intel_lrc.c 85.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136

#include "i915_drv.h"
137
#include "i915_gem_render_state.h"
138
#include "i915_vgpu.h"
139
#include "intel_lrc_reg.h"
140
#include "intel_mocs.h"
141
#include "intel_reset.h"
142
#include "intel_workarounds.h"
143

144 145 146 147 148 149 150 151 152 153 154 155 156
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
157

158
#define GEN8_CTX_STATUS_COMPLETED_MASK \
159
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
160

161 162
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
163
#define WA_TAIL_DWORDS 2
164
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
165

166
#define ACTIVE_PRIORITY (I915_PRIORITY_NEWCLIENT | I915_PRIORITY_NOSEMAPHORE)
167

168 169
static int execlists_context_deferred_alloc(struct intel_context *ce,
					    struct intel_engine_cs *engine);
170
static void execlists_init_reg_state(u32 *reg_state,
171
				     struct intel_context *ce,
172 173
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
174

175 176 177 178 179 180 181
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
182
	return rq->sched.attr.priority;
183 184
}

185 186
static int effective_prio(const struct i915_request *rq)
{
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
	int prio = rq_prio(rq);

	/*
	 * On unwinding the active request, we give it a priority bump
	 * equivalent to a freshly submitted request. This protects it from
	 * being gazumped again, but it would be preferable if we didn't
	 * let it be gazumped in the first place!
	 *
	 * See __unwind_incomplete_requests()
	 */
	if (~prio & ACTIVE_PRIORITY && __i915_request_has_started(rq)) {
		/*
		 * After preemption, we insert the active request at the
		 * end of the new priority level. This means that we will be
		 * _lower_ priority than the preemptee all things equal (and
		 * so the preemption is valid), so adjust our comparison
		 * accordingly.
		 */
		prio |= ACTIVE_PRIORITY;
		prio--;
	}

209
	/* Restrict mere WAIT boosts from triggering preemption */
210
	return prio | __NO_PREEMPTION;
211 212
}

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
static int queue_prio(const struct intel_engine_execlists *execlists)
{
	struct i915_priolist *p;
	struct rb_node *rb;

	rb = rb_first_cached(&execlists->queue);
	if (!rb)
		return INT_MIN;

	/*
	 * As the priolist[] are inverted, with the highest priority in [0],
	 * we have to flip the index value to become priority.
	 */
	p = to_priolist(rb);
	return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
}

230
static inline bool need_preempt(const struct intel_engine_cs *engine,
231 232
				const struct i915_request *rq)
{
233
	int last_prio;
234

235
	if (!engine->preempt_context)
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
		return false;

	if (i915_request_completed(rq))
		return false;

	/*
	 * Check if the current priority hint merits a preemption attempt.
	 *
	 * We record the highest value priority we saw during rescheduling
	 * prior to this dequeue, therefore we know that if it is strictly
	 * less than the current tail of ESLP[0], we do not need to force
	 * a preempt-to-idle cycle.
	 *
	 * However, the priority hint is a mere hint that we may need to
	 * preempt. If that hint is stale or we may be trying to preempt
	 * ourselves, ignore the request.
	 */
253
	last_prio = effective_prio(rq);
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
	if (!__execlists_need_preempt(engine->execlists.queue_priority_hint,
				      last_prio))
		return false;

	/*
	 * Check against the first request in ELSP[1], it will, thanks to the
	 * power of PI, be the highest priority of that context.
	 */
	if (!list_is_last(&rq->link, &engine->timeline.requests) &&
	    rq_prio(list_next_entry(rq, link)) > last_prio)
		return true;

	/*
	 * If the inflight context did not trigger the preemption, then maybe
	 * it was the set of queued requests? Pick the highest priority in
	 * the queue (the first active priolist) and see if it deserves to be
	 * running instead of ELSP[0].
	 *
	 * The highest priority request in the queue can not be either
	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
	 * context, it's priority would not exceed ELSP[0] aka last_prio.
	 */
	return queue_prio(&engine->execlists) > last_prio;
}

__maybe_unused static inline bool
280
assert_priority_queue(const struct i915_request *prev,
281
		      const struct i915_request *next)
282
{
283 284
	const struct intel_engine_execlists *execlists =
		&prev->engine->execlists;
285 286 287 288 289 290 291 292 293 294 295 296

	/*
	 * Without preemption, the prev may refer to the still active element
	 * which we refuse to let go.
	 *
	 * Even with preemption, there are times when we think it is better not
	 * to preempt and leave an ostensibly lower priority request in flight.
	 */
	if (port_request(execlists->port) == prev)
		return true;

	return rq_prio(prev) >= rq_prio(next);
297 298
}

299
/*
300 301 302 303 304
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
305 306
 * This is what a descriptor looks like, from LSB to MSB::
 *
307
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
308
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
309
 *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
310 311
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
312 313 314 315 316 317 318 319 320 321 322 323
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
324
 */
325 326
static u64
lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
327
{
328
	struct i915_gem_context *ctx = ce->gem_context;
329
	u64 desc;
330

331 332
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
333

334
	desc = ctx->desc_template;				/* bits  0-11 */
335 336
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

337
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
338
								/* bits 12-31 */
339 340
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

341 342 343 344 345
	/*
	 * The following 32bits are copied into the OA reports (dword 2).
	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
	 * anything below.
	 */
346
	if (INTEL_GEN(engine->i915) >= 11) {
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
362

363
	return desc;
364 365
}

366
static void unwind_wa_tail(struct i915_request *rq)
367 368 369 370 371
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

372 373
static struct i915_request *
__unwind_incomplete_requests(struct intel_engine_cs *engine)
374
{
375
	struct i915_request *rq, *rn, *active = NULL;
376
	struct list_head *uninitialized_var(pl);
377
	int prio = I915_PRIORITY_INVALID | ACTIVE_PRIORITY;
378

379
	lockdep_assert_held(&engine->timeline.lock);
380 381

	list_for_each_entry_safe_reverse(rq, rn,
382
					 &engine->timeline.requests,
383
					 link) {
384
		if (i915_request_completed(rq))
385
			break;
386

387
		__i915_request_unsubmit(rq);
388 389
		unwind_wa_tail(rq);

390 391
		GEM_BUG_ON(rq->hw_context->active);

392
		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
393 394
		if (rq_prio(rq) != prio) {
			prio = rq_prio(rq);
395
			pl = i915_sched_lookup_priolist(engine, prio);
396
		}
397
		GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
398

399
		list_add(&rq->sched.link, pl);
400 401 402 403 404 405 406 407

		active = rq;
	}

	/*
	 * The active request is now effectively the start of a new client
	 * stream, so give it the equivalent small priority bump to prevent
	 * it being gazumped a second time by another peer.
408 409 410 411 412 413 414 415 416 417 418 419
	 *
	 * Note we have to be careful not to apply a priority boost to a request
	 * still spinning on its semaphores. If the request hasn't started, that
	 * means it is still waiting for its dependencies to be signaled, and
	 * if we apply a priority boost to this request, we will boost it past
	 * its signalers and so break PI.
	 *
	 * One consequence of this preemption boost is that we may jump
	 * over lesser priorities (such as I915_PRIORITY_WAIT), effectively
	 * making those priorities non-preemptible. They will be moved forward
	 * in the priority queue, but they will not gain immediate access to
	 * the GPU.
420
	 */
421 422
	if (~prio & ACTIVE_PRIORITY && __i915_request_has_started(active)) {
		prio |= ACTIVE_PRIORITY;
423
		active->sched.attr.priority = prio;
424
		list_move_tail(&active->sched.link,
425
			       i915_sched_lookup_priolist(engine, prio));
426
	}
427 428

	return active;
429 430
}

431
struct i915_request *
432 433 434 435 436
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

437
	return __unwind_incomplete_requests(engine);
438 439
}

440
static inline void
441
execlists_context_status_change(struct i915_request *rq, unsigned long status)
442
{
443 444 445 446 447 448
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
449

450 451
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
452 453
}

454 455 456 457 458 459 460 461 462 463 464 465 466
inline void
execlists_user_begin(struct intel_engine_execlists *execlists,
		     const struct execlist_port *port)
{
	execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
}

inline void
execlists_user_end(struct intel_engine_execlists *execlists)
{
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
}

467
static inline void
468
execlists_context_schedule_in(struct i915_request *rq)
469
{
470 471
	GEM_BUG_ON(rq->hw_context->active);

472
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
473
	intel_engine_context_in(rq->engine);
474
	rq->hw_context->active = rq->engine;
475 476 477
}

static inline void
478
execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
479
{
480
	rq->hw_context->active = NULL;
481
	intel_engine_context_out(rq->engine);
482 483
	execlists_context_status_change(rq, status);
	trace_i915_request_out(rq);
484 485
}

486
static u64 execlists_update_context(struct i915_request *rq)
487
{
488
	struct intel_context *ce = rq->hw_context;
489

490 491
	ce->lrc_reg_state[CTX_RING_TAIL + 1] =
		intel_ring_set_tail(rq->ring, rq->tail);
492

493 494 495 496 497 498 499 500 501
	/*
	 * Make sure the context image is complete before we submit it to HW.
	 *
	 * Ostensibly, writes (including the WCB) should be flushed prior to
	 * an uncached write such as our mmio register access, the empirical
	 * evidence (esp. on Braswell) suggests that the WC write into memory
	 * may not be visible to the HW prior to the completion of the UC
	 * register write and that we may begin execution from the context
	 * before its image is complete leading to invalid PD chasing.
502 503 504 505 506
	 *
	 * Furthermore, Braswell, at least, wants a full mb to be sure that
	 * the writes are coherent in memory (visible to the GPU) prior to
	 * execution, and not just visible to other CPUs (as is the result of
	 * wmb).
507
	 */
508
	mb();
509
	return ce->lrc_desc;
510 511
}

512
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
513
{
514 515 516 517 518 519 520
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
521 522
}

523
static void execlists_submit_ports(struct intel_engine_cs *engine)
524
{
525 526
	struct intel_engine_execlists *execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
527
	unsigned int n;
528

529 530 531 532 533 534 535 536 537 538
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!engine->i915->gt.awake);

539 540 541 542 543 544 545
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
546
		struct i915_request *rq;
547 548 549 550 551 552 553
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
554
				execlists_context_schedule_in(rq);
555 556 557
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
558

559
			GEM_TRACE("%s in[%d]:  ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
560
				  engine->name, n,
561
				  port[n].context_id, count,
562
				  rq->fence.context, rq->fence.seqno,
563
				  hwsp_seqno(rq),
564
				  rq_prio(rq));
565 566 567 568
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
569

570
		write_desc(execlists, desc, n);
571
	}
572 573 574 575 576 577

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);

	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
578 579
}

580
static bool ctx_single_port_submission(const struct intel_context *ce)
581
{
582
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
583
		i915_gem_context_force_single_submission(ce->gem_context));
584
}
585

586 587
static bool can_merge_ctx(const struct intel_context *prev,
			  const struct intel_context *next)
588 589 590
{
	if (prev != next)
		return false;
591

592 593
	if (ctx_single_port_submission(prev))
		return false;
594

595
	return true;
596 597
}

598 599 600 601 602 603 604 605 606 607 608
static bool can_merge_rq(const struct i915_request *prev,
			 const struct i915_request *next)
{
	GEM_BUG_ON(!assert_priority_queue(prev, next));

	if (!can_merge_ctx(prev->hw_context, next->hw_context))
		return false;

	return true;
}

609
static void port_assign(struct execlist_port *port, struct i915_request *rq)
610 611 612 613
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
614
		i915_request_put(port_request(port));
615

616
	port_set(port, port_pack(i915_request_get(rq), port_count(port)));
617 618
}

C
Chris Wilson 已提交
619 620
static void inject_preempt_context(struct intel_engine_cs *engine)
{
621
	struct intel_engine_execlists *execlists = &engine->execlists;
622
	struct intel_context *ce = engine->preempt_context;
C
Chris Wilson 已提交
623 624
	unsigned int n;

625
	GEM_BUG_ON(execlists->preempt_complete_status !=
626
		   upper_32_bits(ce->lrc_desc));
627

628 629 630 631
	/*
	 * Switch to our empty preempt context so
	 * the state of the GPU is known (idle).
	 */
632
	GEM_TRACE("%s\n", engine->name);
633 634 635 636 637 638 639 640
	for (n = execlists_num_ports(execlists); --n; )
		write_desc(execlists, 0, n);

	write_desc(execlists, ce->lrc_desc, n);

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
C
Chris Wilson 已提交
641

642 643
	execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
	execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
644 645

	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
646 647 648 649 650 651
}

static void complete_preempt_context(struct intel_engine_execlists *execlists)
{
	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));

652 653 654
	if (inject_preempt_hang(execlists))
		return;

655
	execlists_cancel_port_requests(execlists);
656 657 658
	__unwind_incomplete_requests(container_of(execlists,
						  struct intel_engine_cs,
						  execlists));
C
Chris Wilson 已提交
659 660
}

661
static void execlists_dequeue(struct intel_engine_cs *engine)
662
{
663 664
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
665 666
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
667
	struct i915_request *last = port_request(port);
668
	struct rb_node *rb;
669 670
	bool submit = false;

671 672
	/*
	 * Hardware submission is through 2 ports. Conceptually each port
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
691
	 */
692

C
Chris Wilson 已提交
693 694 695 696 697 698 699
	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
700 701
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
702
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
703

704 705 706 707 708 709 710 711
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
712
			return;
713

714
		if (need_preempt(engine, last)) {
C
Chris Wilson 已提交
715
			inject_preempt_context(engine);
716
			return;
C
Chris Wilson 已提交
717
		}
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740

		/*
		 * In theory, we could coalesce more requests onto
		 * the second port (the first port is active, with
		 * no preemptions pending). However, that means we
		 * then have to deal with the possible lite-restore
		 * of the second port (as we submit the ELSP, there
		 * may be a context-switch) but also we may complete
		 * the resubmission before the context-switch. Ergo,
		 * coalescing onto the second port will cause a
		 * preemption event, but we cannot predict whether
		 * that will affect port[0] or port[1].
		 *
		 * If the second port is already active, we can wait
		 * until the next context-switch before contemplating
		 * new requests. The GPU will be busy and we should be
		 * able to resubmit the new ELSP before it idles,
		 * avoiding pipeline bubbles (momentary pauses where
		 * the driver is unable to keep up the supply of new
		 * work). However, we have to double check that the
		 * priorities of the ports haven't been switch.
		 */
		if (port_count(&port[1]))
741
			return;
742 743 744 745 746

		/*
		 * WaIdleLiteRestore:bdw,skl
		 * Apply the wa NOOPs to prevent
		 * ring:HEAD == rq:TAIL as we resubmit the
747
		 * request. See gen8_emit_fini_breadcrumb() for
748 749 750 751
		 * where we prepare the padding after the
		 * end of the request.
		 */
		last->tail = last->wa_tail;
C
Chris Wilson 已提交
752 753
	}

754
	while ((rb = rb_first_cached(&execlists->queue))) {
755
		struct i915_priolist *p = to_priolist(rb);
756
		struct i915_request *rq, *rn;
757
		int i;
758

759
		priolist_for_each_request_consume(rq, rn, p, i) {
760 761 762 763 764 765 766 767 768 769
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
770
			 */
771
			if (last && !can_merge_rq(last, rq)) {
772 773 774 775 776
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
777
				if (port == last_port)
778 779
					goto done;

780 781 782 783 784 785 786 787
				/*
				 * We must not populate both ELSP[] with the
				 * same LRCA, i.e. we must submit 2 different
				 * contexts if we submit 2 ELSP.
				 */
				if (last->hw_context == rq->hw_context)
					goto done;

788 789 790 791 792 793 794
				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
795
				if (ctx_single_port_submission(last->hw_context) ||
796
				    ctx_single_port_submission(rq->hw_context))
797 798 799 800 801 802
					goto done;


				if (submit)
					port_assign(port, last);
				port++;
803 804

				GEM_BUG_ON(port_isset(port));
805
			}
806

807 808
			list_del_init(&rq->sched.link);

809 810
			__i915_request_submit(rq);
			trace_i915_request_in(rq, port_index(port, execlists));
811

812 813
			last = rq;
			submit = true;
814
		}
815

816
		rb_erase_cached(&p->node, &execlists->queue);
817
		i915_priolist_free(p);
818
	}
819

820
done:
821 822 823
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
824
	 * We choose the priority hint such that if we add a request of greater
825 826 827
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
828
	 * HW. We derive the priority hint then as the first "hole" in
829 830 831 832
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
833
	 * user, see queue_request(), the priority hint is bumped to that
834 835 836
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
837
	execlists->queue_priority_hint = queue_prio(execlists);
838

839
	if (submit) {
840
		port_assign(port, last);
841 842
		execlists_submit_ports(engine);
	}
843 844

	/* We must always keep the beast fed if we have work piled up */
845 846
	GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
		   !port_isset(execlists->port));
847

848 849
	/* Re-evaluate the executing context setup after each preemptive kick */
	if (last)
850
		execlists_user_begin(execlists, execlists->port);
851

852 853 854 855
	/* If the engine is now idle, so should be the flag; and vice versa. */
	GEM_BUG_ON(execlists_is_active(&engine->execlists,
				       EXECLISTS_ACTIVE_USER) ==
		   !port_isset(engine->execlists.port));
856 857
}

858
void
859
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
860
{
861
	struct execlist_port *port = execlists->port;
862
	unsigned int num_ports = execlists_num_ports(execlists);
863

864
	while (num_ports-- && port_isset(port)) {
865
		struct i915_request *rq = port_request(port);
866

867
		GEM_TRACE("%s:port%u fence %llx:%lld, (current %d)\n",
868 869 870
			  rq->engine->name,
			  (unsigned int)(port - execlists->port),
			  rq->fence.context, rq->fence.seqno,
871
			  hwsp_seqno(rq));
872

873
		GEM_BUG_ON(!execlists->active);
874 875 876 877
		execlists_context_schedule_out(rq,
					       i915_request_completed(rq) ?
					       INTEL_CONTEXT_SCHEDULE_OUT :
					       INTEL_CONTEXT_SCHEDULE_PREEMPTED);
878

879
		i915_request_put(rq);
880

881 882 883
		memset(port, 0, sizeof(*port));
		port++;
	}
884

885
	execlists_clear_all_active(execlists);
886 887
}

888 889 890 891 892 893 894
static inline void
invalidate_csb_entries(const u32 *first, const u32 *last)
{
	clflush((void *)first);
	clflush((void *)last);
}

895 896 897 898 899 900
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}

901
static void process_csb(struct intel_engine_cs *engine)
902
{
903
	struct intel_engine_execlists * const execlists = &engine->execlists;
904
	struct execlist_port *port = execlists->port;
905
	const u32 * const buf = execlists->csb_status;
906
	const u8 num_entries = execlists->csb_size;
907
	u8 head, tail;
908

909 910
	lockdep_assert_held(&engine->timeline.lock);

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
	/*
	 * Note that csb_write, csb_status may be either in HWSP or mmio.
	 * When reading from the csb_write mmio register, we have to be
	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
	 * the low 4bits. As it happens we know the next 4bits are always
	 * zero and so we can simply masked off the low u8 of the register
	 * and treat it identically to reading from the HWSP (without having
	 * to use explicit shifting and masking, and probably bifurcating
	 * the code to handle the legacy mmio read).
	 */
	head = execlists->csb_head;
	tail = READ_ONCE(*execlists->csb_write);
	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
	if (unlikely(head == tail))
		return;
926

927 928 929 930 931 932 933 934 935
	/*
	 * Hopefully paired with a wmb() in HW!
	 *
	 * We must complete the read of the write pointer before any reads
	 * from the CSB, so that we do not see stale values. Without an rmb
	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
	 * we perform the READ_ONCE(*csb_write).
	 */
	rmb();
936

937
	do {
938 939 940 941
		struct i915_request *rq;
		unsigned int status;
		unsigned int count;

942
		if (++head == num_entries)
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
			head = 0;

		/*
		 * We are flying near dragons again.
		 *
		 * We hold a reference to the request in execlist_port[]
		 * but no more than that. We are operating in softirq
		 * context and so cannot hold any mutex or sleep. That
		 * prevents us stopping the requests we are processing
		 * in port[] from being retired simultaneously (the
		 * breadcrumb will be complete before we see the
		 * context-switch). As we only hold the reference to the
		 * request, any pointer chasing underneath the request
		 * is subject to a potential use-after-free. Thus we
		 * store all of the bookkeeping within port[] as
		 * required, and avoid using unguarded pointers beneath
		 * request itself. The same applies to the atomic
		 * status notifier.
		 */

		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
			  engine->name, head,
965
			  buf[2 * head + 0], buf[2 * head + 1],
966 967
			  execlists->active);

968
		status = buf[2 * head];
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
		if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
			      GEN8_CTX_STATUS_PREEMPTED))
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_HWACK);
		if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
			execlists_clear_active(execlists,
					       EXECLISTS_ACTIVE_HWACK);

		if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
			continue;

		/* We should never get a COMPLETED | IDLE_ACTIVE! */
		GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

		if (status & GEN8_CTX_STATUS_COMPLETE &&
		    buf[2*head + 1] == execlists->preempt_complete_status) {
			GEM_TRACE("%s preempt-idle\n", engine->name);
			complete_preempt_context(execlists);
			continue;
988
		}
989

990 991 992 993
		if (status & GEN8_CTX_STATUS_PREEMPTED &&
		    execlists_is_active(execlists,
					EXECLISTS_ACTIVE_PREEMPT))
			continue;
994

995 996
		GEM_BUG_ON(!execlists_is_active(execlists,
						EXECLISTS_ACTIVE_USER));
997

998
		rq = port_unpack(port, &count);
999
		GEM_TRACE("%s out[0]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
1000 1001 1002 1003
			  engine->name,
			  port->context_id, count,
			  rq ? rq->fence.context : 0,
			  rq ? rq->fence.seqno : 0,
1004
			  rq ? hwsp_seqno(rq) : 0,
1005 1006 1007 1008 1009 1010 1011
			  rq ? rq_prio(rq) : 0);

		/* Check the context/desc id for this event matches */
		GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);

		GEM_BUG_ON(count == 0);
		if (--count == 0) {
1012
			/*
1013 1014 1015 1016 1017 1018
			 * On the final event corresponding to the
			 * submission of this context, we expect either
			 * an element-switch event or a completion
			 * event (and on completion, the active-idle
			 * marker). No more preemptions, lite-restore
			 * or otherwise.
1019
			 */
1020 1021 1022 1023 1024
			GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
			GEM_BUG_ON(port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
			GEM_BUG_ON(!port_isset(&port[1]) &&
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1025

1026 1027 1028 1029 1030 1031 1032
			/*
			 * We rely on the hardware being strongly
			 * ordered, that the breadcrumb write is
			 * coherent (visible from the CPU) before the
			 * user interrupt and CSB is processed.
			 */
			GEM_BUG_ON(!i915_request_completed(rq));
C
Chris Wilson 已提交
1033

1034 1035 1036
			execlists_context_schedule_out(rq,
						       INTEL_CONTEXT_SCHEDULE_OUT);
			i915_request_put(rq);
1037

1038 1039
			GEM_TRACE("%s completed ctx=%d\n",
				  engine->name, port->context_id);
1040

1041 1042 1043 1044 1045 1046 1047
			port = execlists_port_complete(execlists, port);
			if (port_isset(port))
				execlists_user_begin(execlists, port);
			else
				execlists_user_end(execlists);
		} else {
			port_set(port, port_pack(rq, count));
1048
		}
1049
	} while (head != tail);
1050

1051
	execlists->csb_head = head;
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

	/*
	 * Gen11 has proven to fail wrt global observation point between
	 * entry and tail update, failing on the ordering and thus
	 * we see an old entry in the context status buffer.
	 *
	 * Forcibly evict out entries for the next gpu csb update,
	 * to increase the odds that we get a fresh entries with non
	 * working hardware. The cost for doing so comes out mostly with
	 * the wash as hardware, working or not, will need to do the
	 * invalidation before.
	 */
1064
	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1065
}
1066

1067
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1068
{
1069
	lockdep_assert_held(&engine->timeline.lock);
1070

C
Chris Wilson 已提交
1071
	process_csb(engine);
1072 1073
	if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
		execlists_dequeue(engine);
1074 1075
}

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	unsigned long flags;

	GEM_TRACE("%s awake?=%d, active=%x\n",
		  engine->name,
1087
		  !!engine->i915->gt.awake,
1088 1089 1090
		  engine->execlists.active);

	spin_lock_irqsave(&engine->timeline.lock, flags);
1091
	__execlists_submission_tasklet(engine);
1092 1093 1094
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
}

1095
static void queue_request(struct intel_engine_cs *engine,
1096
			  struct i915_sched_node *node,
1097
			  int prio)
1098
{
1099
	list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
}

static void __submit_queue_imm(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	if (reset_in_progress(execlists))
		return; /* defer until we restart the engine following reset */

	if (execlists->tasklet.func == execlists_submission_tasklet)
		__execlists_submission_tasklet(engine);
	else
		tasklet_hi_schedule(&execlists->tasklet);
1113 1114
}

1115 1116
static void submit_queue(struct intel_engine_cs *engine, int prio)
{
1117 1118
	if (prio > engine->execlists.queue_priority_hint) {
		engine->execlists.queue_priority_hint = prio;
1119 1120
		__submit_queue_imm(engine);
	}
1121 1122
}

1123
static void execlists_submit_request(struct i915_request *request)
1124
{
1125
	struct intel_engine_cs *engine = request->engine;
1126
	unsigned long flags;
1127

1128
	/* Will be called from irq-context when using foreign fences. */
1129
	spin_lock_irqsave(&engine->timeline.lock, flags);
1130

1131
	queue_request(engine, &request->sched, rq_prio(request));
1132

1133
	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1134
	GEM_BUG_ON(list_empty(&request->sched.link));
1135

1136 1137
	submit_queue(engine, rq_prio(request));

1138
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1139 1140
}

1141
static void __execlists_context_fini(struct intel_context *ce)
1142
{
1143
	intel_ring_put(ce->ring);
1144 1145 1146

	GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
	i915_gem_object_put(ce->state->obj);
1147 1148
}

1149
static void execlists_context_destroy(struct kref *kref)
1150
{
1151 1152
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);

1153
	GEM_BUG_ON(intel_context_is_pinned(ce));
1154 1155 1156 1157 1158 1159 1160

	if (ce->state)
		__execlists_context_fini(ce);

	intel_context_free(ce);
}

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
static int __context_pin(struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	flags = PIN_GLOBAL | PIN_HIGH;
	flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);

	err = i915_vma_pin(vma, 0, 0, flags);
	if (err)
		return err;

	vma->obj->pin_global++;
	vma->obj->mm.dirty = true;

	return 0;
}

static void __context_unpin(struct i915_vma *vma)
{
	vma->obj->pin_global--;
	__i915_vma_unpin(vma);
}

1185
static void execlists_context_unpin(struct intel_context *ce)
1186
{
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	struct intel_engine_cs *engine;

	/*
	 * The tasklet may still be using a pointer to our state, via an
	 * old request. However, since we know we only unpin the context
	 * on retirement of the following request, we know that the last
	 * request referencing us will have had a completion CS interrupt.
	 * If we see that it is still active, it means that the tasklet hasn't
	 * had the chance to run yet; let it run before we teardown the
	 * reference it may use.
	 */
	engine = READ_ONCE(ce->active);
	if (unlikely(engine)) {
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline.lock, flags);
		process_csb(engine);
		spin_unlock_irqrestore(&engine->timeline.lock, flags);

		GEM_BUG_ON(READ_ONCE(ce->active));
	}

1209 1210
	i915_gem_context_unpin_hw_id(ce->gem_context);

1211 1212 1213
	intel_ring_unpin(ce->ring);

	i915_gem_object_unpin_map(ce->state->obj);
1214
	__context_unpin(ce->state);
1215 1216
}

1217
static void
1218 1219
__execlists_update_reg_state(struct intel_context *ce,
			     struct intel_engine_cs *engine)
1220 1221
{
	struct intel_ring *ring = ce->ring;
1222 1223 1224 1225
	u32 *regs = ce->lrc_reg_state;

	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1226 1227 1228 1229 1230 1231 1232

	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
	regs[CTX_RING_HEAD + 1] = ring->head;
	regs[CTX_RING_TAIL + 1] = ring->tail;

	/* RPCS */
	if (engine->class == RENDER_CLASS)
1233
		regs[CTX_R_PWR_CLK_STATE + 1] =
1234
			intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1235 1236
}

1237 1238 1239
static int
__execlists_context_pin(struct intel_context *ce,
			struct intel_engine_cs *engine)
1240
{
1241
	void *vaddr;
1242
	int ret;
1243

1244 1245 1246
	GEM_BUG_ON(!ce->gem_context->ppgtt);

	ret = execlists_context_deferred_alloc(ce, engine);
1247 1248
	if (ret)
		goto err;
1249
	GEM_BUG_ON(!ce->state);
1250

1251
	ret = __context_pin(ce->state);
1252
	if (ret)
1253
		goto err;
1254

1255
	vaddr = i915_gem_object_pin_map(ce->state->obj,
1256
					i915_coherent_map_type(engine->i915) |
1257
					I915_MAP_OVERRIDE);
1258 1259
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1260
		goto unpin_vma;
1261 1262
	}

1263
	ret = intel_ring_pin(ce->ring);
1264
	if (ret)
1265
		goto unpin_map;
1266

1267
	ret = i915_gem_context_pin_hw_id(ce->gem_context);
1268 1269 1270
	if (ret)
		goto unpin_ring;

1271
	ce->lrc_desc = lrc_descriptor(ce, engine);
1272
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1273
	__execlists_update_reg_state(ce, engine);
1274

1275
	return 0;
1276

1277 1278
unpin_ring:
	intel_ring_unpin(ce->ring);
1279
unpin_map:
1280 1281
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
1282
	__context_unpin(ce->state);
1283
err:
1284
	return ret;
1285 1286
}

1287
static int execlists_context_pin(struct intel_context *ce)
1288
{
1289
	return __execlists_context_pin(ce, ce->engine);
1290 1291
}

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
static void execlists_context_reset(struct intel_context *ce)
{
	/*
	 * Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * The contexts that are stilled pinned on resume belong to the
	 * kernel, and are local to each engine. All other contexts will
	 * have their head/tail sanitized upon pinning before use, so they
	 * will never see garbage,
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	intel_ring_reset(ce->ring, 0);
	__execlists_update_reg_state(ce, ce->engine);
}

1314
static const struct intel_context_ops execlists_context_ops = {
1315
	.pin = execlists_context_pin,
1316
	.unpin = execlists_context_unpin,
1317

1318 1319 1320
	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

1321
	.reset = execlists_context_reset,
1322 1323 1324
	.destroy = execlists_context_destroy,
};

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
static int gen8_emit_init_breadcrumb(struct i915_request *rq)
{
	u32 *cs;

	GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Check if we have been preempted before we even get started.
	 *
	 * After this point i915_request_started() reports true, even if
	 * we get preempted and so are no longer running.
	 */
	*cs++ = MI_ARB_CHECK;
	*cs++ = MI_NOOP;

	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
	*cs++ = rq->timeline->hwsp_offset;
	*cs++ = 0;
	*cs++ = rq->fence.seqno - 1;

	intel_ring_advance(rq, cs);
1350 1351 1352 1353

	/* Record the updated position of the request's payload */
	rq->infix = intel_ring_offset(rq, cs);

1354 1355 1356
	return 0;
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
static int emit_pdps(struct i915_request *rq)
{
	const struct intel_engine_cs * const engine = rq->engine;
	struct i915_hw_ppgtt * const ppgtt = rq->gem_context->ppgtt;
	int err, i;
	u32 *cs;

	GEM_BUG_ON(intel_vgpu_active(rq->i915));

	/*
	 * Beware ye of the dragons, this sequence is magic!
	 *
	 * Small changes to this sequence can cause anything from
	 * GPU hangs to forcewake errors and machine lockups!
	 */

	/* Flush any residual operations from the context load */
	err = engine->emit_flush(rq, EMIT_FLUSH);
	if (err)
		return err;

	/* Magic required to prevent forcewake errors! */
	err = engine->emit_flush(rq, EMIT_INVALIDATE);
	if (err)
		return err;

	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Ensure the LRI have landed before we invalidate & continue */
	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
	for (i = GEN8_3LVL_PDPES; i--; ) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1391
		u32 base = engine->mmio_base;
1392

1393
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1394
		*cs++ = upper_32_bits(pd_daddr);
1395
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
		*cs++ = lower_32_bits(pd_daddr);
	}
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);

	/* Be doubly sure the LRI have landed before proceeding */
	err = engine->emit_flush(rq, EMIT_FLUSH);
	if (err)
		return err;

	/* Re-invalidate the TLB for luck */
	return engine->emit_flush(rq, EMIT_INVALIDATE);
}

1411
static int execlists_request_alloc(struct i915_request *request)
1412
{
1413
	int ret;
1414

1415
	GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1416

1417 1418
	/*
	 * Flush enough space to reduce the likelihood of waiting after
1419 1420 1421 1422 1423
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1424 1425
	/*
	 * Note that after this point, we have committed to using
1426 1427 1428 1429 1430 1431
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

1432
	/* Unconditionally invalidate GPU caches and TLBs. */
1433
	if (i915_vm_is_4lvl(&request->gem_context->ppgtt->vm))
1434 1435 1436 1437 1438 1439
		ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
	else
		ret = emit_pdps(request);
	if (ret)
		return ret;

1440 1441 1442 1443
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1460 1461
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1462
{
1463
	/* NB no one else is allowed to scribble over scratch + 256! */
1464 1465
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1466
	*batch++ = i915_scratch_offset(engine->i915) + 256;
1467 1468 1469 1470 1471 1472
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1473 1474 1475 1476
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1477 1478 1479

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1480
	*batch++ = i915_scratch_offset(engine->i915) + 256;
1481 1482 1483
	*batch++ = 0;

	return batch;
1484 1485
}

1486 1487 1488 1489 1490 1491
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1492
 *
1493 1494
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1495
 *
1496 1497 1498 1499
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1500
 */
1501
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1502
{
1503
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1504
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1505

1506
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1507 1508
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1509

1510 1511
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1512 1513 1514 1515 1516
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
1517
				       i915_scratch_offset(engine->i915) +
1518
				       2 * CACHELINE_BYTES);
1519

C
Chris Wilson 已提交
1520 1521
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1522
	/* Pad to end of cacheline */
1523 1524
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1525 1526 1527 1528 1529 1530 1531

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1532
	return batch;
1533 1534
}

1535 1536 1537 1538 1539 1540
struct lri {
	i915_reg_t reg;
	u32 value;
};

static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1541
{
1542
	GEM_BUG_ON(!count || count > 63);
C
Chris Wilson 已提交
1543

1544 1545 1546 1547 1548 1549
	*batch++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*batch++ = i915_mmio_reg_offset(lri->reg);
		*batch++ = lri->value;
	} while (lri++, --count);
	*batch++ = MI_NOOP;
1550

1551 1552
	return batch;
}
1553

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	static const struct lri lri[] = {
		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
		{
			COMMON_SLICE_CHICKEN2,
			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
				       0),
		},

		/* BSpec: 11391 */
		{
			FF_SLICE_CHICKEN,
			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
		},

		/* BSpec: 11299 */
		{
			_3D_CHICKEN3,
			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
		}
	};
1578

1579
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1580

1581 1582
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1583

1584
	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1585

1586
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1601 1602 1603 1604 1605 1606
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1607 1608
	}

C
Chris Wilson 已提交
1609 1610
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1611
	/* Pad to end of cacheline */
1612 1613
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1614

1615
	return batch;
1616 1617
}

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1652 1653 1654
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1655
{
1656 1657 1658
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1659

1660
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1661 1662
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1663

1664
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1665 1666 1667
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1668 1669
	}

1670
	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1671 1672 1673 1674
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1675
	return 0;
1676 1677 1678 1679

err:
	i915_gem_object_put(obj);
	return err;
1680 1681
}

1682
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1683
{
1684
	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1685 1686
}

1687 1688
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1689
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1690
{
1691
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1692 1693 1694
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1695
	struct page *page;
1696 1697
	void *batch, *batch_ptr;
	unsigned int i;
1698
	int ret;
1699

1700 1701
	if (engine->class != RENDER_CLASS)
		return 0;
1702

1703
	switch (INTEL_GEN(engine->i915)) {
1704 1705
	case 11:
		return 0;
1706
	case 10:
1707 1708 1709
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
1710 1711
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1712
		wa_bb_fn[1] = NULL;
1713 1714 1715
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1716
		wa_bb_fn[1] = NULL;
1717 1718 1719
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1720
		return 0;
1721
	}
1722

1723
	ret = lrc_setup_wa_ctx(engine);
1724 1725 1726 1727 1728
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1729
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1730
	batch = batch_ptr = kmap_atomic(page);
1731

1732 1733 1734 1735 1736 1737 1738
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1739 1740
		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
						  CACHELINE_BYTES))) {
1741 1742 1743
			ret = -EINVAL;
			break;
		}
1744 1745
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1746
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1747 1748
	}

1749 1750
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1751 1752
	kunmap_atomic(batch);
	if (ret)
1753
		lrc_destroy_wa_ctx(engine);
1754 1755 1756 1757

	return ret;
}

1758
static void enable_execlists(struct intel_engine_cs *engine)
1759
{
1760
	struct drm_i915_private *dev_priv = engine->i915;
1761

1762
	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
1763 1764 1765

	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
1766
			   _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1767 1768 1769 1770
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1771 1772 1773
	I915_WRITE(RING_MI_MODE(engine->mmio_base),
		   _MASKED_BIT_DISABLE(STOP_RING));

1774
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1775
		   i915_ggtt_offset(engine->status_page.vma));
1776 1777 1778
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	bool unexpected = false;

	if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
		unexpected = true;
	}

	return unexpected;
}

1792
static int execlists_resume(struct intel_engine_cs *engine)
1793
{
1794
	intel_engine_apply_workarounds(engine);
1795
	intel_engine_apply_whitelist(engine);
1796

1797
	intel_mocs_init_engine(engine);
1798

1799
	intel_engine_reset_breadcrumbs(engine);
1800

1801 1802 1803 1804 1805 1806
	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p, NULL);
	}

1807
	enable_execlists(engine);
1808

1809
	return 0;
1810 1811
}

1812
static void execlists_reset_prepare(struct intel_engine_cs *engine)
1813 1814
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
1815
	unsigned long flags;
1816

1817 1818
	GEM_TRACE("%s: depth<-%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
1819 1820 1821 1822 1823 1824

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
1825
	 * calling engine->resume() and also writing the ELSP.
1826 1827 1828 1829
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);
1830
	GEM_BUG_ON(!reset_in_progress(execlists));
1831

1832 1833
	intel_engine_stop_cs(engine);

1834
	/* And flush any current direct submission. */
1835 1836
	spin_lock_irqsave(&engine->timeline.lock, flags);
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1837 1838
}

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
static bool lrc_regs_ok(const struct i915_request *rq)
{
	const struct intel_ring *ring = rq->ring;
	const u32 *regs = rq->hw_context->lrc_reg_state;

	/* Quick spot check for the common signs of context corruption */

	if (regs[CTX_RING_BUFFER_CONTROL + 1] !=
	    (RING_CTL_SIZE(ring->size) | RING_VALID))
		return false;

	if (regs[CTX_RING_BUFFER_START + 1] != i915_ggtt_offset(ring->vma))
		return false;

	return true;
}

1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
static void reset_csb_pointers(struct intel_engine_execlists *execlists)
{
	const unsigned int reset_value = execlists->csb_size - 1;

	/*
	 * After a reset, the HW starts writing into CSB entry [0]. We
	 * therefore have to set our HEAD pointer back one entry so that
	 * the *first* entry we check is entry 0. To complicate this further,
	 * as we don't wait for the first interrupt after reset, we have to
	 * fake the HW write to point back to the last entry so that our
	 * inline comparison of our cached head position against the last HW
	 * write works even before the first interrupt.
	 */
	execlists->csb_head = reset_value;
	WRITE_ONCE(*execlists->csb_write, reset_value);
1871
	wmb(); /* Make sure this is visible to HW (paranoia?) */
1872 1873 1874 1875 1876 1877

	invalidate_csb_entries(&execlists->csb_status[0],
			       &execlists->csb_status[reset_value]);
}

static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
1878
{
1879
	struct intel_engine_execlists * const execlists = &engine->execlists;
1880
	struct intel_context *ce;
1881
	struct i915_request *rq;
1882
	u32 *regs;
1883

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	process_csb(engine); /* drain preemption events */

	/* Following the reset, we need to reload the CSB read/write pointers */
	reset_csb_pointers(&engine->execlists);

	/*
	 * Save the currently executing context, even if we completed
	 * its request, it was still running at the time of the
	 * reset and will have been clobbered.
	 */
	if (!port_isset(execlists->port))
		goto out_clear;

	ce = port_request(execlists->port)->hw_context;
1898

1899 1900 1901 1902 1903 1904 1905 1906 1907
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1908
	execlists_cancel_port_requests(execlists);
1909

1910
	/* Push back any incomplete requests for replay after the reset. */
1911 1912
	rq = __unwind_incomplete_requests(engine);
	if (!rq)
1913 1914 1915 1916 1917 1918
		goto out_replay;

	if (rq->hw_context != ce) { /* caught just before a CS event */
		rq = NULL;
		goto out_replay;
	}
1919

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
	/*
	 * If this request hasn't started yet, e.g. it is waiting on a
	 * semaphore, we need to avoid skipping the request or else we
	 * break the signaling chain. However, if the context is corrupt
	 * the request will not restart and we will be stuck with a wedged
	 * device. It is quite often the case that if we issue a reset
	 * while the GPU is loading the context image, that the context
	 * image becomes corrupt.
	 *
	 * Otherwise, if we have not started yet, the request should replay
	 * perfectly and we do not need to flag the result as being erroneous.
	 */
	if (!i915_request_started(rq) && lrc_regs_ok(rq))
1933
		goto out_replay;
1934

1935 1936
	/*
	 * If the request was innocent, we leave the request in the ELSP
1937 1938 1939 1940 1941 1942 1943 1944 1945
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1946
	i915_reset_request(rq, stalled);
1947
	if (!stalled && lrc_regs_ok(rq))
1948
		goto out_replay;
1949

1950 1951
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
1952 1953 1954 1955 1956 1957
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1958
	regs = ce->lrc_reg_state;
1959 1960 1961 1962
	if (engine->pinned_default_state) {
		memcpy(regs, /* skip restoring the vanilla PPHWSP */
		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
		       engine->context_size - PAGE_SIZE);
1963
	}
1964
	execlists_init_reg_state(regs, ce, engine, ce->ring);
1965

1966
	/* Rerun the request; its payload has been neutered (if guilty). */
1967 1968 1969 1970 1971 1972 1973 1974 1975
out_replay:
	ce->ring->head =
		rq ? intel_ring_wrap(ce->ring, rq->head) : ce->ring->tail;
	intel_ring_update_space(ce->ring);
	__execlists_update_reg_state(ce, engine);

out_clear:
	execlists_clear_all_active(execlists);
}
1976

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
{
	unsigned long flags;

	GEM_TRACE("%s\n", engine->name);

	spin_lock_irqsave(&engine->timeline.lock, flags);

	__execlists_reset(engine, stalled);

	spin_unlock_irqrestore(&engine->timeline.lock, flags);
}

static void nop_submission_tasklet(unsigned long data)
{
	/* The driver is wedged; don't process any more events. */
}

static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	GEM_TRACE("%s\n", engine->name);

	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
	spin_lock_irqsave(&engine->timeline.lock, flags);

	__execlists_reset(engine, true);

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline.requests, link) {
		if (!i915_request_signaled(rq))
			dma_fence_set_error(&rq->fence, -EIO);

		i915_request_mark_complete(rq);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
	while ((rb = rb_first_cached(&execlists->queue))) {
		struct i915_priolist *p = to_priolist(rb);
		int i;

		priolist_for_each_request_consume(rq, rn, p, i) {
			list_del_init(&rq->sched.link);
			__i915_request_submit(rq);
			dma_fence_set_error(&rq->fence, -EIO);
			i915_request_mark_complete(rq);
		}

		rb_erase_cached(&p->node, &execlists->queue);
		i915_priolist_free(p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

	execlists->queue_priority_hint = INT_MIN;
	execlists->queue = RB_ROOT_CACHED;
	GEM_BUG_ON(port_isset(execlists->port));

	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
	execlists->tasklet.func = nop_submission_tasklet;
2054

2055
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
2056 2057
}

2058 2059
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
2060 2061
	struct intel_engine_execlists * const execlists = &engine->execlists;

2062
	/*
2063 2064 2065
	 * After a GPU reset, we may have requests to replay. Do so now while
	 * we still have the forcewake to be sure that the GPU is not allowed
	 * to sleep before we restart and reload a context.
2066
	 */
2067
	GEM_BUG_ON(!reset_in_progress(execlists));
2068 2069
	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
		execlists->tasklet.func(execlists->tasklet.data);
2070

2071 2072 2073
	if (__tasklet_enable(&execlists->tasklet))
		/* And kick in case we missed a new request submission. */
		tasklet_hi_schedule(&execlists->tasklet);
2074 2075
	GEM_TRACE("%s: depth->%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
2076 2077
}

2078
static int gen8_emit_bb_start(struct i915_request *rq,
2079
			      u64 offset, u32 len,
2080
			      const unsigned int flags)
2081
{
2082
	u32 *cs;
2083

2084
	cs = intel_ring_begin(rq, 4);
2085 2086
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2087

2088 2089 2090 2091 2092 2093 2094
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
2095 2096 2097 2098 2099
	 * we would be fine.  However, for gen8 there is another w/a that
	 * requires us to not preempt inside GPGPU execution, so we keep
	 * arbitration disabled for gen8 batches. Arbitration will be
	 * re-enabled before we close the request
	 * (engine->emit_fini_breadcrumb).
2100
	 */
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

	/* FIXME(BDW+): Address space and security selectors. */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);

	intel_ring_advance(rq, cs);

	return 0;
}

static int gen9_emit_bb_start(struct i915_request *rq,
			      u64 offset, u32 len,
			      const unsigned int flags)
{
	u32 *cs;

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

2124 2125
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

2126
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2127
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2128 2129
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
2130 2131 2132

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
2133

2134
	intel_ring_advance(rq, cs);
2135 2136 2137 2138

	return 0;
}

2139
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2140
{
2141 2142 2143
	ENGINE_WRITE(engine, RING_IMR,
		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
	ENGINE_POSTING_READ(engine, RING_IMR);
2144 2145
}

2146
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2147
{
2148
	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2149 2150
}

2151
static int gen8_emit_flush(struct i915_request *request, u32 mode)
2152
{
2153
	u32 cmd, *cs;
2154

2155 2156 2157
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2158 2159 2160

	cmd = MI_FLUSH_DW + 1;

2161 2162 2163 2164 2165 2166 2167
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2168
	if (mode & EMIT_INVALIDATE) {
2169
		cmd |= MI_INVALIDATE_TLB;
2170
		if (request->engine->class == VIDEO_DECODE_CLASS)
2171
			cmd |= MI_INVALIDATE_BSD;
2172 2173
	}

2174 2175 2176 2177 2178
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
2179 2180 2181 2182

	return 0;
}

2183
static int gen8_emit_flush_render(struct i915_request *request,
2184
				  u32 mode)
2185
{
2186
	struct intel_engine_cs *engine = request->engine;
2187
	u32 scratch_addr =
2188
		i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
2189
	bool vf_flush_wa = false, dc_flush_wa = false;
2190
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
2191
	int len;
2192 2193 2194

	flags |= PIPE_CONTROL_CS_STALL;

2195
	if (mode & EMIT_FLUSH) {
2196 2197
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2198
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2199
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2200 2201
	}

2202
	if (mode & EMIT_INVALIDATE) {
2203 2204 2205 2206 2207 2208 2209 2210 2211
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

2212 2213 2214 2215
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
2216
		if (IS_GEN(request->i915, 9))
2217
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
2218 2219 2220 2221

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
2222
	}
2223

M
Mika Kuoppala 已提交
2224 2225 2226 2227 2228 2229 2230 2231
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

2232 2233 2234
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2235

2236 2237
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
2238

2239 2240 2241
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2242

2243
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2244

2245 2246
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2247

2248
	intel_ring_advance(request, cs);
2249 2250 2251 2252

	return 0;
}

2253 2254 2255 2256 2257
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2258
static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2259
{
C
Chris Wilson 已提交
2260 2261
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2262 2263
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
2264 2265

	return cs;
C
Chris Wilson 已提交
2266
}
2267

2268
static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
2269
{
2270 2271
	cs = gen8_emit_ggtt_write(cs,
				  request->fence.seqno,
2272 2273
				  request->timeline->hwsp_offset,
				  0);
2274

2275 2276
	cs = gen8_emit_ggtt_write(cs,
				  intel_engine_next_hangcheck_seqno(request->engine),
2277 2278 2279
				  I915_GEM_HWS_HANGCHECK_ADDR,
				  MI_FLUSH_DW_STORE_INDEX);

2280

2281
	*cs++ = MI_USER_INTERRUPT;
2282
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2283

2284
	request->tail = intel_ring_offset(request, cs);
2285
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2286

2287
	return gen8_emit_wa_tail(request, cs);
2288
}
2289

2290
static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2291
{
2292
	cs = gen8_emit_ggtt_write_rcs(cs,
2293 2294
				      request->fence.seqno,
				      request->timeline->hwsp_offset,
2295 2296 2297 2298 2299 2300
				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
				      PIPE_CONTROL_DC_FLUSH_ENABLE |
				      PIPE_CONTROL_FLUSH_ENABLE |
				      PIPE_CONTROL_CS_STALL);

2301 2302
	cs = gen8_emit_ggtt_write_rcs(cs,
				      intel_engine_next_hangcheck_seqno(request->engine),
2303 2304
				      I915_GEM_HWS_HANGCHECK_ADDR,
				      PIPE_CONTROL_STORE_DATA_INDEX);
2305

2306
	*cs++ = MI_USER_INTERRUPT;
2307
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2308

2309
	request->tail = intel_ring_offset(request, cs);
2310
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2311

2312
	return gen8_emit_wa_tail(request, cs);
2313
}
2314

2315
static int gen8_init_rcs_context(struct i915_request *rq)
2316 2317 2318
{
	int ret;

2319
	ret = intel_engine_emit_ctx_wa(rq);
2320 2321 2322
	if (ret)
		return ret;

2323
	ret = intel_rcs_context_init_mocs(rq);
2324 2325 2326 2327 2328 2329 2330
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2331
	return i915_gem_render_state_emit(rq);
2332 2333
}

2334 2335
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
2336
 * @engine: Engine Command Streamer.
2337
 */
2338
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
2339
{
2340
	struct drm_i915_private *dev_priv;
2341

2342 2343 2344 2345
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
2346 2347 2348
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
2349

2350
	dev_priv = engine->i915;
2351

2352
	if (engine->buffer) {
2353
		WARN_ON((ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
2354
	}
2355

2356 2357
	if (engine->cleanup)
		engine->cleanup(engine);
2358

2359
	intel_engine_cleanup_common(engine);
2360

2361
	lrc_destroy_wa_ctx(engine);
2362

2363
	engine->i915 = NULL;
2364 2365
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
2366 2367
}

2368
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2369
{
2370
	engine->submit_request = execlists_submit_request;
2371
	engine->cancel_requests = execlists_cancel_requests;
2372
	engine->schedule = i915_schedule;
2373
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2374

2375
	engine->reset.prepare = execlists_reset_prepare;
2376 2377
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2378

2379 2380
	engine->park = NULL;
	engine->unpark = NULL;
2381 2382

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2383 2384
	if (!intel_vgpu_active(engine->i915))
		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2385 2386
	if (engine->preempt_context &&
	    HAS_LOGICAL_RING_PREEMPTION(engine->i915))
2387
		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2388 2389
}

2390
static void
2391
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2392 2393
{
	/* Default vfuncs which can be overriden by each engine. */
2394
	engine->resume = execlists_resume;
2395 2396 2397 2398

	engine->reset.prepare = execlists_reset_prepare;
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2399

2400
	engine->cops = &execlists_context_ops;
2401 2402
	engine->request_alloc = execlists_request_alloc;

2403
	engine->emit_flush = gen8_emit_flush;
2404 2405
	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
2406

2407
	engine->set_default_submission = intel_execlists_set_default_submission;
2408

2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2420 2421 2422 2423
	if (IS_GEN(engine->i915, 8))
		engine->emit_bb_start = gen8_emit_bb_start;
	else
		engine->emit_bb_start = gen9_emit_bb_start;
2424 2425
}

2426
static inline void
2427
logical_ring_default_irqs(struct intel_engine_cs *engine)
2428
{
2429 2430 2431 2432
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
2433 2434 2435 2436 2437
			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
			[VECS0] = GEN8_VECS_IRQ_SHIFT,
2438 2439 2440 2441 2442
		};

		shift = irq_shifts[engine->id];
	}

2443 2444
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2445 2446
}

2447
int intel_execlists_submission_setup(struct intel_engine_cs *engine)
2448 2449 2450 2451
{
	/* Intentionally left blank. */
	engine->buffer = NULL;

2452 2453
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2454 2455 2456

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
2457

2458 2459 2460 2461 2462 2463
	if (engine->class == RENDER_CLASS) {
		engine->init_context = gen8_init_rcs_context;
		engine->emit_flush = gen8_emit_flush_render;
		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
	}

2464
	return 0;
2465 2466
}

2467
int intel_execlists_submission_init(struct intel_engine_cs *engine)
2468
{
2469 2470
	struct drm_i915_private *i915 = engine->i915;
	struct intel_engine_execlists * const execlists = &engine->execlists;
2471
	u32 base = engine->mmio_base;
2472 2473
	int ret;

2474
	ret = intel_engine_init_common(engine);
2475
	if (ret)
2476
		return ret;
2477

2478
	intel_engine_init_workarounds(engine);
2479 2480 2481 2482 2483 2484 2485 2486 2487
	intel_engine_init_whitelist(engine);

	if (intel_init_workaround_bb(engine))
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed\n");
2488

2489
	if (HAS_LOGICAL_RING_ELSQ(i915)) {
2490
		execlists->submit_reg = i915->uncore.regs +
2491
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
2492
		execlists->ctrl_reg = i915->uncore.regs +
2493
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
2494
	} else {
2495
		execlists->submit_reg = i915->uncore.regs +
2496
			i915_mmio_reg_offset(RING_ELSP(base));
2497
	}
2498

2499
	execlists->preempt_complete_status = ~0u;
2500
	if (engine->preempt_context)
2501
		execlists->preempt_complete_status =
2502
			upper_32_bits(engine->preempt_context->lrc_desc);
2503

2504
	execlists->csb_status =
2505
		&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2506

2507
	execlists->csb_write =
2508
		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
2509

2510 2511 2512 2513
	if (INTEL_GEN(engine->i915) < 11)
		execlists->csb_size = GEN8_CSB_ENTRIES;
	else
		execlists->csb_size = GEN11_CSB_ENTRIES;
2514

2515
	reset_csb_pointers(execlists);
2516

2517 2518 2519
	return 0;
}

2520
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2521 2522 2523
{
	u32 indirect_ctx_offset;

2524
	switch (INTEL_GEN(engine->i915)) {
2525
	default:
2526
		MISSING_CASE(INTEL_GEN(engine->i915));
2527
		/* fall through */
2528 2529 2530 2531
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2532 2533 2534 2535
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2549
static void execlists_init_reg_state(u32 *regs,
2550
				     struct intel_context *ce,
2551 2552
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2553
{
2554
	struct i915_hw_ppgtt *ppgtt = ce->gem_context->ppgtt;
2555
	bool rcs = engine->class == RENDER_CLASS;
2556
	u32 base = engine->mmio_base;
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

2568
	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
2569
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2570
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2571
	if (INTEL_GEN(engine->i915) < 11) {
2572 2573 2574 2575
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
					    CTX_CTRL_RS_CTX_ENABLE);
	}
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2588 2589
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2590 2591 2592
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2593
		if (wa_ctx->indirect_ctx.size) {
2594
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2595

2596
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2597 2598
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2599

2600
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2601
				intel_lr_indirect_ctx_offset(engine) << 6;
2602 2603 2604 2605 2606
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2607

2608
			regs[CTX_BB_PER_CTX_PTR + 1] =
2609
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2610
		}
2611
	}
2612 2613 2614 2615

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2616
	/* PDP values well be assigned later if needed */
2617 2618 2619 2620 2621 2622 2623 2624
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
2625

2626
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
2627 2628 2629 2630
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2631
		ASSIGN_CTX_PML4(ppgtt, regs);
2632
	} else {
2633 2634 2635 2636
		ASSIGN_CTX_PDP(ppgtt, regs, 3);
		ASSIGN_CTX_PDP(ppgtt, regs, 2);
		ASSIGN_CTX_PDP(ppgtt, regs, 1);
		ASSIGN_CTX_PDP(ppgtt, regs, 0);
2637 2638
	}

2639 2640
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2641
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
2642

2643
		i915_oa_init_reg_state(engine, ce, regs);
2644
	}
2645 2646

	regs[CTX_END] = MI_BATCH_BUFFER_END;
2647
	if (INTEL_GEN(engine->i915) >= 10)
2648
		regs[CTX_END] |= BIT(0);
2649 2650 2651
}

static int
2652
populate_lr_context(struct intel_context *ce,
2653 2654 2655 2656 2657
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2658
	u32 *regs;
2659 2660 2661 2662 2663 2664 2665 2666 2667
	int ret;

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}

2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
2679 2680 2681 2682
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
2683 2684 2685 2686 2687

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2688 2689
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2690
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2691
	execlists_init_reg_state(regs, ce, engine, ring);
2692 2693 2694
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2695 2696
	if (ce->gem_context == engine->i915->preempt_context &&
	    INTEL_GEN(engine->i915) < 11)
2697 2698 2699
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2700

2701
	ret = 0;
2702
err_unpin_ctx:
2703 2704 2705
	__i915_gem_object_flush_map(ctx_obj,
				    LRC_HEADER_PAGES * PAGE_SIZE,
				    engine->context_size);
2706
	i915_gem_object_unpin_map(ctx_obj);
2707
	return ret;
2708 2709
}

2710 2711
static struct i915_timeline *get_timeline(struct i915_gem_context *ctx)
{
2712 2713 2714 2715
	if (ctx->timeline)
		return i915_timeline_get(ctx->timeline);
	else
		return i915_timeline_create(ctx->i915, NULL);
2716 2717 2718 2719
}

static int execlists_context_deferred_alloc(struct intel_context *ce,
					    struct intel_engine_cs *engine)
2720
{
2721
	struct drm_i915_gem_object *ctx_obj;
2722
	struct i915_vma *vma;
2723
	u32 context_size;
2724
	struct intel_ring *ring;
2725
	struct i915_timeline *timeline;
2726 2727
	int ret;

2728 2729
	if (ce->state)
		return 0;
2730

2731
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2732

2733 2734 2735 2736 2737
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2738

2739
	ctx_obj = i915_gem_object_create(engine->i915, context_size);
2740 2741
	if (IS_ERR(ctx_obj))
		return PTR_ERR(ctx_obj);
2742

2743
	vma = i915_vma_instance(ctx_obj, &engine->i915->ggtt.vm, NULL);
2744 2745 2746 2747 2748
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2749
	timeline = get_timeline(ce->gem_context);
2750 2751 2752 2753 2754
	if (IS_ERR(timeline)) {
		ret = PTR_ERR(timeline);
		goto error_deref_obj;
	}

2755 2756 2757
	ring = intel_engine_create_ring(engine,
					timeline,
					ce->gem_context->ring_size);
2758
	i915_timeline_put(timeline);
2759 2760
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2761
		goto error_deref_obj;
2762 2763
	}

2764
	ret = populate_lr_context(ce, ctx_obj, engine, ring);
2765 2766
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2767
		goto error_ring_free;
2768 2769
	}

2770
	ce->ring = ring;
2771
	ce->state = vma;
2772 2773

	return 0;
2774

2775
error_ring_free:
2776
	intel_ring_put(ring);
2777
error_deref_obj:
2778
	i915_gem_object_put(ctx_obj);
2779
	return ret;
2780
}
2781

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
void intel_execlists_show_requests(struct intel_engine_cs *engine,
				   struct drm_printer *m,
				   void (*show_request)(struct drm_printer *m,
							struct i915_request *rq,
							const char *prefix),
				   unsigned int max)
{
	const struct intel_engine_execlists *execlists = &engine->execlists;
	struct i915_request *rq, *last;
	unsigned long flags;
	unsigned int count;
	struct rb_node *rb;

	spin_lock_irqsave(&engine->timeline.lock, flags);

	last = NULL;
	count = 0;
	list_for_each_entry(rq, &engine->timeline.requests, link) {
		if (count++ < max - 1)
			show_request(m, rq, "\t\tE ");
		else
			last = rq;
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d executing requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tE ");
	}

	last = NULL;
	count = 0;
2816 2817 2818
	if (execlists->queue_priority_hint != INT_MIN)
		drm_printf(m, "\t\tQueue priority hint: %d\n",
			   execlists->queue_priority_hint);
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841
	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		int i;

		priolist_for_each_request(rq, p, i) {
			if (count++ < max - 1)
				show_request(m, rq, "\t\tQ ");
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d queued requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tQ ");
	}

	spin_unlock_irqrestore(&engine->timeline.lock, flags);
}

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
void intel_lr_context_reset(struct intel_engine_cs *engine,
			    struct intel_context *ce,
			    u32 head,
			    bool scrub)
{
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	if (scrub) {
		u32 *regs = ce->lrc_reg_state;

		if (engine->pinned_default_state) {
			memcpy(regs, /* skip restoring the vanilla PPHWSP */
			       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
			       engine->context_size - PAGE_SIZE);
		}
		execlists_init_reg_state(regs, ce, engine, ce->ring);
	}

	/* Rerun the request; its payload has been neutered (if guilty). */
	ce->ring->head = head;
	intel_ring_update_space(ce->ring);

	__execlists_update_reg_state(ce, engine);
}

2873
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2874
#include "selftest_lrc.c"
2875
#endif