld\n",
		  ve->base.name,
		  rq->fence.context,
		  rq->fence.seqno);

	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);

	GEM_BUG_ON(ve->request);
3369 3370
	GEM_BUG_ON(!list_empty(virtual_queue(ve)));

3371 3372 3373
	ve->base.execlists.queue_priority_hint = rq_prio(rq);
	WRITE_ONCE(ve->request, rq);

3374 3375
	list_move_tail(&rq->sched.link, virtual_queue(ve));

3376 3377 3378
	tasklet_schedule(&ve->base.execlists.tasklet);
}

3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
static struct ve_bond *
virtual_find_bond(struct virtual_engine *ve,
		  const struct intel_engine_cs *master)
{
	int i;

	for (i = 0; i < ve->num_bonds; i++) {
		if (ve->bonds[i].master == master)
			return &ve->bonds[i];
	}

	return NULL;
}

static void
virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
{
	struct virtual_engine *ve = to_virtual_engine(rq->engine);
	struct ve_bond *bond;

	bond = virtual_find_bond(ve, to_request(signal)->engine);
	if (bond) {
		intel_engine_mask_t old, new, cmp;

		cmp = READ_ONCE(rq->execution_mask);
		do {
			old = cmp;
			new = cmp & bond->sibling_mask;
		} while ((cmp = cmpxchg(&rq->execution_mask, old, new)) != old);
	}
}

3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
struct intel_context *
intel_execlists_create_virtual(struct i915_gem_context *ctx,
			       struct intel_engine_cs **siblings,
			       unsigned int count)
{
	struct virtual_engine *ve;
	unsigned int n;
	int err;

	if (count == 0)
		return ERR_PTR(-EINVAL);

	if (count == 1)
		return intel_context_create(ctx, siblings[0]);

	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
	if (!ve)
		return ERR_PTR(-ENOMEM);

	ve->base.i915 = ctx->i915;
3431
	ve->base.gt = siblings[0]->gt;
3432 3433 3434 3435 3436
	ve->base.id = -1;
	ve->base.class = OTHER_CLASS;
	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;

3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
	/*
	 * The decision on whether to submit a request using semaphores
	 * depends on the saturated state of the engine. We only compute
	 * this during HW submission of the request, and we need for this
	 * state to be globally applied to all requests being submitted
	 * to this engine. Virtual engines encompass more than one physical
	 * engine and so we cannot accurately tell in advance if one of those
	 * engines is already saturated and so cannot afford to use a semaphore
	 * and be pessimized in priority for doing so -- if we are the only
	 * context using semaphores after all other clients have stopped, we
	 * will be starved on the saturated system. Such a global switch for
	 * semaphores is less than ideal, but alas is the current compromise.
	 */
	ve->base.saturated = ALL_ENGINES;

3452 3453
	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");

3454
	intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
3455 3456 3457 3458 3459 3460 3461 3462

	intel_engine_init_execlists(&ve->base);

	ve->base.cops = &virtual_context_ops;
	ve->base.request_alloc = execlists_request_alloc;

	ve->base.schedule = i915_schedule;
	ve->base.submit_request = virtual_submit_request;
3463
	ve->base.bond_execute = virtual_bond_execute;
3464

3465
	INIT_LIST_HEAD(virtual_queue(ve));
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
	ve->base.execlists.queue_priority_hint = INT_MIN;
	tasklet_init(&ve->base.execlists.tasklet,
		     virtual_submission_tasklet,
		     (unsigned long)ve);

	intel_context_init(&ve->context, ctx, &ve->base);

	for (n = 0; n < count; n++) {
		struct intel_engine_cs *sibling = siblings[n];

		GEM_BUG_ON(!is_power_of_2(sibling->mask));
		if (sibling->mask & ve->base.mask) {
			DRM_DEBUG("duplicate %s entry in load balancer\n",
				  sibling->name);
			err = -EINVAL;
			goto err_put;
		}

		/*
		 * The virtual engine implementation is tightly coupled to
		 * the execlists backend -- we push out request directly
		 * into a tree inside each physical engine. We could support
		 * layering if we handle cloning of the requests and
		 * submitting a copy into each backend.
		 */
		if (sibling->execlists.tasklet.func !=
		    execlists_submission_tasklet) {
			err = -ENODEV;
			goto err_put;
		}

		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);

		ve->siblings[ve->num_siblings++] = sibling;
		ve->base.mask |= sibling->mask;

		/*
		 * All physical engines must be compatible for their emission
		 * functions (as we build the instructions during request
		 * construction and do not alter them before submission
		 * on the physical engine). We use the engine class as a guide
		 * here, although that could be refined.
		 */
		if (ve->base.class != OTHER_CLASS) {
			if (ve->base.class != sibling->class) {
				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
					  sibling->class, ve->base.class);
				err = -EINVAL;
				goto err_put;
			}
			continue;
		}

		ve->base.class = sibling->class;
		ve->base.uabi_class = sibling->uabi_class;
		snprintf(ve->base.name, sizeof(ve->base.name),
			 "v%dx%d", ve->base.class, count);
		ve->base.context_size = sibling->context_size;

		ve->base.emit_bb_start = sibling->emit_bb_start;
		ve->base.emit_flush = sibling->emit_flush;
		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
		ve->base.emit_fini_breadcrumb_dw =
			sibling->emit_fini_breadcrumb_dw;
3532 3533

		ve->base.flags = sibling->flags;
3534 3535
	}

3536 3537
	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;

3538 3539 3540 3541 3542 3543
	err = __execlists_context_alloc(&ve->context, siblings[0]);
	if (err)
		goto err_put;

	__set_bit(CONTEXT_ALLOC_BIT, &ve->context.flags);

3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
	return &ve->context;

err_put:
	intel_context_put(&ve->context);
	return ERR_PTR(err);
}

struct intel_context *
intel_execlists_clone_virtual(struct i915_gem_context *ctx,
			      struct intel_engine_cs *src)
{
	struct virtual_engine *se = to_virtual_engine(src);
	struct intel_context *dst;

	dst = intel_execlists_create_virtual(ctx,
					     se->siblings,
					     se->num_siblings);
	if (IS_ERR(dst))
		return dst;

3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
	if (se->num_bonds) {
		struct virtual_engine *de = to_virtual_engine(dst->engine);

		de->bonds = kmemdup(se->bonds,
				    sizeof(*se->bonds) * se->num_bonds,
				    GFP_KERNEL);
		if (!de->bonds) {
			intel_context_put(dst);
			return ERR_PTR(-ENOMEM);
		}

		de->num_bonds = se->num_bonds;
	}

3578 3579 3580
	return dst;
}

3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616
int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
				     const struct intel_engine_cs *master,
				     const struct intel_engine_cs *sibling)
{
	struct virtual_engine *ve = to_virtual_engine(engine);
	struct ve_bond *bond;
	int n;

	/* Sanity check the sibling is part of the virtual engine */
	for (n = 0; n < ve->num_siblings; n++)
		if (sibling == ve->siblings[n])
			break;
	if (n == ve->num_siblings)
		return -EINVAL;

	bond = virtual_find_bond(ve, master);
	if (bond) {
		bond->sibling_mask |= sibling->mask;
		return 0;
	}

	bond = krealloc(ve->bonds,
			sizeof(*bond) * (ve->num_bonds + 1),
			GFP_KERNEL);
	if (!bond)
		return -ENOMEM;

	bond[ve->num_bonds].master = master;
	bond[ve->num_bonds].sibling_mask = sibling->mask;

	ve->bonds = bond;
	ve->num_bonds++;

	return 0;
}

3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629
void intel_execlists_show_requests(struct intel_engine_cs *engine,
				   struct drm_printer *m,
				   void (*show_request)(struct drm_printer *m,
							struct i915_request *rq,
							const char *prefix),
				   unsigned int max)
{
	const struct intel_engine_execlists *execlists = &engine->execlists;
	struct i915_request *rq, *last;
	unsigned long flags;
	unsigned int count;
	struct rb_node *rb;

3630
	spin_lock_irqsave(&engine->active.lock, flags);
3631 3632 3633

	last = NULL;
	count = 0;
3634
	list_for_each_entry(rq, &engine->active.requests, sched.link) {
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
		if (count++ < max - 1)
			show_request(m, rq, "\t\tE ");
		else
			last = rq;
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d executing requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tE ");
	}

	last = NULL;
	count = 0;
3651 3652 3653
	if (execlists->queue_priority_hint != INT_MIN)
		drm_printf(m, "\t\tQueue priority hint: %d\n",
			   execlists->queue_priority_hint);
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		int i;

		priolist_for_each_request(rq, p, i) {
			if (count++ < max - 1)
				show_request(m, rq, "\t\tQ ");
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d queued requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tQ ");
	}

3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696
	last = NULL;
	count = 0;
	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq = READ_ONCE(ve->request);

		if (rq) {
			if (count++ < max - 1)
				show_request(m, rq, "\t\tV ");
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d virtual requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tV ");
	}

3697
	spin_unlock_irqrestore(&engine->active.lock, flags);
3698 3699
}

3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
void intel_lr_context_reset(struct intel_engine_cs *engine,
			    struct intel_context *ce,
			    u32 head,
			    bool scrub)
{
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	if (scrub) {
		u32 *regs = ce->lrc_reg_state;

		if (engine->pinned_default_state) {
			memcpy(regs, /* skip restoring the vanilla PPHWSP */
			       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
			       engine->context_size - PAGE_SIZE);
		}
		execlists_init_reg_state(regs, ce, engine, ce->ring);
	}

	/* Rerun the request; its payload has been neutered (if guilty). */
	ce->ring->head = head;
	intel_ring_update_space(ce->ring);

	__execlists_update_reg_state(ce, engine);
}

3731
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3732
#include "selftest_lrc.c"
3733
#endif