book3s_64_mmu_hv.c 43.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 */

#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/gfp.h>
#include <linux/slab.h>
#include <linux/hugetlb.h>
26
#include <linux/vmalloc.h>
27
#include <linux/srcu.h>
28 29
#include <linux/anon_inodes.h>
#include <linux/file.h>
30
#include <linux/debugfs.h>
31 32 33 34

#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
35
#include <asm/book3s/64/mmu-hash.h>
36 37 38 39 40
#include <asm/hvcall.h>
#include <asm/synch.h>
#include <asm/ppc-opcode.h>
#include <asm/cputable.h>

41 42
#include "trace_hv.h"

43 44 45
/* Power architecture requires HPT is at least 256kB */
#define PPC_MIN_HPT_ORDER	18

46 47 48
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
				long pte_index, unsigned long pteh,
				unsigned long ptel, unsigned long *pte_idx_ret);
49
static void kvmppc_rmap_reset(struct kvm *kvm);
50

51
long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
52
{
53
	unsigned long hpt = 0;
54
	struct revmap_entry *rev;
55 56
	struct page *page = NULL;
	long order = KVM_DEFAULT_HPT_ORDER;
57

58 59 60 61 62 63
	if (htab_orderp) {
		order = *htab_orderp;
		if (order < PPC_MIN_HPT_ORDER)
			order = PPC_MIN_HPT_ORDER;
	}

64
	kvm->arch.hpt_cma_alloc = 0;
65
	page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
66 67
	if (page) {
		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
68
		memset((void *)hpt, 0, (1ul << order));
69
		kvm->arch.hpt_cma_alloc = 1;
70
	}
71 72

	/* Lastly try successively smaller sizes from the page allocator */
73 74
	/* Only do this if userspace didn't specify a size via ioctl */
	while (!hpt && order > PPC_MIN_HPT_ORDER && !htab_orderp) {
75 76 77 78 79 80 81 82 83
		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
				       __GFP_NOWARN, order - PAGE_SHIFT);
		if (!hpt)
			--order;
	}

	if (!hpt)
		return -ENOMEM;

84
	kvm->arch.hpt_virt = hpt;
85 86 87 88 89
	kvm->arch.hpt_order = order;
	/* HPTEs are 2**4 bytes long */
	kvm->arch.hpt_npte = 1ul << (order - 4);
	/* 128 (2**7) bytes in each HPTEG */
	kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
90

91 92
	atomic64_set(&kvm->arch.mmio_update, 0);

93
	/* Allocate reverse map array */
94
	rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
95 96 97 98 99
	if (!rev) {
		pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
		goto out_freehpt;
	}
	kvm->arch.revmap = rev;
100
	kvm->arch.sdr1 = __pa(hpt) | (order - 18);
101

102 103
	pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
		hpt, order, kvm->arch.lpid);
104

105 106
	if (htab_orderp)
		*htab_orderp = order;
107
	return 0;
108 109

 out_freehpt:
110
	if (kvm->arch.hpt_cma_alloc)
111
		kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
112 113
	else
		free_pages(hpt, order - PAGE_SHIFT);
114
	return -ENOMEM;
115 116
}

117 118 119 120 121
long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
{
	long err = -EBUSY;
	long order;

122 123 124
	if (kvm_is_radix(kvm))
		return -EINVAL;

125
	mutex_lock(&kvm->lock);
126 127 128
	if (kvm->arch.hpte_setup_done) {
		kvm->arch.hpte_setup_done = 0;
		/* order hpte_setup_done vs. vcpus_running */
129 130
		smp_mb();
		if (atomic_read(&kvm->arch.vcpus_running)) {
131
			kvm->arch.hpte_setup_done = 1;
132 133 134 135 136 137 138
			goto out;
		}
	}
	if (kvm->arch.hpt_virt) {
		order = kvm->arch.hpt_order;
		/* Set the entire HPT to 0, i.e. invalid HPTEs */
		memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
139 140 141 142
		/*
		 * Reset all the reverse-mapping chains for all memslots
		 */
		kvmppc_rmap_reset(kvm);
143 144
		/* Ensure that each vcpu will flush its TLB on next entry. */
		cpumask_setall(&kvm->arch.need_tlb_flush);
145 146 147 148 149 150 151 152 153 154 155
		*htab_orderp = order;
		err = 0;
	} else {
		err = kvmppc_alloc_hpt(kvm, htab_orderp);
		order = *htab_orderp;
	}
 out:
	mutex_unlock(&kvm->lock);
	return err;
}

156 157
void kvmppc_free_hpt(struct kvm *kvm)
{
158
	vfree(kvm->arch.revmap);
159
	if (kvm->arch.hpt_cma_alloc)
160 161
		kvm_free_hpt_cma(virt_to_page(kvm->arch.hpt_virt),
				 1 << (kvm->arch.hpt_order - PAGE_SHIFT));
162
	else if (kvm->arch.hpt_virt)
163 164
		free_pages(kvm->arch.hpt_virt,
			   kvm->arch.hpt_order - PAGE_SHIFT);
165 166
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180
/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
{
	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
}

/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
{
	return (pgsize == 0x10000) ? 0x1000 : 0;
}

void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
		     unsigned long porder)
181 182
{
	unsigned long i;
183
	unsigned long npages;
184 185
	unsigned long hp_v, hp_r;
	unsigned long addr, hash;
186 187
	unsigned long psize;
	unsigned long hp0, hp1;
188
	unsigned long idx_ret;
189
	long ret;
190
	struct kvm *kvm = vcpu->kvm;
191

192 193
	psize = 1ul << porder;
	npages = memslot->npages >> (porder - PAGE_SHIFT);
194 195

	/* VRMA can't be > 1TB */
196 197
	if (npages > 1ul << (40 - porder))
		npages = 1ul << (40 - porder);
198
	/* Can't use more than 1 HPTE per HPTEG */
199 200
	if (npages > kvm->arch.hpt_mask + 1)
		npages = kvm->arch.hpt_mask + 1;
201

202 203 204 205 206
	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
	hp1 = hpte1_pgsize_encoding(psize) |
		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;

207
	for (i = 0; i < npages; ++i) {
208
		addr = i << porder;
209
		/* can't use hpt_hash since va > 64 bits */
210
		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
211 212 213 214 215 216
		/*
		 * We assume that the hash table is empty and no
		 * vcpus are using it at this stage.  Since we create
		 * at most one HPTE per HPTEG, we just assume entry 7
		 * is available and use it.
		 */
217
		hash = (hash << 3) + 7;
218 219
		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
		hp_r = hp1 | addr;
220 221
		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
						 &idx_ret);
222 223 224 225 226
		if (ret != H_SUCCESS) {
			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
			       addr, ret);
			break;
		}
227 228 229 230 231
	}
}

int kvmppc_mmu_hv_init(void)
{
232 233 234
	unsigned long host_lpid, rsvd_lpid;

	if (!cpu_has_feature(CPU_FTR_HVMODE))
235
		return -EINVAL;
236

237 238 239
	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
	host_lpid = mfspr(SPRN_LPID);
	rsvd_lpid = LPID_RSVD;
240

241 242 243
	kvmppc_init_lpid(rsvd_lpid + 1);

	kvmppc_claim_lpid(host_lpid);
244
	/* rsvd_lpid is reserved for use in partition switching */
245
	kvmppc_claim_lpid(rsvd_lpid);
246 247 248 249 250 251

	return 0;
}

static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
{
252 253 254 255 256 257 258 259
	unsigned long msr = vcpu->arch.intr_msr;

	/* If transactional, change to suspend mode on IRQ delivery */
	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
		msr |= MSR_TS_S;
	else
		msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
	kvmppc_set_msr(vcpu, msr);
260 261
}

262
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
263 264
				long pte_index, unsigned long pteh,
				unsigned long ptel, unsigned long *pte_idx_ret)
265 266 267
{
	long ret;

268 269
	/* Protect linux PTE lookup from page table destruction */
	rcu_read_lock_sched();	/* this disables preemption too */
270 271
	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
				current->mm->pgd, false, pte_idx_ret);
272
	rcu_read_unlock_sched();
273 274 275 276 277 278 279 280 281
	if (ret == H_TOO_HARD) {
		/* this can't happen */
		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
		ret = H_RESOURCE;	/* or something */
	}
	return ret;

}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
							 gva_t eaddr)
{
	u64 mask;
	int i;

	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
			continue;

		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
			mask = ESID_MASK_1T;
		else
			mask = ESID_MASK;

		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
			return &vcpu->arch.slb[i];
	}
	return NULL;
}

static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
			unsigned long ea)
{
	unsigned long ra_mask;

	ra_mask = hpte_page_size(v, r) - 1;
	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
}

312
static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
313
			struct kvmppc_pte *gpte, bool data, bool iswrite)
314
{
315 316 317 318
	struct kvm *kvm = vcpu->kvm;
	struct kvmppc_slb *slbe;
	unsigned long slb_v;
	unsigned long pp, key;
319
	unsigned long v, orig_v, gr;
320
	__be64 *hptep;
321 322 323 324 325 326 327 328 329 330 331 332 333 334
	int index;
	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);

	/* Get SLB entry */
	if (virtmode) {
		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
		if (!slbe)
			return -EINVAL;
		slb_v = slbe->origv;
	} else {
		/* real mode access */
		slb_v = vcpu->kvm->arch.vrma_slb_v;
	}

335
	preempt_disable();
336 337 338
	/* Find the HPTE in the hash table */
	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
					 HPTE_V_VALID | HPTE_V_ABSENT);
339 340
	if (index < 0) {
		preempt_enable();
341
		return -ENOENT;
342
	}
343
	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
344 345 346
	v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
347 348
	gr = kvm->arch.revmap[index].guest_rpte;

349
	unlock_hpte(hptep, orig_v);
350
	preempt_enable();
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

	gpte->eaddr = eaddr;
	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);

	/* Get PP bits and key for permission check */
	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
	key &= slb_v;

	/* Calculate permissions */
	gpte->may_read = hpte_read_permission(pp, key);
	gpte->may_write = hpte_write_permission(pp, key);
	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));

	/* Storage key permission check for POWER7 */
366
	if (data && virtmode) {
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
		if (amrfield & 1)
			gpte->may_read = 0;
		if (amrfield & 2)
			gpte->may_write = 0;
	}

	/* Get the guest physical address */
	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
	return 0;
}

/*
 * Quick test for whether an instruction is a load or a store.
 * If the instruction is a load or a store, then this will indicate
 * which it is, at least on server processors.  (Embedded processors
 * have some external PID instructions that don't follow the rule
 * embodied here.)  If the instruction isn't a load or store, then
 * this doesn't return anything useful.
 */
static int instruction_is_store(unsigned int instr)
{
	unsigned int mask;

	mask = 0x10000000;
	if ((instr & 0xfc000000) == 0x7c000000)
		mask = 0x100;		/* major opcode 31 */
	return (instr & mask) != 0;
}

397 398
int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
			   unsigned long gpa, gva_t ea, int is_store)
399 400 401
{
	u32 last_inst;

402
	/*
403 404
	 * If we fail, we just return to the guest and try executing it again.
	 */
405 406 407
	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
		EMULATE_DONE)
		return RESUME_GUEST;
408 409 410 411 412 413 414 415 416 417 418 419 420

	/*
	 * WARNING: We do not know for sure whether the instruction we just
	 * read from memory is the same that caused the fault in the first
	 * place.  If the instruction we read is neither an load or a store,
	 * then it can't access memory, so we don't need to worry about
	 * enforcing access permissions.  So, assuming it is a load or
	 * store, we just check that its direction (load or store) is
	 * consistent with the original fault, since that's what we
	 * checked the access permissions against.  If there is a mismatch
	 * we just return and retry the instruction.
	 */

421
	if (instruction_is_store(last_inst) != !!is_store)
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
		return RESUME_GUEST;

	/*
	 * Emulated accesses are emulated by looking at the hash for
	 * translation once, then performing the access later. The
	 * translation could be invalidated in the meantime in which
	 * point performing the subsequent memory access on the old
	 * physical address could possibly be a security hole for the
	 * guest (but not the host).
	 *
	 * This is less of an issue for MMIO stores since they aren't
	 * globally visible. It could be an issue for MMIO loads to
	 * a certain extent but we'll ignore it for now.
	 */

	vcpu->arch.paddr_accessed = gpa;
438
	vcpu->arch.vaddr_accessed = ea;
439 440 441 442 443 444 445
	return kvmppc_emulate_mmio(run, vcpu);
}

int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
				unsigned long ea, unsigned long dsisr)
{
	struct kvm *kvm = vcpu->kvm;
446
	unsigned long hpte[3], r;
447
	unsigned long hnow_v, hnow_r;
448
	__be64 *hptep;
449
	unsigned long mmu_seq, psize, pte_size;
450
	unsigned long gpa_base, gfn_base;
451
	unsigned long gpa, gfn, hva, pfn;
452
	struct kvm_memory_slot *memslot;
453
	unsigned long *rmap;
454
	struct revmap_entry *rev;
455 456
	struct page *page, *pages[1];
	long index, ret, npages;
457
	bool is_ci;
458
	unsigned int writing, write_ok;
459
	struct vm_area_struct *vma;
460
	unsigned long rcbits;
461
	long mmio_update;
462

463 464 465
	if (kvm_is_radix(kvm))
		return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr);

466 467 468 469 470 471 472 473
	/*
	 * Real-mode code has already searched the HPT and found the
	 * entry we're interested in.  Lock the entry and check that
	 * it hasn't changed.  If it has, just return and re-execute the
	 * instruction.
	 */
	if (ea != vcpu->arch.pgfault_addr)
		return RESUME_GUEST;
474 475 476 477 478 479 480 481 482 483 484 485 486

	if (vcpu->arch.pgfault_cache) {
		mmio_update = atomic64_read(&kvm->arch.mmio_update);
		if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
			r = vcpu->arch.pgfault_cache->rpte;
			psize = hpte_page_size(vcpu->arch.pgfault_hpte[0], r);
			gpa_base = r & HPTE_R_RPN & ~(psize - 1);
			gfn_base = gpa_base >> PAGE_SHIFT;
			gpa = gpa_base | (ea & (psize - 1));
			return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
						dsisr & DSISR_ISSTORE);
		}
	}
487
	index = vcpu->arch.pgfault_index;
488
	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
489 490 491 492
	rev = &kvm->arch.revmap[index];
	preempt_disable();
	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
		cpu_relax();
493 494
	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
	hpte[1] = be64_to_cpu(hptep[1]);
495
	hpte[2] = r = rev->guest_rpte;
496
	unlock_hpte(hptep, hpte[0]);
497 498
	preempt_enable();

499 500 501 502
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
		hpte[1] = hpte_new_to_old_r(hpte[1]);
	}
503 504 505 506 507
	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
	    hpte[1] != vcpu->arch.pgfault_hpte[1])
		return RESUME_GUEST;

	/* Translate the logical address and get the page */
508
	psize = hpte_page_size(hpte[0], r);
509 510 511
	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
	gfn_base = gpa_base >> PAGE_SHIFT;
	gpa = gpa_base | (ea & (psize - 1));
512
	gfn = gpa >> PAGE_SHIFT;
513 514
	memslot = gfn_to_memslot(kvm, gfn);

515 516
	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);

517
	/* No memslot means it's an emulated MMIO region */
518
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
519
		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
520 521
					      dsisr & DSISR_ISSTORE);

522 523 524 525 526 527 528
	/*
	 * This should never happen, because of the slot_is_aligned()
	 * check in kvmppc_do_h_enter().
	 */
	if (gfn_base < memslot->base_gfn)
		return -EFAULT;

529 530 531 532
	/* used to check for invalidations in progress */
	mmu_seq = kvm->mmu_notifier_seq;
	smp_rmb();

533
	ret = -EFAULT;
534
	is_ci = false;
535 536 537
	pfn = 0;
	page = NULL;
	pte_size = PAGE_SIZE;
538 539 540
	writing = (dsisr & DSISR_ISSTORE) != 0;
	/* If writing != 0, then the HPTE must allow writing, if we get here */
	write_ok = writing;
541
	hva = gfn_to_hva_memslot(memslot, gfn);
542
	npages = get_user_pages_fast(hva, 1, writing, pages);
543 544 545 546 547 548 549 550 551
	if (npages < 1) {
		/* Check if it's an I/O mapping */
		down_read(&current->mm->mmap_sem);
		vma = find_vma(current->mm, hva);
		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
		    (vma->vm_flags & VM_PFNMAP)) {
			pfn = vma->vm_pgoff +
				((hva - vma->vm_start) >> PAGE_SHIFT);
			pte_size = psize;
552
			is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot))));
553
			write_ok = vma->vm_flags & VM_WRITE;
554 555 556
		}
		up_read(&current->mm->mmap_sem);
		if (!pfn)
557
			goto out_put;
558 559
	} else {
		page = pages[0];
560
		pfn = page_to_pfn(page);
561 562 563 564
		if (PageHuge(page)) {
			page = compound_head(page);
			pte_size <<= compound_order(page);
		}
565 566 567
		/* if the guest wants write access, see if that is OK */
		if (!writing && hpte_is_writable(r)) {
			pte_t *ptep, pte;
568
			unsigned long flags;
569 570
			/*
			 * We need to protect against page table destruction
571
			 * hugepage split and collapse.
572
			 */
573
			local_irq_save(flags);
574
			ptep = find_linux_pte_or_hugepte(current->mm->pgd,
575
							 hva, NULL, NULL);
576
			if (ptep) {
577
				pte = kvmppc_read_update_linux_pte(ptep, 1);
578 579 580
				if (pte_write(pte))
					write_ok = 1;
			}
581
			local_irq_restore(flags);
582
		}
583 584 585 586 587 588
	}

	if (psize > pte_size)
		goto out_put;

	/* Check WIMG vs. the actual page we're accessing */
589 590
	if (!hpte_cache_flags_ok(r, is_ci)) {
		if (is_ci)
591
			goto out_put;
592 593 594 595 596 597 598
		/*
		 * Allow guest to map emulated device memory as
		 * uncacheable, but actually make it cacheable.
		 */
		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
	}

599 600 601 602 603 604 605
	/*
	 * Set the HPTE to point to pfn.
	 * Since the pfn is at PAGE_SIZE granularity, make sure we
	 * don't mask out lower-order bits if psize < PAGE_SIZE.
	 */
	if (psize < PAGE_SIZE)
		psize = PAGE_SIZE;
606 607
	r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) |
					((pfn << PAGE_SHIFT) & ~(psize - 1));
608 609
	if (hpte_is_writable(r) && !write_ok)
		r = hpte_make_readonly(r);
610 611 612 613
	ret = RESUME_GUEST;
	preempt_disable();
	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
		cpu_relax();
614 615 616 617 618 619 620 621
	hnow_v = be64_to_cpu(hptep[0]);
	hnow_r = be64_to_cpu(hptep[1]);
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
		hnow_r = hpte_new_to_old_r(hnow_r);
	}
	if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
	    rev->guest_rpte != hpte[2])
622 623 624 625
		/* HPTE has been changed under us; let the guest retry */
		goto out_unlock;
	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;

626 627
	/* Always put the HPTE in the rmap chain for the page base address */
	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
628 629 630 631
	lock_rmap(rmap);

	/* Check if we might have been invalidated; let the guest retry if so */
	ret = RESUME_GUEST;
632
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
633 634 635
		unlock_rmap(rmap);
		goto out_unlock;
	}
636

637 638 639 640
	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);

641
	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
642 643
		/* HPTE was previously valid, so we need to invalidate it */
		unlock_rmap(rmap);
644
		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
645
		kvmppc_invalidate_hpte(kvm, hptep, index);
646
		/* don't lose previous R and C bits */
647
		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
648 649 650
	} else {
		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
	}
651

652 653 654 655
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		r = hpte_old_to_new_r(hpte[0], r);
		hpte[0] = hpte_old_to_new_v(hpte[0]);
	}
656
	hptep[1] = cpu_to_be64(r);
657
	eieio();
658
	__unlock_hpte(hptep, hpte[0]);
659 660
	asm volatile("ptesync" : : : "memory");
	preempt_enable();
661
	if (page && hpte_is_writable(r))
662 663 664
		SetPageDirty(page);

 out_put:
665 666
	trace_kvm_page_fault_exit(vcpu, hpte, ret);

667 668 669 670 671 672 673 674 675
	if (page) {
		/*
		 * We drop pages[0] here, not page because page might
		 * have been set to the head page of a compound, but
		 * we have to drop the reference on the correct tail
		 * page to match the get inside gup()
		 */
		put_page(pages[0]);
	}
676 677 678
	return ret;

 out_unlock:
679
	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
680 681 682 683
	preempt_enable();
	goto out_put;
}

684 685 686 687 688 689 690
static void kvmppc_rmap_reset(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int srcu_idx;

	srcu_idx = srcu_read_lock(&kvm->srcu);
691
	slots = kvm_memslots(kvm);
692 693 694 695 696 697 698 699 700 701 702
	kvm_for_each_memslot(memslot, slots) {
		/*
		 * This assumes it is acceptable to lose reference and
		 * change bits across a reset.
		 */
		memset(memslot->arch.rmap, 0,
		       memslot->npages * sizeof(*memslot->arch.rmap));
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
}

703 704 705
typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot,
			      unsigned long gfn);

706 707 708
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
709
				hva_handler_fn handler)
710 711 712 713 714 715 716 717
{
	int ret;
	int retval = 0;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
718 719 720 721 722 723 724 725 726 727 728 729 730 731
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
732

733
		for (; gfn < gfn_end; ++gfn) {
734
			ret = handler(kvm, memslot, gfn);
735 736 737 738 739 740 741
			retval |= ret;
		}
	}

	return retval;
}

742
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
743
			  hva_handler_fn handler)
744 745 746 747
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
}

748
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
749 750 751 752
			   unsigned long gfn)
{
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long h, i, j;
753
	__be64 *hptep;
754
	unsigned long ptel, psize, rcbits;
755
	unsigned long *rmapp;
756

757
	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
758
	for (;;) {
759
		lock_rmap(rmapp);
760
		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
761
			unlock_rmap(rmapp);
762 763 764 765 766
			break;
		}

		/*
		 * To avoid an ABBA deadlock with the HPTE lock bit,
767 768
		 * we can't spin on the HPTE lock while holding the
		 * rmap chain lock.
769 770
		 */
		i = *rmapp & KVMPPC_RMAP_INDEX;
771
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
772 773 774
		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
775
			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
776 777 778
				cpu_relax();
			continue;
		}
779 780 781
		j = rev[i].forw;
		if (j == i) {
			/* chain is now empty */
782
			*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
783 784 785 786 787 788
		} else {
			/* remove i from chain */
			h = rev[i].back;
			rev[h].forw = j;
			rev[j].back = h;
			rev[i].forw = rev[i].back = i;
789
			*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
790 791
		}

792
		/* Now check and modify the HPTE */
793
		ptel = rev[i].guest_rpte;
794 795
		psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
796
		    hpte_rpn(ptel, psize) == gfn) {
797
			hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
798
			kvmppc_invalidate_hpte(kvm, hptep, i);
799
			hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
800
			/* Harvest R and C */
801
			rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
802
			*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
803 804
			if (rcbits & HPTE_R_C)
				kvmppc_update_rmap_change(rmapp, psize);
805 806 807 808
			if (rcbits & ~rev[i].guest_rpte) {
				rev[i].guest_rpte = ptel | rcbits;
				note_hpte_modification(kvm, &rev[i]);
			}
809
		}
810
		unlock_rmap(rmapp);
811
		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
812 813 814 815
	}
	return 0;
}

816
int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
817
{
818 819 820 821
	hva_handler_fn handler;

	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
	kvm_handle_hva(kvm, hva, handler);
822 823 824
	return 0;
}

825
int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
826
{
827 828 829 830
	hva_handler_fn handler;

	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
	kvm_handle_hva_range(kvm, start, end, handler);
831 832 833
	return 0;
}

834 835
void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
				  struct kvm_memory_slot *memslot)
836 837 838
{
	unsigned long gfn;
	unsigned long n;
839
	unsigned long *rmapp;
840 841

	gfn = memslot->base_gfn;
842 843 844 845 846 847
	rmapp = memslot->arch.rmap;
	for (n = memslot->npages; n; --n, ++gfn) {
		if (kvm_is_radix(kvm)) {
			kvm_unmap_radix(kvm, memslot, gfn);
			continue;
		}
848 849 850 851 852 853 854
		/*
		 * Testing the present bit without locking is OK because
		 * the memslot has been marked invalid already, and hence
		 * no new HPTEs referencing this page can be created,
		 * thus the present bit can't go from 0 to 1.
		 */
		if (*rmapp & KVMPPC_RMAP_PRESENT)
855
			kvm_unmap_rmapp(kvm, memslot, gfn);
856 857 858 859
		++rmapp;
	}
}

860
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
861 862
			 unsigned long gfn)
{
863 864
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
865
	__be64 *hptep;
866
	int ret = 0;
867
	unsigned long *rmapp;
868

869
	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
870 871 872 873 874 875 876 877 878 879 880 881 882
 retry:
	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
		ret = 1;
	}
	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
		unlock_rmap(rmapp);
		return ret;
	}

	i = head = *rmapp & KVMPPC_RMAP_INDEX;
	do {
883
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
884 885 886
		j = rev[i].forw;

		/* If this HPTE isn't referenced, ignore it */
887
		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
888 889 890 891 892
			continue;

		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
893
			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
894 895 896 897 898
				cpu_relax();
			goto retry;
		}

		/* Now check and modify the HPTE */
899 900
		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
901
			kvmppc_clear_ref_hpte(kvm, hptep, i);
902 903 904 905
			if (!(rev[i].guest_rpte & HPTE_R_R)) {
				rev[i].guest_rpte |= HPTE_R_R;
				note_hpte_modification(kvm, &rev[i]);
			}
906 907
			ret = 1;
		}
908
		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
909 910 911 912
	} while ((i = j) != head);

	unlock_rmap(rmapp);
	return ret;
913 914
}

A
Andres Lagar-Cavilla 已提交
915
int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
916
{
917 918 919 920
	hva_handler_fn handler;

	handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp;
	return kvm_handle_hva_range(kvm, start, end, handler);
921 922
}

923
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
924 925
			      unsigned long gfn)
{
926 927 928 929
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
	unsigned long *hp;
	int ret = 1;
930
	unsigned long *rmapp;
931

932
	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
933 934 935 936 937 938 939 940 941 942 943 944
	if (*rmapp & KVMPPC_RMAP_REFERENCED)
		return 1;

	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_REFERENCED)
		goto out;

	if (*rmapp & KVMPPC_RMAP_PRESENT) {
		i = head = *rmapp & KVMPPC_RMAP_INDEX;
		do {
			hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
			j = rev[i].forw;
945
			if (be64_to_cpu(hp[1]) & HPTE_R_R)
946 947 948 949 950 951 952 953
				goto out;
		} while ((i = j) != head);
	}
	ret = 0;

 out:
	unlock_rmap(rmapp);
	return ret;
954 955
}

956
int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
957
{
958 959 960 961
	hva_handler_fn handler;

	handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp;
	return kvm_handle_hva(kvm, hva, handler);
962 963
}

964
void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
965
{
966 967 968 969
	hva_handler_fn handler;

	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
	kvm_handle_hva(kvm, hva, handler);
970 971
}

972 973 974 975 976
static int vcpus_running(struct kvm *kvm)
{
	return atomic_read(&kvm->arch.vcpus_running) != 0;
}

977 978 979 980 981
/*
 * Returns the number of system pages that are dirty.
 * This can be more than 1 if we find a huge-page HPTE.
 */
static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
982 983 984
{
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
985
	unsigned long n;
986
	unsigned long v, r;
987
	__be64 *hptep;
988
	int npages_dirty = 0;
989 990 991 992

 retry:
	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_CHANGED) {
993 994 995
		long change_order = (*rmapp & KVMPPC_RMAP_CHG_ORDER)
			>> KVMPPC_RMAP_CHG_SHIFT;
		*rmapp &= ~(KVMPPC_RMAP_CHANGED | KVMPPC_RMAP_CHG_ORDER);
996
		npages_dirty = 1;
997 998
		if (change_order > PAGE_SHIFT)
			npages_dirty = 1ul << (change_order - PAGE_SHIFT);
999 1000 1001
	}
	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
		unlock_rmap(rmapp);
1002
		return npages_dirty;
1003 1004 1005 1006
	}

	i = head = *rmapp & KVMPPC_RMAP_INDEX;
	do {
1007 1008
		unsigned long hptep1;
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
1009 1010
		j = rev[i].forw;

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
		/*
		 * Checking the C (changed) bit here is racy since there
		 * is no guarantee about when the hardware writes it back.
		 * If the HPTE is not writable then it is stable since the
		 * page can't be written to, and we would have done a tlbie
		 * (which forces the hardware to complete any writeback)
		 * when making the HPTE read-only.
		 * If vcpus are running then this call is racy anyway
		 * since the page could get dirtied subsequently, so we
		 * expect there to be a further call which would pick up
		 * any delayed C bit writeback.
		 * Otherwise we need to do the tlbie even if C==0 in
		 * order to pick up any delayed writeback of C.
		 */
1025 1026 1027
		hptep1 = be64_to_cpu(hptep[1]);
		if (!(hptep1 & HPTE_R_C) &&
		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1028 1029 1030 1031 1032
			continue;

		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
1033
			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1034 1035 1036 1037 1038
				cpu_relax();
			goto retry;
		}

		/* Now check and modify the HPTE */
1039
		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1040
			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1041
			continue;
1042
		}
1043 1044

		/* need to make it temporarily absent so C is stable */
1045
		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1046
		kvmppc_invalidate_hpte(kvm, hptep, i);
1047 1048
		v = be64_to_cpu(hptep[0]);
		r = be64_to_cpu(hptep[1]);
1049
		if (r & HPTE_R_C) {
1050
			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1051 1052 1053 1054
			if (!(rev[i].guest_rpte & HPTE_R_C)) {
				rev[i].guest_rpte |= HPTE_R_C;
				note_hpte_modification(kvm, &rev[i]);
			}
1055
			n = hpte_page_size(v, r);
1056 1057 1058
			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
			if (n > npages_dirty)
				npages_dirty = n;
1059
			eieio();
1060
		}
1061
		v &= ~HPTE_V_ABSENT;
1062
		v |= HPTE_V_VALID;
1063
		__unlock_hpte(hptep, v);
1064 1065 1066
	} while ((i = j) != head);

	unlock_rmap(rmapp);
1067
	return npages_dirty;
1068 1069
}

1070
void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
			      struct kvm_memory_slot *memslot,
			      unsigned long *map)
{
	unsigned long gfn;

	if (!vpa->dirty || !vpa->pinned_addr)
		return;
	gfn = vpa->gpa >> PAGE_SHIFT;
	if (gfn < memslot->base_gfn ||
	    gfn >= memslot->base_gfn + memslot->npages)
		return;

	vpa->dirty = false;
	if (map)
		__set_bit_le(gfn - memslot->base_gfn, map);
}

1088 1089
long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
			struct kvm_memory_slot *memslot, unsigned long *map)
1090
{
1091
	unsigned long i, j;
1092
	unsigned long *rmapp;
1093 1094

	preempt_disable();
1095
	rmapp = memslot->arch.rmap;
1096
	for (i = 0; i < memslot->npages; ++i) {
1097 1098 1099 1100 1101 1102 1103 1104 1105
		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
		/*
		 * Note that if npages > 0 then i must be a multiple of npages,
		 * since we always put huge-page HPTEs in the rmap chain
		 * corresponding to their page base address.
		 */
		if (npages && map)
			for (j = i; npages; ++j, --npages)
				__set_bit_le(j, map);
1106 1107 1108 1109 1110 1111
		++rmapp;
	}
	preempt_enable();
	return 0;
}

1112 1113 1114 1115 1116
void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
			    unsigned long *nb_ret)
{
	struct kvm_memory_slot *memslot;
	unsigned long gfn = gpa >> PAGE_SHIFT;
1117 1118
	struct page *page, *pages[1];
	int npages;
1119
	unsigned long hva, offset;
1120
	int srcu_idx;
1121

1122
	srcu_idx = srcu_read_lock(&kvm->srcu);
1123 1124
	memslot = gfn_to_memslot(kvm, gfn);
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1125
		goto err;
1126 1127 1128 1129 1130
	hva = gfn_to_hva_memslot(memslot, gfn);
	npages = get_user_pages_fast(hva, 1, 1, pages);
	if (npages < 1)
		goto err;
	page = pages[0];
1131 1132
	srcu_read_unlock(&kvm->srcu, srcu_idx);

1133
	offset = gpa & (PAGE_SIZE - 1);
1134
	if (nb_ret)
1135
		*nb_ret = PAGE_SIZE - offset;
1136
	return page_address(page) + offset;
1137 1138 1139 1140

 err:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	return NULL;
1141 1142
}

1143 1144
void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
			     bool dirty)
1145 1146
{
	struct page *page = virt_to_page(va);
1147 1148 1149 1150
	struct kvm_memory_slot *memslot;
	unsigned long gfn;
	unsigned long *rmap;
	int srcu_idx;
1151 1152

	put_page(page);
1153

1154
	if (!dirty)
1155 1156 1157 1158 1159 1160 1161
		return;

	/* We need to mark this page dirty in the rmap chain */
	gfn = gpa >> PAGE_SHIFT;
	srcu_idx = srcu_read_lock(&kvm->srcu);
	memslot = gfn_to_memslot(kvm, gfn);
	if (memslot) {
1162 1163 1164 1165 1166 1167 1168 1169
		if (!kvm_is_radix(kvm)) {
			rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
			lock_rmap(rmap);
			*rmap |= KVMPPC_RMAP_CHANGED;
			unlock_rmap(rmap);
		} else if (memslot->dirty_bitmap) {
			mark_page_dirty(kvm, gfn);
		}
1170 1171
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1172 1173
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
/*
 * Functions for reading and writing the hash table via reads and
 * writes on a file descriptor.
 *
 * Reads return the guest view of the hash table, which has to be
 * pieced together from the real hash table and the guest_rpte
 * values in the revmap array.
 *
 * On writes, each HPTE written is considered in turn, and if it
 * is valid, it is written to the HPT as if an H_ENTER with the
 * exact flag set was done.  When the invalid count is non-zero
 * in the header written to the stream, the kernel will make
 * sure that that many HPTEs are invalid, and invalidate them
 * if not.
 */

struct kvm_htab_ctx {
	unsigned long	index;
	unsigned long	flags;
	struct kvm	*kvm;
	int		first_pass;
};

#define HPTE_SIZE	(2 * sizeof(unsigned long))

1199 1200 1201 1202
/*
 * Returns 1 if this HPT entry has been modified or has pending
 * R/C bit changes.
 */
1203
static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1204 1205 1206 1207 1208 1209 1210 1211
{
	unsigned long rcbits_unset;

	if (revp->guest_rpte & HPTE_GR_MODIFIED)
		return 1;

	/* Also need to consider changes in reference and changed bits */
	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1212 1213
	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1214 1215 1216 1217 1218
		return 1;

	return 0;
}

1219
static long record_hpte(unsigned long flags, __be64 *hptp,
1220 1221 1222
			unsigned long *hpte, struct revmap_entry *revp,
			int want_valid, int first_pass)
{
1223
	unsigned long v, r, hr;
1224
	unsigned long rcbits_unset;
1225 1226 1227 1228
	int ok = 1;
	int valid, dirty;

	/* Unmodified entries are uninteresting except on the first pass */
1229
	dirty = hpte_dirty(revp, hptp);
1230 1231 1232 1233
	if (!first_pass && !dirty)
		return 0;

	valid = 0;
1234
	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1235 1236
		valid = 1;
		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1237
		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
			valid = 0;
	}
	if (valid != want_valid)
		return 0;

	v = r = 0;
	if (valid || dirty) {
		/* lock the HPTE so it's stable and read it */
		preempt_disable();
		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
			cpu_relax();
1249
		v = be64_to_cpu(hptp[0]);
1250 1251 1252 1253 1254
		hr = be64_to_cpu(hptp[1]);
		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
			v = hpte_new_to_old_v(v, hr);
			hr = hpte_new_to_old_r(hr);
		}
1255 1256 1257 1258 1259 1260 1261

		/* re-evaluate valid and dirty from synchronized HPTE value */
		valid = !!(v & HPTE_V_VALID);
		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);

		/* Harvest R and C into guest view if necessary */
		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1262 1263
		if (valid && (rcbits_unset & hr)) {
			revp->guest_rpte |= (hr &
1264
				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1265 1266 1267
			dirty = 1;
		}

1268 1269 1270
		if (v & HPTE_V_ABSENT) {
			v &= ~HPTE_V_ABSENT;
			v |= HPTE_V_VALID;
1271
			valid = 1;
1272 1273 1274
		}
		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
			valid = 0;
1275 1276

		r = revp->guest_rpte;
1277 1278 1279 1280 1281
		/* only clear modified if this is the right sort of entry */
		if (valid == want_valid && dirty) {
			r &= ~HPTE_GR_MODIFIED;
			revp->guest_rpte = r;
		}
1282
		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1283 1284 1285 1286
		preempt_enable();
		if (!(valid == want_valid && (first_pass || dirty)))
			ok = 0;
	}
1287 1288
	hpte[0] = cpu_to_be64(v);
	hpte[1] = cpu_to_be64(r);
1289 1290 1291 1292 1293 1294 1295 1296 1297
	return ok;
}

static ssize_t kvm_htab_read(struct file *file, char __user *buf,
			     size_t count, loff_t *ppos)
{
	struct kvm_htab_ctx *ctx = file->private_data;
	struct kvm *kvm = ctx->kvm;
	struct kvm_get_htab_header hdr;
1298
	__be64 *hptp;
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	struct revmap_entry *revp;
	unsigned long i, nb, nw;
	unsigned long __user *lbuf;
	struct kvm_get_htab_header __user *hptr;
	unsigned long flags;
	int first_pass;
	unsigned long hpte[2];

	if (!access_ok(VERIFY_WRITE, buf, count))
		return -EFAULT;

	first_pass = ctx->first_pass;
	flags = ctx->flags;

	i = ctx->index;
1314
	hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	revp = kvm->arch.revmap + i;
	lbuf = (unsigned long __user *)buf;

	nb = 0;
	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
		/* Initialize header */
		hptr = (struct kvm_get_htab_header __user *)buf;
		hdr.n_valid = 0;
		hdr.n_invalid = 0;
		nw = nb;
		nb += sizeof(hdr);
		lbuf = (unsigned long __user *)(buf + sizeof(hdr));

		/* Skip uninteresting entries, i.e. clean on not-first pass */
		if (!first_pass) {
			while (i < kvm->arch.hpt_npte &&
1331
			       !hpte_dirty(revp, hptp)) {
1332 1333 1334 1335 1336
				++i;
				hptp += 2;
				++revp;
			}
		}
1337
		hdr.index = i;
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397

		/* Grab a series of valid entries */
		while (i < kvm->arch.hpt_npte &&
		       hdr.n_valid < 0xffff &&
		       nb + HPTE_SIZE < count &&
		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
			/* valid entry, write it out */
			++hdr.n_valid;
			if (__put_user(hpte[0], lbuf) ||
			    __put_user(hpte[1], lbuf + 1))
				return -EFAULT;
			nb += HPTE_SIZE;
			lbuf += 2;
			++i;
			hptp += 2;
			++revp;
		}
		/* Now skip invalid entries while we can */
		while (i < kvm->arch.hpt_npte &&
		       hdr.n_invalid < 0xffff &&
		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
			/* found an invalid entry */
			++hdr.n_invalid;
			++i;
			hptp += 2;
			++revp;
		}

		if (hdr.n_valid || hdr.n_invalid) {
			/* write back the header */
			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
				return -EFAULT;
			nw = nb;
			buf = (char __user *)lbuf;
		} else {
			nb = nw;
		}

		/* Check if we've wrapped around the hash table */
		if (i >= kvm->arch.hpt_npte) {
			i = 0;
			ctx->first_pass = 0;
			break;
		}
	}

	ctx->index = i;

	return nb;
}

static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *ppos)
{
	struct kvm_htab_ctx *ctx = file->private_data;
	struct kvm *kvm = ctx->kvm;
	struct kvm_get_htab_header hdr;
	unsigned long i, j;
	unsigned long v, r;
	unsigned long __user *lbuf;
1398
	__be64 *hptp;
1399 1400 1401
	unsigned long tmp[2];
	ssize_t nb;
	long int err, ret;
1402
	int hpte_setup;
1403 1404 1405 1406 1407 1408

	if (!access_ok(VERIFY_READ, buf, count))
		return -EFAULT;

	/* lock out vcpus from running while we're doing this */
	mutex_lock(&kvm->lock);
1409 1410 1411 1412
	hpte_setup = kvm->arch.hpte_setup_done;
	if (hpte_setup) {
		kvm->arch.hpte_setup_done = 0;	/* temporarily */
		/* order hpte_setup_done vs. vcpus_running */
1413 1414
		smp_mb();
		if (atomic_read(&kvm->arch.vcpus_running)) {
1415
			kvm->arch.hpte_setup_done = 1;
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
			mutex_unlock(&kvm->lock);
			return -EBUSY;
		}
	}

	err = 0;
	for (nb = 0; nb + sizeof(hdr) <= count; ) {
		err = -EFAULT;
		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
			break;

		err = 0;
		if (nb + hdr.n_valid * HPTE_SIZE > count)
			break;

		nb += sizeof(hdr);
		buf += sizeof(hdr);

		err = -EINVAL;
		i = hdr.index;
		if (i >= kvm->arch.hpt_npte ||
		    i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
			break;

1440
		hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1441 1442
		lbuf = (unsigned long __user *)buf;
		for (j = 0; j < hdr.n_valid; ++j) {
1443 1444 1445
			__be64 hpte_v;
			__be64 hpte_r;

1446
			err = -EFAULT;
1447 1448
			if (__get_user(hpte_v, lbuf) ||
			    __get_user(hpte_r, lbuf + 1))
1449
				goto out;
1450 1451
			v = be64_to_cpu(hpte_v);
			r = be64_to_cpu(hpte_r);
1452 1453 1454 1455 1456 1457
			err = -EINVAL;
			if (!(v & HPTE_V_VALID))
				goto out;
			lbuf += 2;
			nb += HPTE_SIZE;

1458
			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1459 1460 1461 1462 1463 1464 1465 1466 1467
				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
			err = -EIO;
			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
							 tmp);
			if (ret != H_SUCCESS) {
				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
				       "r=%lx\n", ret, i, v, r);
				goto out;
			}
1468
			if (!hpte_setup && is_vrma_hpte(v)) {
1469
				unsigned long psize = hpte_base_page_size(v, r);
1470 1471 1472 1473 1474
				unsigned long senc = slb_pgsize_encoding(psize);
				unsigned long lpcr;

				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1475 1476
				lpcr = senc << (LPCR_VRMASD_SH - 4);
				kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1477
				hpte_setup = 1;
1478 1479 1480 1481 1482 1483
			}
			++i;
			hptp += 2;
		}

		for (j = 0; j < hdr.n_invalid; ++j) {
1484
			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1485 1486 1487 1488 1489 1490 1491 1492
				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
			++i;
			hptp += 2;
		}
		err = 0;
	}

 out:
1493
	/* Order HPTE updates vs. hpte_setup_done */
1494
	smp_wmb();
1495
	kvm->arch.hpte_setup_done = hpte_setup;
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
	mutex_unlock(&kvm->lock);

	if (err)
		return err;
	return nb;
}

static int kvm_htab_release(struct inode *inode, struct file *filp)
{
	struct kvm_htab_ctx *ctx = filp->private_data;

	filp->private_data = NULL;
	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
	kvm_put_kvm(ctx->kvm);
	kfree(ctx);
	return 0;
}

1515
static const struct file_operations kvm_htab_fops = {
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
	.read		= kvm_htab_read,
	.write		= kvm_htab_write,
	.llseek		= default_llseek,
	.release	= kvm_htab_release,
};

int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
{
	int ret;
	struct kvm_htab_ctx *ctx;
	int rwflag;

	/* reject flags we don't recognize */
	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
		return -EINVAL;
	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
	if (!ctx)
		return -ENOMEM;
	kvm_get_kvm(kvm);
	ctx->kvm = kvm;
	ctx->index = ghf->start_index;
	ctx->flags = ghf->flags;
	ctx->first_pass = 1;

	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1541
	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	if (ret < 0) {
		kvm_put_kvm(kvm);
		return ret;
	}

	if (rwflag == O_RDONLY) {
		mutex_lock(&kvm->slots_lock);
		atomic_inc(&kvm->arch.hpte_mod_interest);
		/* make sure kvmppc_do_h_enter etc. see the increment */
		synchronize_srcu_expedited(&kvm->srcu);
		mutex_unlock(&kvm->slots_lock);
	}

	return ret;
}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
struct debugfs_htab_state {
	struct kvm	*kvm;
	struct mutex	mutex;
	unsigned long	hpt_index;
	int		chars_left;
	int		buf_index;
	char		buf[64];
};

static int debugfs_htab_open(struct inode *inode, struct file *file)
{
	struct kvm *kvm = inode->i_private;
	struct debugfs_htab_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(kvm);
	p->kvm = kvm;
	mutex_init(&p->mutex);
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_htab_release(struct inode *inode, struct file *file)
{
	struct debugfs_htab_state *p = file->private_data;

	kvm_put_kvm(p->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
				 size_t len, loff_t *ppos)
{
	struct debugfs_htab_state *p = file->private_data;
	ssize_t ret, r;
	unsigned long i, n;
	unsigned long v, hr, gr;
	struct kvm *kvm;
	__be64 *hptp;

	ret = mutex_lock_interruptible(&p->mutex);
	if (ret)
		return ret;

	if (p->chars_left) {
		n = p->chars_left;
		if (n > len)
			n = len;
		r = copy_to_user(buf, p->buf + p->buf_index, n);
		n -= r;
		p->chars_left -= n;
		p->buf_index += n;
		buf += n;
		len -= n;
		ret = n;
		if (r) {
			if (!n)
				ret = -EFAULT;
			goto out;
		}
	}

	kvm = p->kvm;
	i = p->hpt_index;
	hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
	for (; len != 0 && i < kvm->arch.hpt_npte; ++i, hptp += 2) {
		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
			continue;

		/* lock the HPTE so it's stable and read it */
		preempt_disable();
		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
			cpu_relax();
		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
		hr = be64_to_cpu(hptp[1]);
		gr = kvm->arch.revmap[i].guest_rpte;
		unlock_hpte(hptp, v);
		preempt_enable();

		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
			continue;

		n = scnprintf(p->buf, sizeof(p->buf),
			      "%6lx %.16lx %.16lx %.16lx\n",
			      i, v, hr, gr);
		p->chars_left = n;
		if (n > len)
			n = len;
		r = copy_to_user(buf, p->buf, n);
		n -= r;
		p->chars_left -= n;
		p->buf_index = n;
		buf += n;
		len -= n;
		ret += n;
		if (r) {
			if (!ret)
				ret = -EFAULT;
			goto out;
		}
	}
	p->hpt_index = i;

 out:
	mutex_unlock(&p->mutex);
	return ret;
}

1671
static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
			   size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_htab_fops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_htab_open,
	.release = debugfs_htab_release,
	.read	 = debugfs_htab_read,
	.write	 = debugfs_htab_write,
	.llseek	 = generic_file_llseek,
};

void kvmppc_mmu_debugfs_init(struct kvm *kvm)
{
	kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
						    kvm->arch.debugfs_dir, kvm,
						    &debugfs_htab_fops);
}

1693 1694 1695 1696
void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
{
	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;

1697
	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
1698

1699 1700 1701 1702
	if (kvm_is_radix(vcpu->kvm))
		mmu->xlate = kvmppc_mmu_radix_xlate;
	else
		mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1703 1704 1705 1706
	mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;

	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
}