intel_lrc.c 107.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135

136 137
#include "gem/i915_gem_context.h"

138
#include "i915_drv.h"
139
#include "i915_vgpu.h"
140
#include "intel_engine_pm.h"
141
#include "intel_gt.h"
142
#include "intel_lrc_reg.h"
143
#include "intel_mocs.h"
144
#include "intel_renderstate.h"
145
#include "intel_reset.h"
146
#include "intel_workarounds.h"
147

148 149 150 151 152 153 154 155 156 157 158 159 160
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
161

162
#define GEN8_CTX_STATUS_COMPLETED_MASK \
163
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
164

165 166
#define CTX_DESC_FORCE_RESTORE BIT_ULL(2)

167 168
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
169
#define WA_TAIL_DWORDS 2
170
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
struct virtual_engine {
	struct intel_engine_cs base;
	struct intel_context context;

	/*
	 * We allow only a single request through the virtual engine at a time
	 * (each request in the timeline waits for the completion fence of
	 * the previous before being submitted). By restricting ourselves to
	 * only submitting a single request, each request is placed on to a
	 * physical to maximise load spreading (by virtue of the late greedy
	 * scheduling -- each real engine takes the next available request
	 * upon idling).
	 */
	struct i915_request *request;

	/*
	 * We keep a rbtree of available virtual engines inside each physical
	 * engine, sorted by priority. Here we preallocate the nodes we need
	 * for the virtual engine, indexed by physical_engine->id.
	 */
	struct ve_node {
		struct rb_node rb;
		int prio;
	} nodes[I915_NUM_ENGINES];

197 198 199 200 201 202 203 204 205 206 207 208
	/*
	 * Keep track of bonded pairs -- restrictions upon on our selection
	 * of physical engines any particular request may be submitted to.
	 * If we receive a submit-fence from a master engine, we will only
	 * use one of sibling_mask physical engines.
	 */
	struct ve_bond {
		const struct intel_engine_cs *master;
		intel_engine_mask_t sibling_mask;
	} *bonds;
	unsigned int num_bonds;

209 210 211 212 213 214 215 216 217 218 219
	/* And finally, which physical engines this virtual engine maps onto. */
	unsigned int num_siblings;
	struct intel_engine_cs *siblings[0];
};

static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
{
	GEM_BUG_ON(!intel_engine_is_virtual(engine));
	return container_of(engine, struct virtual_engine, base);
}

220 221
static int execlists_context_deferred_alloc(struct intel_context *ce,
					    struct intel_engine_cs *engine);
222
static void execlists_init_reg_state(u32 *reg_state,
223
				     struct intel_context *ce,
224 225
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
static inline u32 intel_hws_preempt_address(struct intel_engine_cs *engine)
{
	return (i915_ggtt_offset(engine->status_page.vma) +
		I915_GEM_HWS_PREEMPT_ADDR);
}

static inline void
ring_set_paused(const struct intel_engine_cs *engine, int state)
{
	/*
	 * We inspect HWS_PREEMPT with a semaphore inside
	 * engine->emit_fini_breadcrumb. If the dword is true,
	 * the ring is paused as the semaphore will busywait
	 * until the dword is false.
	 */
	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
243 244
	if (state)
		wmb();
245 246
}

247 248 249 250 251 252 253
static inline struct i915_priolist *to_priolist(struct rb_node *rb)
{
	return rb_entry(rb, struct i915_priolist, node);
}

static inline int rq_prio(const struct i915_request *rq)
{
254
	return rq->sched.attr.priority;
255 256
}

257 258
static int effective_prio(const struct i915_request *rq)
{
259 260
	int prio = rq_prio(rq);

261 262 263 264 265 266 267 268 269 270 271
	/*
	 * If this request is special and must not be interrupted at any
	 * cost, so be it. Note we are only checking the most recent request
	 * in the context and so may be masking an earlier vip request. It
	 * is hoped that under the conditions where nopreempt is used, this
	 * will not matter (i.e. all requests to that context will be
	 * nopreempt for as long as desired).
	 */
	if (i915_request_has_nopreempt(rq))
		prio = I915_PRIORITY_UNPREEMPTABLE;

272 273
	/*
	 * On unwinding the active request, we give it a priority bump
274 275 276
	 * if it has completed waiting on any semaphore. If we know that
	 * the request has already started, we can prevent an unwanted
	 * preempt-to-idle cycle by taking that into account now.
277
	 */
278 279
	if (__i915_request_has_started(rq))
		prio |= I915_PRIORITY_NOSEMAPHORE;
280

281
	/* Restrict mere WAIT boosts from triggering preemption */
282
	BUILD_BUG_ON(__NO_PREEMPTION & ~I915_PRIORITY_MASK); /* only internal */
283
	return prio | __NO_PREEMPTION;
284 285
}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
static int queue_prio(const struct intel_engine_execlists *execlists)
{
	struct i915_priolist *p;
	struct rb_node *rb;

	rb = rb_first_cached(&execlists->queue);
	if (!rb)
		return INT_MIN;

	/*
	 * As the priolist[] are inverted, with the highest priority in [0],
	 * we have to flip the index value to become priority.
	 */
	p = to_priolist(rb);
	return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
}

303
static inline bool need_preempt(const struct intel_engine_cs *engine,
304 305
				const struct i915_request *rq,
				struct rb_node *rb)
306
{
307
	int last_prio;
308 309 310 311 312 313 314 315 316 317 318 319 320

	/*
	 * Check if the current priority hint merits a preemption attempt.
	 *
	 * We record the highest value priority we saw during rescheduling
	 * prior to this dequeue, therefore we know that if it is strictly
	 * less than the current tail of ESLP[0], we do not need to force
	 * a preempt-to-idle cycle.
	 *
	 * However, the priority hint is a mere hint that we may need to
	 * preempt. If that hint is stale or we may be trying to preempt
	 * ourselves, ignore the request.
	 */
321
	last_prio = effective_prio(rq);
322 323
	if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint,
					 last_prio))
324 325 326 327 328 329
		return false;

	/*
	 * Check against the first request in ELSP[1], it will, thanks to the
	 * power of PI, be the highest priority of that context.
	 */
330 331
	if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
332 333
		return true;

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
	if (rb) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		bool preempt = false;

		if (engine == ve->siblings[0]) { /* only preempt one sibling */
			struct i915_request *next;

			rcu_read_lock();
			next = READ_ONCE(ve->request);
			if (next)
				preempt = rq_prio(next) > last_prio;
			rcu_read_unlock();
		}

		if (preempt)
			return preempt;
	}

353 354 355 356 357 358 359 360 361 362 363 364 365 366
	/*
	 * If the inflight context did not trigger the preemption, then maybe
	 * it was the set of queued requests? Pick the highest priority in
	 * the queue (the first active priolist) and see if it deserves to be
	 * running instead of ELSP[0].
	 *
	 * The highest priority request in the queue can not be either
	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
	 * context, it's priority would not exceed ELSP[0] aka last_prio.
	 */
	return queue_prio(&engine->execlists) > last_prio;
}

__maybe_unused static inline bool
367
assert_priority_queue(const struct i915_request *prev,
368
		      const struct i915_request *next)
369
{
370 371 372 373 374 375 376
	/*
	 * Without preemption, the prev may refer to the still active element
	 * which we refuse to let go.
	 *
	 * Even with preemption, there are times when we think it is better not
	 * to preempt and leave an ostensibly lower priority request in flight.
	 */
377
	if (i915_request_is_active(prev))
378 379 380
		return true;

	return rq_prio(prev) >= rq_prio(next);
381 382
}

383
/*
384 385 386 387 388
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
389 390
 * This is what a descriptor looks like, from LSB to MSB::
 *
391
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
392
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
393
 *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
394 395
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
396 397 398 399 400 401 402 403 404 405 406 407
 *
 * Starting from Gen11, the upper dword of the descriptor has a new format:
 *
 *      bits 32-36:    reserved
 *      bits 37-47:    SW context ID
 *      bits 48:53:    engine instance
 *      bit 54:        mbz, reserved for use by hardware
 *      bits 55-60:    SW counter
 *      bits 61-63:    engine class
 *
 * engine info, SW context ID and SW counter need to form a unique number
 * (Context ID) per lrc.
408
 */
409 410
static u64
lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
411
{
412
	struct i915_gem_context *ctx = ce->gem_context;
413
	u64 desc;
414

415 416
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
	BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
417

418
	desc = ctx->desc_template;				/* bits  0-11 */
419 420
	GEM_BUG_ON(desc & GENMASK_ULL(63, 12));

421
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
422
								/* bits 12-31 */
423 424
	GEM_BUG_ON(desc & GENMASK_ULL(63, 32));

425 426 427 428 429
	/*
	 * The following 32bits are copied into the OA reports (dword 2).
	 * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
	 * anything below.
	 */
430
	if (INTEL_GEN(engine->i915) >= 11) {
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
								/* bits 37-47 */

		desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
								/* bits 48-53 */

		/* TODO: decide what to do with SW counter (bits 55-60) */

		desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
								/* bits 61-63 */
	} else {
		GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
		desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;	/* bits 32-52 */
	}
446

447
	return desc;
448 449
}

450
static void unwind_wa_tail(struct i915_request *rq)
451 452 453 454 455
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

456
static struct i915_request *
457
__unwind_incomplete_requests(struct intel_engine_cs *engine)
458
{
459
	struct i915_request *rq, *rn, *active = NULL;
460
	struct list_head *uninitialized_var(pl);
461
	int prio = I915_PRIORITY_INVALID;
462

463
	lockdep_assert_held(&engine->active.lock);
464 465

	list_for_each_entry_safe_reverse(rq, rn,
466 467
					 &engine->active.requests,
					 sched.link) {
468 469
		struct intel_engine_cs *owner;

470
		if (i915_request_completed(rq))
471
			continue; /* XXX */
472

473
		__i915_request_unsubmit(rq);
474 475
		unwind_wa_tail(rq);

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
		/*
		 * Push the request back into the queue for later resubmission.
		 * If this request is not native to this physical engine (i.e.
		 * it came from a virtual source), push it back onto the virtual
		 * engine so that it can be moved across onto another physical
		 * engine as load dictates.
		 */
		owner = rq->hw_context->engine;
		if (likely(owner == engine)) {
			GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
			if (rq_prio(rq) != prio) {
				prio = rq_prio(rq);
				pl = i915_sched_lookup_priolist(engine, prio);
			}
			GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
491

492
			list_move(&rq->sched.link, pl);
493 494 495 496 497 498
			active = rq;
		} else {
			rq->engine = owner;
			owner->submit_request(rq);
			active = NULL;
		}
499 500
	}

501
	return active;
502 503
}

504
struct i915_request *
505 506 507 508 509
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

510
	return __unwind_incomplete_requests(engine);
511 512
}

513
static inline void
514
execlists_context_status_change(struct i915_request *rq, unsigned long status)
515
{
516 517 518 519 520 521
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
522

523 524
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
525 526
}

527 528
static inline struct i915_request *
execlists_schedule_in(struct i915_request *rq, int idx)
529
{
530 531
	struct intel_context *ce = rq->hw_context;
	int count;
532

533
	trace_i915_request_in(rq, idx);
534

535 536 537 538 539 540 541 542 543 544 545
	count = intel_context_inflight_count(ce);
	if (!count) {
		intel_context_get(ce);
		ce->inflight = rq->engine;

		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
		intel_engine_context_in(ce->inflight);
	}

	intel_context_inflight_inc(ce);
	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
546

547
	return i915_request_get(rq);
548 549
}

550
static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
551
{
552
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
553 554 555 556 557 558
	struct i915_request *next = READ_ONCE(ve->request);

	if (next && next->execution_mask & ~rq->execution_mask)
		tasklet_schedule(&ve->base.execlists.tasklet);
}

559
static inline void
560
execlists_schedule_out(struct i915_request *rq)
561
{
562 563 564 565
	struct intel_context *ce = rq->hw_context;

	GEM_BUG_ON(!intel_context_inflight_count(ce));

566
	trace_i915_request_out(rq);
567

568 569 570 571 572 573 574 575 576 577 578 579 580 581
	intel_context_inflight_dec(ce);
	if (!intel_context_inflight_count(ce)) {
		intel_engine_context_out(ce->inflight);
		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);

		/*
		 * If this is part of a virtual engine, its next request may
		 * have been blocked waiting for access to the active context.
		 * We have to kick all the siblings again in case we need to
		 * switch (e.g. the next request is not runnable on this
		 * engine). Hopefully, we will already have submitted the next
		 * request before the tasklet runs and do not need to rebuild
		 * each virtual tree and kick everyone again.
		 */
582
		ce->inflight = NULL;
583 584
		if (rq->engine != ce->engine)
			kick_siblings(rq, ce);
585 586

		intel_context_put(ce);
587 588 589
	}

	i915_request_put(rq);
590 591
}

592
static u64 execlists_update_context(const struct i915_request *rq)
593
{
594
	struct intel_context *ce = rq->hw_context;
595
	u64 desc;
596

597 598
	ce->lrc_reg_state[CTX_RING_TAIL + 1] =
		intel_ring_set_tail(rq->ring, rq->tail);
599

600 601 602 603 604 605 606 607 608
	/*
	 * Make sure the context image is complete before we submit it to HW.
	 *
	 * Ostensibly, writes (including the WCB) should be flushed prior to
	 * an uncached write such as our mmio register access, the empirical
	 * evidence (esp. on Braswell) suggests that the WC write into memory
	 * may not be visible to the HW prior to the completion of the UC
	 * register write and that we may begin execution from the context
	 * before its image is complete leading to invalid PD chasing.
609 610 611 612 613
	 *
	 * Furthermore, Braswell, at least, wants a full mb to be sure that
	 * the writes are coherent in memory (visible to the GPU) prior to
	 * execution, and not just visible to other CPUs (as is the result of
	 * wmb).
614
	 */
615
	mb();
616 617 618 619 620

	desc = ce->lrc_desc;
	ce->lrc_desc &= ~CTX_DESC_FORCE_RESTORE;

	return desc;
621 622
}

623
static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
C
Chris Wilson 已提交
624
{
625 626 627 628 629 630 631
	if (execlists->ctrl_reg) {
		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
	} else {
		writel(upper_32_bits(desc), execlists->submit_reg);
		writel(lower_32_bits(desc), execlists->submit_reg);
	}
C
Chris Wilson 已提交
632 633
}

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
static __maybe_unused void
trace_ports(const struct intel_engine_execlists *execlists,
	    const char *msg,
	    struct i915_request * const *ports)
{
	const struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	GEM_TRACE("%s: %s { %llx:%lld%s, %llx:%lld }\n",
		  engine->name, msg,
		  ports[0]->fence.context,
		  ports[0]->fence.seqno,
		  i915_request_completed(ports[0]) ? "!" :
		  i915_request_started(ports[0]) ? "*" :
		  "",
		  ports[1] ? ports[1]->fence.context : 0,
		  ports[1] ? ports[1]->fence.seqno : 0);
}

static __maybe_unused bool
assert_pending_valid(const struct intel_engine_execlists *execlists,
		     const char *msg)
{
	struct i915_request * const *port, *rq;
	struct intel_context *ce = NULL;

	trace_ports(execlists, msg, execlists->pending);

	if (execlists->pending[execlists_num_ports(execlists)])
		return false;

	for (port = execlists->pending; (rq = *port); port++) {
		if (ce == rq->hw_context)
			return false;

		ce = rq->hw_context;
		if (i915_request_completed(rq))
			continue;

		if (i915_active_is_idle(&ce->active))
			return false;

		if (!i915_vma_is_pinned(ce->state))
			return false;
	}

	return ce;
}

683
static void execlists_submit_ports(struct intel_engine_cs *engine)
684
{
685
	struct intel_engine_execlists *execlists = &engine->execlists;
686
	unsigned int n;
687

688 689
	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));

690 691 692 693 694 695 696 697
	/*
	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
698
	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
699

700 701 702 703 704 705 706
	/*
	 * ELSQ note: the submit queue is not cleared after being submitted
	 * to the HW so we need to make sure we always clean it up. This is
	 * currently ensured by the fact that we always write the same number
	 * of elsq entries, keep this in mind before changing the loop below.
	 */
	for (n = execlists_num_ports(execlists); n--; ) {
707
		struct i915_request *rq = execlists->pending[n];
708

709 710 711
		write_desc(execlists,
			   rq ? execlists_update_context(rq) : 0,
			   n);
712
	}
713 714 715 716

	/* we need to manually load the submit queue */
	if (execlists->ctrl_reg)
		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
717 718
}

719
static bool ctx_single_port_submission(const struct intel_context *ce)
720
{
721
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
722
		i915_gem_context_force_single_submission(ce->gem_context));
723
}
724

725 726
static bool can_merge_ctx(const struct intel_context *prev,
			  const struct intel_context *next)
727 728 729
{
	if (prev != next)
		return false;
730

731 732
	if (ctx_single_port_submission(prev))
		return false;
733

734
	return true;
735 736
}

737 738 739
static bool can_merge_rq(const struct i915_request *prev,
			 const struct i915_request *next)
{
740
	GEM_BUG_ON(prev == next);
741 742 743 744 745 746 747 748
	GEM_BUG_ON(!assert_priority_queue(prev, next));

	if (!can_merge_ctx(prev->hw_context, next->hw_context))
		return false;

	return true;
}

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
static void virtual_update_register_offsets(u32 *regs,
					    struct intel_engine_cs *engine)
{
	u32 base = engine->mmio_base;

	/* Must match execlists_init_reg_state()! */

	regs[CTX_CONTEXT_CONTROL] =
		i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base));
	regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base));
	regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base));
	regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base));
	regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base));

	regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base));
	regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base));
	regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base));
	regs[CTX_SECOND_BB_HEAD_U] =
		i915_mmio_reg_offset(RING_SBBADDR_UDW(base));
	regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base));
	regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base));

	regs[CTX_CTX_TIMESTAMP] =
		i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base));
	regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3));
	regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3));
	regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2));
	regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2));
	regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1));
	regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1));
	regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
	regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));

	if (engine->class == RENDER_CLASS) {
		regs[CTX_RCS_INDIRECT_CTX] =
			i915_mmio_reg_offset(RING_INDIRECT_CTX(base));
		regs[CTX_RCS_INDIRECT_CTX_OFFSET] =
			i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base));
		regs[CTX_BB_PER_CTX_PTR] =
			i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base));

		regs[CTX_R_PWR_CLK_STATE] =
			i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE);
	}
}

static bool virtual_matches(const struct virtual_engine *ve,
			    const struct i915_request *rq,
			    const struct intel_engine_cs *engine)
{
799
	const struct intel_engine_cs *inflight;
800

801 802 803
	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
		return false;

804 805 806 807 808 809 810 811 812
	/*
	 * We track when the HW has completed saving the context image
	 * (i.e. when we have seen the final CS event switching out of
	 * the context) and must not overwrite the context image before
	 * then. This restricts us to only using the active engine
	 * while the previous virtualized request is inflight (so
	 * we reuse the register offsets). This is a very small
	 * hystersis on the greedy seelction algorithm.
	 */
813
	inflight = intel_context_inflight(&ve->context);
814
	if (inflight && inflight != engine)
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
		return false;

	return true;
}

static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
				     struct intel_engine_cs *engine)
{
	struct intel_engine_cs *old = ve->siblings[0];

	/* All unattached (rq->engine == old) must already be completed */

	spin_lock(&old->breadcrumbs.irq_lock);
	if (!list_empty(&ve->context.signal_link)) {
		list_move_tail(&ve->context.signal_link,
			       &engine->breadcrumbs.signalers);
		intel_engine_queue_breadcrumbs(engine);
	}
	spin_unlock(&old->breadcrumbs.irq_lock);
}

836 837 838 839 840 841 842 843 844 845 846
static struct i915_request *
last_active(const struct intel_engine_execlists *execlists)
{
	struct i915_request * const *last = execlists->active;

	while (*last && i915_request_completed(*last))
		last++;

	return *last;
}

847
static void defer_request(struct i915_request *rq, struct list_head * const pl)
848
{
849
	LIST_HEAD(list);
850 851 852 853 854 855 856 857

	/*
	 * We want to move the interrupted request to the back of
	 * the round-robin list (i.e. its priority level), but
	 * in doing so, we must then move all requests that were in
	 * flight and were waiting for the interrupted request to
	 * be run after it again.
	 */
858 859
	do {
		struct i915_dependency *p;
860

861 862
		GEM_BUG_ON(i915_request_is_active(rq));
		list_move_tail(&rq->sched.link, pl);
863

864 865 866
		list_for_each_entry(p, &rq->sched.waiters_list, wait_link) {
			struct i915_request *w =
				container_of(p->waiter, typeof(*w), sched);
867

868 869 870
			/* Leave semaphores spinning on the other engines */
			if (w->engine != rq->engine)
				continue;
871

872 873 874
			/* No waiter should start before its signaler */
			GEM_BUG_ON(i915_request_started(w) &&
				   !i915_request_completed(rq));
875

876 877 878
			GEM_BUG_ON(i915_request_is_active(w));
			if (list_empty(&w->sched.link))
				continue; /* Not yet submitted; unready */
879

880 881 882 883 884 885 886 887 888
			if (rq_prio(w) < rq_prio(rq))
				continue;

			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
			list_move_tail(&w->sched.link, &list);
		}

		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
	} while (rq);
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
}

static void defer_active(struct intel_engine_cs *engine)
{
	struct i915_request *rq;

	rq = __unwind_incomplete_requests(engine);
	if (!rq)
		return;

	defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
}

static bool
need_timeslice(struct intel_engine_cs *engine, const struct i915_request *rq)
{
	int hint;

	if (list_is_last(&rq->sched.link, &engine->active.requests))
		return false;

	hint = max(rq_prio(list_next_entry(rq, sched.link)),
		   engine->execlists.queue_priority_hint);

913
	return hint >= effective_prio(rq);
914 915 916 917 918 919 920 921 922 923
}

static bool
enable_timeslice(struct intel_engine_cs *engine)
{
	struct i915_request *last = last_active(&engine->execlists);

	return last && need_timeslice(engine, last);
}

924
static void execlists_dequeue(struct intel_engine_cs *engine)
925
{
926
	struct intel_engine_execlists * const execlists = &engine->execlists;
927 928 929
	struct i915_request **port = execlists->pending;
	struct i915_request ** const last_port = port + execlists->port_mask;
	struct i915_request *last;
930
	struct rb_node *rb;
931 932
	bool submit = false;

933 934
	/*
	 * Hardware submission is through 2 ports. Conceptually each port
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
953
	 */
954

955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
	for (rb = rb_first_cached(&execlists->virtual); rb; ) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq = READ_ONCE(ve->request);

		if (!rq) { /* lazily cleanup after another engine handled rq */
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);
			rb = rb_first_cached(&execlists->virtual);
			continue;
		}

		if (!virtual_matches(ve, rq, engine)) {
			rb = rb_next(rb);
			continue;
		}

		break;
	}

975 976 977 978 979 980 981 982 983
	/*
	 * If the queue is higher priority than the last
	 * request in the currently active context, submit afresh.
	 * We will resubmit again afterwards in case we need to split
	 * the active context to interject the preemption request,
	 * i.e. we will retrigger preemption following the ack in case
	 * of trouble.
	 */
	last = last_active(execlists);
C
Chris Wilson 已提交
984
	if (last) {
985
		if (need_preempt(engine, last, rb)) {
986 987 988 989 990 991 992 993 994 995 996 997
			GEM_TRACE("%s: preempting last=%llx:%lld, prio=%d, hint=%d\n",
				  engine->name,
				  last->fence.context,
				  last->fence.seqno,
				  last->sched.attr.priority,
				  execlists->queue_priority_hint);
			/*
			 * Don't let the RING_HEAD advance past the breadcrumb
			 * as we unwind (and until we resubmit) so that we do
			 * not accidentally tell it to go backwards.
			 */
			ring_set_paused(engine, 1);
998

999 1000 1001 1002 1003 1004 1005 1006
			/*
			 * Note that we have not stopped the GPU at this point,
			 * so we are unwinding the incomplete requests as they
			 * remain inflight and so by the time we do complete
			 * the preemption, some of the unwound requests may
			 * complete!
			 */
			__unwind_incomplete_requests(engine);
1007

1008 1009 1010 1011 1012 1013 1014 1015 1016
			/*
			 * If we need to return to the preempted context, we
			 * need to skip the lite-restore and force it to
			 * reload the RING_TAIL. Otherwise, the HW has a
			 * tendency to ignore us rewinding the TAIL to the
			 * end of an earlier request.
			 */
			last->hw_context->lrc_desc |= CTX_DESC_FORCE_RESTORE;
			last = NULL;
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
		} else if (need_timeslice(engine, last) &&
			   !timer_pending(&engine->execlists.timer)) {
			GEM_TRACE("%s: expired last=%llx:%lld, prio=%d, hint=%d\n",
				  engine->name,
				  last->fence.context,
				  last->fence.seqno,
				  last->sched.attr.priority,
				  execlists->queue_priority_hint);

			ring_set_paused(engine, 1);
			defer_active(engine);

			/*
			 * Unlike for preemption, if we rewind and continue
			 * executing the same context as previously active,
			 * the order of execution will remain the same and
			 * the tail will only advance. We do not need to
			 * force a full context restore, as a lite-restore
			 * is sufficient to resample the monotonic TAIL.
			 *
			 * If we switch to any other context, similarly we
			 * will not rewind TAIL of current context, and
			 * normal save/restore will preserve state and allow
			 * us to later continue executing the same request.
			 */
			last = NULL;
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
		} else {
			/*
			 * Otherwise if we already have a request pending
			 * for execution after the current one, we can
			 * just wait until the next CS event before
			 * queuing more. In either case we will force a
			 * lite-restore preemption event, but if we wait
			 * we hopefully coalesce several updates into a single
			 * submission.
			 */
			if (!list_is_last(&last->sched.link,
					  &engine->active.requests))
				return;

			/*
			 * WaIdleLiteRestore:bdw,skl
			 * Apply the wa NOOPs to prevent
			 * ring:HEAD == rq:TAIL as we resubmit the
			 * request. See gen8_emit_fini_breadcrumb() for
			 * where we prepare the padding after the
			 * end of the request.
			 */
			last->tail = last->wa_tail;
		}
C
Chris Wilson 已提交
1067 1068
	}

1069 1070 1071 1072 1073
	while (rb) { /* XXX virtual is always taking precedence */
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq;

1074
		spin_lock(&ve->base.active.lock);
1075 1076 1077

		rq = ve->request;
		if (unlikely(!rq)) { /* lost the race to a sibling */
1078
			spin_unlock(&ve->base.active.lock);
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);
			rb = rb_first_cached(&execlists->virtual);
			continue;
		}

		GEM_BUG_ON(rq != ve->request);
		GEM_BUG_ON(rq->engine != &ve->base);
		GEM_BUG_ON(rq->hw_context != &ve->context);

		if (rq_prio(rq) >= queue_prio(execlists)) {
			if (!virtual_matches(ve, rq, engine)) {
1091
				spin_unlock(&ve->base.active.lock);
1092 1093 1094 1095
				rb = rb_next(rb);
				continue;
			}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
			if (i915_request_completed(rq)) {
				ve->request = NULL;
				ve->base.execlists.queue_priority_hint = INT_MIN;
				rb_erase_cached(rb, &execlists->virtual);
				RB_CLEAR_NODE(rb);

				rq->engine = engine;
				__i915_request_submit(rq);

				spin_unlock(&ve->base.active.lock);

				rb = rb_first_cached(&execlists->virtual);
				continue;
			}

1111
			if (last && !can_merge_rq(last, rq)) {
1112
				spin_unlock(&ve->base.active.lock);
1113
				return; /* leave this for another */
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
			}

			GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n",
				  engine->name,
				  rq->fence.context,
				  rq->fence.seqno,
				  i915_request_completed(rq) ? "!" :
				  i915_request_started(rq) ? "*" :
				  "",
				  yesno(engine != ve->siblings[0]));

			ve->request = NULL;
			ve->base.execlists.queue_priority_hint = INT_MIN;
			rb_erase_cached(rb, &execlists->virtual);
			RB_CLEAR_NODE(rb);

1130
			GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1131 1132 1133 1134 1135 1136
			rq->engine = engine;

			if (engine != ve->siblings[0]) {
				u32 *regs = ve->context.lrc_reg_state;
				unsigned int n;

1137
				GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
				virtual_update_register_offsets(regs, engine);

				if (!list_empty(&ve->context.signals))
					virtual_xfer_breadcrumbs(ve, engine);

				/*
				 * Move the bound engine to the top of the list
				 * for future execution. We then kick this
				 * tasklet first before checking others, so that
				 * we preferentially reuse this set of bound
				 * registers.
				 */
				for (n = 1; n < ve->num_siblings; n++) {
					if (ve->siblings[n] == engine) {
						swap(ve->siblings[n],
						     ve->siblings[0]);
						break;
					}
				}

				GEM_BUG_ON(ve->siblings[0] != engine);
			}

			__i915_request_submit(rq);
1162 1163 1164 1165
			if (!i915_request_completed(rq)) {
				submit = true;
				last = rq;
			}
1166 1167
		}

1168
		spin_unlock(&ve->base.active.lock);
1169 1170 1171
		break;
	}

1172
	while ((rb = rb_first_cached(&execlists->queue))) {
1173
		struct i915_priolist *p = to_priolist(rb);
1174
		struct i915_request *rq, *rn;
1175
		int i;
1176

1177
		priolist_for_each_request_consume(rq, rn, p, i) {
1178 1179 1180
			if (i915_request_completed(rq))
				goto skip;

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
1191
			 */
1192
			if (last && !can_merge_rq(last, rq)) {
1193 1194 1195 1196 1197
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
1198
				if (port == last_port)
1199 1200
					goto done;

1201 1202 1203 1204 1205 1206 1207 1208
				/*
				 * We must not populate both ELSP[] with the
				 * same LRCA, i.e. we must submit 2 different
				 * contexts if we submit 2 ELSP.
				 */
				if (last->hw_context == rq->hw_context)
					goto done;

1209 1210 1211 1212 1213 1214 1215
				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
1216
				if (ctx_single_port_submission(last->hw_context) ||
1217
				    ctx_single_port_submission(rq->hw_context))
1218 1219
					goto done;

1220
				*port = execlists_schedule_in(last, port - execlists->pending);
1221 1222
				port++;
			}
1223

1224 1225
			last = rq;
			submit = true;
1226 1227
skip:
			__i915_request_submit(rq);
1228
		}
1229

1230
		rb_erase_cached(&p->node, &execlists->queue);
1231
		i915_priolist_free(p);
1232
	}
1233

1234
done:
1235 1236 1237
	/*
	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
	 *
1238
	 * We choose the priority hint such that if we add a request of greater
1239 1240 1241
	 * priority than this, we kick the submission tasklet to decide on
	 * the right order of submitting the requests to hardware. We must
	 * also be prepared to reorder requests as they are in-flight on the
1242
	 * HW. We derive the priority hint then as the first "hole" in
1243 1244 1245 1246
	 * the HW submission ports and if there are no available slots,
	 * the priority of the lowest executing request, i.e. last.
	 *
	 * When we do receive a higher priority request ready to run from the
1247
	 * user, see queue_request(), the priority hint is bumped to that
1248 1249 1250
	 * request triggering preemption on the next dequeue (or subsequent
	 * interrupt for secondary ports).
	 */
1251
	execlists->queue_priority_hint = queue_prio(execlists);
1252 1253 1254
	GEM_TRACE("%s: queue_priority_hint:%d, submit:%s\n",
		  engine->name, execlists->queue_priority_hint,
		  yesno(submit));
1255

1256
	if (submit) {
1257 1258
		*port = execlists_schedule_in(last, port - execlists->pending);
		memset(port + 1, 0, (last_port - port) * sizeof(*port));
1259
		execlists_submit_ports(engine);
1260 1261
	} else {
		ring_set_paused(engine, 0);
1262
	}
1263 1264
}

1265
void
1266
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
1267
{
1268
	struct i915_request * const *port, *rq;
1269

1270 1271 1272
	for (port = execlists->pending; (rq = *port); port++)
		execlists_schedule_out(rq);
	memset(execlists->pending, 0, sizeof(execlists->pending));
1273

1274 1275 1276 1277
	for (port = execlists->active; (rq = *port); port++)
		execlists_schedule_out(rq);
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));
1278 1279
}

1280 1281 1282 1283 1284 1285 1286
static inline void
invalidate_csb_entries(const u32 *first, const u32 *last)
{
	clflush((void *)first);
	clflush((void *)last);
}

1287 1288 1289 1290 1291 1292
static inline bool
reset_in_progress(const struct intel_engine_execlists *execlists)
{
	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
enum csb_step {
	CSB_NOP,
	CSB_PROMOTE,
	CSB_PREEMPT,
	CSB_COMPLETE,
};

static inline enum csb_step
csb_parse(const struct intel_engine_execlists *execlists, const u32 *csb)
{
	unsigned int status = *csb;

	if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
		return CSB_PROMOTE;

	if (status & GEN8_CTX_STATUS_PREEMPTED)
		return CSB_PREEMPT;

	if (*execlists->active)
		return CSB_COMPLETE;

	return CSB_NOP;
}

1317
static void process_csb(struct intel_engine_cs *engine)
1318
{
1319
	struct intel_engine_execlists * const execlists = &engine->execlists;
1320
	const u32 * const buf = execlists->csb_status;
1321
	const u8 num_entries = execlists->csb_size;
1322
	u8 head, tail;
1323

1324
	lockdep_assert_held(&engine->active.lock);
1325
	GEM_BUG_ON(USES_GUC_SUBMISSION(engine->i915));
1326

1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	/*
	 * Note that csb_write, csb_status may be either in HWSP or mmio.
	 * When reading from the csb_write mmio register, we have to be
	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
	 * the low 4bits. As it happens we know the next 4bits are always
	 * zero and so we can simply masked off the low u8 of the register
	 * and treat it identically to reading from the HWSP (without having
	 * to use explicit shifting and masking, and probably bifurcating
	 * the code to handle the legacy mmio read).
	 */
	head = execlists->csb_head;
	tail = READ_ONCE(*execlists->csb_write);
	GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
	if (unlikely(head == tail))
		return;
1342

1343 1344 1345 1346 1347 1348 1349 1350 1351
	/*
	 * Hopefully paired with a wmb() in HW!
	 *
	 * We must complete the read of the write pointer before any reads
	 * from the CSB, so that we do not see stale values. Without an rmb
	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
	 * we perform the READ_ONCE(*csb_write).
	 */
	rmb();
1352

1353
	do {
1354
		if (++head == num_entries)
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
			head = 0;

		/*
		 * We are flying near dragons again.
		 *
		 * We hold a reference to the request in execlist_port[]
		 * but no more than that. We are operating in softirq
		 * context and so cannot hold any mutex or sleep. That
		 * prevents us stopping the requests we are processing
		 * in port[] from being retired simultaneously (the
		 * breadcrumb will be complete before we see the
		 * context-switch). As we only hold the reference to the
		 * request, any pointer chasing underneath the request
		 * is subject to a potential use-after-free. Thus we
		 * store all of the bookkeeping within port[] as
		 * required, and avoid using unguarded pointers beneath
		 * request itself. The same applies to the atomic
		 * status notifier.
		 */

1375
		GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x\n",
1376
			  engine->name, head,
1377
			  buf[2 * head + 0], buf[2 * head + 1]);
1378

1379 1380 1381 1382 1383 1384 1385 1386 1387
		switch (csb_parse(execlists, buf + 2 * head)) {
		case CSB_PREEMPT: /* cancel old inflight, prepare for switch */
			trace_ports(execlists, "preempted", execlists->active);

			while (*execlists->active)
				execlists_schedule_out(*execlists->active++);

			/* fallthrough */
		case CSB_PROMOTE: /* switch pending to inflight */
1388 1389 1390 1391 1392 1393 1394 1395 1396
			GEM_BUG_ON(*execlists->active);
			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
			execlists->active =
				memcpy(execlists->inflight,
				       execlists->pending,
				       execlists_num_ports(execlists) *
				       sizeof(*execlists->pending));
			execlists->pending[0] = NULL;

1397 1398
			trace_ports(execlists, "promoted", execlists->active);

1399 1400 1401
			if (enable_timeslice(engine))
				mod_timer(&execlists->timer, jiffies + 1);

1402 1403
			if (!inject_preempt_hang(execlists))
				ring_set_paused(engine, 0);
1404
			break;
1405

1406 1407
		case CSB_COMPLETE: /* port0 completed, advanced to port1 */
			trace_ports(execlists, "completed", execlists->active);
1408

1409 1410 1411 1412 1413 1414
			/*
			 * We rely on the hardware being strongly
			 * ordered, that the breadcrumb write is
			 * coherent (visible from the CPU) before the
			 * user interrupt and CSB is processed.
			 */
1415 1416
			GEM_BUG_ON(!i915_request_completed(*execlists->active));
			execlists_schedule_out(*execlists->active++);
C
Chris Wilson 已提交
1417

1418 1419
			GEM_BUG_ON(execlists->active - execlists->inflight >
				   execlists_num_ports(execlists));
1420 1421 1422 1423
			break;

		case CSB_NOP:
			break;
1424
		}
1425
	} while (head != tail);
1426

1427
	execlists->csb_head = head;
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439

	/*
	 * Gen11 has proven to fail wrt global observation point between
	 * entry and tail update, failing on the ordering and thus
	 * we see an old entry in the context status buffer.
	 *
	 * Forcibly evict out entries for the next gpu csb update,
	 * to increase the odds that we get a fresh entries with non
	 * working hardware. The cost for doing so comes out mostly with
	 * the wash as hardware, working or not, will need to do the
	 * invalidation before.
	 */
1440
	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1441
}
1442

1443
static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1444
{
1445
	lockdep_assert_held(&engine->active.lock);
1446

C
Chris Wilson 已提交
1447
	process_csb(engine);
1448
	if (!engine->execlists.pending[0])
1449
		execlists_dequeue(engine);
1450 1451
}

1452 1453 1454 1455 1456 1457 1458 1459 1460
/*
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
static void execlists_submission_tasklet(unsigned long data)
{
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	unsigned long flags;

1461
	spin_lock_irqsave(&engine->active.lock, flags);
1462
	__execlists_submission_tasklet(engine);
1463
	spin_unlock_irqrestore(&engine->active.lock, flags);
1464 1465
}

1466 1467 1468 1469 1470 1471 1472 1473 1474
static void execlists_submission_timer(struct timer_list *timer)
{
	struct intel_engine_cs *engine =
		from_timer(engine, timer, execlists.timer);

	/* Kick the tasklet for some interrupt coalescing and reset handling */
	tasklet_hi_schedule(&engine->execlists.tasklet);
}

1475
static void queue_request(struct intel_engine_cs *engine,
1476
			  struct i915_sched_node *node,
1477
			  int prio)
1478
{
1479
	GEM_BUG_ON(!list_empty(&node->link));
1480
	list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
}

static void __submit_queue_imm(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

	if (reset_in_progress(execlists))
		return; /* defer until we restart the engine following reset */

	if (execlists->tasklet.func == execlists_submission_tasklet)
		__execlists_submission_tasklet(engine);
	else
		tasklet_hi_schedule(&execlists->tasklet);
1494 1495
}

1496 1497
static void submit_queue(struct intel_engine_cs *engine,
			 const struct i915_request *rq)
1498
{
1499 1500 1501 1502 1503 1504 1505
	struct intel_engine_execlists *execlists = &engine->execlists;

	if (rq_prio(rq) <= execlists->queue_priority_hint)
		return;

	execlists->queue_priority_hint = rq_prio(rq);
	__submit_queue_imm(engine);
1506 1507
}

1508
static void execlists_submit_request(struct i915_request *request)
1509
{
1510
	struct intel_engine_cs *engine = request->engine;
1511
	unsigned long flags;
1512

1513
	/* Will be called from irq-context when using foreign fences. */
1514
	spin_lock_irqsave(&engine->active.lock, flags);
1515

1516
	queue_request(engine, &request->sched, rq_prio(request));
1517

1518
	GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1519
	GEM_BUG_ON(list_empty(&request->sched.link));
1520

1521
	submit_queue(engine, request);
1522

1523
	spin_unlock_irqrestore(&engine->active.lock, flags);
1524 1525
}

1526
static void __execlists_context_fini(struct intel_context *ce)
1527
{
1528
	intel_ring_put(ce->ring);
1529
	i915_vma_put(ce->state);
1530 1531
}

1532
static void execlists_context_destroy(struct kref *kref)
1533
{
1534 1535
	struct intel_context *ce = container_of(kref, typeof(*ce), ref);

1536
	GEM_BUG_ON(!i915_active_is_idle(&ce->active));
1537
	GEM_BUG_ON(intel_context_is_pinned(ce));
1538 1539 1540 1541 1542 1543 1544

	if (ce->state)
		__execlists_context_fini(ce);

	intel_context_free(ce);
}

1545
static void execlists_context_unpin(struct intel_context *ce)
1546
{
1547
	i915_gem_context_unpin_hw_id(ce->gem_context);
1548
	i915_gem_object_unpin_map(ce->state->obj);
1549 1550
}

1551
static void
1552 1553
__execlists_update_reg_state(struct intel_context *ce,
			     struct intel_engine_cs *engine)
1554 1555
{
	struct intel_ring *ring = ce->ring;
1556 1557 1558 1559
	u32 *regs = ce->lrc_reg_state;

	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1560 1561 1562 1563 1564 1565 1566

	regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
	regs[CTX_RING_HEAD + 1] = ring->head;
	regs[CTX_RING_TAIL + 1] = ring->tail;

	/* RPCS */
	if (engine->class == RENDER_CLASS)
1567
		regs[CTX_R_PWR_CLK_STATE + 1] =
1568
			intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1569 1570
}

1571 1572 1573
static int
__execlists_context_pin(struct intel_context *ce,
			struct intel_engine_cs *engine)
1574
{
1575
	void *vaddr;
1576
	int ret;
1577

1578
	GEM_BUG_ON(!ce->gem_context->vm);
1579 1580

	ret = execlists_context_deferred_alloc(ce, engine);
1581 1582
	if (ret)
		goto err;
1583
	GEM_BUG_ON(!ce->state);
1584

1585
	ret = intel_context_active_acquire(ce);
1586
	if (ret)
1587
		goto err;
1588
	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
1589

1590
	vaddr = i915_gem_object_pin_map(ce->state->obj,
1591
					i915_coherent_map_type(engine->i915) |
1592
					I915_MAP_OVERRIDE);
1593 1594
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1595
		goto unpin_active;
1596 1597
	}

1598
	ret = i915_gem_context_pin_hw_id(ce->gem_context);
1599
	if (ret)
1600
		goto unpin_map;
1601

1602
	ce->lrc_desc = lrc_descriptor(ce, engine);
1603
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1604
	__execlists_update_reg_state(ce, engine);
1605

1606
	return 0;
1607

1608
unpin_map:
1609
	i915_gem_object_unpin_map(ce->state->obj);
1610 1611
unpin_active:
	intel_context_active_release(ce);
1612
err:
1613
	return ret;
1614 1615
}

1616
static int execlists_context_pin(struct intel_context *ce)
1617
{
1618
	return __execlists_context_pin(ce, ce->engine);
1619 1620
}

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
static void execlists_context_reset(struct intel_context *ce)
{
	/*
	 * Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * The contexts that are stilled pinned on resume belong to the
	 * kernel, and are local to each engine. All other contexts will
	 * have their head/tail sanitized upon pinning before use, so they
	 * will never see garbage,
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
	intel_ring_reset(ce->ring, 0);
	__execlists_update_reg_state(ce, ce->engine);
}

1643
static const struct intel_context_ops execlists_context_ops = {
1644
	.pin = execlists_context_pin,
1645
	.unpin = execlists_context_unpin,
1646

1647 1648 1649
	.enter = intel_context_enter_engine,
	.exit = intel_context_exit_engine,

1650
	.reset = execlists_context_reset,
1651 1652 1653
	.destroy = execlists_context_destroy,
};

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
static int gen8_emit_init_breadcrumb(struct i915_request *rq)
{
	u32 *cs;

	GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/*
	 * Check if we have been preempted before we even get started.
	 *
	 * After this point i915_request_started() reports true, even if
	 * we get preempted and so are no longer running.
	 */
	*cs++ = MI_ARB_CHECK;
	*cs++ = MI_NOOP;

	*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
	*cs++ = rq->timeline->hwsp_offset;
	*cs++ = 0;
	*cs++ = rq->fence.seqno - 1;

	intel_ring_advance(rq, cs);
1679 1680 1681 1682

	/* Record the updated position of the request's payload */
	rq->infix = intel_ring_offset(rq, cs);

1683 1684 1685
	return 0;
}

1686 1687 1688
static int emit_pdps(struct i915_request *rq)
{
	const struct intel_engine_cs * const engine = rq->engine;
1689
	struct i915_ppgtt * const ppgtt =
1690
		i915_vm_to_ppgtt(rq->gem_context->vm);
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	int err, i;
	u32 *cs;

	GEM_BUG_ON(intel_vgpu_active(rq->i915));

	/*
	 * Beware ye of the dragons, this sequence is magic!
	 *
	 * Small changes to this sequence can cause anything from
	 * GPU hangs to forcewake errors and machine lockups!
	 */

	/* Flush any residual operations from the context load */
	err = engine->emit_flush(rq, EMIT_FLUSH);
	if (err)
		return err;

	/* Magic required to prevent forcewake errors! */
	err = engine->emit_flush(rq, EMIT_INVALIDATE);
	if (err)
		return err;

	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

	/* Ensure the LRI have landed before we invalidate & continue */
	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
	for (i = GEN8_3LVL_PDPES; i--; ) {
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1721
		u32 base = engine->mmio_base;
1722

1723
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1724
		*cs++ = upper_32_bits(pd_daddr);
1725
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
		*cs++ = lower_32_bits(pd_daddr);
	}
	*cs++ = MI_NOOP;

	intel_ring_advance(rq, cs);

	/* Be doubly sure the LRI have landed before proceeding */
	err = engine->emit_flush(rq, EMIT_FLUSH);
	if (err)
		return err;

	/* Re-invalidate the TLB for luck */
	return engine->emit_flush(rq, EMIT_INVALIDATE);
}

1741
static int execlists_request_alloc(struct i915_request *request)
1742
{
1743
	int ret;
1744

1745
	GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1746

1747 1748
	/*
	 * Flush enough space to reduce the likelihood of waiting after
1749 1750 1751 1752 1753
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1754 1755
	/*
	 * Note that after this point, we have committed to using
1756 1757 1758 1759 1760 1761
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

1762
	/* Unconditionally invalidate GPU caches and TLBs. */
1763
	if (i915_vm_is_4lvl(request->gem_context->vm))
1764 1765 1766 1767 1768 1769
		ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
	else
		ret = emit_pdps(request);
	if (ret)
		return ret;

1770 1771 1772 1773
	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1790 1791
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1792
{
1793
	/* NB no one else is allowed to scribble over scratch + 256! */
1794 1795
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1796 1797
	*batch++ = intel_gt_scratch_offset(engine->gt,
					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1798 1799 1800 1801 1802 1803
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1804 1805 1806 1807
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1808 1809 1810

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1811 1812
	*batch++ = intel_gt_scratch_offset(engine->gt,
					   INTEL_GT_SCRATCH_FIELD_COHERENTL3_WA);
1813 1814 1815
	*batch++ = 0;

	return batch;
1816 1817
}

1818 1819 1820 1821 1822 1823
static u32 slm_offset(struct intel_engine_cs *engine)
{
	return intel_gt_scratch_offset(engine->gt,
				       INTEL_GT_SCRATCH_FIELD_CLEAR_SLM_WA);
}

1824 1825 1826 1827 1828 1829
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1830
 *
1831 1832
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1833
 *
1834 1835 1836 1837
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1838
 */
1839
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1840
{
1841
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1842
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1843

1844
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1845 1846
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1847

1848 1849
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1850 1851 1852 1853 1854
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
1855
				       slm_offset(engine));
1856

C
Chris Wilson 已提交
1857 1858
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1859
	/* Pad to end of cacheline */
1860 1861
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1862 1863 1864 1865 1866 1867 1868

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1869
	return batch;
1870 1871
}

1872 1873 1874 1875 1876 1877
struct lri {
	i915_reg_t reg;
	u32 value;
};

static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1878
{
1879
	GEM_BUG_ON(!count || count > 63);
C
Chris Wilson 已提交
1880

1881 1882 1883 1884 1885 1886
	*batch++ = MI_LOAD_REGISTER_IMM(count);
	do {
		*batch++ = i915_mmio_reg_offset(lri->reg);
		*batch++ = lri->value;
	} while (lri++, --count);
	*batch++ = MI_NOOP;
1887

1888 1889
	return batch;
}
1890

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	static const struct lri lri[] = {
		/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
		{
			COMMON_SLICE_CHICKEN2,
			__MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
				       0),
		},

		/* BSpec: 11391 */
		{
			FF_SLICE_CHICKEN,
			__MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
				       FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
		},

		/* BSpec: 11299 */
		{
			_3D_CHICKEN3,
			__MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
				       _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
		}
	};
1915

1916
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1917

1918 1919
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1920

1921
	batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1922

1923
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1938 1939 1940 1941 1942 1943
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1944 1945
	}

C
Chris Wilson 已提交
1946 1947
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1948
	/* Pad to end of cacheline */
1949 1950
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1951

1952
	return batch;
1953 1954
}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
static u32 *
gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
{
	int i;

	/*
	 * WaPipeControlBefore3DStateSamplePattern: cnl
	 *
	 * Ensure the engine is idle prior to programming a
	 * 3DSTATE_SAMPLE_PATTERN during a context restore.
	 */
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL,
				       0);
	/*
	 * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
	 * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
	 * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
	 * confusing. Since gen8_emit_pipe_control() already advances the
	 * batch by 6 dwords, we advance the other 10 here, completing a
	 * cacheline. It's not clear if the workaround requires this padding
	 * before other commands, or if it's just the regular padding we would
	 * already have for the workaround bb, so leave it here for now.
	 */
	for (i = 0; i < 10; i++)
		*batch++ = MI_NOOP;

	/* Pad to end of cacheline */
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;

	return batch;
}

1989 1990 1991
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1992
{
1993 1994 1995
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1996

1997
	obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
1998 1999
	if (IS_ERR(obj))
		return PTR_ERR(obj);
2000

2001
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
2002 2003 2004
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
2005 2006
	}

2007
	err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
2008 2009 2010 2011
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
2012
	return 0;
2013 2014 2015 2016

err:
	i915_gem_object_put(obj);
	return err;
2017 2018
}

2019
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
2020
{
2021
	i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
2022 2023
}

2024 2025
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

2026
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
2027
{
2028
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2029 2030 2031
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
2032
	struct page *page;
2033 2034
	void *batch, *batch_ptr;
	unsigned int i;
2035
	int ret;
2036

2037 2038
	if (engine->class != RENDER_CLASS)
		return 0;
2039

2040
	switch (INTEL_GEN(engine->i915)) {
2041 2042
	case 11:
		return 0;
2043
	case 10:
2044 2045 2046
		wa_bb_fn[0] = gen10_init_indirectctx_bb;
		wa_bb_fn[1] = NULL;
		break;
2047 2048
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
2049
		wa_bb_fn[1] = NULL;
2050 2051 2052
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
2053
		wa_bb_fn[1] = NULL;
2054 2055 2056
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
2057
		return 0;
2058
	}
2059

2060
	ret = lrc_setup_wa_ctx(engine);
2061 2062 2063 2064 2065
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

2066
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
2067
	batch = batch_ptr = kmap_atomic(page);
2068

2069 2070 2071 2072 2073 2074 2075
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
2076 2077
		if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
						  CACHELINE_BYTES))) {
2078 2079 2080
			ret = -EINVAL;
			break;
		}
2081 2082
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
2083
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
2084 2085
	}

2086 2087
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

2088 2089
	kunmap_atomic(batch);
	if (ret)
2090
		lrc_destroy_wa_ctx(engine);
2091 2092 2093 2094

	return ret;
}

2095
static void enable_execlists(struct intel_engine_cs *engine)
2096
{
2097 2098 2099 2100
	u32 mode;

	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);

2101
	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2102

2103
	if (INTEL_GEN(engine->i915) >= 11)
2104
		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2105
	else
2106 2107
		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2108

2109
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2110

2111 2112 2113
	ENGINE_WRITE_FW(engine,
			RING_HWS_PGA,
			i915_ggtt_offset(engine->status_page.vma));
2114
	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2115 2116
}

2117 2118 2119 2120
static bool unexpected_starting_state(struct intel_engine_cs *engine)
{
	bool unexpected = false;

2121
	if (ENGINE_READ_FW(engine, RING_MI_MODE) & STOP_RING) {
2122 2123 2124 2125 2126 2127 2128
		DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
		unexpected = true;
	}

	return unexpected;
}

2129
static int execlists_resume(struct intel_engine_cs *engine)
2130
{
2131
	intel_engine_apply_workarounds(engine);
2132
	intel_engine_apply_whitelist(engine);
2133

2134
	intel_mocs_init_engine(engine);
2135

2136
	intel_engine_reset_breadcrumbs(engine);
2137

2138 2139 2140 2141 2142 2143
	if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
		struct drm_printer p = drm_debug_printer(__func__);

		intel_engine_dump(engine, &p, NULL);
	}

2144
	enable_execlists(engine);
2145

2146
	return 0;
2147 2148
}

2149
static void execlists_reset_prepare(struct intel_engine_cs *engine)
2150 2151
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
2152
	unsigned long flags;
2153

2154 2155
	GEM_TRACE("%s: depth<-%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
2156 2157 2158 2159 2160 2161

	/*
	 * Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its execlists->tasklet *just* as we are
2162
	 * calling engine->resume() and also writing the ELSP.
2163 2164 2165 2166
	 * Turning off the execlists->tasklet until the reset is over
	 * prevents the race.
	 */
	__tasklet_disable_sync_once(&execlists->tasklet);
2167
	GEM_BUG_ON(!reset_in_progress(execlists));
2168

2169 2170
	intel_engine_stop_cs(engine);

2171
	/* And flush any current direct submission. */
2172 2173
	spin_lock_irqsave(&engine->active.lock, flags);
	spin_unlock_irqrestore(&engine->active.lock, flags);
2174 2175
}

2176
static void reset_csb_pointers(struct intel_engine_cs *engine)
2177
{
2178
	struct intel_engine_execlists * const execlists = &engine->execlists;
2179 2180
	const unsigned int reset_value = execlists->csb_size - 1;

2181 2182
	ring_set_paused(engine, 0);

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
	/*
	 * After a reset, the HW starts writing into CSB entry [0]. We
	 * therefore have to set our HEAD pointer back one entry so that
	 * the *first* entry we check is entry 0. To complicate this further,
	 * as we don't wait for the first interrupt after reset, we have to
	 * fake the HW write to point back to the last entry so that our
	 * inline comparison of our cached head position against the last HW
	 * write works even before the first interrupt.
	 */
	execlists->csb_head = reset_value;
	WRITE_ONCE(*execlists->csb_write, reset_value);
2194
	wmb(); /* Make sure this is visible to HW (paranoia?) */
2195 2196 2197 2198 2199

	invalidate_csb_entries(&execlists->csb_status[0],
			       &execlists->csb_status[reset_value]);
}

2200 2201
static struct i915_request *active_request(struct i915_request *rq)
{
2202
	const struct list_head * const list = &rq->engine->active.requests;
2203 2204 2205
	const struct intel_context * const context = rq->hw_context;
	struct i915_request *active = NULL;

2206
	list_for_each_entry_from_reverse(rq, list, sched.link) {
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
		if (i915_request_completed(rq))
			break;

		if (rq->hw_context != context)
			break;

		active = rq;
	}

	return active;
}

2219
static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
2220
{
2221
	struct intel_engine_execlists * const execlists = &engine->execlists;
2222
	struct intel_context *ce;
2223
	struct i915_request *rq;
2224
	u32 *regs;
2225

2226 2227 2228
	process_csb(engine); /* drain preemption events */

	/* Following the reset, we need to reload the CSB read/write pointers */
2229
	reset_csb_pointers(engine);
2230 2231 2232 2233 2234 2235

	/*
	 * Save the currently executing context, even if we completed
	 * its request, it was still running at the time of the
	 * reset and will have been clobbered.
	 */
2236 2237 2238
	rq = execlists_active(execlists);
	if (!rq)
		return;
2239

2240
	ce = rq->hw_context;
2241 2242 2243
	GEM_BUG_ON(i915_active_is_idle(&ce->active));
	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
	rq = active_request(rq);
2244

2245 2246 2247 2248 2249 2250 2251 2252 2253
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
2254
	execlists_cancel_port_requests(execlists);
2255

2256 2257
	if (!rq) {
		ce->ring->head = ce->ring->tail;
2258
		goto out_replay;
2259 2260 2261
	}

	ce->ring->head = intel_ring_wrap(ce->ring, rq->head);
2262

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
	/*
	 * If this request hasn't started yet, e.g. it is waiting on a
	 * semaphore, we need to avoid skipping the request or else we
	 * break the signaling chain. However, if the context is corrupt
	 * the request will not restart and we will be stuck with a wedged
	 * device. It is quite often the case that if we issue a reset
	 * while the GPU is loading the context image, that the context
	 * image becomes corrupt.
	 *
	 * Otherwise, if we have not started yet, the request should replay
	 * perfectly and we do not need to flag the result as being erroneous.
	 */
2275
	if (!i915_request_started(rq))
2276
		goto out_replay;
2277

2278 2279
	/*
	 * If the request was innocent, we leave the request in the ELSP
2280 2281 2282 2283 2284 2285 2286 2287 2288
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
2289
	i915_reset_request(rq, stalled);
2290
	if (!stalled)
2291
		goto out_replay;
2292

2293 2294
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
2295 2296 2297 2298 2299 2300
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
2301
	regs = ce->lrc_reg_state;
2302 2303 2304 2305
	if (engine->pinned_default_state) {
		memcpy(regs, /* skip restoring the vanilla PPHWSP */
		       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
		       engine->context_size - PAGE_SIZE);
2306
	}
2307
	execlists_init_reg_state(regs, ce, engine, ce->ring);
2308

2309
out_replay:
2310 2311
	GEM_TRACE("%s replay {head:%04x, tail:%04x\n",
		  engine->name, ce->ring->head, ce->ring->tail);
2312 2313 2314
	intel_ring_update_space(ce->ring);
	__execlists_update_reg_state(ce, engine);

2315 2316
	/* Push back any incomplete requests for replay after the reset. */
	__unwind_incomplete_requests(engine);
2317
}
2318

2319 2320 2321 2322 2323 2324
static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
{
	unsigned long flags;

	GEM_TRACE("%s\n", engine->name);

2325
	spin_lock_irqsave(&engine->active.lock, flags);
2326 2327 2328

	__execlists_reset(engine, stalled);

2329
	spin_unlock_irqrestore(&engine->active.lock, flags);
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
}

static void nop_submission_tasklet(unsigned long data)
{
	/* The driver is wedged; don't process any more events. */
}

static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct i915_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	GEM_TRACE("%s\n", engine->name);

	/*
	 * Before we call engine->cancel_requests(), we should have exclusive
	 * access to the submission state. This is arranged for us by the
	 * caller disabling the interrupt generation, the tasklet and other
	 * threads that may then access the same state, giving us a free hand
	 * to reset state. However, we still need to let lockdep be aware that
	 * we know this state may be accessed in hardirq context, so we
	 * disable the irq around this manipulation and we want to keep
	 * the spinlock focused on its duties and not accidentally conflate
	 * coverage to the submission's irq state. (Similarly, although we
	 * shouldn't need to disable irq around the manipulation of the
	 * submission's irq state, we also wish to remind ourselves that
	 * it is irq state.)
	 */
2360
	spin_lock_irqsave(&engine->active.lock, flags);
2361 2362 2363 2364

	__execlists_reset(engine, true);

	/* Mark all executing requests as skipped. */
2365
	list_for_each_entry(rq, &engine->active.requests, sched.link) {
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
		if (!i915_request_signaled(rq))
			dma_fence_set_error(&rq->fence, -EIO);

		i915_request_mark_complete(rq);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
	while ((rb = rb_first_cached(&execlists->queue))) {
		struct i915_priolist *p = to_priolist(rb);
		int i;

		priolist_for_each_request_consume(rq, rn, p, i) {
			list_del_init(&rq->sched.link);
			__i915_request_submit(rq);
			dma_fence_set_error(&rq->fence, -EIO);
			i915_request_mark_complete(rq);
		}

		rb_erase_cached(&p->node, &execlists->queue);
		i915_priolist_free(p);
	}

2388 2389 2390 2391 2392 2393 2394 2395
	/* Cancel all attached virtual engines */
	while ((rb = rb_first_cached(&execlists->virtual))) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);

		rb_erase_cached(rb, &execlists->virtual);
		RB_CLEAR_NODE(rb);

2396
		spin_lock(&ve->base.active.lock);
2397 2398 2399 2400 2401 2402 2403 2404
		if (ve->request) {
			ve->request->engine = engine;
			__i915_request_submit(ve->request);
			dma_fence_set_error(&ve->request->fence, -EIO);
			i915_request_mark_complete(ve->request);
			ve->base.execlists.queue_priority_hint = INT_MIN;
			ve->request = NULL;
		}
2405
		spin_unlock(&ve->base.active.lock);
2406 2407
	}

2408 2409 2410 2411 2412 2413 2414
	/* Remaining _unready_ requests will be nop'ed when submitted */

	execlists->queue_priority_hint = INT_MIN;
	execlists->queue = RB_ROOT_CACHED;

	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
	execlists->tasklet.func = nop_submission_tasklet;
2415

2416
	spin_unlock_irqrestore(&engine->active.lock, flags);
2417 2418
}

2419 2420
static void execlists_reset_finish(struct intel_engine_cs *engine)
{
2421 2422
	struct intel_engine_execlists * const execlists = &engine->execlists;

2423
	/*
2424 2425 2426
	 * After a GPU reset, we may have requests to replay. Do so now while
	 * we still have the forcewake to be sure that the GPU is not allowed
	 * to sleep before we restart and reload a context.
2427
	 */
2428
	GEM_BUG_ON(!reset_in_progress(execlists));
2429 2430
	if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
		execlists->tasklet.func(execlists->tasklet.data);
2431

2432 2433 2434
	if (__tasklet_enable(&execlists->tasklet))
		/* And kick in case we missed a new request submission. */
		tasklet_hi_schedule(&execlists->tasklet);
2435 2436
	GEM_TRACE("%s: depth->%d\n", engine->name,
		  atomic_read(&execlists->tasklet.count));
2437 2438
}

2439
static int gen8_emit_bb_start(struct i915_request *rq,
2440
			      u64 offset, u32 len,
2441
			      const unsigned int flags)
2442
{
2443
	u32 *cs;
2444

2445
	cs = intel_ring_begin(rq, 4);
2446 2447
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2448

2449 2450 2451 2452 2453 2454 2455
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
2456 2457 2458 2459 2460
	 * we would be fine.  However, for gen8 there is another w/a that
	 * requires us to not preempt inside GPGPU execution, so we keep
	 * arbitration disabled for gen8 batches. Arbitration will be
	 * re-enabled before we close the request
	 * (engine->emit_fini_breadcrumb).
2461
	 */
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

	/* FIXME(BDW+): Address space and security selectors. */
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);

	intel_ring_advance(rq, cs);

	return 0;
}

static int gen9_emit_bb_start(struct i915_request *rq,
			      u64 offset, u32 len,
			      const unsigned int flags)
{
	u32 *cs;

	cs = intel_ring_begin(rq, 6);
	if (IS_ERR(cs))
		return PTR_ERR(cs);

2485 2486
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

2487
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
2488
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2489 2490
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
2491 2492 2493

	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
	*cs++ = MI_NOOP;
2494

2495
	intel_ring_advance(rq, cs);
2496 2497 2498 2499

	return 0;
}

2500
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2501
{
2502 2503 2504
	ENGINE_WRITE(engine, RING_IMR,
		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
	ENGINE_POSTING_READ(engine, RING_IMR);
2505 2506
}

2507
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2508
{
2509
	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2510 2511
}

2512
static int gen8_emit_flush(struct i915_request *request, u32 mode)
2513
{
2514
	u32 cmd, *cs;
2515

2516 2517 2518
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2519 2520 2521

	cmd = MI_FLUSH_DW + 1;

2522 2523 2524 2525 2526 2527 2528
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

2529
	if (mode & EMIT_INVALIDATE) {
2530
		cmd |= MI_INVALIDATE_TLB;
2531
		if (request->engine->class == VIDEO_DECODE_CLASS)
2532
			cmd |= MI_INVALIDATE_BSD;
2533 2534
	}

2535 2536 2537 2538 2539
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
2540 2541 2542 2543

	return 0;
}

2544
static int gen8_emit_flush_render(struct i915_request *request,
2545
				  u32 mode)
2546
{
2547
	struct intel_engine_cs *engine = request->engine;
2548
	u32 scratch_addr =
2549 2550
		intel_gt_scratch_offset(engine->gt,
					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
M
Mika Kuoppala 已提交
2551
	bool vf_flush_wa = false, dc_flush_wa = false;
2552
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
2553
	int len;
2554 2555 2556

	flags |= PIPE_CONTROL_CS_STALL;

2557
	if (mode & EMIT_FLUSH) {
2558 2559
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2560
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2561
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
2562 2563
	}

2564
	if (mode & EMIT_INVALIDATE) {
2565 2566 2567 2568 2569 2570 2571 2572 2573
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

2574 2575 2576 2577
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
2578
		if (IS_GEN(request->i915, 9))
2579
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
2580 2581 2582 2583

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
2584
	}
2585

M
Mika Kuoppala 已提交
2586 2587 2588 2589 2590 2591 2592 2593
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

2594 2595 2596
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
2597

2598 2599
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
2600

2601 2602 2603
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
2604

2605
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
2606

2607 2608
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
2609

2610
	intel_ring_advance(request, cs);
2611 2612 2613 2614

	return 0;
}

2615 2616 2617 2618 2619
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
2620
static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2621
{
C
Chris Wilson 已提交
2622 2623
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
2624 2625
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
2626 2627

	return cs;
C
Chris Wilson 已提交
2628
}
2629

2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
static u32 *emit_preempt_busywait(struct i915_request *request, u32 *cs)
{
	*cs++ = MI_SEMAPHORE_WAIT |
		MI_SEMAPHORE_GLOBAL_GTT |
		MI_SEMAPHORE_POLL |
		MI_SEMAPHORE_SAD_EQ_SDD;
	*cs++ = 0;
	*cs++ = intel_hws_preempt_address(request->engine);
	*cs++ = 0;

	return cs;
}

2643
static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
C
Chris Wilson 已提交
2644
{
2645 2646
	cs = gen8_emit_ggtt_write(cs,
				  request->fence.seqno,
2647 2648
				  request->timeline->hwsp_offset,
				  0);
2649
	*cs++ = MI_USER_INTERRUPT;
2650

2651
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2652
	cs = emit_preempt_busywait(request, cs);
2653

2654
	request->tail = intel_ring_offset(request, cs);
2655
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2656

2657
	return gen8_emit_wa_tail(request, cs);
2658
}
2659

2660
static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2661
{
2662
	/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
2663
	cs = gen8_emit_ggtt_write_rcs(cs,
2664 2665
				      request->fence.seqno,
				      request->timeline->hwsp_offset,
2666 2667
				      PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
				      PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2668 2669 2670 2671 2672
				      PIPE_CONTROL_DC_FLUSH_ENABLE);
	cs = gen8_emit_pipe_control(cs,
				    PIPE_CONTROL_FLUSH_ENABLE |
				    PIPE_CONTROL_CS_STALL,
				    0);
2673
	*cs++ = MI_USER_INTERRUPT;
2674

2675
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2676
	cs = emit_preempt_busywait(request, cs);
2677

2678
	request->tail = intel_ring_offset(request, cs);
2679
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
2680

2681
	return gen8_emit_wa_tail(request, cs);
2682
}
2683

2684
static int gen8_init_rcs_context(struct i915_request *rq)
2685 2686 2687
{
	int ret;

2688
	ret = intel_engine_emit_ctx_wa(rq);
2689 2690 2691
	if (ret)
		return ret;

2692
	ret = intel_rcs_context_init_mocs(rq);
2693 2694 2695 2696 2697 2698 2699
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

2700
	return intel_renderstate_emit(rq);
2701 2702
}

2703 2704
static void execlists_park(struct intel_engine_cs *engine)
{
2705
	del_timer_sync(&engine->execlists.timer);
2706 2707 2708
	intel_engine_park(engine);
}

2709
void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2710
{
2711
	engine->submit_request = execlists_submit_request;
2712
	engine->cancel_requests = execlists_cancel_requests;
2713
	engine->schedule = i915_schedule;
2714
	engine->execlists.tasklet.func = execlists_submission_tasklet;
2715

2716
	engine->reset.prepare = execlists_reset_prepare;
2717 2718
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2719

2720
	engine->park = execlists_park;
2721
	engine->unpark = NULL;
2722 2723

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2724 2725
	if (!intel_vgpu_active(engine->i915))
		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2726
	if (HAS_LOGICAL_RING_PREEMPTION(engine->i915))
2727
		engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2728 2729
}

2730 2731 2732 2733 2734 2735 2736
static void execlists_destroy(struct intel_engine_cs *engine)
{
	intel_engine_cleanup_common(engine);
	lrc_destroy_wa_ctx(engine);
	kfree(engine);
}

2737
static void
2738
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2739 2740
{
	/* Default vfuncs which can be overriden by each engine. */
2741 2742

	engine->destroy = execlists_destroy;
2743
	engine->resume = execlists_resume;
2744 2745 2746 2747

	engine->reset.prepare = execlists_reset_prepare;
	engine->reset.reset = execlists_reset;
	engine->reset.finish = execlists_reset_finish;
2748

2749
	engine->cops = &execlists_context_ops;
2750 2751
	engine->request_alloc = execlists_request_alloc;

2752
	engine->emit_flush = gen8_emit_flush;
2753 2754
	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
2755

2756
	engine->set_default_submission = intel_execlists_set_default_submission;
2757

2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
	if (INTEL_GEN(engine->i915) < 11) {
		engine->irq_enable = gen8_logical_ring_enable_irq;
		engine->irq_disable = gen8_logical_ring_disable_irq;
	} else {
		/*
		 * TODO: On Gen11 interrupt masks need to be clear
		 * to allow C6 entry. Keep interrupts enabled at
		 * and take the hit of generating extra interrupts
		 * until a more refined solution exists.
		 */
	}
2769 2770 2771 2772
	if (IS_GEN(engine->i915, 8))
		engine->emit_bb_start = gen8_emit_bb_start;
	else
		engine->emit_bb_start = gen9_emit_bb_start;
2773 2774
}

2775
static inline void
2776
logical_ring_default_irqs(struct intel_engine_cs *engine)
2777
{
2778 2779 2780 2781
	unsigned int shift = 0;

	if (INTEL_GEN(engine->i915) < 11) {
		const u8 irq_shifts[] = {
2782 2783 2784 2785 2786
			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
			[VECS0] = GEN8_VECS_IRQ_SHIFT,
2787 2788 2789 2790 2791
		};

		shift = irq_shifts[engine->id];
	}

2792 2793
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2794 2795
}

2796
int intel_execlists_submission_setup(struct intel_engine_cs *engine)
2797 2798 2799 2800
{
	/* Intentionally left blank. */
	engine->buffer = NULL;

2801 2802
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
2803
	timer_setup(&engine->execlists.timer, execlists_submission_timer, 0);
2804 2805 2806

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
2807

2808 2809 2810 2811 2812 2813
	if (engine->class == RENDER_CLASS) {
		engine->init_context = gen8_init_rcs_context;
		engine->emit_flush = gen8_emit_flush_render;
		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
	}

2814
	return 0;
2815 2816
}

2817
int intel_execlists_submission_init(struct intel_engine_cs *engine)
2818
{
2819
	struct intel_engine_execlists * const execlists = &engine->execlists;
2820 2821
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
2822
	u32 base = engine->mmio_base;
2823 2824
	int ret;

2825
	ret = intel_engine_init_common(engine);
2826
	if (ret)
2827
		return ret;
2828

2829 2830 2831 2832 2833 2834 2835
	if (intel_init_workaround_bb(engine))
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed\n");
2836

2837
	if (HAS_LOGICAL_RING_ELSQ(i915)) {
2838
		execlists->submit_reg = uncore->regs +
2839
			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
2840
		execlists->ctrl_reg = uncore->regs +
2841
			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
2842
	} else {
2843
		execlists->submit_reg = uncore->regs +
2844
			i915_mmio_reg_offset(RING_ELSP(base));
2845
	}
2846

2847
	execlists->csb_status =
2848
		&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2849

2850
	execlists->csb_write =
2851
		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
2852

2853
	if (INTEL_GEN(i915) < 11)
2854 2855 2856
		execlists->csb_size = GEN8_CSB_ENTRIES;
	else
		execlists->csb_size = GEN11_CSB_ENTRIES;
2857

2858
	reset_csb_pointers(engine);
2859

2860 2861 2862
	return 0;
}

2863
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2864 2865 2866
{
	u32 indirect_ctx_offset;

2867
	switch (INTEL_GEN(engine->i915)) {
2868
	default:
2869
		MISSING_CASE(INTEL_GEN(engine->i915));
2870
		/* fall through */
2871 2872 2873 2874
	case 11:
		indirect_ctx_offset =
			GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2875 2876 2877 2878
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2892
static void execlists_init_reg_state(u32 *regs,
2893
				     struct intel_context *ce,
2894 2895
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2896
{
2897
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->gem_context->vm);
2898
	bool rcs = engine->class == RENDER_CLASS;
2899
	u32 base = engine->mmio_base;
2900

2901 2902
	/*
	 * A context is actually a big batch buffer with several
2903 2904 2905 2906 2907
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
2908 2909
	 *
	 * Must keep consistent with virtual_update_register_offsets().
2910 2911 2912 2913
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

2914
	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
2915
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2916
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2917
	if (INTEL_GEN(engine->i915) < 11) {
2918 2919 2920 2921
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
					    CTX_CTRL_RS_CTX_ENABLE);
	}
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2934 2935
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2936 2937 2938
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2939
		if (wa_ctx->indirect_ctx.size) {
2940
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2941

2942
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2943 2944
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2945

2946
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2947
				intel_lr_indirect_ctx_offset(engine) << 6;
2948 2949 2950 2951 2952
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2953

2954
			regs[CTX_BB_PER_CTX_PTR + 1] =
2955
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2956
		}
2957
	}
2958 2959 2960 2961

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2962
	/* PDP values well be assigned later if needed */
2963 2964 2965 2966 2967 2968 2969 2970
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
2971

2972
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
2973 2974 2975 2976
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2977
		ASSIGN_CTX_PML4(ppgtt, regs);
2978
	} else {
2979 2980 2981 2982
		ASSIGN_CTX_PDP(ppgtt, regs, 3);
		ASSIGN_CTX_PDP(ppgtt, regs, 2);
		ASSIGN_CTX_PDP(ppgtt, regs, 1);
		ASSIGN_CTX_PDP(ppgtt, regs, 0);
2983 2984
	}

2985 2986
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2987
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
2988

2989
		i915_oa_init_reg_state(engine, ce, regs);
2990
	}
2991 2992

	regs[CTX_END] = MI_BATCH_BUFFER_END;
2993
	if (INTEL_GEN(engine->i915) >= 10)
2994
		regs[CTX_END] |= BIT(0);
2995 2996 2997
}

static int
2998
populate_lr_context(struct intel_context *ce,
2999 3000 3001 3002 3003
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
3004
	u32 *regs;
3005 3006 3007 3008 3009 3010 3011 3012 3013
	int ret;

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}

3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
3025 3026 3027 3028
		if (IS_ERR(defaults)) {
			ret = PTR_ERR(defaults);
			goto err_unpin_ctx;
		}
3029 3030 3031 3032 3033

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

3034 3035
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
3036
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
3037
	execlists_init_reg_state(regs, ce, engine, ring);
3038 3039 3040
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
3041

3042
	ret = 0;
3043
err_unpin_ctx:
3044 3045 3046
	__i915_gem_object_flush_map(ctx_obj,
				    LRC_HEADER_PAGES * PAGE_SIZE,
				    engine->context_size);
3047
	i915_gem_object_unpin_map(ctx_obj);
3048
	return ret;
3049 3050
}

3051
static struct intel_timeline *
3052
get_timeline(struct i915_gem_context *ctx, struct intel_gt *gt)
3053
{
3054
	if (ctx->timeline)
3055
		return intel_timeline_get(ctx->timeline);
3056
	else
3057
		return intel_timeline_create(gt, NULL);
3058 3059 3060 3061
}

static int execlists_context_deferred_alloc(struct intel_context *ce,
					    struct intel_engine_cs *engine)
3062
{
3063
	struct drm_i915_gem_object *ctx_obj;
3064
	struct i915_vma *vma;
3065
	u32 context_size;
3066
	struct intel_ring *ring;
3067
	struct intel_timeline *timeline;
3068 3069
	int ret;

3070 3071
	if (ce->state)
		return 0;
3072

3073
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
3074

3075 3076 3077 3078 3079
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
3080

3081
	ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
3082 3083
	if (IS_ERR(ctx_obj))
		return PTR_ERR(ctx_obj);
3084

3085
	vma = i915_vma_instance(ctx_obj, &engine->gt->ggtt->vm, NULL);
3086 3087 3088 3089 3090
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

3091
	timeline = get_timeline(ce->gem_context, engine->gt);
3092 3093 3094 3095 3096
	if (IS_ERR(timeline)) {
		ret = PTR_ERR(timeline);
		goto error_deref_obj;
	}

3097 3098 3099
	ring = intel_engine_create_ring(engine,
					timeline,
					ce->gem_context->ring_size);
3100
	intel_timeline_put(timeline);
3101 3102
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
3103
		goto error_deref_obj;
3104 3105
	}

3106
	ret = populate_lr_context(ce, ctx_obj, engine, ring);
3107 3108
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
3109
		goto error_ring_free;
3110 3111
	}

3112
	ce->ring = ring;
3113
	ce->state = vma;
3114 3115

	return 0;
3116

3117
error_ring_free:
3118
	intel_ring_put(ring);
3119
error_deref_obj:
3120
	i915_gem_object_put(ctx_obj);
3121
	return ret;
3122
}
3123

3124 3125 3126 3127 3128
static struct list_head *virtual_queue(struct virtual_engine *ve)
{
	return &ve->base.execlists.default_priolist.requests[0];
}

3129 3130 3131 3132 3133 3134
static void virtual_context_destroy(struct kref *kref)
{
	struct virtual_engine *ve =
		container_of(kref, typeof(*ve), context.ref);
	unsigned int n;

3135
	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3136
	GEM_BUG_ON(ve->request);
3137
	GEM_BUG_ON(ve->context.inflight);
3138 3139 3140 3141 3142 3143 3144 3145

	for (n = 0; n < ve->num_siblings; n++) {
		struct intel_engine_cs *sibling = ve->siblings[n];
		struct rb_node *node = &ve->nodes[sibling->id].rb;

		if (RB_EMPTY_NODE(node))
			continue;

3146
		spin_lock_irq(&sibling->active.lock);
3147 3148 3149 3150 3151

		/* Detachment is lazily performed in the execlists tasklet */
		if (!RB_EMPTY_NODE(node))
			rb_erase_cached(node, &sibling->execlists.virtual);

3152
		spin_unlock_irq(&sibling->active.lock);
3153 3154 3155 3156 3157 3158
	}
	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));

	if (ve->context.state)
		__execlists_context_fini(&ve->context);

3159
	kfree(ve->bonds);
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
	kfree(ve);
}

static void virtual_engine_initial_hint(struct virtual_engine *ve)
{
	int swp;

	/*
	 * Pick a random sibling on starting to help spread the load around.
	 *
	 * New contexts are typically created with exactly the same order
	 * of siblings, and often started in batches. Due to the way we iterate
	 * the array of sibling when submitting requests, sibling[0] is
	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
	 * randomised across the system, we also help spread the load by the
	 * first engine we inspect being different each time.
	 *
	 * NB This does not force us to execute on this engine, it will just
	 * typically be the first we inspect for submission.
	 */
	swp = prandom_u32_max(ve->num_siblings);
	if (!swp)
		return;

	swap(ve->siblings[swp], ve->siblings[0]);
	virtual_update_register_offsets(ve->context.lrc_reg_state,
					ve->siblings[0]);
}

static int virtual_context_pin(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	int err;

	/* Note: we must use a real engine class for setting up reg state */
	err = __execlists_context_pin(ce, ve->siblings[0]);
	if (err)
		return err;

	virtual_engine_initial_hint(ve);
	return 0;
}

static void virtual_context_enter(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	unsigned int n;

	for (n = 0; n < ve->num_siblings; n++)
		intel_engine_pm_get(ve->siblings[n]);
}

static void virtual_context_exit(struct intel_context *ce)
{
	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
	unsigned int n;

	for (n = 0; n < ve->num_siblings; n++)
		intel_engine_pm_put(ve->siblings[n]);
}

static const struct intel_context_ops virtual_context_ops = {
	.pin = virtual_context_pin,
	.unpin = execlists_context_unpin,

	.enter = virtual_context_enter,
	.exit = virtual_context_exit,

	.destroy = virtual_context_destroy,
};

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
{
	struct i915_request *rq;
	intel_engine_mask_t mask;

	rq = READ_ONCE(ve->request);
	if (!rq)
		return 0;

	/* The rq is ready for submission; rq->execution_mask is now stable. */
	mask = rq->execution_mask;
	if (unlikely(!mask)) {
		/* Invalid selection, submit to a random engine in error */
		i915_request_skip(rq, -ENODEV);
		mask = ve->siblings[0]->mask;
	}

	GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n",
		  ve->base.name,
		  rq->fence.context, rq->fence.seqno,
		  mask, ve->base.execlists.queue_priority_hint);

	return mask;
}

3256 3257 3258 3259
static void virtual_submission_tasklet(unsigned long data)
{
	struct virtual_engine * const ve = (struct virtual_engine *)data;
	const int prio = ve->base.execlists.queue_priority_hint;
3260
	intel_engine_mask_t mask;
3261 3262
	unsigned int n;

3263 3264 3265 3266 3267 3268
	rcu_read_lock();
	mask = virtual_submission_mask(ve);
	rcu_read_unlock();
	if (unlikely(!mask))
		return;

3269 3270 3271 3272 3273 3274 3275
	local_irq_disable();
	for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
		struct intel_engine_cs *sibling = ve->siblings[n];
		struct ve_node * const node = &ve->nodes[sibling->id];
		struct rb_node **parent, *rb;
		bool first;

3276 3277
		if (unlikely(!(mask & sibling->mask))) {
			if (!RB_EMPTY_NODE(&node->rb)) {
3278
				spin_lock(&sibling->active.lock);
3279 3280 3281
				rb_erase_cached(&node->rb,
						&sibling->execlists.virtual);
				RB_CLEAR_NODE(&node->rb);
3282
				spin_unlock(&sibling->active.lock);
3283 3284 3285 3286
			}
			continue;
		}

3287
		spin_lock(&sibling->active.lock);
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330

		if (!RB_EMPTY_NODE(&node->rb)) {
			/*
			 * Cheat and avoid rebalancing the tree if we can
			 * reuse this node in situ.
			 */
			first = rb_first_cached(&sibling->execlists.virtual) ==
				&node->rb;
			if (prio == node->prio || (prio > node->prio && first))
				goto submit_engine;

			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
		}

		rb = NULL;
		first = true;
		parent = &sibling->execlists.virtual.rb_root.rb_node;
		while (*parent) {
			struct ve_node *other;

			rb = *parent;
			other = rb_entry(rb, typeof(*other), rb);
			if (prio > other->prio) {
				parent = &rb->rb_left;
			} else {
				parent = &rb->rb_right;
				first = false;
			}
		}

		rb_link_node(&node->rb, rb, parent);
		rb_insert_color_cached(&node->rb,
				       &sibling->execlists.virtual,
				       first);

submit_engine:
		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
		node->prio = prio;
		if (first && prio > sibling->execlists.queue_priority_hint) {
			sibling->execlists.queue_priority_hint = prio;
			tasklet_hi_schedule(&sibling->execlists.tasklet);
		}

3331
		spin_unlock(&sibling->active.lock);
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
	}
	local_irq_enable();
}

static void virtual_submit_request(struct i915_request *rq)
{
	struct virtual_engine *ve = to_virtual_engine(rq->engine);

	GEM_TRACE("%s: rq=%llx:%lld\n",
		  ve->base.name,
		  rq->fence.context,
		  rq->fence.seqno);

	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);

	GEM_BUG_ON(ve->request);
3348 3349
	GEM_BUG_ON(!list_empty(virtual_queue(ve)));

3350 3351 3352
	ve->base.execlists.queue_priority_hint = rq_prio(rq);
	WRITE_ONCE(ve->request, rq);

3353 3354
	list_move_tail(&rq->sched.link, virtual_queue(ve));

3355 3356 3357
	tasklet_schedule(&ve->base.execlists.tasklet);
}

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
static struct ve_bond *
virtual_find_bond(struct virtual_engine *ve,
		  const struct intel_engine_cs *master)
{
	int i;

	for (i = 0; i < ve->num_bonds; i++) {
		if (ve->bonds[i].master == master)
			return &ve->bonds[i];
	}

	return NULL;
}

static void
virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
{
	struct virtual_engine *ve = to_virtual_engine(rq->engine);
	struct ve_bond *bond;

	bond = virtual_find_bond(ve, to_request(signal)->engine);
	if (bond) {
		intel_engine_mask_t old, new, cmp;

		cmp = READ_ONCE(rq->execution_mask);
		do {
			old = cmp;
			new = cmp & bond->sibling_mask;
		} while ((cmp = cmpxchg(&rq->execution_mask, old, new)) != old);
	}
}

3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
struct intel_context *
intel_execlists_create_virtual(struct i915_gem_context *ctx,
			       struct intel_engine_cs **siblings,
			       unsigned int count)
{
	struct virtual_engine *ve;
	unsigned int n;
	int err;

	if (count == 0)
		return ERR_PTR(-EINVAL);

	if (count == 1)
		return intel_context_create(ctx, siblings[0]);

	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
	if (!ve)
		return ERR_PTR(-ENOMEM);

	ve->base.i915 = ctx->i915;
3410
	ve->base.gt = siblings[0]->gt;
3411 3412 3413 3414 3415 3416
	ve->base.id = -1;
	ve->base.class = OTHER_CLASS;
	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
	ve->base.flags = I915_ENGINE_IS_VIRTUAL;

3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
	/*
	 * The decision on whether to submit a request using semaphores
	 * depends on the saturated state of the engine. We only compute
	 * this during HW submission of the request, and we need for this
	 * state to be globally applied to all requests being submitted
	 * to this engine. Virtual engines encompass more than one physical
	 * engine and so we cannot accurately tell in advance if one of those
	 * engines is already saturated and so cannot afford to use a semaphore
	 * and be pessimized in priority for doing so -- if we are the only
	 * context using semaphores after all other clients have stopped, we
	 * will be starved on the saturated system. Such a global switch for
	 * semaphores is less than ideal, but alas is the current compromise.
	 */
	ve->base.saturated = ALL_ENGINES;

3432 3433
	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");

3434
	intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
3435 3436 3437 3438 3439 3440 3441 3442

	intel_engine_init_execlists(&ve->base);

	ve->base.cops = &virtual_context_ops;
	ve->base.request_alloc = execlists_request_alloc;

	ve->base.schedule = i915_schedule;
	ve->base.submit_request = virtual_submit_request;
3443
	ve->base.bond_execute = virtual_bond_execute;
3444

3445
	INIT_LIST_HEAD(virtual_queue(ve));
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
	ve->base.execlists.queue_priority_hint = INT_MIN;
	tasklet_init(&ve->base.execlists.tasklet,
		     virtual_submission_tasklet,
		     (unsigned long)ve);

	intel_context_init(&ve->context, ctx, &ve->base);

	for (n = 0; n < count; n++) {
		struct intel_engine_cs *sibling = siblings[n];

		GEM_BUG_ON(!is_power_of_2(sibling->mask));
		if (sibling->mask & ve->base.mask) {
			DRM_DEBUG("duplicate %s entry in load balancer\n",
				  sibling->name);
			err = -EINVAL;
			goto err_put;
		}

		/*
		 * The virtual engine implementation is tightly coupled to
		 * the execlists backend -- we push out request directly
		 * into a tree inside each physical engine. We could support
		 * layering if we handle cloning of the requests and
		 * submitting a copy into each backend.
		 */
		if (sibling->execlists.tasklet.func !=
		    execlists_submission_tasklet) {
			err = -ENODEV;
			goto err_put;
		}

		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);

		ve->siblings[ve->num_siblings++] = sibling;
		ve->base.mask |= sibling->mask;

		/*
		 * All physical engines must be compatible for their emission
		 * functions (as we build the instructions during request
		 * construction and do not alter them before submission
		 * on the physical engine). We use the engine class as a guide
		 * here, although that could be refined.
		 */
		if (ve->base.class != OTHER_CLASS) {
			if (ve->base.class != sibling->class) {
				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
					  sibling->class, ve->base.class);
				err = -EINVAL;
				goto err_put;
			}
			continue;
		}

		ve->base.class = sibling->class;
		ve->base.uabi_class = sibling->uabi_class;
		snprintf(ve->base.name, sizeof(ve->base.name),
			 "v%dx%d", ve->base.class, count);
		ve->base.context_size = sibling->context_size;

		ve->base.emit_bb_start = sibling->emit_bb_start;
		ve->base.emit_flush = sibling->emit_flush;
		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
		ve->base.emit_fini_breadcrumb_dw =
			sibling->emit_fini_breadcrumb_dw;
	}

	return &ve->context;

err_put:
	intel_context_put(&ve->context);
	return ERR_PTR(err);
}

struct intel_context *
intel_execlists_clone_virtual(struct i915_gem_context *ctx,
			      struct intel_engine_cs *src)
{
	struct virtual_engine *se = to_virtual_engine(src);
	struct intel_context *dst;

	dst = intel_execlists_create_virtual(ctx,
					     se->siblings,
					     se->num_siblings);
	if (IS_ERR(dst))
		return dst;

3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
	if (se->num_bonds) {
		struct virtual_engine *de = to_virtual_engine(dst->engine);

		de->bonds = kmemdup(se->bonds,
				    sizeof(*se->bonds) * se->num_bonds,
				    GFP_KERNEL);
		if (!de->bonds) {
			intel_context_put(dst);
			return ERR_PTR(-ENOMEM);
		}

		de->num_bonds = se->num_bonds;
	}

3548 3549 3550
	return dst;
}

3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
				     const struct intel_engine_cs *master,
				     const struct intel_engine_cs *sibling)
{
	struct virtual_engine *ve = to_virtual_engine(engine);
	struct ve_bond *bond;
	int n;

	/* Sanity check the sibling is part of the virtual engine */
	for (n = 0; n < ve->num_siblings; n++)
		if (sibling == ve->siblings[n])
			break;
	if (n == ve->num_siblings)
		return -EINVAL;

	bond = virtual_find_bond(ve, master);
	if (bond) {
		bond->sibling_mask |= sibling->mask;
		return 0;
	}

	bond = krealloc(ve->bonds,
			sizeof(*bond) * (ve->num_bonds + 1),
			GFP_KERNEL);
	if (!bond)
		return -ENOMEM;

	bond[ve->num_bonds].master = master;
	bond[ve->num_bonds].sibling_mask = sibling->mask;

	ve->bonds = bond;
	ve->num_bonds++;

	return 0;
}

3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
void intel_execlists_show_requests(struct intel_engine_cs *engine,
				   struct drm_printer *m,
				   void (*show_request)(struct drm_printer *m,
							struct i915_request *rq,
							const char *prefix),
				   unsigned int max)
{
	const struct intel_engine_execlists *execlists = &engine->execlists;
	struct i915_request *rq, *last;
	unsigned long flags;
	unsigned int count;
	struct rb_node *rb;

3600
	spin_lock_irqsave(&engine->active.lock, flags);
3601 3602 3603

	last = NULL;
	count = 0;
3604
	list_for_each_entry(rq, &engine->active.requests, sched.link) {
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
		if (count++ < max - 1)
			show_request(m, rq, "\t\tE ");
		else
			last = rq;
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d executing requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tE ");
	}

	last = NULL;
	count = 0;
3621 3622 3623
	if (execlists->queue_priority_hint != INT_MIN)
		drm_printf(m, "\t\tQueue priority hint: %d\n",
			   execlists->queue_priority_hint);
3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		int i;

		priolist_for_each_request(rq, p, i) {
			if (count++ < max - 1)
				show_request(m, rq, "\t\tQ ");
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d queued requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tQ ");
	}

3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
	last = NULL;
	count = 0;
	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
		struct virtual_engine *ve =
			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
		struct i915_request *rq = READ_ONCE(ve->request);

		if (rq) {
			if (count++ < max - 1)
				show_request(m, rq, "\t\tV ");
			else
				last = rq;
		}
	}
	if (last) {
		if (count > max) {
			drm_printf(m,
				   "\t\t...skipping %d virtual requests...\n",
				   count - max);
		}
		show_request(m, last, "\t\tV ");
	}

3667
	spin_unlock_irqrestore(&engine->active.lock, flags);
3668 3669
}

3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
void intel_lr_context_reset(struct intel_engine_cs *engine,
			    struct intel_context *ce,
			    u32 head,
			    bool scrub)
{
	/*
	 * We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
	if (scrub) {
		u32 *regs = ce->lrc_reg_state;

		if (engine->pinned_default_state) {
			memcpy(regs, /* skip restoring the vanilla PPHWSP */
			       engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
			       engine->context_size - PAGE_SIZE);
		}
		execlists_init_reg_state(regs, ce, engine, ce->ring);
	}

	/* Rerun the request; its payload has been neutered (if guilty). */
	ce->ring->head = head;
	intel_ring_update_space(ce->ring);

	__execlists_update_reg_state(ce, engine);
}

3701
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3702
#include "selftest_lrc.c"
3703
#endif