book3s_64_mmu_hv.c 52.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 */

#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/gfp.h>
#include <linux/slab.h>
#include <linux/hugetlb.h>
26
#include <linux/vmalloc.h>
27
#include <linux/srcu.h>
28 29
#include <linux/anon_inodes.h>
#include <linux/file.h>
30
#include <linux/debugfs.h>
31 32 33 34

#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
35
#include <asm/book3s/64/mmu-hash.h>
36 37 38 39 40
#include <asm/hvcall.h>
#include <asm/synch.h>
#include <asm/ppc-opcode.h>
#include <asm/cputable.h>

41 42
#include "trace_hv.h"

43 44 45 46 47 48 49 50 51 52 53 54 55
//#define DEBUG_RESIZE_HPT	1

#ifdef DEBUG_RESIZE_HPT
#define resize_hpt_debug(resize, ...)				\
	do {							\
		printk(KERN_DEBUG "RESIZE HPT %p: ", resize);	\
		printk(__VA_ARGS__);				\
	} while (0)
#else
#define resize_hpt_debug(resize, ...)				\
	do { } while (0)
#endif

56 57 58
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
				long pte_index, unsigned long pteh,
				unsigned long ptel, unsigned long *pte_idx_ret);
59 60 61 62 63 64 65 66 67 68

struct kvm_resize_hpt {
	/* These fields read-only after init */
	struct kvm *kvm;
	struct work_struct work;
	u32 order;

	/* These fields protected by kvm->lock */
	int error;
	bool prepare_done;
69 70 71 72

	/* Private to the work thread, until prepare_done is true,
	 * then protected by kvm->resize_hpt_sem */
	struct kvm_hpt_info hpt;
73 74
};

75
static void kvmppc_rmap_reset(struct kvm *kvm);
76

77
int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
78
{
79
	unsigned long hpt = 0;
80
	int cma = 0;
81
	struct page *page = NULL;
82 83
	struct revmap_entry *rev;
	unsigned long npte;
84

85 86
	if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
		return -EINVAL;
87

88
	page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
89 90
	if (page) {
		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
91
		memset((void *)hpt, 0, (1ul << order));
92
		cma = 1;
93
	}
94

95
	if (!hpt)
96
		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
97
				       |__GFP_NOWARN, order - PAGE_SHIFT);
98 99 100 101

	if (!hpt)
		return -ENOMEM;

102 103
	/* HPTEs are 2**4 bytes long */
	npte = 1ul << (order - 4);
104

105
	/* Allocate reverse map array */
106
	rev = vmalloc(sizeof(struct revmap_entry) * npte);
107
	if (!rev) {
108 109 110 111 112 113
		pr_err("kvmppc_allocate_hpt: Couldn't alloc reverse map array\n");
		if (cma)
			kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
		else
			free_pages(hpt, order - PAGE_SHIFT);
		return -ENOMEM;
114 115
	}

116 117 118 119
	info->order = order;
	info->virt = hpt;
	info->cma = cma;
	info->rev = rev;
120 121

	return 0;
122
}
123

124 125 126 127 128 129
void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
{
	atomic64_set(&kvm->arch.mmio_update, 0);
	kvm->arch.hpt = *info;
	kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);

130 131
	pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
		 info->virt, (long)info->order, kvm->arch.lpid);
132 133
}

134
long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
135 136
{
	long err = -EBUSY;
137
	struct kvm_hpt_info info;
138

139 140 141
	if (kvm_is_radix(kvm))
		return -EINVAL;

142
	mutex_lock(&kvm->lock);
143 144 145
	if (kvm->arch.hpte_setup_done) {
		kvm->arch.hpte_setup_done = 0;
		/* order hpte_setup_done vs. vcpus_running */
146 147
		smp_mb();
		if (atomic_read(&kvm->arch.vcpus_running)) {
148
			kvm->arch.hpte_setup_done = 1;
149 150 151
			goto out;
		}
	}
152 153 154
	if (kvm->arch.hpt.order == order) {
		/* We already have a suitable HPT */

155
		/* Set the entire HPT to 0, i.e. invalid HPTEs */
156
		memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
157 158 159 160
		/*
		 * Reset all the reverse-mapping chains for all memslots
		 */
		kvmppc_rmap_reset(kvm);
161 162
		/* Ensure that each vcpu will flush its TLB on next entry. */
		cpumask_setall(&kvm->arch.need_tlb_flush);
163
		err = 0;
164
		goto out;
165
	}
166

167
	if (kvm->arch.hpt.virt) {
168
		kvmppc_free_hpt(&kvm->arch.hpt);
169 170
		kvmppc_rmap_reset(kvm);
	}
171 172 173 174 175 176 177

	err = kvmppc_allocate_hpt(&info, order);
	if (err < 0)
		goto out;
	kvmppc_set_hpt(kvm, &info);

out:
178 179 180 181
	mutex_unlock(&kvm->lock);
	return err;
}

182
void kvmppc_free_hpt(struct kvm_hpt_info *info)
183
{
184 185 186 187 188 189 190 191
	vfree(info->rev);
	if (info->cma)
		kvm_free_hpt_cma(virt_to_page(info->virt),
				 1 << (info->order - PAGE_SHIFT));
	else if (info->virt)
		free_pages(info->virt, info->order - PAGE_SHIFT);
	info->virt = 0;
	info->order = 0;
192 193
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207
/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
{
	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
}

/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
{
	return (pgsize == 0x10000) ? 0x1000 : 0;
}

void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
		     unsigned long porder)
208 209
{
	unsigned long i;
210
	unsigned long npages;
211 212
	unsigned long hp_v, hp_r;
	unsigned long addr, hash;
213 214
	unsigned long psize;
	unsigned long hp0, hp1;
215
	unsigned long idx_ret;
216
	long ret;
217
	struct kvm *kvm = vcpu->kvm;
218

219 220
	psize = 1ul << porder;
	npages = memslot->npages >> (porder - PAGE_SHIFT);
221 222

	/* VRMA can't be > 1TB */
223 224
	if (npages > 1ul << (40 - porder))
		npages = 1ul << (40 - porder);
225
	/* Can't use more than 1 HPTE per HPTEG */
226 227
	if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
		npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
228

229 230 231 232 233
	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
	hp1 = hpte1_pgsize_encoding(psize) |
		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;

234
	for (i = 0; i < npages; ++i) {
235
		addr = i << porder;
236
		/* can't use hpt_hash since va > 64 bits */
237 238
		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
			& kvmppc_hpt_mask(&kvm->arch.hpt);
239 240 241 242 243 244
		/*
		 * We assume that the hash table is empty and no
		 * vcpus are using it at this stage.  Since we create
		 * at most one HPTE per HPTEG, we just assume entry 7
		 * is available and use it.
		 */
245
		hash = (hash << 3) + 7;
246 247
		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
		hp_r = hp1 | addr;
248 249
		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
						 &idx_ret);
250 251 252 253 254
		if (ret != H_SUCCESS) {
			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
			       addr, ret);
			break;
		}
255 256 257 258 259
	}
}

int kvmppc_mmu_hv_init(void)
{
260 261 262
	unsigned long host_lpid, rsvd_lpid;

	if (!cpu_has_feature(CPU_FTR_HVMODE))
263
		return -EINVAL;
264

265 266 267
	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
	host_lpid = mfspr(SPRN_LPID);
	rsvd_lpid = LPID_RSVD;
268

269 270 271
	kvmppc_init_lpid(rsvd_lpid + 1);

	kvmppc_claim_lpid(host_lpid);
272
	/* rsvd_lpid is reserved for use in partition switching */
273
	kvmppc_claim_lpid(rsvd_lpid);
274 275 276 277 278 279

	return 0;
}

static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
{
280 281 282 283 284 285 286 287
	unsigned long msr = vcpu->arch.intr_msr;

	/* If transactional, change to suspend mode on IRQ delivery */
	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
		msr |= MSR_TS_S;
	else
		msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
	kvmppc_set_msr(vcpu, msr);
288 289
}

290
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
291 292
				long pte_index, unsigned long pteh,
				unsigned long ptel, unsigned long *pte_idx_ret)
293 294 295
{
	long ret;

296 297
	/* Protect linux PTE lookup from page table destruction */
	rcu_read_lock_sched();	/* this disables preemption too */
298 299
	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
				current->mm->pgd, false, pte_idx_ret);
300
	rcu_read_unlock_sched();
301 302 303 304 305 306 307 308 309
	if (ret == H_TOO_HARD) {
		/* this can't happen */
		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
		ret = H_RESOURCE;	/* or something */
	}
	return ret;

}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
							 gva_t eaddr)
{
	u64 mask;
	int i;

	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
			continue;

		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
			mask = ESID_MASK_1T;
		else
			mask = ESID_MASK;

		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
			return &vcpu->arch.slb[i];
	}
	return NULL;
}

static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
			unsigned long ea)
{
	unsigned long ra_mask;

	ra_mask = hpte_page_size(v, r) - 1;
	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
}

340
static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
341
			struct kvmppc_pte *gpte, bool data, bool iswrite)
342
{
343 344 345 346
	struct kvm *kvm = vcpu->kvm;
	struct kvmppc_slb *slbe;
	unsigned long slb_v;
	unsigned long pp, key;
347
	unsigned long v, orig_v, gr;
348
	__be64 *hptep;
349 350 351 352 353 354 355 356 357 358 359 360 361 362
	int index;
	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);

	/* Get SLB entry */
	if (virtmode) {
		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
		if (!slbe)
			return -EINVAL;
		slb_v = slbe->origv;
	} else {
		/* real mode access */
		slb_v = vcpu->kvm->arch.vrma_slb_v;
	}

363
	preempt_disable();
364 365 366
	/* Find the HPTE in the hash table */
	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
					 HPTE_V_VALID | HPTE_V_ABSENT);
367 368
	if (index < 0) {
		preempt_enable();
369
		return -ENOENT;
370
	}
371
	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
372 373 374
	v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
375
	gr = kvm->arch.hpt.rev[index].guest_rpte;
376

377
	unlock_hpte(hptep, orig_v);
378
	preempt_enable();
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393

	gpte->eaddr = eaddr;
	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);

	/* Get PP bits and key for permission check */
	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
	key &= slb_v;

	/* Calculate permissions */
	gpte->may_read = hpte_read_permission(pp, key);
	gpte->may_write = hpte_write_permission(pp, key);
	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));

	/* Storage key permission check for POWER7 */
394
	if (data && virtmode) {
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
		if (amrfield & 1)
			gpte->may_read = 0;
		if (amrfield & 2)
			gpte->may_write = 0;
	}

	/* Get the guest physical address */
	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
	return 0;
}

/*
 * Quick test for whether an instruction is a load or a store.
 * If the instruction is a load or a store, then this will indicate
 * which it is, at least on server processors.  (Embedded processors
 * have some external PID instructions that don't follow the rule
 * embodied here.)  If the instruction isn't a load or store, then
 * this doesn't return anything useful.
 */
static int instruction_is_store(unsigned int instr)
{
	unsigned int mask;

	mask = 0x10000000;
	if ((instr & 0xfc000000) == 0x7c000000)
		mask = 0x100;		/* major opcode 31 */
	return (instr & mask) != 0;
}

425 426
int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
			   unsigned long gpa, gva_t ea, int is_store)
427 428 429
{
	u32 last_inst;

430
	/*
431 432
	 * If we fail, we just return to the guest and try executing it again.
	 */
433 434 435
	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
		EMULATE_DONE)
		return RESUME_GUEST;
436 437 438 439 440 441 442 443 444 445 446 447 448

	/*
	 * WARNING: We do not know for sure whether the instruction we just
	 * read from memory is the same that caused the fault in the first
	 * place.  If the instruction we read is neither an load or a store,
	 * then it can't access memory, so we don't need to worry about
	 * enforcing access permissions.  So, assuming it is a load or
	 * store, we just check that its direction (load or store) is
	 * consistent with the original fault, since that's what we
	 * checked the access permissions against.  If there is a mismatch
	 * we just return and retry the instruction.
	 */

449
	if (instruction_is_store(last_inst) != !!is_store)
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
		return RESUME_GUEST;

	/*
	 * Emulated accesses are emulated by looking at the hash for
	 * translation once, then performing the access later. The
	 * translation could be invalidated in the meantime in which
	 * point performing the subsequent memory access on the old
	 * physical address could possibly be a security hole for the
	 * guest (but not the host).
	 *
	 * This is less of an issue for MMIO stores since they aren't
	 * globally visible. It could be an issue for MMIO loads to
	 * a certain extent but we'll ignore it for now.
	 */

	vcpu->arch.paddr_accessed = gpa;
466
	vcpu->arch.vaddr_accessed = ea;
467 468 469 470 471 472 473
	return kvmppc_emulate_mmio(run, vcpu);
}

int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
				unsigned long ea, unsigned long dsisr)
{
	struct kvm *kvm = vcpu->kvm;
474
	unsigned long hpte[3], r;
475
	unsigned long hnow_v, hnow_r;
476
	__be64 *hptep;
477
	unsigned long mmu_seq, psize, pte_size;
478
	unsigned long gpa_base, gfn_base;
479
	unsigned long gpa, gfn, hva, pfn;
480
	struct kvm_memory_slot *memslot;
481
	unsigned long *rmap;
482
	struct revmap_entry *rev;
483 484
	struct page *page, *pages[1];
	long index, ret, npages;
485
	bool is_ci;
486
	unsigned int writing, write_ok;
487
	struct vm_area_struct *vma;
488
	unsigned long rcbits;
489
	long mmio_update;
490

491 492 493
	if (kvm_is_radix(kvm))
		return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr);

494 495 496 497 498 499 500 501
	/*
	 * Real-mode code has already searched the HPT and found the
	 * entry we're interested in.  Lock the entry and check that
	 * it hasn't changed.  If it has, just return and re-execute the
	 * instruction.
	 */
	if (ea != vcpu->arch.pgfault_addr)
		return RESUME_GUEST;
502 503 504 505 506 507 508 509 510 511 512 513 514

	if (vcpu->arch.pgfault_cache) {
		mmio_update = atomic64_read(&kvm->arch.mmio_update);
		if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
			r = vcpu->arch.pgfault_cache->rpte;
			psize = hpte_page_size(vcpu->arch.pgfault_hpte[0], r);
			gpa_base = r & HPTE_R_RPN & ~(psize - 1);
			gfn_base = gpa_base >> PAGE_SHIFT;
			gpa = gpa_base | (ea & (psize - 1));
			return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
						dsisr & DSISR_ISSTORE);
		}
	}
515
	index = vcpu->arch.pgfault_index;
516 517
	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
	rev = &kvm->arch.hpt.rev[index];
518 519 520
	preempt_disable();
	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
		cpu_relax();
521 522
	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
	hpte[1] = be64_to_cpu(hptep[1]);
523
	hpte[2] = r = rev->guest_rpte;
524
	unlock_hpte(hptep, hpte[0]);
525 526
	preempt_enable();

527 528 529 530
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
		hpte[1] = hpte_new_to_old_r(hpte[1]);
	}
531 532 533 534 535
	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
	    hpte[1] != vcpu->arch.pgfault_hpte[1])
		return RESUME_GUEST;

	/* Translate the logical address and get the page */
536
	psize = hpte_page_size(hpte[0], r);
537 538 539
	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
	gfn_base = gpa_base >> PAGE_SHIFT;
	gpa = gpa_base | (ea & (psize - 1));
540
	gfn = gpa >> PAGE_SHIFT;
541 542
	memslot = gfn_to_memslot(kvm, gfn);

543 544
	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);

545
	/* No memslot means it's an emulated MMIO region */
546
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
547
		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
548 549
					      dsisr & DSISR_ISSTORE);

550 551 552 553 554 555 556
	/*
	 * This should never happen, because of the slot_is_aligned()
	 * check in kvmppc_do_h_enter().
	 */
	if (gfn_base < memslot->base_gfn)
		return -EFAULT;

557 558 559 560
	/* used to check for invalidations in progress */
	mmu_seq = kvm->mmu_notifier_seq;
	smp_rmb();

561
	ret = -EFAULT;
562
	is_ci = false;
563 564 565
	pfn = 0;
	page = NULL;
	pte_size = PAGE_SIZE;
566 567 568
	writing = (dsisr & DSISR_ISSTORE) != 0;
	/* If writing != 0, then the HPTE must allow writing, if we get here */
	write_ok = writing;
569
	hva = gfn_to_hva_memslot(memslot, gfn);
570
	npages = get_user_pages_fast(hva, 1, writing, pages);
571 572 573 574 575 576 577 578 579
	if (npages < 1) {
		/* Check if it's an I/O mapping */
		down_read(&current->mm->mmap_sem);
		vma = find_vma(current->mm, hva);
		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
		    (vma->vm_flags & VM_PFNMAP)) {
			pfn = vma->vm_pgoff +
				((hva - vma->vm_start) >> PAGE_SHIFT);
			pte_size = psize;
580
			is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot))));
581
			write_ok = vma->vm_flags & VM_WRITE;
582 583 584
		}
		up_read(&current->mm->mmap_sem);
		if (!pfn)
585
			goto out_put;
586 587
	} else {
		page = pages[0];
588
		pfn = page_to_pfn(page);
589 590 591 592
		if (PageHuge(page)) {
			page = compound_head(page);
			pte_size <<= compound_order(page);
		}
593 594 595
		/* if the guest wants write access, see if that is OK */
		if (!writing && hpte_is_writable(r)) {
			pte_t *ptep, pte;
596
			unsigned long flags;
597 598
			/*
			 * We need to protect against page table destruction
599
			 * hugepage split and collapse.
600
			 */
601
			local_irq_save(flags);
602
			ptep = find_linux_pte_or_hugepte(current->mm->pgd,
603
							 hva, NULL, NULL);
604
			if (ptep) {
605
				pte = kvmppc_read_update_linux_pte(ptep, 1);
606
				if (__pte_write(pte))
607 608
					write_ok = 1;
			}
609
			local_irq_restore(flags);
610
		}
611 612 613 614 615 616
	}

	if (psize > pte_size)
		goto out_put;

	/* Check WIMG vs. the actual page we're accessing */
617 618
	if (!hpte_cache_flags_ok(r, is_ci)) {
		if (is_ci)
619
			goto out_put;
620 621 622 623 624 625 626
		/*
		 * Allow guest to map emulated device memory as
		 * uncacheable, but actually make it cacheable.
		 */
		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
	}

627 628 629 630 631 632 633
	/*
	 * Set the HPTE to point to pfn.
	 * Since the pfn is at PAGE_SIZE granularity, make sure we
	 * don't mask out lower-order bits if psize < PAGE_SIZE.
	 */
	if (psize < PAGE_SIZE)
		psize = PAGE_SIZE;
634 635
	r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) |
					((pfn << PAGE_SHIFT) & ~(psize - 1));
636 637
	if (hpte_is_writable(r) && !write_ok)
		r = hpte_make_readonly(r);
638 639 640 641
	ret = RESUME_GUEST;
	preempt_disable();
	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
		cpu_relax();
642 643 644 645 646 647 648 649
	hnow_v = be64_to_cpu(hptep[0]);
	hnow_r = be64_to_cpu(hptep[1]);
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
		hnow_r = hpte_new_to_old_r(hnow_r);
	}
	if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
	    rev->guest_rpte != hpte[2])
650 651 652 653
		/* HPTE has been changed under us; let the guest retry */
		goto out_unlock;
	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;

654 655
	/* Always put the HPTE in the rmap chain for the page base address */
	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
656 657 658 659
	lock_rmap(rmap);

	/* Check if we might have been invalidated; let the guest retry if so */
	ret = RESUME_GUEST;
660
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
661 662 663
		unlock_rmap(rmap);
		goto out_unlock;
	}
664

665 666 667 668
	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);

669
	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
670 671
		/* HPTE was previously valid, so we need to invalidate it */
		unlock_rmap(rmap);
672
		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
673
		kvmppc_invalidate_hpte(kvm, hptep, index);
674
		/* don't lose previous R and C bits */
675
		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
676 677 678
	} else {
		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
	}
679

680 681 682 683
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		r = hpte_old_to_new_r(hpte[0], r);
		hpte[0] = hpte_old_to_new_v(hpte[0]);
	}
684
	hptep[1] = cpu_to_be64(r);
685
	eieio();
686
	__unlock_hpte(hptep, hpte[0]);
687 688
	asm volatile("ptesync" : : : "memory");
	preempt_enable();
689
	if (page && hpte_is_writable(r))
690 691 692
		SetPageDirty(page);

 out_put:
693 694
	trace_kvm_page_fault_exit(vcpu, hpte, ret);

695 696 697 698 699 700 701 702 703
	if (page) {
		/*
		 * We drop pages[0] here, not page because page might
		 * have been set to the head page of a compound, but
		 * we have to drop the reference on the correct tail
		 * page to match the get inside gup()
		 */
		put_page(pages[0]);
	}
704 705 706
	return ret;

 out_unlock:
707
	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
708 709 710 711
	preempt_enable();
	goto out_put;
}

712 713 714 715 716 717 718
static void kvmppc_rmap_reset(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int srcu_idx;

	srcu_idx = srcu_read_lock(&kvm->srcu);
719
	slots = kvm_memslots(kvm);
720 721 722 723 724 725 726 727 728 729 730
	kvm_for_each_memslot(memslot, slots) {
		/*
		 * This assumes it is acceptable to lose reference and
		 * change bits across a reset.
		 */
		memset(memslot->arch.rmap, 0,
		       memslot->npages * sizeof(*memslot->arch.rmap));
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
}

731 732 733
typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot,
			      unsigned long gfn);

734 735 736
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
737
				hva_handler_fn handler)
738 739 740 741 742 743 744 745
{
	int ret;
	int retval = 0;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
746 747 748 749 750 751 752 753 754 755 756 757 758 759
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
760

761
		for (; gfn < gfn_end; ++gfn) {
762
			ret = handler(kvm, memslot, gfn);
763 764 765 766 767 768 769
			retval |= ret;
		}
	}

	return retval;
}

770
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
771
			  hva_handler_fn handler)
772 773 774 775
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
}

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
/* Must be called with both HPTE and rmap locked */
static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
			      unsigned long *rmapp, unsigned long gfn)
{
	__be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
	struct revmap_entry *rev = kvm->arch.hpt.rev;
	unsigned long j, h;
	unsigned long ptel, psize, rcbits;

	j = rev[i].forw;
	if (j == i) {
		/* chain is now empty */
		*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
	} else {
		/* remove i from chain */
		h = rev[i].back;
		rev[h].forw = j;
		rev[j].back = h;
		rev[i].forw = rev[i].back = i;
		*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
	}

	/* Now check and modify the HPTE */
	ptel = rev[i].guest_rpte;
	psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
	if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
	    hpte_rpn(ptel, psize) == gfn) {
		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
		kvmppc_invalidate_hpte(kvm, hptep, i);
		hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
		/* Harvest R and C */
		rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
		*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
		if (rcbits & HPTE_R_C)
			kvmppc_update_rmap_change(rmapp, psize);
		if (rcbits & ~rev[i].guest_rpte) {
			rev[i].guest_rpte = ptel | rcbits;
			note_hpte_modification(kvm, &rev[i]);
		}
	}
}

818
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
819 820
			   unsigned long gfn)
{
821
	unsigned long i;
822
	__be64 *hptep;
823
	unsigned long *rmapp;
824

825
	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
826
	for (;;) {
827
		lock_rmap(rmapp);
828
		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
829
			unlock_rmap(rmapp);
830 831 832 833 834
			break;
		}

		/*
		 * To avoid an ABBA deadlock with the HPTE lock bit,
835 836
		 * we can't spin on the HPTE lock while holding the
		 * rmap chain lock.
837 838
		 */
		i = *rmapp & KVMPPC_RMAP_INDEX;
839
		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
840 841 842
		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
843
			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
844 845 846
				cpu_relax();
			continue;
		}
847

848
		kvmppc_unmap_hpte(kvm, i, rmapp, gfn);
849
		unlock_rmap(rmapp);
850
		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
851 852 853 854
	}
	return 0;
}

855
int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
856
{
857 858 859 860
	hva_handler_fn handler;

	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
	kvm_handle_hva(kvm, hva, handler);
861 862 863
	return 0;
}

864
int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
865
{
866 867 868 869
	hva_handler_fn handler;

	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
	kvm_handle_hva_range(kvm, start, end, handler);
870 871 872
	return 0;
}

873 874
void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
				  struct kvm_memory_slot *memslot)
875 876 877
{
	unsigned long gfn;
	unsigned long n;
878
	unsigned long *rmapp;
879 880

	gfn = memslot->base_gfn;
881 882 883 884 885 886
	rmapp = memslot->arch.rmap;
	for (n = memslot->npages; n; --n, ++gfn) {
		if (kvm_is_radix(kvm)) {
			kvm_unmap_radix(kvm, memslot, gfn);
			continue;
		}
887 888 889 890 891 892 893
		/*
		 * Testing the present bit without locking is OK because
		 * the memslot has been marked invalid already, and hence
		 * no new HPTEs referencing this page can be created,
		 * thus the present bit can't go from 0 to 1.
		 */
		if (*rmapp & KVMPPC_RMAP_PRESENT)
894
			kvm_unmap_rmapp(kvm, memslot, gfn);
895 896 897 898
		++rmapp;
	}
}

899
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
900 901
			 unsigned long gfn)
{
902
	struct revmap_entry *rev = kvm->arch.hpt.rev;
903
	unsigned long head, i, j;
904
	__be64 *hptep;
905
	int ret = 0;
906
	unsigned long *rmapp;
907

908
	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
909 910 911 912 913 914 915 916 917 918 919 920 921
 retry:
	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
		ret = 1;
	}
	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
		unlock_rmap(rmapp);
		return ret;
	}

	i = head = *rmapp & KVMPPC_RMAP_INDEX;
	do {
922
		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
923 924 925
		j = rev[i].forw;

		/* If this HPTE isn't referenced, ignore it */
926
		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
927 928 929 930 931
			continue;

		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
932
			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
933 934 935 936 937
				cpu_relax();
			goto retry;
		}

		/* Now check and modify the HPTE */
938 939
		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
940
			kvmppc_clear_ref_hpte(kvm, hptep, i);
941 942 943 944
			if (!(rev[i].guest_rpte & HPTE_R_R)) {
				rev[i].guest_rpte |= HPTE_R_R;
				note_hpte_modification(kvm, &rev[i]);
			}
945 946
			ret = 1;
		}
947
		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
948 949 950 951
	} while ((i = j) != head);

	unlock_rmap(rmapp);
	return ret;
952 953
}

A
Andres Lagar-Cavilla 已提交
954
int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
955
{
956 957 958 959
	hva_handler_fn handler;

	handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp;
	return kvm_handle_hva_range(kvm, start, end, handler);
960 961
}

962
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
963 964
			      unsigned long gfn)
{
965
	struct revmap_entry *rev = kvm->arch.hpt.rev;
966 967 968
	unsigned long head, i, j;
	unsigned long *hp;
	int ret = 1;
969
	unsigned long *rmapp;
970

971
	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
972 973 974 975 976 977 978 979 980 981
	if (*rmapp & KVMPPC_RMAP_REFERENCED)
		return 1;

	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_REFERENCED)
		goto out;

	if (*rmapp & KVMPPC_RMAP_PRESENT) {
		i = head = *rmapp & KVMPPC_RMAP_INDEX;
		do {
982
			hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
983
			j = rev[i].forw;
984
			if (be64_to_cpu(hp[1]) & HPTE_R_R)
985 986 987 988 989 990 991 992
				goto out;
		} while ((i = j) != head);
	}
	ret = 0;

 out:
	unlock_rmap(rmapp);
	return ret;
993 994
}

995
int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
996
{
997 998 999 1000
	hva_handler_fn handler;

	handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp;
	return kvm_handle_hva(kvm, hva, handler);
1001 1002
}

1003
void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1004
{
1005 1006 1007 1008
	hva_handler_fn handler;

	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
	kvm_handle_hva(kvm, hva, handler);
1009 1010
}

1011 1012 1013 1014 1015
static int vcpus_running(struct kvm *kvm)
{
	return atomic_read(&kvm->arch.vcpus_running) != 0;
}

1016 1017 1018 1019 1020
/*
 * Returns the number of system pages that are dirty.
 * This can be more than 1 if we find a huge-page HPTE.
 */
static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1021
{
1022
	struct revmap_entry *rev = kvm->arch.hpt.rev;
1023
	unsigned long head, i, j;
1024
	unsigned long n;
1025
	unsigned long v, r;
1026
	__be64 *hptep;
1027
	int npages_dirty = 0;
1028 1029 1030 1031

 retry:
	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_CHANGED) {
1032 1033 1034
		long change_order = (*rmapp & KVMPPC_RMAP_CHG_ORDER)
			>> KVMPPC_RMAP_CHG_SHIFT;
		*rmapp &= ~(KVMPPC_RMAP_CHANGED | KVMPPC_RMAP_CHG_ORDER);
1035
		npages_dirty = 1;
1036 1037
		if (change_order > PAGE_SHIFT)
			npages_dirty = 1ul << (change_order - PAGE_SHIFT);
1038 1039 1040
	}
	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
		unlock_rmap(rmapp);
1041
		return npages_dirty;
1042 1043 1044 1045
	}

	i = head = *rmapp & KVMPPC_RMAP_INDEX;
	do {
1046
		unsigned long hptep1;
1047
		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1048 1049
		j = rev[i].forw;

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
		/*
		 * Checking the C (changed) bit here is racy since there
		 * is no guarantee about when the hardware writes it back.
		 * If the HPTE is not writable then it is stable since the
		 * page can't be written to, and we would have done a tlbie
		 * (which forces the hardware to complete any writeback)
		 * when making the HPTE read-only.
		 * If vcpus are running then this call is racy anyway
		 * since the page could get dirtied subsequently, so we
		 * expect there to be a further call which would pick up
		 * any delayed C bit writeback.
		 * Otherwise we need to do the tlbie even if C==0 in
		 * order to pick up any delayed writeback of C.
		 */
1064 1065 1066
		hptep1 = be64_to_cpu(hptep[1]);
		if (!(hptep1 & HPTE_R_C) &&
		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1067 1068 1069 1070 1071
			continue;

		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
1072
			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1073 1074 1075 1076 1077
				cpu_relax();
			goto retry;
		}

		/* Now check and modify the HPTE */
1078
		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1079
			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1080
			continue;
1081
		}
1082 1083

		/* need to make it temporarily absent so C is stable */
1084
		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1085
		kvmppc_invalidate_hpte(kvm, hptep, i);
1086 1087
		v = be64_to_cpu(hptep[0]);
		r = be64_to_cpu(hptep[1]);
1088
		if (r & HPTE_R_C) {
1089
			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1090 1091 1092 1093
			if (!(rev[i].guest_rpte & HPTE_R_C)) {
				rev[i].guest_rpte |= HPTE_R_C;
				note_hpte_modification(kvm, &rev[i]);
			}
1094
			n = hpte_page_size(v, r);
1095 1096 1097
			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
			if (n > npages_dirty)
				npages_dirty = n;
1098
			eieio();
1099
		}
1100
		v &= ~HPTE_V_ABSENT;
1101
		v |= HPTE_V_VALID;
1102
		__unlock_hpte(hptep, v);
1103 1104 1105
	} while ((i = j) != head);

	unlock_rmap(rmapp);
1106
	return npages_dirty;
1107 1108
}

1109
void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
			      struct kvm_memory_slot *memslot,
			      unsigned long *map)
{
	unsigned long gfn;

	if (!vpa->dirty || !vpa->pinned_addr)
		return;
	gfn = vpa->gpa >> PAGE_SHIFT;
	if (gfn < memslot->base_gfn ||
	    gfn >= memslot->base_gfn + memslot->npages)
		return;

	vpa->dirty = false;
	if (map)
		__set_bit_le(gfn - memslot->base_gfn, map);
}

1127 1128
long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
			struct kvm_memory_slot *memslot, unsigned long *map)
1129
{
1130
	unsigned long i, j;
1131
	unsigned long *rmapp;
1132 1133

	preempt_disable();
1134
	rmapp = memslot->arch.rmap;
1135
	for (i = 0; i < memslot->npages; ++i) {
1136 1137 1138 1139 1140 1141 1142 1143 1144
		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
		/*
		 * Note that if npages > 0 then i must be a multiple of npages,
		 * since we always put huge-page HPTEs in the rmap chain
		 * corresponding to their page base address.
		 */
		if (npages && map)
			for (j = i; npages; ++j, --npages)
				__set_bit_le(j, map);
1145 1146 1147 1148 1149 1150
		++rmapp;
	}
	preempt_enable();
	return 0;
}

1151 1152 1153 1154 1155
void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
			    unsigned long *nb_ret)
{
	struct kvm_memory_slot *memslot;
	unsigned long gfn = gpa >> PAGE_SHIFT;
1156 1157
	struct page *page, *pages[1];
	int npages;
1158
	unsigned long hva, offset;
1159
	int srcu_idx;
1160

1161
	srcu_idx = srcu_read_lock(&kvm->srcu);
1162 1163
	memslot = gfn_to_memslot(kvm, gfn);
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1164
		goto err;
1165 1166 1167 1168 1169
	hva = gfn_to_hva_memslot(memslot, gfn);
	npages = get_user_pages_fast(hva, 1, 1, pages);
	if (npages < 1)
		goto err;
	page = pages[0];
1170 1171
	srcu_read_unlock(&kvm->srcu, srcu_idx);

1172
	offset = gpa & (PAGE_SIZE - 1);
1173
	if (nb_ret)
1174
		*nb_ret = PAGE_SIZE - offset;
1175
	return page_address(page) + offset;
1176 1177 1178 1179

 err:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	return NULL;
1180 1181
}

1182 1183
void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
			     bool dirty)
1184 1185
{
	struct page *page = virt_to_page(va);
1186 1187 1188 1189
	struct kvm_memory_slot *memslot;
	unsigned long gfn;
	unsigned long *rmap;
	int srcu_idx;
1190 1191

	put_page(page);
1192

1193
	if (!dirty)
1194 1195 1196 1197 1198 1199 1200
		return;

	/* We need to mark this page dirty in the rmap chain */
	gfn = gpa >> PAGE_SHIFT;
	srcu_idx = srcu_read_lock(&kvm->srcu);
	memslot = gfn_to_memslot(kvm, gfn);
	if (memslot) {
1201 1202 1203 1204 1205 1206 1207 1208
		if (!kvm_is_radix(kvm)) {
			rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
			lock_rmap(rmap);
			*rmap |= KVMPPC_RMAP_CHANGED;
			unlock_rmap(rmap);
		} else if (memslot->dirty_bitmap) {
			mark_page_dirty(kvm, gfn);
		}
1209 1210
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1211 1212
}

1213 1214 1215 1216 1217
/*
 * HPT resizing
 */
static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
{
1218 1219 1220 1221 1222 1223 1224 1225 1226
	int rc;

	rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
	if (rc < 0)
		return rc;

	resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
			 resize->hpt.virt);

1227 1228 1229
	return 0;
}

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
					    unsigned long idx)
{
	struct kvm *kvm = resize->kvm;
	struct kvm_hpt_info *old = &kvm->arch.hpt;
	struct kvm_hpt_info *new = &resize->hpt;
	unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
	unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
	__be64 *hptep, *new_hptep;
	unsigned long vpte, rpte, guest_rpte;
	int ret;
	struct revmap_entry *rev;
	unsigned long apsize, psize, avpn, pteg, hash;
	unsigned long new_idx, new_pteg, replace_vpte;

	hptep = (__be64 *)(old->virt + (idx << 4));

	/* Guest is stopped, so new HPTEs can't be added or faulted
	 * in, only unmapped or altered by host actions.  So, it's
	 * safe to check this before we take the HPTE lock */
	vpte = be64_to_cpu(hptep[0]);
	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
		return 0; /* nothing to do */

	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
		cpu_relax();

	vpte = be64_to_cpu(hptep[0]);

	ret = 0;
	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
		/* Nothing to do */
		goto out;

	/* Unmap */
	rev = &old->rev[idx];
	guest_rpte = rev->guest_rpte;

	ret = -EIO;
	apsize = hpte_page_size(vpte, guest_rpte);
	if (!apsize)
		goto out;

	if (vpte & HPTE_V_VALID) {
		unsigned long gfn = hpte_rpn(guest_rpte, apsize);
		int srcu_idx = srcu_read_lock(&kvm->srcu);
		struct kvm_memory_slot *memslot =
			__gfn_to_memslot(kvm_memslots(kvm), gfn);

		if (memslot) {
			unsigned long *rmapp;
			rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];

			lock_rmap(rmapp);
			kvmppc_unmap_hpte(kvm, idx, rmapp, gfn);
			unlock_rmap(rmapp);
		}

		srcu_read_unlock(&kvm->srcu, srcu_idx);
	}

	/* Reload PTE after unmap */
	vpte = be64_to_cpu(hptep[0]);

	BUG_ON(vpte & HPTE_V_VALID);
	BUG_ON(!(vpte & HPTE_V_ABSENT));

	ret = 0;
	if (!(vpte & HPTE_V_BOLTED))
		goto out;

	rpte = be64_to_cpu(hptep[1]);
	psize = hpte_base_page_size(vpte, rpte);
	avpn = HPTE_V_AVPN_VAL(vpte) & ~((psize - 1) >> 23);
	pteg = idx / HPTES_PER_GROUP;
	if (vpte & HPTE_V_SECONDARY)
		pteg = ~pteg;

	if (!(vpte & HPTE_V_1TB_SEG)) {
		unsigned long offset, vsid;

		/* We only have 28 - 23 bits of offset in avpn */
		offset = (avpn & 0x1f) << 23;
		vsid = avpn >> 5;
		/* We can find more bits from the pteg value */
		if (psize < (1ULL << 23))
			offset |= ((vsid ^ pteg) & old_hash_mask) * psize;

		hash = vsid ^ (offset / psize);
	} else {
		unsigned long offset, vsid;

		/* We only have 40 - 23 bits of seg_off in avpn */
		offset = (avpn & 0x1ffff) << 23;
		vsid = avpn >> 17;
		if (psize < (1ULL << 23))
			offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) * psize;

		hash = vsid ^ (vsid << 25) ^ (offset / psize);
	}

	new_pteg = hash & new_hash_mask;
	if (vpte & HPTE_V_SECONDARY) {
		BUG_ON(~pteg != (hash & old_hash_mask));
		new_pteg = ~new_pteg;
	} else {
		BUG_ON(pteg != (hash & old_hash_mask));
	}

	new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
	new_hptep = (__be64 *)(new->virt + (new_idx << 4));

	replace_vpte = be64_to_cpu(new_hptep[0]);

	if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
		BUG_ON(new->order >= old->order);

		if (replace_vpte & HPTE_V_BOLTED) {
			if (vpte & HPTE_V_BOLTED)
				/* Bolted collision, nothing we can do */
				ret = -ENOSPC;
			/* Discard the new HPTE */
			goto out;
		}

		/* Discard the previous HPTE */
	}

	new_hptep[1] = cpu_to_be64(rpte);
	new->rev[new_idx].guest_rpte = guest_rpte;
	/* No need for a barrier, since new HPT isn't active */
	new_hptep[0] = cpu_to_be64(vpte);
	unlock_hpte(new_hptep, vpte);

out:
	unlock_hpte(hptep, vpte);
	return ret;
}

1369 1370
static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
{
1371 1372 1373 1374
	struct kvm *kvm = resize->kvm;
	unsigned  long i;
	int rc;

1375 1376 1377 1378 1379 1380
	/*
	 * resize_hpt_rehash_hpte() doesn't handle the new-format HPTEs
	 * that POWER9 uses, and could well hit a BUG_ON on POWER9.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		return -EIO;
1381 1382 1383 1384 1385 1386 1387
	for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
		rc = resize_hpt_rehash_hpte(resize, i);
		if (rc != 0)
			return rc;
	}

	return 0;
1388 1389 1390 1391
}

static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
{
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	struct kvm *kvm = resize->kvm;
	struct kvm_hpt_info hpt_tmp;

	/* Exchange the pending tables in the resize structure with
	 * the active tables */

	resize_hpt_debug(resize, "resize_hpt_pivot()\n");

	spin_lock(&kvm->mmu_lock);
	asm volatile("ptesync" : : : "memory");

	hpt_tmp = kvm->arch.hpt;
	kvmppc_set_hpt(kvm, &resize->hpt);
	resize->hpt = hpt_tmp;

	spin_unlock(&kvm->mmu_lock);

	synchronize_srcu_expedited(&kvm->srcu);

	resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1412 1413 1414 1415 1416
}

static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
{
	BUG_ON(kvm->arch.resize_hpt != resize);
1417

1418 1419 1420
	if (!resize)
		return;

1421 1422 1423
	if (resize->hpt.virt)
		kvmppc_free_hpt(&resize->hpt);

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
	kvm->arch.resize_hpt = NULL;
	kfree(resize);
}

static void resize_hpt_prepare_work(struct work_struct *work)
{
	struct kvm_resize_hpt *resize = container_of(work,
						     struct kvm_resize_hpt,
						     work);
	struct kvm *kvm = resize->kvm;
	int err;

	resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
			 resize->order);

	err = resize_hpt_allocate(resize);

	mutex_lock(&kvm->lock);

	resize->error = err;
	resize->prepare_done = true;

	mutex_unlock(&kvm->lock);
}

long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
				     struct kvm_ppc_resize_hpt *rhpt)
{
	unsigned long flags = rhpt->flags;
	unsigned long shift = rhpt->shift;
	struct kvm_resize_hpt *resize;
	int ret;

	if (flags != 0)
		return -EINVAL;

	if (shift && ((shift < 18) || (shift > 46)))
		return -EINVAL;

	mutex_lock(&kvm->lock);

	resize = kvm->arch.resize_hpt;

	if (resize) {
		if (resize->order == shift) {
			/* Suitable resize in progress */
			if (resize->prepare_done) {
				ret = resize->error;
				if (ret != 0)
					resize_hpt_release(kvm, resize);
			} else {
				ret = 100; /* estimated time in ms */
			}

			goto out;
		}

		/* not suitable, cancel it */
		resize_hpt_release(kvm, resize);
	}

	ret = 0;
	if (!shift)
		goto out; /* nothing to do */

	/* start new resize */

	resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1492 1493 1494 1495
	if (!resize) {
		ret = -ENOMEM;
		goto out;
	}
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
	resize->order = shift;
	resize->kvm = kvm;
	INIT_WORK(&resize->work, resize_hpt_prepare_work);
	kvm->arch.resize_hpt = resize;

	schedule_work(&resize->work);

	ret = 100; /* estimated time in ms */

out:
	mutex_unlock(&kvm->lock);
	return ret;
}

static void resize_hpt_boot_vcpu(void *opaque)
{
	/* Nothing to do, just force a KVM exit */
}

long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
				    struct kvm_ppc_resize_hpt *rhpt)
{
	unsigned long flags = rhpt->flags;
	unsigned long shift = rhpt->shift;
	struct kvm_resize_hpt *resize;
	long ret;

	if (flags != 0)
		return -EINVAL;

	if (shift && ((shift < 18) || (shift > 46)))
		return -EINVAL;

	mutex_lock(&kvm->lock);

	resize = kvm->arch.resize_hpt;

	/* This shouldn't be possible */
	ret = -EIO;
	if (WARN_ON(!kvm->arch.hpte_setup_done))
		goto out_no_hpt;

	/* Stop VCPUs from running while we mess with the HPT */
	kvm->arch.hpte_setup_done = 0;
	smp_mb();

	/* Boot all CPUs out of the guest so they re-read
	 * hpte_setup_done */
	on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);

	ret = -ENXIO;
	if (!resize || (resize->order != shift))
		goto out;

	ret = -EBUSY;
	if (!resize->prepare_done)
		goto out;

	ret = resize->error;
	if (ret != 0)
		goto out;

	ret = resize_hpt_rehash(resize);
	if (ret != 0)
		goto out;

	resize_hpt_pivot(resize);

out:
	/* Let VCPUs run again */
	kvm->arch.hpte_setup_done = 1;
	smp_mb();
out_no_hpt:
	resize_hpt_release(kvm, resize);
	mutex_unlock(&kvm->lock);
	return ret;
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
/*
 * Functions for reading and writing the hash table via reads and
 * writes on a file descriptor.
 *
 * Reads return the guest view of the hash table, which has to be
 * pieced together from the real hash table and the guest_rpte
 * values in the revmap array.
 *
 * On writes, each HPTE written is considered in turn, and if it
 * is valid, it is written to the HPT as if an H_ENTER with the
 * exact flag set was done.  When the invalid count is non-zero
 * in the header written to the stream, the kernel will make
 * sure that that many HPTEs are invalid, and invalidate them
 * if not.
 */

struct kvm_htab_ctx {
	unsigned long	index;
	unsigned long	flags;
	struct kvm	*kvm;
	int		first_pass;
};

#define HPTE_SIZE	(2 * sizeof(unsigned long))

1599 1600 1601 1602
/*
 * Returns 1 if this HPT entry has been modified or has pending
 * R/C bit changes.
 */
1603
static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1604 1605 1606 1607 1608 1609 1610 1611
{
	unsigned long rcbits_unset;

	if (revp->guest_rpte & HPTE_GR_MODIFIED)
		return 1;

	/* Also need to consider changes in reference and changed bits */
	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1612 1613
	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1614 1615 1616 1617 1618
		return 1;

	return 0;
}

1619
static long record_hpte(unsigned long flags, __be64 *hptp,
1620 1621 1622
			unsigned long *hpte, struct revmap_entry *revp,
			int want_valid, int first_pass)
{
1623
	unsigned long v, r, hr;
1624
	unsigned long rcbits_unset;
1625 1626 1627 1628
	int ok = 1;
	int valid, dirty;

	/* Unmodified entries are uninteresting except on the first pass */
1629
	dirty = hpte_dirty(revp, hptp);
1630 1631 1632 1633
	if (!first_pass && !dirty)
		return 0;

	valid = 0;
1634
	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1635 1636
		valid = 1;
		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1637
		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
			valid = 0;
	}
	if (valid != want_valid)
		return 0;

	v = r = 0;
	if (valid || dirty) {
		/* lock the HPTE so it's stable and read it */
		preempt_disable();
		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
			cpu_relax();
1649
		v = be64_to_cpu(hptp[0]);
1650 1651 1652 1653 1654
		hr = be64_to_cpu(hptp[1]);
		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
			v = hpte_new_to_old_v(v, hr);
			hr = hpte_new_to_old_r(hr);
		}
1655 1656 1657 1658 1659 1660 1661

		/* re-evaluate valid and dirty from synchronized HPTE value */
		valid = !!(v & HPTE_V_VALID);
		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);

		/* Harvest R and C into guest view if necessary */
		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1662 1663
		if (valid && (rcbits_unset & hr)) {
			revp->guest_rpte |= (hr &
1664
				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1665 1666 1667
			dirty = 1;
		}

1668 1669 1670
		if (v & HPTE_V_ABSENT) {
			v &= ~HPTE_V_ABSENT;
			v |= HPTE_V_VALID;
1671
			valid = 1;
1672 1673 1674
		}
		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
			valid = 0;
1675 1676

		r = revp->guest_rpte;
1677 1678 1679 1680 1681
		/* only clear modified if this is the right sort of entry */
		if (valid == want_valid && dirty) {
			r &= ~HPTE_GR_MODIFIED;
			revp->guest_rpte = r;
		}
1682
		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1683 1684 1685 1686
		preempt_enable();
		if (!(valid == want_valid && (first_pass || dirty)))
			ok = 0;
	}
1687 1688
	hpte[0] = cpu_to_be64(v);
	hpte[1] = cpu_to_be64(r);
1689 1690 1691 1692 1693 1694 1695 1696 1697
	return ok;
}

static ssize_t kvm_htab_read(struct file *file, char __user *buf,
			     size_t count, loff_t *ppos)
{
	struct kvm_htab_ctx *ctx = file->private_data;
	struct kvm *kvm = ctx->kvm;
	struct kvm_get_htab_header hdr;
1698
	__be64 *hptp;
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
	struct revmap_entry *revp;
	unsigned long i, nb, nw;
	unsigned long __user *lbuf;
	struct kvm_get_htab_header __user *hptr;
	unsigned long flags;
	int first_pass;
	unsigned long hpte[2];

	if (!access_ok(VERIFY_WRITE, buf, count))
		return -EFAULT;

	first_pass = ctx->first_pass;
	flags = ctx->flags;

	i = ctx->index;
1714 1715
	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
	revp = kvm->arch.hpt.rev + i;
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	lbuf = (unsigned long __user *)buf;

	nb = 0;
	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
		/* Initialize header */
		hptr = (struct kvm_get_htab_header __user *)buf;
		hdr.n_valid = 0;
		hdr.n_invalid = 0;
		nw = nb;
		nb += sizeof(hdr);
		lbuf = (unsigned long __user *)(buf + sizeof(hdr));

		/* Skip uninteresting entries, i.e. clean on not-first pass */
		if (!first_pass) {
1730
			while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1731
			       !hpte_dirty(revp, hptp)) {
1732 1733 1734 1735 1736
				++i;
				hptp += 2;
				++revp;
			}
		}
1737
		hdr.index = i;
1738 1739

		/* Grab a series of valid entries */
1740
		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
		       hdr.n_valid < 0xffff &&
		       nb + HPTE_SIZE < count &&
		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
			/* valid entry, write it out */
			++hdr.n_valid;
			if (__put_user(hpte[0], lbuf) ||
			    __put_user(hpte[1], lbuf + 1))
				return -EFAULT;
			nb += HPTE_SIZE;
			lbuf += 2;
			++i;
			hptp += 2;
			++revp;
		}
		/* Now skip invalid entries while we can */
1756
		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
		       hdr.n_invalid < 0xffff &&
		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
			/* found an invalid entry */
			++hdr.n_invalid;
			++i;
			hptp += 2;
			++revp;
		}

		if (hdr.n_valid || hdr.n_invalid) {
			/* write back the header */
			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
				return -EFAULT;
			nw = nb;
			buf = (char __user *)lbuf;
		} else {
			nb = nw;
		}

		/* Check if we've wrapped around the hash table */
1777
		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
			i = 0;
			ctx->first_pass = 0;
			break;
		}
	}

	ctx->index = i;

	return nb;
}

static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *ppos)
{
	struct kvm_htab_ctx *ctx = file->private_data;
	struct kvm *kvm = ctx->kvm;
	struct kvm_get_htab_header hdr;
	unsigned long i, j;
	unsigned long v, r;
	unsigned long __user *lbuf;
1798
	__be64 *hptp;
1799 1800 1801
	unsigned long tmp[2];
	ssize_t nb;
	long int err, ret;
1802
	int hpte_setup;
1803 1804 1805 1806 1807 1808

	if (!access_ok(VERIFY_READ, buf, count))
		return -EFAULT;

	/* lock out vcpus from running while we're doing this */
	mutex_lock(&kvm->lock);
1809 1810 1811 1812
	hpte_setup = kvm->arch.hpte_setup_done;
	if (hpte_setup) {
		kvm->arch.hpte_setup_done = 0;	/* temporarily */
		/* order hpte_setup_done vs. vcpus_running */
1813 1814
		smp_mb();
		if (atomic_read(&kvm->arch.vcpus_running)) {
1815
			kvm->arch.hpte_setup_done = 1;
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
			mutex_unlock(&kvm->lock);
			return -EBUSY;
		}
	}

	err = 0;
	for (nb = 0; nb + sizeof(hdr) <= count; ) {
		err = -EFAULT;
		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
			break;

		err = 0;
		if (nb + hdr.n_valid * HPTE_SIZE > count)
			break;

		nb += sizeof(hdr);
		buf += sizeof(hdr);

		err = -EINVAL;
		i = hdr.index;
1836 1837
		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
		    i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1838 1839
			break;

1840
		hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1841 1842
		lbuf = (unsigned long __user *)buf;
		for (j = 0; j < hdr.n_valid; ++j) {
1843 1844 1845
			__be64 hpte_v;
			__be64 hpte_r;

1846
			err = -EFAULT;
1847 1848
			if (__get_user(hpte_v, lbuf) ||
			    __get_user(hpte_r, lbuf + 1))
1849
				goto out;
1850 1851
			v = be64_to_cpu(hpte_v);
			r = be64_to_cpu(hpte_r);
1852 1853 1854 1855 1856 1857
			err = -EINVAL;
			if (!(v & HPTE_V_VALID))
				goto out;
			lbuf += 2;
			nb += HPTE_SIZE;

1858
			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1859 1860 1861 1862 1863 1864 1865 1866 1867
				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
			err = -EIO;
			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
							 tmp);
			if (ret != H_SUCCESS) {
				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
				       "r=%lx\n", ret, i, v, r);
				goto out;
			}
1868
			if (!hpte_setup && is_vrma_hpte(v)) {
1869
				unsigned long psize = hpte_base_page_size(v, r);
1870 1871 1872 1873 1874
				unsigned long senc = slb_pgsize_encoding(psize);
				unsigned long lpcr;

				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1875 1876
				lpcr = senc << (LPCR_VRMASD_SH - 4);
				kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1877
				hpte_setup = 1;
1878 1879 1880 1881 1882 1883
			}
			++i;
			hptp += 2;
		}

		for (j = 0; j < hdr.n_invalid; ++j) {
1884
			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1885 1886 1887 1888 1889 1890 1891 1892
				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
			++i;
			hptp += 2;
		}
		err = 0;
	}

 out:
1893
	/* Order HPTE updates vs. hpte_setup_done */
1894
	smp_wmb();
1895
	kvm->arch.hpte_setup_done = hpte_setup;
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
	mutex_unlock(&kvm->lock);

	if (err)
		return err;
	return nb;
}

static int kvm_htab_release(struct inode *inode, struct file *filp)
{
	struct kvm_htab_ctx *ctx = filp->private_data;

	filp->private_data = NULL;
	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
	kvm_put_kvm(ctx->kvm);
	kfree(ctx);
	return 0;
}

1915
static const struct file_operations kvm_htab_fops = {
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	.read		= kvm_htab_read,
	.write		= kvm_htab_write,
	.llseek		= default_llseek,
	.release	= kvm_htab_release,
};

int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
{
	int ret;
	struct kvm_htab_ctx *ctx;
	int rwflag;

	/* reject flags we don't recognize */
	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
		return -EINVAL;
	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
	if (!ctx)
		return -ENOMEM;
	kvm_get_kvm(kvm);
	ctx->kvm = kvm;
	ctx->index = ghf->start_index;
	ctx->flags = ghf->flags;
	ctx->first_pass = 1;

	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1941
	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	if (ret < 0) {
		kvm_put_kvm(kvm);
		return ret;
	}

	if (rwflag == O_RDONLY) {
		mutex_lock(&kvm->slots_lock);
		atomic_inc(&kvm->arch.hpte_mod_interest);
		/* make sure kvmppc_do_h_enter etc. see the increment */
		synchronize_srcu_expedited(&kvm->srcu);
		mutex_unlock(&kvm->slots_lock);
	}

	return ret;
}

1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
struct debugfs_htab_state {
	struct kvm	*kvm;
	struct mutex	mutex;
	unsigned long	hpt_index;
	int		chars_left;
	int		buf_index;
	char		buf[64];
};

static int debugfs_htab_open(struct inode *inode, struct file *file)
{
	struct kvm *kvm = inode->i_private;
	struct debugfs_htab_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(kvm);
	p->kvm = kvm;
	mutex_init(&p->mutex);
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_htab_release(struct inode *inode, struct file *file)
{
	struct debugfs_htab_state *p = file->private_data;

	kvm_put_kvm(p->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
				 size_t len, loff_t *ppos)
{
	struct debugfs_htab_state *p = file->private_data;
	ssize_t ret, r;
	unsigned long i, n;
	unsigned long v, hr, gr;
	struct kvm *kvm;
	__be64 *hptp;

	ret = mutex_lock_interruptible(&p->mutex);
	if (ret)
		return ret;

	if (p->chars_left) {
		n = p->chars_left;
		if (n > len)
			n = len;
		r = copy_to_user(buf, p->buf + p->buf_index, n);
		n -= r;
		p->chars_left -= n;
		p->buf_index += n;
		buf += n;
		len -= n;
		ret = n;
		if (r) {
			if (!n)
				ret = -EFAULT;
			goto out;
		}
	}

	kvm = p->kvm;
	i = p->hpt_index;
2027
	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2028 2029
	for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
	     ++i, hptp += 2) {
2030 2031 2032 2033 2034 2035 2036 2037 2038
		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
			continue;

		/* lock the HPTE so it's stable and read it */
		preempt_disable();
		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
			cpu_relax();
		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
		hr = be64_to_cpu(hptp[1]);
2039
		gr = kvm->arch.hpt.rev[i].guest_rpte;
2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
		unlock_hpte(hptp, v);
		preempt_enable();

		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
			continue;

		n = scnprintf(p->buf, sizeof(p->buf),
			      "%6lx %.16lx %.16lx %.16lx\n",
			      i, v, hr, gr);
		p->chars_left = n;
		if (n > len)
			n = len;
		r = copy_to_user(buf, p->buf, n);
		n -= r;
		p->chars_left -= n;
		p->buf_index = n;
		buf += n;
		len -= n;
		ret += n;
		if (r) {
			if (!ret)
				ret = -EFAULT;
			goto out;
		}
	}
	p->hpt_index = i;

 out:
	mutex_unlock(&p->mutex);
	return ret;
}

2072
static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
			   size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_htab_fops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_htab_open,
	.release = debugfs_htab_release,
	.read	 = debugfs_htab_read,
	.write	 = debugfs_htab_write,
	.llseek	 = generic_file_llseek,
};

void kvmppc_mmu_debugfs_init(struct kvm *kvm)
{
	kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
						    kvm->arch.debugfs_dir, kvm,
						    &debugfs_htab_fops);
}

2094 2095 2096 2097
void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
{
	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;

2098
	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
2099

2100 2101 2102 2103
	if (kvm_is_radix(vcpu->kvm))
		mmu->xlate = kvmppc_mmu_radix_xlate;
	else
		mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2104 2105 2106 2107
	mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;

	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
}