intel_lrc.c 105.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135

136 137
#include "gem/i915_gem_context.h"

138
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "i915_vgpu.h"
141
#include "intel_engine_pm.h"
142
#include "intel_lrc_reg.h"
143
#include "intel_mocs.h"
144
#include "intel_reset.h"
145
#include "intel_workarounds.h"
146

147 148 149 150 151 152 153 154 155 156 157 158 159
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
160

161
#define GEN8_CTX_STATUS_COMPLETED_MASK \
162
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
163

164 165
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
166
#define WA_TAIL_DWORDS 2
167
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
168

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
struct virtual_engine {
	struct intel_engine_cs base;
	struct intel_context context;

	/*
	 * We allow only a single request through the virtual engine at a time
	 * (each request in the timeline waits for the completion fence of
	 * the previous before being submitted). By restricting ourselves to
	 * only submitting a single request, each request is placed on to a
	 * physical to maximise load spreading (by virtue of the late greedy
	 * scheduling -- each real engine takes the next available request
	 * upon idling).
	 */
	struct i915_request *request;

	/*
	 * We keep a rbtree of available virtual engines inside each physical
	 * engine, sorted by priority. Here we preallocate the nodes we need
	 * for the virtual engine, indexed by physical_engine->id.
	 */
	struct ve_node {
		struct rb_node rb;
		int prio;
	} nodes[I915_NUM_ENGINES];

194 195 196 197 198 199 200 201 202 203 204 205
	/*
	 * Keep track of bonded pairs -- restrictions upon on our selection
	 * of physical engines any particular request may be submitted to.
	 * If we receive a submit-fence from a master engine, we will only
	 * use one of sibling_mask physical engines.
	 */
	struct ve_bond {
		const struct intel_engine_cs *master;
		intel_engine_mask_t sibling_mask;
	} *bonds;
	unsigned int num_bonds;

206 207 208 209 210 211 212 213 214 215 216
	/* And finally, which physical engines this virtual engine maps onto. */
	unsigned int num_siblings;
	struct intel_engine_cs *siblings[0];
};

static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
{
	GEM_BUG_ON(!intel_engine_is_virtual(engine));
	return container_of(engine, struct virtual_engine, base);
}

217 218
static int execlists_context_deferred_alloc(struct intel_context *ce,
					    struct intel_engine_cs *engine);
219
static void execlists_init_reg_state(u32 *reg_state,
220
				     struct intel_context *ce,
221 222
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
223

224 225 226 227 228 229 230
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
231
	return rq->sched.attr.priority;
232 233
}

234 235
static int effective_prio(const struct i915_request *rq)
{
236 237 238 239
	int prio = rq_prio(rq);

	/*
	 * On unwinding the active request, we give it a priority bump
240 241 242
	 * if it has completed waiting on any semaphore. If we know that
	 * the request has already started, we can prevent an unwanted
	 * preempt-to-idle cycle by taking that into account now.
243
	 */
244 245
	if (__i915_request_has_started(rq))
		prio |= I915_PRIORITY_NOSEMAPHORE;
246

247
	/* Restrict mere WAIT boosts from triggering preemption */
248
	return prio | __NO_PREEMPTION;
249 250
}

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
static int queue_prio(const struct intel_engine_execlists *execlists)
{
	struct i915_priolist *p;
	struct rb_node *rb;

	rb = rb_first_cached(&execlists->queue);
	if (!rb)
		return INT_MIN;

	/*
	 * As the priolist[] are inverted, with the highest priority in [0],
	 * we have to flip the index value to become priority.
	 */
	p = to_priolist(rb);
	return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
}

268
static inline bool need_preempt(const struct intel_engine_cs *engine,
269 270
				const struct i915_request *rq,
				struct rb_node *rb)
271
{
272
	int last_prio;
273

274
	if (!engine->preempt_context)
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
		return false;

	if (i915_request_completed(rq))
		return false;

	/*
	 * Check if the current priority hint merits a preemption attempt.
	 *
	 * We record the highest value priority we saw during rescheduling
	 * prior to this dequeue, therefore we know that if it is strictly
	 * less than the current tail of ESLP[0], we do not need to force
	 * a preempt-to-idle cycle.
	 *
	 * However, the priority hint is a mere hint that we may need to
	 * preempt. If that hint is stale or we may be trying to preempt
	 * ourselves, ignore the request.
	 */
292
	last_prio = effective_prio(rq);
293 294
	if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint,
					 last_prio))
295 296 297 298 299 300 301 302 303 304
		return false;

	/*
	 * Check against the first request in ELSP[1], it will, thanks to the
	 * power of PI, be the highest priority of that context.
	 */
	if (!list_is_last(&rq->link, &engine->timeline.requests) &&
	    rq_prio(list_next_entry(rq, link)) > last_prio)
		return true;

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
	if (rb) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		bool preempt = false;

		if (engine == ve->siblings[0]) { /* only preempt one sibling */
			struct i915_request *next;

			rcu_read_lock();
			next = READ_ONCE(ve->request);
			if (next)
				preempt = rq_prio(next) > last_prio;
			rcu_read_unlock();
		}

		if (preempt)
			return preempt;
	}

324 325 326 327 328 329 330 331 332 333 334 335 336 337
	/*
	 * If the inflight context did not trigger the preemption, then maybe
	 * it was the set of queued requests? Pick the highest priority in
	 * the queue (the first active priolist) and see if it deserves to be
	 * running instead of ELSP[0].
	 *
	 * The highest priority request in the queue can not be either
	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
	 * context, it's priority would not exceed ELSP[0] aka last_prio.
	 */
	return queue_prio(&engine->execlists) > last_prio;
}

__maybe_unused static inline bool
338
assert_priority_queue(const struct i915_request *prev,
339
		      const struct i915_request *next)
340
{
341 342
	const struct intel_engine_execlists *execlists =
		&prev->engine->execlists;
343 344 345 346 347 348 349 350 351 352 353 354

	/*
	 * Without preemption, the prev may refer to the still active element
	 * which we refuse to let go.
	 *
	 * Even with preemption, there are times when we think it is better not
	 * to preempt and leave an ostensibly lower priority request in flight.
	 */
	if (port_request(execlists->port) == prev)
		return true;

	return rq_prio(prev) >= rq_prio(next);
355 356
}

357
/*
358 359 360 361 362
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
363 364
 * This is what a descriptor looks like, from LSB to MSB::
 *
365
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
366
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
367
 *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
368 369
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
370 371 372 373 374 375 376 377 378 379 380 381
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
382
 */
383 384
static u64
lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
385
{
386
	struct i915_gem_context *ctx = ce->gem_context;
387
	u64 desc;
388

389 390
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
391

392
	desc = ctx->desc_template;				/* bits  0-11 */
393 394
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

395
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
396
								/* bits 12-31 */
397 398
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

399 400 401 402 403
	/*
	 * The following 32bits are copied into the OA reports (dword 2).
	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
	 * anything below.
	 */
404
	if (INTEL_GEN(engine->i915) >= 11) {
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
420

421
	return desc;
422 423
}

424
static void unwind_wa_tail(struct i915_request *rq)
425 426 427 428 429
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

430
static struct i915_request *
431
__unwind_incomplete_requests(struct intel_engine_cs *engine)
432
{
433
	struct i915_request *rq, *rn, *active = NULL;
434
	struct list_head *uninitialized_var(pl);
435
	int prio = I915_PRIORITY_INVALID;
436

437
	lockdep_assert_held(&engine->timeline.lock);
438 439

	list_for_each_entry_safe_reverse(rq, rn,
440
					 &engine->timeline.requests,
441
					 link) {
442 443
		struct intel_engine_cs *owner;

444
		if (i915_request_completed(rq))
445
			break;
446

447
		__i915_request_unsubmit(rq);
448 449
		unwind_wa_tail(rq);

450
		GEM_BUG_ON(rq->hw_context->inflight);
451

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
		/*
		 * Push the request back into the queue for later resubmission.
		 * If this request is not native to this physical engine (i.e.
		 * it came from a virtual source), push it back onto the virtual
		 * engine so that it can be moved across onto another physical
		 * engine as load dictates.
		 */
		owner = rq->hw_context->engine;
		if (likely(owner == engine)) {
			GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
			if (rq_prio(rq) != prio) {
				prio = rq_prio(rq);
				pl = i915_sched_lookup_priolist(engine, prio);
			}
			GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
467

468 469 470 471 472 473 474
			list_add(&rq->sched.link, pl);
			active = rq;
		} else {
			rq->engine = owner;
			owner->submit_request(rq);
			active = NULL;
		}
475 476
	}

477
	return active;
478 479
}

480
struct i915_request *
481 482 483 484 485
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

486
	return __unwind_incomplete_requests(engine);
487 488
}

489
static inline void
490
execlists_context_status_change(struct i915_request *rq, unsigned long status)
491
{
492 493 494 495 496 497
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
498

499 500
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
501 502
}

503 504 505 506 507 508 509 510 511 512 513 514 515
inline void
execlists_user_begin(struct intel_engine_execlists *execlists,
		     const struct execlist_port *port)
{
	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
}

inline void
execlists_user_end(struct intel_engine_execlists *execlists)
{
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
}

516
static inline void
517
execlists_context_schedule_in(struct i915_request *rq)
518
{
519
	GEM_BUG_ON(rq->hw_context->inflight);
520

521
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
522
	intel_engine_context_in(rq->engine);
523
	rq->hw_context->inflight = rq->engine;
524 525
}

526 527 528 529 530 531 532 533 534
static void kick_siblings(struct i915_request *rq)
{
	struct virtual_engine *ve = to_virtual_engine(rq->hw_context->engine);
	struct i915_request *next = READ_ONCE(ve->request);

	if (next && next->execution_mask & ~rq->execution_mask)
		tasklet_schedule(&ve->base.execlists.tasklet);
}

535
static inline void
536
execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
537
{
538
	rq->hw_context->inflight = NULL;
539
	intel_engine_context_out(rq->engine);
540 541
	execlists_context_status_change(rq, status);
	trace_i915_request_out(rq);
542 543 544 545 546 547 548 549 550 551 552 553

	/*
	 * If this is part of a virtual engine, its next request may have
	 * been blocked waiting for access to the active context. We have
	 * to kick all the siblings again in case we need to switch (e.g.
	 * the next request is not runnable on this engine). Hopefully,
	 * we will already have submitted the next request before the
	 * tasklet runs and do not need to rebuild each virtual tree
	 * and kick everyone again.
	 */
	if (rq->engine != rq->hw_context->engine)
		kick_siblings(rq);
554 555
}

556
static u64 execlists_update_context(struct i915_request *rq)
557
{
558
	struct intel_context *ce = rq->hw_context;
559

560 561
	ce->lrc_reg_state[CTX_RING_TAIL + 1] =
		intel_ring_set_tail(rq->ring, rq->tail);
562

563 564 565 566 567 568 569 570 571
	/*
	 * Make sure the context image is complete before we submit it to HW.
	 *
	 * Ostensibly, writes (including the WCB) should be flushed prior to
	 * an uncached write such as our mmio register access, the empirical
	 * evidence (esp. on Braswell) suggests that the WC write into memory
	 * may not be visible to the HW prior to the completion of the UC
	 * register write and that we may begin execution from the context
	 * before its image is complete leading to invalid PD chasing.
572 573 574 575 576
	 *
	 * Furthermore, Braswell, at least, wants a full mb to be sure that
	 * the writes are coherent in memory (visible to the GPU) prior to
	 * execution, and not just visible to other CPUs (as is the result of
	 * wmb).
577
	 */
578
	mb();
579
	return ce->lrc_desc;
580 581
}

582
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
583
{
584 585 586 587 588 589 590
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
591 592
}

593
static void execlists_submit_ports(struct intel_engine_cs *engine)
594
{
595 596
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
597
	unsigned int n;
598

599 600 601 602 603 604 605 606
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
607
	GEM_BUG_ON(!intel_wakeref_active(&engine->wakeref));
608

609 610 611 612 613 614 615
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
616
		struct i915_request *rq;
617 618 619 620 621 622 623
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
624
				execlists_context_schedule_in(rq);
625 626 627
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
628

629
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
630
				  engine->name, n,
631
				  port[n].context_id, count,
632
				  rq->fence.context, rq->fence.seqno,
633
				  hwsp_seqno(rq),
634
				  rq_prio(rq));
635 636 637 638
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
639

640
		write_desc(execlists, desc, n);
641
	}
642 643 644 645 646 647

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
648 649
}

650
static bool ctx_single_port_submission(const struct intel_context *ce)
651
{
652
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
653
		i915_gem_context_force_single_submission(ce->gem_context));
654
}
655

656 657
static bool can_merge_ctx(const struct intel_context *prev,
			  const struct intel_context *next)
658 659 660
{
	if (prev != next)
		return false;
661

662 663
	if (ctx_single_port_submission(prev))
		return false;
664

665
	return true;
666 667
}

668 669 670 671 672 673 674 675 676 677 678
static bool can_merge_rq(const struct i915_request *prev,
			 const struct i915_request *next)
{
	GEM_BUG_ON(!assert_priority_queue(prev, next));

	if (!can_merge_ctx(prev->hw_context, next->hw_context))
		return false;

	return true;
}

679
static void port_assign(struct execlist_port *port, struct i915_request *rq)
680 681 682 683
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
684
		i915_request_put(port_request(port));
685

686
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
687 688
}

C
Chris Wilson 已提交
689 690
static void inject_preempt_context(struct intel_engine_cs *engine)
{
691
	struct intel_engine_execlists *execlists = &engine->execlists;
692
	struct intel_context *ce = engine->preempt_context;
C
Chris Wilson 已提交
693 694
	unsigned int n;

695
	GEM_BUG_ON(execlists->preempt_complete_status !=
696
		   upper_32_bits(ce->lrc_desc));
697

698 699 700 701
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
702
	GEM_TRACE("%s\n", engine->name);
703 704 705 706 707 708 709 710
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
711

712 713
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
	execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
714 715

	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
716 717 718 719 720 721
}

static void complete_preempt_context(struct intel_engine_execlists *execlists)
{
	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));

722 723 724
	if (inject_preempt_hang(execlists))
		return;

725
	execlists_cancel_port_requests(execlists);
726 727
	__unwind_incomplete_requests(container_of(execlists,
						  struct intel_engine_cs,
728
						  execlists));
C
Chris Wilson 已提交
729 730
}

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
static void virtual_update_register_offsets(u32 *regs,
					    struct intel_engine_cs *engine)
{
	u32 base = engine->mmio_base;

	/* Must match execlists_init_reg_state()! */

	regs[CTX_CONTEXT_CONTROL] =
		i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base));
	regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base));
	regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base));
	regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base));
	regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base));

	regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base));
	regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base));
	regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base));
	regs[CTX_SECOND_BB_HEAD_U] =
		i915_mmio_reg_offset(RING_SBBADDR_UDW(base));
	regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base));
	regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base));

	regs[CTX_CTX_TIMESTAMP] =
		i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base));
	regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3));
	regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3));
	regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2));
	regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2));
	regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1));
	regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1));
	regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
	regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));

	if (engine->class == RENDER_CLASS) {
		regs[CTX_RCS_INDIRECT_CTX] =
			i915_mmio_reg_offset(RING_INDIRECT_CTX(base));
		regs[CTX_RCS_INDIRECT_CTX_OFFSET] =
			i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base));
		regs[CTX_BB_PER_CTX_PTR] =
			i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base));

		regs[CTX_R_PWR_CLK_STATE] =
			i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE);
	}
}

static bool virtual_matches(const struct virtual_engine *ve,
			    const struct i915_request *rq,
			    const struct intel_engine_cs *engine)
{
781
	const struct intel_engine_cs *inflight;
782

783 784 785
	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
		return false;

786 787 788 789 790 791 792 793 794
	/*
	 * We track when the HW has completed saving the context image
	 * (i.e. when we have seen the final CS event switching out of
	 * the context) and must not overwrite the context image before
	 * then. This restricts us to only using the active engine
	 * while the previous virtualized request is inflight (so
	 * we reuse the register offsets). This is a very small
	 * hystersis on the greedy seelction algorithm.
	 */
795 796
	inflight = READ_ONCE(ve->context.inflight);
	if (inflight && inflight != engine)
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
		return false;

	return true;
}

static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
				     struct intel_engine_cs *engine)
{
	struct intel_engine_cs *old = ve->siblings[0];

	/* All unattached (rq->engine == old) must already be completed */

	spin_lock(&old->breadcrumbs.irq_lock);
	if (!list_empty(&ve->context.signal_link)) {
		list_move_tail(&ve->context.signal_link,
			       &engine->breadcrumbs.signalers);
		intel_engine_queue_breadcrumbs(engine);
	}
	spin_unlock(&old->breadcrumbs.irq_lock);
}

818
static void execlists_dequeue(struct intel_engine_cs *engine)
819
{
820 821
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
822 823
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
824
	struct i915_request *last = port_request(port);
825
	struct rb_node *rb;
826 827
	bool submit = false;

828 829
	/*
	 * Hardware submission is through 2 ports. Conceptually each port
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
848
	 */
849

850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
	for (rb = rb_first_cached(&execlists->virtual); rb; ) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq = READ_ONCE(ve->request);

		if (!rq) { /* lazily cleanup after another engine handled rq */
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);
			rb = rb_first_cached(&execlists->virtual);
			continue;
		}

		if (!virtual_matches(ve, rq, engine)) {
			rb = rb_next(rb);
			continue;
		}

		break;
	}

C
Chris Wilson 已提交
870 871 872 873 874 875 876
	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
877 878
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
879
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
880

881 882 883 884 885 886 887 888
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
889
			return;
890

891
		if (need_preempt(engine, last, rb)) {
C
Chris Wilson 已提交
892
			inject_preempt_context(engine);
893
			return;
C
Chris Wilson 已提交
894
		}
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
918
			return;
919 920 921 922 923

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
924
		 * request. See gen8_emit_fini_breadcrumb() for
925 926 927 928
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
929 930
	}

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
	while (rb) { /* XXX virtual is always taking precedence */
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq;

		spin_lock(&ve->base.timeline.lock);

		rq = ve->request;
		if (unlikely(!rq)) { /* lost the race to a sibling */
			spin_unlock(&ve->base.timeline.lock);
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);
			rb = rb_first_cached(&execlists->virtual);
			continue;
		}

		GEM_BUG_ON(rq != ve->request);
		GEM_BUG_ON(rq->engine != &ve->base);
		GEM_BUG_ON(rq->hw_context != &ve->context);

		if (rq_prio(rq) >= queue_prio(execlists)) {
			if (!virtual_matches(ve, rq, engine)) {
				spin_unlock(&ve->base.timeline.lock);
				rb = rb_next(rb);
				continue;
			}

			if (last && !can_merge_rq(last, rq)) {
				spin_unlock(&ve->base.timeline.lock);
				return; /* leave this rq for another engine */
			}

			GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n",
				  engine->name,
				  rq->fence.context,
				  rq->fence.seqno,
				  i915_request_completed(rq) ? "!" :
				  i915_request_started(rq) ? "*" :
				  "",
				  yesno(engine != ve->siblings[0]));

			ve->request = NULL;
			ve->base.execlists.queue_priority_hint = INT_MIN;
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);

977
			GEM_BUG_ON(!(rq->execution_mask & engine->mask));
978 979 980 981 982 983
			rq->engine = engine;

			if (engine != ve->siblings[0]) {
				u32 *regs = ve->context.lrc_reg_state;
				unsigned int n;

984
				GEM_BUG_ON(READ_ONCE(ve->context.inflight));
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
				virtual_update_register_offsets(regs, engine);

				if (!list_empty(&ve->context.signals))
					virtual_xfer_breadcrumbs(ve, engine);

				/*
				 * Move the bound engine to the top of the list
				 * for future execution. We then kick this
				 * tasklet first before checking others, so that
				 * we preferentially reuse this set of bound
				 * registers.
				 */
				for (n = 1; n < ve->num_siblings; n++) {
					if (ve->siblings[n] == engine) {
						swap(ve->siblings[n],
						     ve->siblings[0]);
						break;
					}
				}

				GEM_BUG_ON(ve->siblings[0] != engine);
			}

			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
			submit = true;
			last = rq;
		}

		spin_unlock(&ve->base.timeline.lock);
		break;
	}

1018
	while ((rb = rb_first_cached(&execlists->queue))) {
1019
		struct i915_priolist *p = to_priolist(rb);
1020
		struct i915_request *rq, *rn;
1021
		int i;
1022

1023
		priolist_for_each_request_consume(rq, rn, p, i) {
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
1034
			 */
1035
			if (last && !can_merge_rq(last, rq)) {
1036 1037 1038 1039 1040
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
1041
				if (port == last_port)
1042 1043
					goto done;

1044 1045 1046 1047 1048 1049 1050 1051
				/*
				 * We must not populate both ELSP[] with the
				 * same LRCA, i.e. we must submit 2 different
				 * contexts if we submit 2 ELSP.
				 */
				if (last->hw_context == rq->hw_context)
					goto done;

1052 1053 1054 1055 1056 1057 1058
				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
1059
				if (ctx_single_port_submission(last->hw_context) ||
1060
				    ctx_single_port_submission(rq->hw_context))
1061 1062 1063 1064 1065 1066
					goto done;


				if (submit)
					port_assign(port, last);
				port++;
1067 1068

				GEM_BUG_ON(port_isset(port));
1069
			}
1070

1071 1072
			list_del_init(&rq->sched.link);

1073 1074
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
1075

1076 1077
			last = rq;
			submit = true;
1078
		}
1079

1080
		rb_erase_cached(&p->node, &execlists->queue);
1081
		i915_priolist_free(p);
1082
	}
1083

1084
done:
1085 1086 1087
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
1088
	 * We choose the priority hint such that if we add a request of greater
1089 1090 1091
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
1092
	 * HW. We derive the priority hint then as the first "hole" in
1093 1094 1095 1096
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
1097
	 * user, see queue_request(), the priority hint is bumped to that
1098 1099 1100
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
1101
	execlists->queue_priority_hint = queue_prio(execlists);
1102

1103
	if (submit) {
1104
		port_assign(port, last);
1105 1106
		execlists_submit_ports(engine);
	}
1107 1108

	/* We must always keep the beast fed if we have work piled up */
1109 1110
	GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
		   !port_isset(execlists->port));
1111

1112 1113
	/* Re-evaluate the executing context setup after each preemptive kick */
	if (last)
1114
		execlists_user_begin(execlists, execlists->port);
1115

1116 1117 1118 1119
	/* If the engine is now idle, so should be the flag; and vice versa. */
	GEM_BUG_ON(execlists_is_active(&engine->execlists,
				       EXECLISTS_ACTIVE_USER) ==
		   !port_isset(engine->execlists.port));
1120 1121
}

1122
void
1123
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
1124
{
1125
	struct execlist_port *port = execlists->port;
1126
	unsigned int num_ports = execlists_num_ports(execlists);
1127

1128
	while (num_ports-- && port_isset(port)) {
1129
		struct i915_request *rq = port_request(port);
1130

1131
		GEM_TRACE("%s:port%u fence %llx:%lld, (current %d)\n",
1132 1133 1134
			  rq->engine->name,
			  (unsigned int)(port - execlists->port),
			  rq->fence.context, rq->fence.seqno,
1135
			  hwsp_seqno(rq));
1136

1137
		GEM_BUG_ON(!execlists->active);
1138 1139 1140 1141
		execlists_context_schedule_out(rq,
					       i915_request_completed(rq) ?
					       INTEL_CONTEXT_SCHEDULE_OUT :
					       INTEL_CONTEXT_SCHEDULE_PREEMPTED);
1142

1143
		i915_request_put(rq);
1144

1145 1146 1147
		memset(port, 0, sizeof(*port));
		port++;
	}
1148

1149
	execlists_clear_all_active(execlists);
1150 1151
}

1152 1153 1154 1155 1156 1157 1158
static inline void
invalidate_csb_entries(const u32 *first, const u32 *last)
{
	clflush((void *)first);
	clflush((void *)last);
}

1159 1160 1161 1162 1163 1164
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}

1165
static void process_csb(struct intel_engine_cs *engine)
1166
{
1167
	struct intel_engine_execlists * const execlists = &engine->execlists;
1168
	struct execlist_port *port = execlists->port;
1169
	const u32 * const buf = execlists->csb_status;
1170
	const u8 num_entries = execlists->csb_size;
1171
	u8 head, tail;
1172

1173 1174
	lockdep_assert_held(&engine->timeline.lock);

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	/*
	 * Note that csb_write, csb_status may be either in HWSP or mmio.
	 * When reading from the csb_write mmio register, we have to be
	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
	 * the low 4bits. As it happens we know the next 4bits are always
	 * zero and so we can simply masked off the low u8 of the register
	 * and treat it identically to reading from the HWSP (without having
	 * to use explicit shifting and masking, and probably bifurcating
	 * the code to handle the legacy mmio read).
	 */
	head = execlists->csb_head;
	tail = READ_ONCE(*execlists->csb_write);
	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
	if (unlikely(head == tail))
		return;
1190

1191 1192 1193 1194 1195 1196 1197 1198 1199
	/*
	 * Hopefully paired with a wmb() in HW!
	 *
	 * We must complete the read of the write pointer before any reads
	 * from the CSB, so that we do not see stale values. Without an rmb
	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
	 * we perform the READ_ONCE(*csb_write).
	 */
	rmb();
1200

1201
	do {
1202 1203 1204 1205
		struct i915_request *rq;
		unsigned int status;
		unsigned int count;

1206
		if (++head == num_entries)
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
			head = 0;

		/*
		 * We are flying near dragons again.
		 *
		 * We hold a reference to the request in execlist_port[]
		 * but no more than that. We are operating in softirq
		 * context and so cannot hold any mutex or sleep. That
		 * prevents us stopping the requests we are processing
		 * in port[] from being retired simultaneously (the
		 * breadcrumb will be complete before we see the
		 * context-switch). As we only hold the reference to the
		 * request, any pointer chasing underneath the request
		 * is subject to a potential use-after-free. Thus we
		 * store all of the bookkeeping within port[] as
		 * required, and avoid using unguarded pointers beneath
		 * request itself. The same applies to the atomic
		 * status notifier.
		 */

		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
			  engine->name, head,
1229
			  buf[2 * head + 0], buf[2 * head + 1],
1230 1231
			  execlists->active);

1232
		status = buf[2 * head];
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
		if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
			      GEN8_CTX_STATUS_PREEMPTED))
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_HWACK);
		if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
			execlists_clear_active(execlists,
					       EXECLISTS_ACTIVE_HWACK);

		if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
			continue;

		/* We should never get a COMPLETED | IDLE_ACTIVE! */
		GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

		if (status & GEN8_CTX_STATUS_COMPLETE &&
		    buf[2*head + 1] == execlists->preempt_complete_status) {
			GEM_TRACE("%s preempt-idle\n", engine->name);
			complete_preempt_context(execlists);
			continue;
1252
		}
1253

1254 1255 1256 1257
		if (status & GEN8_CTX_STATUS_PREEMPTED &&
		    execlists_is_active(execlists,
					EXECLISTS_ACTIVE_PREEMPT))
			continue;
1258

1259 1260
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
1261

1262
		rq = port_unpack(port, &count);
1263
		GEM_TRACE("%s out[0]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
1264 1265 1266 1267
			  engine->name,
			  port->context_id, count,
			  rq ? rq->fence.context : 0,
			  rq ? rq->fence.seqno : 0,
1268
			  rq ? hwsp_seqno(rq) : 0,
1269 1270 1271 1272 1273 1274 1275
			  rq ? rq_prio(rq) : 0);

		/* Check the context/desc id for this event matches */
		GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

		GEM_BUG_ON(count == 0);
		if (--count == 0) {
1276
			/*
1277 1278 1279 1280 1281 1282
			 * On the final event corresponding to the
			 * submission of this context, we expect either
			 * an element-switch event or a completion
			 * event (and on completion, the active-idle
			 * marker). No more preemptions, lite-restore
			 * or otherwise.
1283
			 */
1284 1285 1286 1287 1288
			GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
			GEM_BUG_ON(port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
			GEM_BUG_ON(!port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1289

1290 1291 1292 1293 1294 1295 1296
			/*
			 * We rely on the hardware being strongly
			 * ordered, that the breadcrumb write is
			 * coherent (visible from the CPU) before the
			 * user interrupt and CSB is processed.
			 */
			GEM_BUG_ON(!i915_request_completed(rq));
C
Chris Wilson 已提交
1297

1298 1299 1300
			execlists_context_schedule_out(rq,
						       INTEL_CONTEXT_SCHEDULE_OUT);
			i915_request_put(rq);
1301

1302 1303
			GEM_TRACE("%s completed ctx=%d\n",
				  engine->name, port->context_id);
1304

1305 1306 1307 1308 1309 1310 1311
			port = execlists_port_complete(execlists, port);
			if (port_isset(port))
				execlists_user_begin(execlists, port);
			else
				execlists_user_end(execlists);
		} else {
			port_set(port, port_pack(rq, count));
1312
		}
1313
	} while (head != tail);
1314

1315
	execlists->csb_head = head;
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327

	/*
	 * Gen11 has proven to fail wrt global observation point between
	 * entry and tail update, failing on the ordering and thus
	 * we see an old entry in the context status buffer.
	 *
	 * Forcibly evict out entries for the next gpu csb update,
	 * to increase the odds that we get a fresh entries with non
	 * working hardware. The cost for doing so comes out mostly with
	 * the wash as hardware, working or not, will need to do the
	 * invalidation before.
	 */
1328
	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1329
}
1330

1331
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1332
{
1333
	lockdep_assert_held(&engine->timeline.lock);
1334

C
Chris Wilson 已提交
1335
	process_csb(engine);
1336 1337
	if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
		execlists_dequeue(engine);
1338 1339
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	unsigned long flags;

	GEM_TRACE("%s awake?=%d, active=%x\n",
		  engine->name,
1351
		  !!intel_wakeref_active(&engine->wakeref),
1352 1353 1354
		  engine->execlists.active);

	spin_lock_irqsave(&engine->timeline.lock, flags);
1355
	__execlists_submission_tasklet(engine);
1356 1357 1358
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
}

1359
static void queue_request(struct intel_engine_cs *engine,
1360
			  struct i915_sched_node *node,
1361
			  int prio)
1362
{
1363
	list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
}

static void __submit_queue_imm(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	if (reset_in_progress(execlists))
		return; /* defer until we restart the engine following reset */

	if (execlists->tasklet.func == execlists_submission_tasklet)
		__execlists_submission_tasklet(engine);
	else
		tasklet_hi_schedule(&execlists->tasklet);
1377 1378
}

1379 1380
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
1381 1382
	if (prio > engine->execlists.queue_priority_hint) {
		engine->execlists.queue_priority_hint = prio;
1383 1384
		__submit_queue_imm(engine);
	}
1385 1386
}

1387
static void execlists_submit_request(struct i915_request *request)
1388
{
1389
	struct intel_engine_cs *engine = request->engine;
1390
	unsigned long flags;
1391

1392
	/* Will be called from irq-context when using foreign fences. */
1393
	spin_lock_irqsave(&engine->timeline.lock, flags);
1394

1395
	queue_request(engine, &request->sched, rq_prio(request));
1396

1397
	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1398
	GEM_BUG_ON(list_empty(&request->sched.link));
1399

1400 1401
	submit_queue(engine, rq_prio(request));

1402
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1403 1404
}

1405
static void __execlists_context_fini(struct intel_context *ce)
1406
{
1407
	intel_ring_put(ce->ring);
1408 1409 1410

	GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
	i915_gem_object_put(ce->state->obj);
1411 1412
}

1413
static void execlists_context_destroy(struct kref *kref)
1414
{
1415 1416
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);

1417
	GEM_BUG_ON(intel_context_is_pinned(ce));
1418 1419 1420 1421 1422 1423 1424

	if (ce->state)
		__execlists_context_fini(ce);

	intel_context_free(ce);
}

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
static int __context_pin(struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	flags = PIN_GLOBAL | PIN_HIGH;
	flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);

	err = i915_vma_pin(vma, 0, 0, flags);
	if (err)
		return err;

	vma->obj->pin_global++;
	vma->obj->mm.dirty = true;

	return 0;
}

static void __context_unpin(struct i915_vma *vma)
{
	vma->obj->pin_global--;
	__i915_vma_unpin(vma);
}

1449
static void execlists_context_unpin(struct intel_context *ce)
1450
{
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
	struct intel_engine_cs *engine;

	/*
	 * The tasklet may still be using a pointer to our state, via an
	 * old request. However, since we know we only unpin the context
	 * on retirement of the following request, we know that the last
	 * request referencing us will have had a completion CS interrupt.
	 * If we see that it is still active, it means that the tasklet hasn't
	 * had the chance to run yet; let it run before we teardown the
	 * reference it may use.
	 */
1462
	engine = READ_ONCE(ce->inflight);
1463 1464 1465 1466 1467 1468 1469
	if (unlikely(engine)) {
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline.lock, flags);
		process_csb(engine);
		spin_unlock_irqrestore(&engine->timeline.lock, flags);

1470
		GEM_BUG_ON(READ_ONCE(ce->inflight));
1471 1472
	}

1473 1474
	i915_gem_context_unpin_hw_id(ce->gem_context);

1475 1476 1477
	intel_ring_unpin(ce->ring);

	i915_gem_object_unpin_map(ce->state->obj);
1478
	__context_unpin(ce->state);
1479 1480
}

1481
static void
1482 1483
__execlists_update_reg_state(struct intel_context *ce,
			     struct intel_engine_cs *engine)
1484 1485
{
	struct intel_ring *ring = ce->ring;
1486 1487 1488 1489
	u32 *regs = ce->lrc_reg_state;

	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1490 1491 1492 1493 1494 1495 1496

	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
	regs[CTX_RING_HEAD + 1] = ring->head;
	regs[CTX_RING_TAIL + 1] = ring->tail;

	/* RPCS */
	if (engine->class == RENDER_CLASS)
1497
		regs[CTX_R_PWR_CLK_STATE + 1] =
1498
			intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1499 1500
}

1501 1502 1503
static int
__execlists_context_pin(struct intel_context *ce,
			struct intel_engine_cs *engine)
1504
{
1505
	void *vaddr;
1506
	int ret;
1507

1508
	GEM_BUG_ON(!ce->gem_context->vm);
1509 1510

	ret = execlists_context_deferred_alloc(ce, engine);
1511 1512
	if (ret)
		goto err;
1513
	GEM_BUG_ON(!ce->state);
1514

1515
	ret = __context_pin(ce->state);
1516
	if (ret)
1517
		goto err;
1518

1519
	vaddr = i915_gem_object_pin_map(ce->state->obj,
1520
					i915_coherent_map_type(engine->i915) |
1521
					I915_MAP_OVERRIDE);
1522 1523
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1524
		goto unpin_vma;
1525 1526
	}

1527
	ret = intel_ring_pin(ce->ring);
1528
	if (ret)
1529
		goto unpin_map;
1530

1531
	ret = i915_gem_context_pin_hw_id(ce->gem_context);
1532 1533 1534
	if (ret)
		goto unpin_ring;

1535
	ce->lrc_desc = lrc_descriptor(ce, engine);
1536
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1537
	__execlists_update_reg_state(ce, engine);
1538

1539
	return 0;
1540

1541 1542
unpin_ring:
	intel_ring_unpin(ce->ring);
1543
unpin_map:
1544 1545
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
1546
	__context_unpin(ce->state);
1547
err:
1548
	return ret;
1549 1550
}

1551
static int execlists_context_pin(struct intel_context *ce)
1552
{
1553
	return __execlists_context_pin(ce, ce->engine);
1554 1555
}

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
static void execlists_context_reset(struct intel_context *ce)
{
	/*
	 * Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * The contexts that are stilled pinned on resume belong to the
	 * kernel, and are local to each engine. All other contexts will
	 * have their head/tail sanitized upon pinning before use, so they
	 * will never see garbage,
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	intel_ring_reset(ce->ring, 0);
	__execlists_update_reg_state(ce, ce->engine);
}

1578
static const struct intel_context_ops execlists_context_ops = {
1579
	.pin = execlists_context_pin,
1580
	.unpin = execlists_context_unpin,
1581

1582 1583 1584
	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

1585
	.reset = execlists_context_reset,
1586 1587 1588
	.destroy = execlists_context_destroy,
};

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
static int gen8_emit_init_breadcrumb(struct i915_request *rq)
{
	u32 *cs;

	GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Check if we have been preempted before we even get started.
	 *
	 * After this point i915_request_started() reports true, even if
	 * we get preempted and so are no longer running.
	 */
	*cs++ = MI_ARB_CHECK;
	*cs++ = MI_NOOP;

	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
	*cs++ = rq->timeline->hwsp_offset;
	*cs++ = 0;
	*cs++ = rq->fence.seqno - 1;

	intel_ring_advance(rq, cs);
1614 1615 1616 1617

	/* Record the updated position of the request's payload */
	rq->infix = intel_ring_offset(rq, cs);

1618 1619 1620
	return 0;
}

1621 1622 1623
static int emit_pdps(struct i915_request *rq)
{
	const struct intel_engine_cs * const engine = rq->engine;
1624
	struct i915_ppgtt * const ppgtt =
1625
		i915_vm_to_ppgtt(rq->gem_context->vm);
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
	int err, i;
	u32 *cs;

	GEM_BUG_ON(intel_vgpu_active(rq->i915));

	/*
	 * Beware ye of the dragons, this sequence is magic!
	 *
	 * Small changes to this sequence can cause anything from
	 * GPU hangs to forcewake errors and machine lockups!
	 */

	/* Flush any residual operations from the context load */
	err = engine->emit_flush(rq, EMIT_FLUSH);
	if (err)
		return err;

	/* Magic required to prevent forcewake errors! */
	err = engine->emit_flush(rq, EMIT_INVALIDATE);
	if (err)
		return err;

	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Ensure the LRI have landed before we invalidate & continue */
	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
	for (i = GEN8_3LVL_PDPES; i--; ) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1656
		u32 base = engine->mmio_base;
1657

1658
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1659
		*cs++ = upper_32_bits(pd_daddr);
1660
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
		*cs++ = lower_32_bits(pd_daddr);
	}
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);

	/* Be doubly sure the LRI have landed before proceeding */
	err = engine->emit_flush(rq, EMIT_FLUSH);
	if (err)
		return err;

	/* Re-invalidate the TLB for luck */
	return engine->emit_flush(rq, EMIT_INVALIDATE);
}

1676
static int execlists_request_alloc(struct i915_request *request)
1677
{
1678
	int ret;
1679

1680
	GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1681

1682 1683
	/*
	 * Flush enough space to reduce the likelihood of waiting after
1684 1685 1686 1687 1688
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1689 1690
	/*
	 * Note that after this point, we have committed to using
1691 1692 1693 1694 1695 1696
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

1697
	/* Unconditionally invalidate GPU caches and TLBs. */
1698
	if (i915_vm_is_4lvl(request->gem_context->vm))
1699 1700 1701 1702 1703 1704
		ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
	else
		ret = emit_pdps(request);
	if (ret)
		return ret;

1705 1706 1707 1708
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1725 1726
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1727
{
1728
	/* NB no one else is allowed to scribble over scratch + 256! */
1729 1730
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1731
	*batch++ = i915_scratch_offset(engine->i915) + 256;
1732 1733 1734 1735 1736 1737
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1738 1739 1740 1741
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1742 1743 1744

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1745
	*batch++ = i915_scratch_offset(engine->i915) + 256;
1746 1747 1748
	*batch++ = 0;

	return batch;
1749 1750
}

1751 1752 1753 1754 1755 1756
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1757
 *
1758 1759
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1760
 *
1761 1762 1763 1764
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1765
 */
1766
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1767
{
1768
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1769
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1770

1771
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1772 1773
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1774

1775 1776
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1777 1778 1779 1780 1781
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
1782
				       i915_scratch_offset(engine->i915) +
1783
				       2 * CACHELINE_BYTES);
1784

C
Chris Wilson 已提交
1785 1786
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1787
	/* Pad to end of cacheline */
1788 1789
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1790 1791 1792 1793 1794 1795 1796

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1797
	return batch;
1798 1799
}

1800 1801 1802 1803 1804 1805
struct lri {
	i915_reg_t reg;
	u32 value;
};

static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1806
{
1807
	GEM_BUG_ON(!count || count > 63);
C
Chris Wilson 已提交
1808

1809 1810 1811 1812 1813 1814
	*batch++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*batch++ = i915_mmio_reg_offset(lri->reg);
		*batch++ = lri->value;
	} while (lri++, --count);
	*batch++ = MI_NOOP;
1815

1816 1817
	return batch;
}
1818

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	static const struct lri lri[] = {
		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
		{
			COMMON_SLICE_CHICKEN2,
			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
				       0),
		},

		/* BSpec: 11391 */
		{
			FF_SLICE_CHICKEN,
			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
		},

		/* BSpec: 11299 */
		{
			_3D_CHICKEN3,
			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
		}
	};
1843

1844
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1845

1846 1847
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1848

1849
	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1850

1851
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1866 1867 1868 1869 1870 1871
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1872 1873
	}

C
Chris Wilson 已提交
1874 1875
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1876
	/* Pad to end of cacheline */
1877 1878
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1879

1880
	return batch;
1881 1882
}

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1917 1918 1919
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1920
{
1921 1922 1923
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1924

1925
	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
1926 1927
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1928

1929
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1930 1931 1932
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1933 1934
	}

1935
	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1936 1937 1938 1939
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1940
	return 0;
1941 1942 1943 1944

err:
	i915_gem_object_put(obj);
	return err;
1945 1946
}

1947
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1948
{
1949
	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1950 1951
}

1952 1953
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1954
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1955
{
1956
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1957 1958 1959
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1960
	struct page *page;
1961 1962
	void *batch, *batch_ptr;
	unsigned int i;
1963
	int ret;
1964

1965 1966
	if (engine->class != RENDER_CLASS)
		return 0;
1967

1968
	switch (INTEL_GEN(engine->i915)) {
1969 1970
	case 11:
		return 0;
1971
	case 10:
1972 1973 1974
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1975 1976
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1977
		wa_bb_fn[1] = NULL;
1978 1979 1980
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1981
		wa_bb_fn[1] = NULL;
1982 1983 1984
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1985
		return 0;
1986
	}
1987

1988
	ret = lrc_setup_wa_ctx(engine);
1989 1990 1991 1992 1993
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1994
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1995
	batch = batch_ptr = kmap_atomic(page);
1996

1997 1998 1999 2000 2001 2002 2003
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
2004 2005
		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
						  CACHELINE_BYTES))) {
2006 2007 2008
			ret = -EINVAL;
			break;
		}
2009 2010
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
2011
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
2012 2013
	}

2014 2015
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

2016 2017
	kunmap_atomic(batch);
	if (ret)
2018
		lrc_destroy_wa_ctx(engine);
2019 2020 2021 2022

	return ret;
}

2023
static void enable_execlists(struct intel_engine_cs *engine)
2024
{
2025
	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2026

2027 2028 2029 2030
	if (INTEL_GEN(engine->i915) >= 11)
		ENGINE_WRITE(engine,
			     RING_MODE_GEN7,
			     _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
2031
	else
2032 2033 2034
		ENGINE_WRITE(engine,
			     RING_MODE_GEN7,
			     _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
2035

2036
	ENGINE_WRITE(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2037

2038 2039 2040 2041
	ENGINE_WRITE(engine,
		     RING_HWS_PGA,
		     i915_ggtt_offset(engine->status_page.vma));
	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2042 2043
}

2044 2045 2046 2047
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
	bool unexpected = false;

2048
	if (ENGINE_READ(engine, RING_MI_MODE) & STOP_RING) {
2049 2050 2051 2052 2053 2054 2055
		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
		unexpected = true;
	}

	return unexpected;
}

2056
static int execlists_resume(struct intel_engine_cs *engine)
2057
{
2058
	intel_engine_apply_workarounds(engine);
2059
	intel_engine_apply_whitelist(engine);
2060

2061
	intel_mocs_init_engine(engine);
2062

2063
	intel_engine_reset_breadcrumbs(engine);
2064

2065 2066 2067 2068 2069 2070
	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p, NULL);
	}

2071
	enable_execlists(engine);
2072

2073
	return 0;
2074 2075
}

2076
static void execlists_reset_prepare(struct intel_engine_cs *engine)
2077 2078
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
2079
	unsigned long flags;
2080

2081 2082
	GEM_TRACE("%s: depth<-%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
2083 2084 2085 2086 2087 2088

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
2089
	 * calling engine->resume() and also writing the ELSP.
2090 2091 2092 2093
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);
2094
	GEM_BUG_ON(!reset_in_progress(execlists));
2095

2096 2097
	intel_engine_stop_cs(engine);

2098
	/* And flush any current direct submission. */
2099 2100
	spin_lock_irqsave(&engine->timeline.lock, flags);
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
2101 2102
}

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
static bool lrc_regs_ok(const struct i915_request *rq)
{
	const struct intel_ring *ring = rq->ring;
	const u32 *regs = rq->hw_context->lrc_reg_state;

	/* Quick spot check for the common signs of context corruption */

	if (regs[CTX_RING_BUFFER_CONTROL + 1] !=
	    (RING_CTL_SIZE(ring->size) | RING_VALID))
		return false;

	if (regs[CTX_RING_BUFFER_START + 1] != i915_ggtt_offset(ring->vma))
		return false;

	return true;
}

2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134
static void reset_csb_pointers(struct intel_engine_execlists *execlists)
{
	const unsigned int reset_value = execlists->csb_size - 1;

	/*
	 * After a reset, the HW starts writing into CSB entry [0]. We
	 * therefore have to set our HEAD pointer back one entry so that
	 * the *first* entry we check is entry 0. To complicate this further,
	 * as we don't wait for the first interrupt after reset, we have to
	 * fake the HW write to point back to the last entry so that our
	 * inline comparison of our cached head position against the last HW
	 * write works even before the first interrupt.
	 */
	execlists->csb_head = reset_value;
	WRITE_ONCE(*execlists->csb_write, reset_value);
2135
	wmb(); /* Make sure this is visible to HW (paranoia?) */
2136 2137 2138 2139 2140

	invalidate_csb_entries(&execlists->csb_status[0],
			       &execlists->csb_status[reset_value]);
}

2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
static struct i915_request *active_request(struct i915_request *rq)
{
	const struct list_head * const list = &rq->engine->timeline.requests;
	const struct intel_context * const context = rq->hw_context;
	struct i915_request *active = NULL;

	list_for_each_entry_from_reverse(rq, list, link) {
		if (i915_request_completed(rq))
			break;

		if (rq->hw_context != context)
			break;

		active = rq;
	}

	return active;
}

2160
static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
2161
{
2162
	struct intel_engine_execlists * const execlists = &engine->execlists;
2163
	struct intel_context *ce;
2164
	struct i915_request *rq;
2165
	u32 *regs;
2166

2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	process_csb(engine); /* drain preemption events */

	/* Following the reset, we need to reload the CSB read/write pointers */
	reset_csb_pointers(&engine->execlists);

	/*
	 * Save the currently executing context, even if we completed
	 * its request, it was still running at the time of the
	 * reset and will have been clobbered.
	 */
	if (!port_isset(execlists->port))
		goto out_clear;

2180 2181
	rq = port_request(execlists->port);
	ce = rq->hw_context;
2182

2183 2184 2185 2186 2187 2188 2189 2190 2191
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
2192
	execlists_cancel_port_requests(execlists);
2193

2194
	rq = active_request(rq);
2195
	if (!rq)
2196 2197
		goto out_replay;

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	/*
	 * If this request hasn't started yet, e.g. it is waiting on a
	 * semaphore, we need to avoid skipping the request or else we
	 * break the signaling chain. However, if the context is corrupt
	 * the request will not restart and we will be stuck with a wedged
	 * device. It is quite often the case that if we issue a reset
	 * while the GPU is loading the context image, that the context
	 * image becomes corrupt.
	 *
	 * Otherwise, if we have not started yet, the request should replay
	 * perfectly and we do not need to flag the result as being erroneous.
	 */
	if (!i915_request_started(rq) && lrc_regs_ok(rq))
2211
		goto out_replay;
2212

2213 2214
	/*
	 * If the request was innocent, we leave the request in the ELSP
2215 2216 2217 2218 2219 2220 2221 2222 2223
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
2224
	i915_reset_request(rq, stalled);
2225
	if (!stalled && lrc_regs_ok(rq))
2226
		goto out_replay;
2227

2228 2229
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
2230 2231 2232 2233 2234 2235
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
2236
	regs = ce->lrc_reg_state;
2237 2238 2239 2240
	if (engine->pinned_default_state) {
		memcpy(regs, /* skip restoring the vanilla PPHWSP */
		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
		       engine->context_size - PAGE_SIZE);
2241
	}
2242
	execlists_init_reg_state(regs, ce, engine, ce->ring);
2243

2244
out_replay:
2245
	/* Rerun the request; its payload has been neutered (if guilty). */
2246 2247 2248 2249 2250
	ce->ring->head =
		rq ? intel_ring_wrap(ce->ring, rq->head) : ce->ring->tail;
	intel_ring_update_space(ce->ring);
	__execlists_update_reg_state(ce, engine);

2251 2252 2253
	/* Push back any incomplete requests for replay after the reset. */
	__unwind_incomplete_requests(engine);

2254 2255 2256
out_clear:
	execlists_clear_all_active(execlists);
}
2257

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
{
	unsigned long flags;

	GEM_TRACE("%s\n", engine->name);

	spin_lock_irqsave(&engine->timeline.lock, flags);

	__execlists_reset(engine, stalled);

	spin_unlock_irqrestore(&engine->timeline.lock, flags);
}

static void nop_submission_tasklet(unsigned long data)
{
	/* The driver is wedged; don't process any more events. */
}

static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	GEM_TRACE("%s\n", engine->name);

	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
	spin_lock_irqsave(&engine->timeline.lock, flags);

	__execlists_reset(engine, true);

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline.requests, link) {
		if (!i915_request_signaled(rq))
			dma_fence_set_error(&rq->fence, -EIO);

		i915_request_mark_complete(rq);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
	while ((rb = rb_first_cached(&execlists->queue))) {
		struct i915_priolist *p = to_priolist(rb);
		int i;

		priolist_for_each_request_consume(rq, rn, p, i) {
			list_del_init(&rq->sched.link);
			__i915_request_submit(rq);
			dma_fence_set_error(&rq->fence, -EIO);
			i915_request_mark_complete(rq);
		}

		rb_erase_cached(&p->node, &execlists->queue);
		i915_priolist_free(p);
	}

2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	/* Cancel all attached virtual engines */
	while ((rb = rb_first_cached(&execlists->virtual))) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);

		rb_erase_cached(rb, &execlists->virtual);
		RB_CLEAR_NODE(rb);

		spin_lock(&ve->base.timeline.lock);
		if (ve->request) {
			ve->request->engine = engine;
			__i915_request_submit(ve->request);
			dma_fence_set_error(&ve->request->fence, -EIO);
			i915_request_mark_complete(ve->request);
			ve->base.execlists.queue_priority_hint = INT_MIN;
			ve->request = NULL;
		}
		spin_unlock(&ve->base.timeline.lock);
	}

2347 2348 2349 2350 2351 2352 2353 2354
	/* Remaining _unready_ requests will be nop'ed when submitted */

	execlists->queue_priority_hint = INT_MIN;
	execlists->queue = RB_ROOT_CACHED;
	GEM_BUG_ON(port_isset(execlists->port));

	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
	execlists->tasklet.func = nop_submission_tasklet;
2355

2356
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
2357 2358
}

2359 2360
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
2361 2362
	struct intel_engine_execlists * const execlists = &engine->execlists;

2363
	/*
2364 2365 2366
	 * After a GPU reset, we may have requests to replay. Do so now while
	 * we still have the forcewake to be sure that the GPU is not allowed
	 * to sleep before we restart and reload a context.
2367
	 */
2368
	GEM_BUG_ON(!reset_in_progress(execlists));
2369 2370
	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
		execlists->tasklet.func(execlists->tasklet.data);
2371

2372 2373 2374
	if (__tasklet_enable(&execlists->tasklet))
		/* And kick in case we missed a new request submission. */
		tasklet_hi_schedule(&execlists->tasklet);
2375 2376
	GEM_TRACE("%s: depth->%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
2377 2378
}

2379
static int gen8_emit_bb_start(struct i915_request *rq,
2380
			      u64 offset, u32 len,
2381
			      const unsigned int flags)
2382
{
2383
	u32 *cs;
2384

2385
	cs = intel_ring_begin(rq, 4);
2386 2387
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2388

2389 2390 2391 2392 2393 2394 2395
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
2396 2397 2398 2399 2400
	 * we would be fine.  However, for gen8 there is another w/a that
	 * requires us to not preempt inside GPGPU execution, so we keep
	 * arbitration disabled for gen8 batches. Arbitration will be
	 * re-enabled before we close the request
	 * (engine->emit_fini_breadcrumb).
2401
	 */
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

	/* FIXME(BDW+): Address space and security selectors. */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);

	intel_ring_advance(rq, cs);

	return 0;
}

static int gen9_emit_bb_start(struct i915_request *rq,
			      u64 offset, u32 len,
			      const unsigned int flags)
{
	u32 *cs;

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

2425 2426
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

2427
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2428
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2429 2430
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
2431 2432 2433

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
2434

2435
	intel_ring_advance(rq, cs);
2436 2437 2438 2439

	return 0;
}

2440
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2441
{
2442 2443 2444
	ENGINE_WRITE(engine, RING_IMR,
		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
	ENGINE_POSTING_READ(engine, RING_IMR);
2445 2446
}

2447
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2448
{
2449
	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2450 2451
}

2452
static int gen8_emit_flush(struct i915_request *request, u32 mode)
2453
{
2454
	u32 cmd, *cs;
2455

2456 2457 2458
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2459 2460 2461

	cmd = MI_FLUSH_DW + 1;

2462 2463 2464 2465 2466 2467 2468
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2469
	if (mode & EMIT_INVALIDATE) {
2470
		cmd |= MI_INVALIDATE_TLB;
2471
		if (request->engine->class == VIDEO_DECODE_CLASS)
2472
			cmd |= MI_INVALIDATE_BSD;
2473 2474
	}

2475 2476 2477 2478 2479
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
2480 2481 2482 2483

	return 0;
}

2484
static int gen8_emit_flush_render(struct i915_request *request,
2485
				  u32 mode)
2486
{
2487
	struct intel_engine_cs *engine = request->engine;
2488
	u32 scratch_addr =
2489
		i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
2490
	bool vf_flush_wa = false, dc_flush_wa = false;
2491
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
2492
	int len;
2493 2494 2495

	flags |= PIPE_CONTROL_CS_STALL;

2496
	if (mode & EMIT_FLUSH) {
2497 2498
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2499
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2500
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2501 2502
	}

2503
	if (mode & EMIT_INVALIDATE) {
2504 2505 2506 2507 2508 2509 2510 2511 2512
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

2513 2514 2515 2516
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
2517
		if (IS_GEN(request->i915, 9))
2518
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
2519 2520 2521 2522

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
2523
	}
2524

M
Mika Kuoppala 已提交
2525 2526 2527 2528 2529 2530 2531 2532
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

2533 2534 2535
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2536

2537 2538
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
2539

2540 2541 2542
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2543

2544
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2545

2546 2547
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2548

2549
	intel_ring_advance(request, cs);
2550 2551 2552 2553

	return 0;
}

2554 2555 2556 2557 2558
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2559
static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2560
{
C
Chris Wilson 已提交
2561 2562
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2563 2564
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
2565 2566

	return cs;
C
Chris Wilson 已提交
2567
}
2568

2569
static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
2570
{
2571 2572
	cs = gen8_emit_ggtt_write(cs,
				  request->fence.seqno,
2573 2574
				  request->timeline->hwsp_offset,
				  0);
2575

2576
	*cs++ = MI_USER_INTERRUPT;
2577
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2578

2579
	request->tail = intel_ring_offset(request, cs);
2580
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2581

2582
	return gen8_emit_wa_tail(request, cs);
2583
}
2584

2585
static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2586
{
2587
	/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
2588
	cs = gen8_emit_ggtt_write_rcs(cs,
2589 2590
				      request->fence.seqno,
				      request->timeline->hwsp_offset,
2591 2592
				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2593 2594 2595 2596 2597
				      PIPE_CONTROL_DC_FLUSH_ENABLE);
	cs = gen8_emit_pipe_control(cs,
				    PIPE_CONTROL_FLUSH_ENABLE |
				    PIPE_CONTROL_CS_STALL,
				    0);
2598

2599
	*cs++ = MI_USER_INTERRUPT;
2600
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2601

2602
	request->tail = intel_ring_offset(request, cs);
2603
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2604

2605
	return gen8_emit_wa_tail(request, cs);
2606
}
2607

2608
static int gen8_init_rcs_context(struct i915_request *rq)
2609 2610 2611
{
	int ret;

2612
	ret = intel_engine_emit_ctx_wa(rq);
2613 2614 2615
	if (ret)
		return ret;

2616
	ret = intel_rcs_context_init_mocs(rq);
2617 2618 2619 2620 2621 2622 2623
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2624
	return i915_gem_render_state_emit(rq);
2625 2626
}

2627 2628 2629 2630 2631
static void execlists_park(struct intel_engine_cs *engine)
{
	intel_engine_park(engine);
}

2632
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2633
{
2634
	engine->submit_request = execlists_submit_request;
2635
	engine->cancel_requests = execlists_cancel_requests;
2636
	engine->schedule = i915_schedule;
2637
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2638

2639
	engine->reset.prepare = execlists_reset_prepare;
2640 2641
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2642

2643
	engine->park = execlists_park;
2644
	engine->unpark = NULL;
2645 2646

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2647 2648
	if (!intel_vgpu_active(engine->i915))
		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2649 2650
	if (engine->preempt_context &&
	    HAS_LOGICAL_RING_PREEMPTION(engine->i915))
2651
		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2652 2653
}

2654 2655 2656 2657 2658 2659 2660
static void execlists_destroy(struct intel_engine_cs *engine)
{
	intel_engine_cleanup_common(engine);
	lrc_destroy_wa_ctx(engine);
	kfree(engine);
}

2661
static void
2662
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2663 2664
{
	/* Default vfuncs which can be overriden by each engine. */
2665 2666

	engine->destroy = execlists_destroy;
2667
	engine->resume = execlists_resume;
2668 2669 2670 2671

	engine->reset.prepare = execlists_reset_prepare;
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2672

2673
	engine->cops = &execlists_context_ops;
2674 2675
	engine->request_alloc = execlists_request_alloc;

2676
	engine->emit_flush = gen8_emit_flush;
2677 2678
	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
2679

2680
	engine->set_default_submission = intel_execlists_set_default_submission;
2681

2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2693 2694 2695 2696
	if (IS_GEN(engine->i915, 8))
		engine->emit_bb_start = gen8_emit_bb_start;
	else
		engine->emit_bb_start = gen9_emit_bb_start;
2697 2698
}

2699
static inline void
2700
logical_ring_default_irqs(struct intel_engine_cs *engine)
2701
{
2702 2703 2704 2705
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
2706 2707 2708 2709 2710
			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
			[VECS0] = GEN8_VECS_IRQ_SHIFT,
2711 2712 2713 2714 2715
		};

		shift = irq_shifts[engine->id];
	}

2716 2717
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2718 2719
}

2720
int intel_execlists_submission_setup(struct intel_engine_cs *engine)
2721 2722 2723 2724
{
	/* Intentionally left blank. */
	engine->buffer = NULL;

2725 2726
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2727 2728 2729

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
2730

2731 2732 2733 2734 2735 2736
	if (engine->class == RENDER_CLASS) {
		engine->init_context = gen8_init_rcs_context;
		engine->emit_flush = gen8_emit_flush_render;
		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
	}

2737
	return 0;
2738 2739
}

2740
int intel_execlists_submission_init(struct intel_engine_cs *engine)
2741
{
2742
	struct intel_engine_execlists * const execlists = &engine->execlists;
2743 2744
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
2745
	u32 base = engine->mmio_base;
2746 2747
	int ret;

2748
	ret = intel_engine_init_common(engine);
2749
	if (ret)
2750
		return ret;
2751

2752
	intel_engine_init_workarounds(engine);
2753 2754 2755 2756 2757 2758 2759 2760 2761
	intel_engine_init_whitelist(engine);

	if (intel_init_workaround_bb(engine))
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed\n");
2762

2763
	if (HAS_LOGICAL_RING_ELSQ(i915)) {
2764
		execlists->submit_reg = uncore->regs +
2765
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
2766
		execlists->ctrl_reg = uncore->regs +
2767
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
2768
	} else {
2769
		execlists->submit_reg = uncore->regs +
2770
			i915_mmio_reg_offset(RING_ELSP(base));
2771
	}
2772

2773
	execlists->preempt_complete_status = ~0u;
2774
	if (engine->preempt_context)
2775
		execlists->preempt_complete_status =
2776
			upper_32_bits(engine->preempt_context->lrc_desc);
2777

2778
	execlists->csb_status =
2779
		&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2780

2781
	execlists->csb_write =
2782
		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
2783

2784
	if (INTEL_GEN(i915) < 11)
2785 2786 2787
		execlists->csb_size = GEN8_CSB_ENTRIES;
	else
		execlists->csb_size = GEN11_CSB_ENTRIES;
2788

2789
	reset_csb_pointers(execlists);
2790

2791 2792 2793
	return 0;
}

2794
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2795 2796 2797
{
	u32 indirect_ctx_offset;

2798
	switch (INTEL_GEN(engine->i915)) {
2799
	default:
2800
		MISSING_CASE(INTEL_GEN(engine->i915));
2801
		/* fall through */
2802 2803 2804 2805
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2806 2807 2808 2809
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2823
static void execlists_init_reg_state(u32 *regs,
2824
				     struct intel_context *ce,
2825 2826
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2827
{
2828
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->gem_context->vm);
2829
	bool rcs = engine->class == RENDER_CLASS;
2830
	u32 base = engine->mmio_base;
2831

2832 2833
	/*
	 * A context is actually a big batch buffer with several
2834 2835 2836 2837 2838
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
2839 2840
	 *
	 * Must keep consistent with virtual_update_register_offsets().
2841 2842 2843 2844
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

2845
	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
2846
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2847
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2848
	if (INTEL_GEN(engine->i915) < 11) {
2849 2850 2851 2852
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
					    CTX_CTRL_RS_CTX_ENABLE);
	}
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2865 2866
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2867 2868 2869
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2870
		if (wa_ctx->indirect_ctx.size) {
2871
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2872

2873
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2874 2875
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2876

2877
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2878
				intel_lr_indirect_ctx_offset(engine) << 6;
2879 2880 2881 2882 2883
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2884

2885
			regs[CTX_BB_PER_CTX_PTR + 1] =
2886
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2887
		}
2888
	}
2889 2890 2891 2892

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2893
	/* PDP values well be assigned later if needed */
2894 2895 2896 2897 2898 2899 2900 2901
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
2902

2903
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
2904 2905 2906 2907
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2908
		ASSIGN_CTX_PML4(ppgtt, regs);
2909
	} else {
2910 2911 2912 2913
		ASSIGN_CTX_PDP(ppgtt, regs, 3);
		ASSIGN_CTX_PDP(ppgtt, regs, 2);
		ASSIGN_CTX_PDP(ppgtt, regs, 1);
		ASSIGN_CTX_PDP(ppgtt, regs, 0);
2914 2915
	}

2916 2917
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2918
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
2919

2920
		i915_oa_init_reg_state(engine, ce, regs);
2921
	}
2922 2923

	regs[CTX_END] = MI_BATCH_BUFFER_END;
2924
	if (INTEL_GEN(engine->i915) >= 10)
2925
		regs[CTX_END] |= BIT(0);
2926 2927 2928
}

static int
2929
populate_lr_context(struct intel_context *ce,
2930 2931 2932 2933 2934
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2935
	u32 *regs;
2936 2937 2938 2939 2940 2941 2942 2943 2944
	int ret;

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}

2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
2956 2957 2958 2959
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
2960 2961 2962 2963 2964

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2965 2966
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2967
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2968
	execlists_init_reg_state(regs, ce, engine, ring);
2969 2970 2971
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2972 2973
	if (ce->gem_context == engine->i915->preempt_context &&
	    INTEL_GEN(engine->i915) < 11)
2974 2975 2976
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2977

2978
	ret = 0;
2979
err_unpin_ctx:
2980 2981 2982
	__i915_gem_object_flush_map(ctx_obj,
				    LRC_HEADER_PAGES * PAGE_SIZE,
				    engine->context_size);
2983
	i915_gem_object_unpin_map(ctx_obj);
2984
	return ret;
2985 2986
}

2987 2988
static struct i915_timeline *get_timeline(struct i915_gem_context *ctx)
{
2989 2990 2991 2992
	if (ctx->timeline)
		return i915_timeline_get(ctx->timeline);
	else
		return i915_timeline_create(ctx->i915, NULL);
2993 2994 2995 2996
}

static int execlists_context_deferred_alloc(struct intel_context *ce,
					    struct intel_engine_cs *engine)
2997
{
2998
	struct drm_i915_gem_object *ctx_obj;
2999
	struct i915_vma *vma;
3000
	u32 context_size;
3001
	struct intel_ring *ring;
3002
	struct i915_timeline *timeline;
3003 3004
	int ret;

3005 3006
	if (ce->state)
		return 0;
3007

3008
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
3009

3010 3011 3012 3013 3014
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
3015

3016
	ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
3017 3018
	if (IS_ERR(ctx_obj))
		return PTR_ERR(ctx_obj);
3019

3020
	vma = i915_vma_instance(ctx_obj, &engine->i915->ggtt.vm, NULL);
3021 3022 3023 3024 3025
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

3026
	timeline = get_timeline(ce->gem_context);
3027 3028 3029 3030 3031
	if (IS_ERR(timeline)) {
		ret = PTR_ERR(timeline);
		goto error_deref_obj;
	}

3032 3033 3034
	ring = intel_engine_create_ring(engine,
					timeline,
					ce->gem_context->ring_size);
3035
	i915_timeline_put(timeline);
3036 3037
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
3038
		goto error_deref_obj;
3039 3040
	}

3041
	ret = populate_lr_context(ce, ctx_obj, engine, ring);
3042 3043
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
3044
		goto error_ring_free;
3045 3046
	}

3047
	ce->ring = ring;
3048
	ce->state = vma;
3049 3050

	return 0;
3051

3052
error_ring_free:
3053
	intel_ring_put(ring);
3054
error_deref_obj:
3055
	i915_gem_object_put(ctx_obj);
3056
	return ret;
3057
}
3058

3059 3060 3061 3062 3063 3064 3065
static void virtual_context_destroy(struct kref *kref)
{
	struct virtual_engine *ve =
		container_of(kref, typeof(*ve), context.ref);
	unsigned int n;

	GEM_BUG_ON(ve->request);
3066
	GEM_BUG_ON(ve->context.inflight);
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087

	for (n = 0; n < ve->num_siblings; n++) {
		struct intel_engine_cs *sibling = ve->siblings[n];
		struct rb_node *node = &ve->nodes[sibling->id].rb;

		if (RB_EMPTY_NODE(node))
			continue;

		spin_lock_irq(&sibling->timeline.lock);

		/* Detachment is lazily performed in the execlists tasklet */
		if (!RB_EMPTY_NODE(node))
			rb_erase_cached(node, &sibling->execlists.virtual);

		spin_unlock_irq(&sibling->timeline.lock);
	}
	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));

	if (ve->context.state)
		__execlists_context_fini(&ve->context);

3088 3089
	kfree(ve->bonds);

3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
	i915_timeline_fini(&ve->base.timeline);
	kfree(ve);
}

static void virtual_engine_initial_hint(struct virtual_engine *ve)
{
	int swp;

	/*
	 * Pick a random sibling on starting to help spread the load around.
	 *
	 * New contexts are typically created with exactly the same order
	 * of siblings, and often started in batches. Due to the way we iterate
	 * the array of sibling when submitting requests, sibling[0] is
	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
	 * randomised across the system, we also help spread the load by the
	 * first engine we inspect being different each time.
	 *
	 * NB This does not force us to execute on this engine, it will just
	 * typically be the first we inspect for submission.
	 */
	swp = prandom_u32_max(ve->num_siblings);
	if (!swp)
		return;

	swap(ve->siblings[swp], ve->siblings[0]);
	virtual_update_register_offsets(ve->context.lrc_reg_state,
					ve->siblings[0]);
}

static int virtual_context_pin(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	int err;

	/* Note: we must use a real engine class for setting up reg state */
	err = __execlists_context_pin(ce, ve->siblings[0]);
	if (err)
		return err;

	virtual_engine_initial_hint(ve);
	return 0;
}

static void virtual_context_enter(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	unsigned int n;

	for (n = 0; n < ve->num_siblings; n++)
		intel_engine_pm_get(ve->siblings[n]);
}

static void virtual_context_exit(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	unsigned int n;

	ce->saturated = 0;
	for (n = 0; n < ve->num_siblings; n++)
		intel_engine_pm_put(ve->siblings[n]);
}

static const struct intel_context_ops virtual_context_ops = {
	.pin = virtual_context_pin,
	.unpin = execlists_context_unpin,

	.enter = virtual_context_enter,
	.exit = virtual_context_exit,

	.destroy = virtual_context_destroy,
};

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
{
	struct i915_request *rq;
	intel_engine_mask_t mask;

	rq = READ_ONCE(ve->request);
	if (!rq)
		return 0;

	/* The rq is ready for submission; rq->execution_mask is now stable. */
	mask = rq->execution_mask;
	if (unlikely(!mask)) {
		/* Invalid selection, submit to a random engine in error */
		i915_request_skip(rq, -ENODEV);
		mask = ve->siblings[0]->mask;
	}

	GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n",
		  ve->base.name,
		  rq->fence.context, rq->fence.seqno,
		  mask, ve->base.execlists.queue_priority_hint);

	return mask;
}

3188 3189 3190 3191
static void virtual_submission_tasklet(unsigned long data)
{
	struct virtual_engine * const ve = (struct virtual_engine *)data;
	const int prio = ve->base.execlists.queue_priority_hint;
3192
	intel_engine_mask_t mask;
3193 3194
	unsigned int n;

3195 3196 3197 3198 3199 3200
	rcu_read_lock();
	mask = virtual_submission_mask(ve);
	rcu_read_unlock();
	if (unlikely(!mask))
		return;

3201 3202 3203 3204 3205 3206 3207
	local_irq_disable();
	for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
		struct intel_engine_cs *sibling = ve->siblings[n];
		struct ve_node * const node = &ve->nodes[sibling->id];
		struct rb_node **parent, *rb;
		bool first;

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
		if (unlikely(!(mask & sibling->mask))) {
			if (!RB_EMPTY_NODE(&node->rb)) {
				spin_lock(&sibling->timeline.lock);
				rb_erase_cached(&node->rb,
						&sibling->execlists.virtual);
				RB_CLEAR_NODE(&node->rb);
				spin_unlock(&sibling->timeline.lock);
			}
			continue;
		}

3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
		spin_lock(&sibling->timeline.lock);

		if (!RB_EMPTY_NODE(&node->rb)) {
			/*
			 * Cheat and avoid rebalancing the tree if we can
			 * reuse this node in situ.
			 */
			first = rb_first_cached(&sibling->execlists.virtual) ==
				&node->rb;
			if (prio == node->prio || (prio > node->prio && first))
				goto submit_engine;

			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
		}

		rb = NULL;
		first = true;
		parent = &sibling->execlists.virtual.rb_root.rb_node;
		while (*parent) {
			struct ve_node *other;

			rb = *parent;
			other = rb_entry(rb, typeof(*other), rb);
			if (prio > other->prio) {
				parent = &rb->rb_left;
			} else {
				parent = &rb->rb_right;
				first = false;
			}
		}

		rb_link_node(&node->rb, rb, parent);
		rb_insert_color_cached(&node->rb,
				       &sibling->execlists.virtual,
				       first);

submit_engine:
		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
		node->prio = prio;
		if (first && prio > sibling->execlists.queue_priority_hint) {
			sibling->execlists.queue_priority_hint = prio;
			tasklet_hi_schedule(&sibling->execlists.tasklet);
		}

		spin_unlock(&sibling->timeline.lock);
	}
	local_irq_enable();
}

static void virtual_submit_request(struct i915_request *rq)
{
	struct virtual_engine *ve = to_virtual_engine(rq->engine);

	GEM_TRACE("%s: rq=%llx:%lld\n",
		  ve->base.name,
		  rq->fence.context,
		  rq->fence.seqno);

	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);

	GEM_BUG_ON(ve->request);
	ve->base.execlists.queue_priority_hint = rq_prio(rq);
	WRITE_ONCE(ve->request, rq);

	tasklet_schedule(&ve->base.execlists.tasklet);
}

3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
static struct ve_bond *
virtual_find_bond(struct virtual_engine *ve,
		  const struct intel_engine_cs *master)
{
	int i;

	for (i = 0; i < ve->num_bonds; i++) {
		if (ve->bonds[i].master == master)
			return &ve->bonds[i];
	}

	return NULL;
}

static void
virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
{
	struct virtual_engine *ve = to_virtual_engine(rq->engine);
	struct ve_bond *bond;

	bond = virtual_find_bond(ve, to_request(signal)->engine);
	if (bond) {
		intel_engine_mask_t old, new, cmp;

		cmp = READ_ONCE(rq->execution_mask);
		do {
			old = cmp;
			new = cmp & bond->sibling_mask;
		} while ((cmp = cmpxchg(&rq->execution_mask, old, new)) != old);
	}
}

3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
struct intel_context *
intel_execlists_create_virtual(struct i915_gem_context *ctx,
			       struct intel_engine_cs **siblings,
			       unsigned int count)
{
	struct virtual_engine *ve;
	unsigned int n;
	int err;

	if (count == 0)
		return ERR_PTR(-EINVAL);

	if (count == 1)
		return intel_context_create(ctx, siblings[0]);

	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
	if (!ve)
		return ERR_PTR(-ENOMEM);

	ve->base.i915 = ctx->i915;
	ve->base.id = -1;
	ve->base.class = OTHER_CLASS;
	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
	ve->base.flags = I915_ENGINE_IS_VIRTUAL;

	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");

	err = i915_timeline_init(ctx->i915, &ve->base.timeline, NULL);
	if (err)
		goto err_put;
	i915_timeline_set_subclass(&ve->base.timeline, TIMELINE_VIRTUAL);

	intel_engine_init_execlists(&ve->base);

	ve->base.cops = &virtual_context_ops;
	ve->base.request_alloc = execlists_request_alloc;

	ve->base.schedule = i915_schedule;
	ve->base.submit_request = virtual_submit_request;
3358
	ve->base.bond_execute = virtual_bond_execute;
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447

	ve->base.execlists.queue_priority_hint = INT_MIN;
	tasklet_init(&ve->base.execlists.tasklet,
		     virtual_submission_tasklet,
		     (unsigned long)ve);

	intel_context_init(&ve->context, ctx, &ve->base);

	for (n = 0; n < count; n++) {
		struct intel_engine_cs *sibling = siblings[n];

		GEM_BUG_ON(!is_power_of_2(sibling->mask));
		if (sibling->mask & ve->base.mask) {
			DRM_DEBUG("duplicate %s entry in load balancer\n",
				  sibling->name);
			err = -EINVAL;
			goto err_put;
		}

		/*
		 * The virtual engine implementation is tightly coupled to
		 * the execlists backend -- we push out request directly
		 * into a tree inside each physical engine. We could support
		 * layering if we handle cloning of the requests and
		 * submitting a copy into each backend.
		 */
		if (sibling->execlists.tasklet.func !=
		    execlists_submission_tasklet) {
			err = -ENODEV;
			goto err_put;
		}

		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);

		ve->siblings[ve->num_siblings++] = sibling;
		ve->base.mask |= sibling->mask;

		/*
		 * All physical engines must be compatible for their emission
		 * functions (as we build the instructions during request
		 * construction and do not alter them before submission
		 * on the physical engine). We use the engine class as a guide
		 * here, although that could be refined.
		 */
		if (ve->base.class != OTHER_CLASS) {
			if (ve->base.class != sibling->class) {
				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
					  sibling->class, ve->base.class);
				err = -EINVAL;
				goto err_put;
			}
			continue;
		}

		ve->base.class = sibling->class;
		ve->base.uabi_class = sibling->uabi_class;
		snprintf(ve->base.name, sizeof(ve->base.name),
			 "v%dx%d", ve->base.class, count);
		ve->base.context_size = sibling->context_size;

		ve->base.emit_bb_start = sibling->emit_bb_start;
		ve->base.emit_flush = sibling->emit_flush;
		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
		ve->base.emit_fini_breadcrumb_dw =
			sibling->emit_fini_breadcrumb_dw;
	}

	return &ve->context;

err_put:
	intel_context_put(&ve->context);
	return ERR_PTR(err);
}

struct intel_context *
intel_execlists_clone_virtual(struct i915_gem_context *ctx,
			      struct intel_engine_cs *src)
{
	struct virtual_engine *se = to_virtual_engine(src);
	struct intel_context *dst;

	dst = intel_execlists_create_virtual(ctx,
					     se->siblings,
					     se->num_siblings);
	if (IS_ERR(dst))
		return dst;

3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
	if (se->num_bonds) {
		struct virtual_engine *de = to_virtual_engine(dst->engine);

		de->bonds = kmemdup(se->bonds,
				    sizeof(*se->bonds) * se->num_bonds,
				    GFP_KERNEL);
		if (!de->bonds) {
			intel_context_put(dst);
			return ERR_PTR(-ENOMEM);
		}

		de->num_bonds = se->num_bonds;
	}

3462 3463 3464
	return dst;
}

3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
				     const struct intel_engine_cs *master,
				     const struct intel_engine_cs *sibling)
{
	struct virtual_engine *ve = to_virtual_engine(engine);
	struct ve_bond *bond;
	int n;

	/* Sanity check the sibling is part of the virtual engine */
	for (n = 0; n < ve->num_siblings; n++)
		if (sibling == ve->siblings[n])
			break;
	if (n == ve->num_siblings)
		return -EINVAL;

	bond = virtual_find_bond(ve, master);
	if (bond) {
		bond->sibling_mask |= sibling->mask;
		return 0;
	}

	bond = krealloc(ve->bonds,
			sizeof(*bond) * (ve->num_bonds + 1),
			GFP_KERNEL);
	if (!bond)
		return -ENOMEM;

	bond[ve->num_bonds].master = master;
	bond[ve->num_bonds].sibling_mask = sibling->mask;

	ve->bonds = bond;
	ve->num_bonds++;

	return 0;
}

3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534
void intel_execlists_show_requests(struct intel_engine_cs *engine,
				   struct drm_printer *m,
				   void (*show_request)(struct drm_printer *m,
							struct i915_request *rq,
							const char *prefix),
				   unsigned int max)
{
	const struct intel_engine_execlists *execlists = &engine->execlists;
	struct i915_request *rq, *last;
	unsigned long flags;
	unsigned int count;
	struct rb_node *rb;

	spin_lock_irqsave(&engine->timeline.lock, flags);

	last = NULL;
	count = 0;
	list_for_each_entry(rq, &engine->timeline.requests, link) {
		if (count++ < max - 1)
			show_request(m, rq, "\t\tE ");
		else
			last = rq;
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d executing requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tE ");
	}

	last = NULL;
	count = 0;
3535 3536 3537
	if (execlists->queue_priority_hint != INT_MIN)
		drm_printf(m, "\t\tQueue priority hint: %d\n",
			   execlists->queue_priority_hint);
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		int i;

		priolist_for_each_request(rq, p, i) {
			if (count++ < max - 1)
				show_request(m, rq, "\t\tQ ");
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d queued requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tQ ");
	}

3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
	last = NULL;
	count = 0;
	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq = READ_ONCE(ve->request);

		if (rq) {
			if (count++ < max - 1)
				show_request(m, rq, "\t\tV ");
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d virtual requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tV ");
	}

3581 3582 3583
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
}

3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
void intel_lr_context_reset(struct intel_engine_cs *engine,
			    struct intel_context *ce,
			    u32 head,
			    bool scrub)
{
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	if (scrub) {
		u32 *regs = ce->lrc_reg_state;

		if (engine->pinned_default_state) {
			memcpy(regs, /* skip restoring the vanilla PPHWSP */
			       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
			       engine->context_size - PAGE_SIZE);
		}
		execlists_init_reg_state(regs, ce, engine, ce->ring);
	}

	/* Rerun the request; its payload has been neutered (if guilty). */
	ce->ring->head = head;
	intel_ring_update_space(ce->ring);

	__execlists_update_reg_state(ce, engine);
}

3615
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3616
#include "selftest_lrc.c"
3617
#endif