book3s_64_mmu_hv.c 39.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 */

#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/gfp.h>
#include <linux/slab.h>
#include <linux/hugetlb.h>
26
#include <linux/vmalloc.h>
27
#include <linux/srcu.h>
28 29
#include <linux/anon_inodes.h>
#include <linux/file.h>
30 31 32 33 34 35 36 37 38 39

#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu-hash64.h>
#include <asm/hvcall.h>
#include <asm/synch.h>
#include <asm/ppc-opcode.h>
#include <asm/cputable.h>

40 41
#include "trace_hv.h"

42 43 44
/* Power architecture requires HPT is at least 256kB */
#define PPC_MIN_HPT_ORDER	18

45 46 47
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
				long pte_index, unsigned long pteh,
				unsigned long ptel, unsigned long *pte_idx_ret);
48
static void kvmppc_rmap_reset(struct kvm *kvm);
49

50
long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
51
{
52
	unsigned long hpt = 0;
53
	struct revmap_entry *rev;
54 55
	struct page *page = NULL;
	long order = KVM_DEFAULT_HPT_ORDER;
56

57 58 59 60 61 62
	if (htab_orderp) {
		order = *htab_orderp;
		if (order < PPC_MIN_HPT_ORDER)
			order = PPC_MIN_HPT_ORDER;
	}

63
	kvm->arch.hpt_cma_alloc = 0;
64
	page = kvm_alloc_hpt(1ul << (order - PAGE_SHIFT));
65 66
	if (page) {
		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
67
		memset((void *)hpt, 0, (1ul << order));
68
		kvm->arch.hpt_cma_alloc = 1;
69
	}
70 71 72 73 74 75 76 77 78 79 80 81

	/* Lastly try successively smaller sizes from the page allocator */
	while (!hpt && order > PPC_MIN_HPT_ORDER) {
		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
				       __GFP_NOWARN, order - PAGE_SHIFT);
		if (!hpt)
			--order;
	}

	if (!hpt)
		return -ENOMEM;

82
	kvm->arch.hpt_virt = hpt;
83 84 85 86 87
	kvm->arch.hpt_order = order;
	/* HPTEs are 2**4 bytes long */
	kvm->arch.hpt_npte = 1ul << (order - 4);
	/* 128 (2**7) bytes in each HPTEG */
	kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
88

89
	/* Allocate reverse map array */
90
	rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
91 92 93 94 95
	if (!rev) {
		pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
		goto out_freehpt;
	}
	kvm->arch.revmap = rev;
96
	kvm->arch.sdr1 = __pa(hpt) | (order - 18);
97

98 99
	pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
		hpt, order, kvm->arch.lpid);
100

101 102
	if (htab_orderp)
		*htab_orderp = order;
103
	return 0;
104 105

 out_freehpt:
106 107
	if (kvm->arch.hpt_cma_alloc)
		kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
108 109
	else
		free_pages(hpt, order - PAGE_SHIFT);
110
	return -ENOMEM;
111 112
}

113 114 115 116 117 118
long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
{
	long err = -EBUSY;
	long order;

	mutex_lock(&kvm->lock);
119 120 121
	if (kvm->arch.hpte_setup_done) {
		kvm->arch.hpte_setup_done = 0;
		/* order hpte_setup_done vs. vcpus_running */
122 123
		smp_mb();
		if (atomic_read(&kvm->arch.vcpus_running)) {
124
			kvm->arch.hpte_setup_done = 1;
125 126 127 128 129 130 131
			goto out;
		}
	}
	if (kvm->arch.hpt_virt) {
		order = kvm->arch.hpt_order;
		/* Set the entire HPT to 0, i.e. invalid HPTEs */
		memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
132 133 134 135
		/*
		 * Reset all the reverse-mapping chains for all memslots
		 */
		kvmppc_rmap_reset(kvm);
136 137
		/* Ensure that each vcpu will flush its TLB on next entry. */
		cpumask_setall(&kvm->arch.need_tlb_flush);
138 139 140 141 142 143 144 145 146 147 148
		*htab_orderp = order;
		err = 0;
	} else {
		err = kvmppc_alloc_hpt(kvm, htab_orderp);
		order = *htab_orderp;
	}
 out:
	mutex_unlock(&kvm->lock);
	return err;
}

149 150
void kvmppc_free_hpt(struct kvm *kvm)
{
151
	kvmppc_free_lpid(kvm->arch.lpid);
152
	vfree(kvm->arch.revmap);
153 154 155
	if (kvm->arch.hpt_cma_alloc)
		kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
				1 << (kvm->arch.hpt_order - PAGE_SHIFT));
A
Alexander Graf 已提交
156
	else
157 158
		free_pages(kvm->arch.hpt_virt,
			   kvm->arch.hpt_order - PAGE_SHIFT);
159 160
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174
/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
{
	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
}

/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
{
	return (pgsize == 0x10000) ? 0x1000 : 0;
}

void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
		     unsigned long porder)
175 176
{
	unsigned long i;
177
	unsigned long npages;
178 179
	unsigned long hp_v, hp_r;
	unsigned long addr, hash;
180 181
	unsigned long psize;
	unsigned long hp0, hp1;
182
	unsigned long idx_ret;
183
	long ret;
184
	struct kvm *kvm = vcpu->kvm;
185

186 187
	psize = 1ul << porder;
	npages = memslot->npages >> (porder - PAGE_SHIFT);
188 189

	/* VRMA can't be > 1TB */
190 191
	if (npages > 1ul << (40 - porder))
		npages = 1ul << (40 - porder);
192
	/* Can't use more than 1 HPTE per HPTEG */
193 194
	if (npages > kvm->arch.hpt_mask + 1)
		npages = kvm->arch.hpt_mask + 1;
195

196 197 198 199 200
	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
	hp1 = hpte1_pgsize_encoding(psize) |
		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;

201
	for (i = 0; i < npages; ++i) {
202
		addr = i << porder;
203
		/* can't use hpt_hash since va > 64 bits */
204
		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
205 206 207 208 209 210
		/*
		 * We assume that the hash table is empty and no
		 * vcpus are using it at this stage.  Since we create
		 * at most one HPTE per HPTEG, we just assume entry 7
		 * is available and use it.
		 */
211
		hash = (hash << 3) + 7;
212 213
		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
		hp_r = hp1 | addr;
214 215
		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
						 &idx_ret);
216 217 218 219 220
		if (ret != H_SUCCESS) {
			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
			       addr, ret);
			break;
		}
221 222 223 224 225
	}
}

int kvmppc_mmu_hv_init(void)
{
226 227 228
	unsigned long host_lpid, rsvd_lpid;

	if (!cpu_has_feature(CPU_FTR_HVMODE))
229
		return -EINVAL;
230

231 232 233
	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
	host_lpid = mfspr(SPRN_LPID);
	rsvd_lpid = LPID_RSVD;
234

235 236 237
	kvmppc_init_lpid(rsvd_lpid + 1);

	kvmppc_claim_lpid(host_lpid);
238
	/* rsvd_lpid is reserved for use in partition switching */
239
	kvmppc_claim_lpid(rsvd_lpid);
240 241 242 243 244 245

	return 0;
}

static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
{
246 247 248 249 250 251 252 253
	unsigned long msr = vcpu->arch.intr_msr;

	/* If transactional, change to suspend mode on IRQ delivery */
	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
		msr |= MSR_TS_S;
	else
		msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
	kvmppc_set_msr(vcpu, msr);
254 255
}

256 257 258
long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
				long pte_index, unsigned long pteh,
				unsigned long ptel, unsigned long *pte_idx_ret)
259 260 261
{
	long ret;

262 263
	/* Protect linux PTE lookup from page table destruction */
	rcu_read_lock_sched();	/* this disables preemption too */
264 265
	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
				current->mm->pgd, false, pte_idx_ret);
266
	rcu_read_unlock_sched();
267 268 269 270 271 272 273 274 275
	if (ret == H_TOO_HARD) {
		/* this can't happen */
		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
		ret = H_RESOURCE;	/* or something */
	}
	return ret;

}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
							 gva_t eaddr)
{
	u64 mask;
	int i;

	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
			continue;

		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
			mask = ESID_MASK_1T;
		else
			mask = ESID_MASK;

		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
			return &vcpu->arch.slb[i];
	}
	return NULL;
}

static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
			unsigned long ea)
{
	unsigned long ra_mask;

	ra_mask = hpte_page_size(v, r) - 1;
	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
}

306
static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
307
			struct kvmppc_pte *gpte, bool data, bool iswrite)
308
{
309 310 311 312 313
	struct kvm *kvm = vcpu->kvm;
	struct kvmppc_slb *slbe;
	unsigned long slb_v;
	unsigned long pp, key;
	unsigned long v, gr;
314
	__be64 *hptep;
315 316 317 318 319 320 321 322 323 324 325 326 327 328
	int index;
	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);

	/* Get SLB entry */
	if (virtmode) {
		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
		if (!slbe)
			return -EINVAL;
		slb_v = slbe->origv;
	} else {
		/* real mode access */
		slb_v = vcpu->kvm->arch.vrma_slb_v;
	}

329
	preempt_disable();
330 331 332
	/* Find the HPTE in the hash table */
	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
					 HPTE_V_VALID | HPTE_V_ABSENT);
333 334
	if (index < 0) {
		preempt_enable();
335
		return -ENOENT;
336
	}
337 338
	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
	v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
339 340 341 342
	gr = kvm->arch.revmap[index].guest_rpte;

	/* Unlock the HPTE */
	asm volatile("lwsync" : : : "memory");
343
	hptep[0] = cpu_to_be64(v);
344
	preempt_enable();
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

	gpte->eaddr = eaddr;
	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);

	/* Get PP bits and key for permission check */
	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
	key &= slb_v;

	/* Calculate permissions */
	gpte->may_read = hpte_read_permission(pp, key);
	gpte->may_write = hpte_write_permission(pp, key);
	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));

	/* Storage key permission check for POWER7 */
360
	if (data && virtmode) {
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
		if (amrfield & 1)
			gpte->may_read = 0;
		if (amrfield & 2)
			gpte->may_write = 0;
	}

	/* Get the guest physical address */
	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
	return 0;
}

/*
 * Quick test for whether an instruction is a load or a store.
 * If the instruction is a load or a store, then this will indicate
 * which it is, at least on server processors.  (Embedded processors
 * have some external PID instructions that don't follow the rule
 * embodied here.)  If the instruction isn't a load or store, then
 * this doesn't return anything useful.
 */
static int instruction_is_store(unsigned int instr)
{
	unsigned int mask;

	mask = 0x10000000;
	if ((instr & 0xfc000000) == 0x7c000000)
		mask = 0x100;		/* major opcode 31 */
	return (instr & mask) != 0;
}

static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
392
				  unsigned long gpa, gva_t ea, int is_store)
393 394 395
{
	u32 last_inst;

396
	/*
397 398
	 * If we fail, we just return to the guest and try executing it again.
	 */
399 400 401
	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
		EMULATE_DONE)
		return RESUME_GUEST;
402 403 404 405 406 407 408 409 410 411 412 413 414

	/*
	 * WARNING: We do not know for sure whether the instruction we just
	 * read from memory is the same that caused the fault in the first
	 * place.  If the instruction we read is neither an load or a store,
	 * then it can't access memory, so we don't need to worry about
	 * enforcing access permissions.  So, assuming it is a load or
	 * store, we just check that its direction (load or store) is
	 * consistent with the original fault, since that's what we
	 * checked the access permissions against.  If there is a mismatch
	 * we just return and retry the instruction.
	 */

415
	if (instruction_is_store(last_inst) != !!is_store)
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
		return RESUME_GUEST;

	/*
	 * Emulated accesses are emulated by looking at the hash for
	 * translation once, then performing the access later. The
	 * translation could be invalidated in the meantime in which
	 * point performing the subsequent memory access on the old
	 * physical address could possibly be a security hole for the
	 * guest (but not the host).
	 *
	 * This is less of an issue for MMIO stores since they aren't
	 * globally visible. It could be an issue for MMIO loads to
	 * a certain extent but we'll ignore it for now.
	 */

	vcpu->arch.paddr_accessed = gpa;
432
	vcpu->arch.vaddr_accessed = ea;
433 434 435 436 437 438 439
	return kvmppc_emulate_mmio(run, vcpu);
}

int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
				unsigned long ea, unsigned long dsisr)
{
	struct kvm *kvm = vcpu->kvm;
440 441
	unsigned long hpte[3], r;
	__be64 *hptep;
442
	unsigned long mmu_seq, psize, pte_size;
443
	unsigned long gpa_base, gfn_base;
444
	unsigned long gpa, gfn, hva, pfn;
445
	struct kvm_memory_slot *memslot;
446
	unsigned long *rmap;
447
	struct revmap_entry *rev;
448 449 450
	struct page *page, *pages[1];
	long index, ret, npages;
	unsigned long is_io;
451
	unsigned int writing, write_ok;
452
	struct vm_area_struct *vma;
453
	unsigned long rcbits;
454 455 456 457 458 459 460 461 462 463

	/*
	 * Real-mode code has already searched the HPT and found the
	 * entry we're interested in.  Lock the entry and check that
	 * it hasn't changed.  If it has, just return and re-execute the
	 * instruction.
	 */
	if (ea != vcpu->arch.pgfault_addr)
		return RESUME_GUEST;
	index = vcpu->arch.pgfault_index;
464
	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
465 466 467 468
	rev = &kvm->arch.revmap[index];
	preempt_disable();
	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
		cpu_relax();
469 470
	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
	hpte[1] = be64_to_cpu(hptep[1]);
471
	hpte[2] = r = rev->guest_rpte;
472
	asm volatile("lwsync" : : : "memory");
473
	hptep[0] = cpu_to_be64(hpte[0]);
474 475 476 477 478 479 480
	preempt_enable();

	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
	    hpte[1] != vcpu->arch.pgfault_hpte[1])
		return RESUME_GUEST;

	/* Translate the logical address and get the page */
481
	psize = hpte_page_size(hpte[0], r);
482 483 484
	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
	gfn_base = gpa_base >> PAGE_SHIFT;
	gpa = gpa_base | (ea & (psize - 1));
485
	gfn = gpa >> PAGE_SHIFT;
486 487
	memslot = gfn_to_memslot(kvm, gfn);

488 489
	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);

490
	/* No memslot means it's an emulated MMIO region */
491
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
492
		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
493 494
					      dsisr & DSISR_ISSTORE);

495 496 497 498 499 500 501
	/*
	 * This should never happen, because of the slot_is_aligned()
	 * check in kvmppc_do_h_enter().
	 */
	if (gfn_base < memslot->base_gfn)
		return -EFAULT;

502 503 504 505
	/* used to check for invalidations in progress */
	mmu_seq = kvm->mmu_notifier_seq;
	smp_rmb();

506
	ret = -EFAULT;
507 508 509 510
	is_io = 0;
	pfn = 0;
	page = NULL;
	pte_size = PAGE_SIZE;
511 512 513
	writing = (dsisr & DSISR_ISSTORE) != 0;
	/* If writing != 0, then the HPTE must allow writing, if we get here */
	write_ok = writing;
514
	hva = gfn_to_hva_memslot(memslot, gfn);
515
	npages = get_user_pages_fast(hva, 1, writing, pages);
516 517 518 519 520 521 522 523 524 525
	if (npages < 1) {
		/* Check if it's an I/O mapping */
		down_read(&current->mm->mmap_sem);
		vma = find_vma(current->mm, hva);
		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
		    (vma->vm_flags & VM_PFNMAP)) {
			pfn = vma->vm_pgoff +
				((hva - vma->vm_start) >> PAGE_SHIFT);
			pte_size = psize;
			is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
526
			write_ok = vma->vm_flags & VM_WRITE;
527 528 529
		}
		up_read(&current->mm->mmap_sem);
		if (!pfn)
530
			goto out_put;
531 532
	} else {
		page = pages[0];
533
		pfn = page_to_pfn(page);
534 535 536 537
		if (PageHuge(page)) {
			page = compound_head(page);
			pte_size <<= compound_order(page);
		}
538 539
		/* if the guest wants write access, see if that is OK */
		if (!writing && hpte_is_writable(r)) {
540
			unsigned int hugepage_shift;
541 542 543 544 545 546 547 548
			pte_t *ptep, pte;

			/*
			 * We need to protect against page table destruction
			 * while looking up and updating the pte.
			 */
			rcu_read_lock_sched();
			ptep = find_linux_pte_or_hugepte(current->mm->pgd,
549 550 551 552
							 hva, &hugepage_shift);
			if (ptep) {
				pte = kvmppc_read_update_linux_pte(ptep, 1,
							   hugepage_shift);
553 554 555 556 557
				if (pte_write(pte))
					write_ok = 1;
			}
			rcu_read_unlock_sched();
		}
558 559 560 561 562 563 564 565
	}

	if (psize > pte_size)
		goto out_put;

	/* Check WIMG vs. the actual page we're accessing */
	if (!hpte_cache_flags_ok(r, is_io)) {
		if (is_io)
566 567
			goto out_put;

568 569 570 571 572 573 574
		/*
		 * Allow guest to map emulated device memory as
		 * uncacheable, but actually make it cacheable.
		 */
		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
	}

575 576 577 578 579 580 581 582
	/*
	 * Set the HPTE to point to pfn.
	 * Since the pfn is at PAGE_SIZE granularity, make sure we
	 * don't mask out lower-order bits if psize < PAGE_SIZE.
	 */
	if (psize < PAGE_SIZE)
		psize = PAGE_SIZE;
	r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
583 584
	if (hpte_is_writable(r) && !write_ok)
		r = hpte_make_readonly(r);
585 586 587 588
	ret = RESUME_GUEST;
	preempt_disable();
	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
		cpu_relax();
589 590 591
	if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
		be64_to_cpu(hptep[1]) != hpte[1] ||
		rev->guest_rpte != hpte[2])
592 593 594 595
		/* HPTE has been changed under us; let the guest retry */
		goto out_unlock;
	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;

596 597
	/* Always put the HPTE in the rmap chain for the page base address */
	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
598 599 600 601
	lock_rmap(rmap);

	/* Check if we might have been invalidated; let the guest retry if so */
	ret = RESUME_GUEST;
602
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
603 604 605
		unlock_rmap(rmap);
		goto out_unlock;
	}
606

607 608 609 610
	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);

611
	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
612 613
		/* HPTE was previously valid, so we need to invalidate it */
		unlock_rmap(rmap);
614
		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
615
		kvmppc_invalidate_hpte(kvm, hptep, index);
616
		/* don't lose previous R and C bits */
617
		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
618 619 620
	} else {
		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
	}
621

622
	hptep[1] = cpu_to_be64(r);
623
	eieio();
624
	hptep[0] = cpu_to_be64(hpte[0]);
625 626
	asm volatile("ptesync" : : : "memory");
	preempt_enable();
627
	if (page && hpte_is_writable(r))
628 629 630
		SetPageDirty(page);

 out_put:
631 632
	trace_kvm_page_fault_exit(vcpu, hpte, ret);

633 634 635 636 637 638 639 640 641
	if (page) {
		/*
		 * We drop pages[0] here, not page because page might
		 * have been set to the head page of a compound, but
		 * we have to drop the reference on the correct tail
		 * page to match the get inside gup()
		 */
		put_page(pages[0]);
	}
642 643 644
	return ret;

 out_unlock:
645
	hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
646 647 648 649
	preempt_enable();
	goto out_put;
}

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
static void kvmppc_rmap_reset(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int srcu_idx;

	srcu_idx = srcu_read_lock(&kvm->srcu);
	slots = kvm->memslots;
	kvm_for_each_memslot(memslot, slots) {
		/*
		 * This assumes it is acceptable to lose reference and
		 * change bits across a reset.
		 */
		memset(memslot->arch.rmap, 0,
		       memslot->npages * sizeof(*memslot->arch.rmap));
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
}

669 670 671 672 673 674
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
					       unsigned long gfn))
675 676 677 678 679 680 681 682
{
	int ret;
	int retval = 0;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
683 684 685 686 687 688 689 690 691 692 693 694 695 696
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
697

698
		for (; gfn < gfn_end; ++gfn) {
699
			gfn_t gfn_offset = gfn - memslot->base_gfn;
700

701
			ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
702 703 704 705 706 707 708
			retval |= ret;
		}
	}

	return retval;
}

709 710 711 712 713 714 715
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
					 unsigned long gfn))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
}

716 717 718 719 720
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
			   unsigned long gfn)
{
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long h, i, j;
721
	__be64 *hptep;
722
	unsigned long ptel, psize, rcbits;
723 724

	for (;;) {
725
		lock_rmap(rmapp);
726
		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
727
			unlock_rmap(rmapp);
728 729 730 731 732
			break;
		}

		/*
		 * To avoid an ABBA deadlock with the HPTE lock bit,
733 734
		 * we can't spin on the HPTE lock while holding the
		 * rmap chain lock.
735 736
		 */
		i = *rmapp & KVMPPC_RMAP_INDEX;
737
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
738 739 740
		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
741
			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
742 743 744
				cpu_relax();
			continue;
		}
745 746 747
		j = rev[i].forw;
		if (j == i) {
			/* chain is now empty */
748
			*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
749 750 751 752 753 754
		} else {
			/* remove i from chain */
			h = rev[i].back;
			rev[h].forw = j;
			rev[j].back = h;
			rev[i].forw = rev[i].back = i;
755
			*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
756 757
		}

758
		/* Now check and modify the HPTE */
759
		ptel = rev[i].guest_rpte;
760 761
		psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
762
		    hpte_rpn(ptel, psize) == gfn) {
763
			hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
764 765
			kvmppc_invalidate_hpte(kvm, hptep, i);
			/* Harvest R and C */
766
			rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
767
			*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
768 769 770 771
			if (rcbits & ~rev[i].guest_rpte) {
				rev[i].guest_rpte = ptel | rcbits;
				note_hpte_modification(kvm, &rev[i]);
			}
772
		}
773
		unlock_rmap(rmapp);
774
		hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
775 776 777 778
	}
	return 0;
}

779
int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
780
{
781
	kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
782 783 784
	return 0;
}

785
int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
786
{
787
	kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
788 789 790
	return 0;
}

791 792
void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
				  struct kvm_memory_slot *memslot)
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
{
	unsigned long *rmapp;
	unsigned long gfn;
	unsigned long n;

	rmapp = memslot->arch.rmap;
	gfn = memslot->base_gfn;
	for (n = memslot->npages; n; --n) {
		/*
		 * Testing the present bit without locking is OK because
		 * the memslot has been marked invalid already, and hence
		 * no new HPTEs referencing this page can be created,
		 * thus the present bit can't go from 0 to 1.
		 */
		if (*rmapp & KVMPPC_RMAP_PRESENT)
			kvm_unmap_rmapp(kvm, rmapp, gfn);
		++rmapp;
		++gfn;
	}
}

814 815 816
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
			 unsigned long gfn)
{
817 818
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
819
	__be64 *hptep;
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
	int ret = 0;

 retry:
	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
		ret = 1;
	}
	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
		unlock_rmap(rmapp);
		return ret;
	}

	i = head = *rmapp & KVMPPC_RMAP_INDEX;
	do {
835
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
836 837 838
		j = rev[i].forw;

		/* If this HPTE isn't referenced, ignore it */
839
		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
840 841 842 843 844
			continue;

		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
845
			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
846 847 848 849 850
				cpu_relax();
			goto retry;
		}

		/* Now check and modify the HPTE */
851 852
		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
853
			kvmppc_clear_ref_hpte(kvm, hptep, i);
854 855 856 857
			if (!(rev[i].guest_rpte & HPTE_R_R)) {
				rev[i].guest_rpte |= HPTE_R_R;
				note_hpte_modification(kvm, &rev[i]);
			}
858 859
			ret = 1;
		}
860
		hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
861 862 863 864
	} while ((i = j) != head);

	unlock_rmap(rmapp);
	return ret;
865 866
}

A
Andres Lagar-Cavilla 已提交
867
int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
868
{
A
Andres Lagar-Cavilla 已提交
869
	return kvm_handle_hva_range(kvm, start, end, kvm_age_rmapp);
870 871 872 873 874
}

static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
			      unsigned long gfn)
{
875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
	unsigned long *hp;
	int ret = 1;

	if (*rmapp & KVMPPC_RMAP_REFERENCED)
		return 1;

	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_REFERENCED)
		goto out;

	if (*rmapp & KVMPPC_RMAP_PRESENT) {
		i = head = *rmapp & KVMPPC_RMAP_INDEX;
		do {
			hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
			j = rev[i].forw;
892
			if (be64_to_cpu(hp[1]) & HPTE_R_R)
893 894 895 896 897 898 899 900
				goto out;
		} while ((i = j) != head);
	}
	ret = 0;

 out:
	unlock_rmap(rmapp);
	return ret;
901 902
}

903
int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
904 905 906 907
{
	return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
}

908
void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
909 910
{
	kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
911 912
}

913 914 915 916 917
static int vcpus_running(struct kvm *kvm)
{
	return atomic_read(&kvm->arch.vcpus_running) != 0;
}

918 919 920 921 922
/*
 * Returns the number of system pages that are dirty.
 * This can be more than 1 if we find a huge-page HPTE.
 */
static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
923 924 925
{
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
926
	unsigned long n;
927
	unsigned long v, r;
928
	__be64 *hptep;
929
	int npages_dirty = 0;
930 931 932 933 934

 retry:
	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_CHANGED) {
		*rmapp &= ~KVMPPC_RMAP_CHANGED;
935
		npages_dirty = 1;
936 937 938
	}
	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
		unlock_rmap(rmapp);
939
		return npages_dirty;
940 941 942 943
	}

	i = head = *rmapp & KVMPPC_RMAP_INDEX;
	do {
944 945
		unsigned long hptep1;
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
946 947
		j = rev[i].forw;

948 949 950 951 952 953 954 955 956 957 958 959 960 961
		/*
		 * Checking the C (changed) bit here is racy since there
		 * is no guarantee about when the hardware writes it back.
		 * If the HPTE is not writable then it is stable since the
		 * page can't be written to, and we would have done a tlbie
		 * (which forces the hardware to complete any writeback)
		 * when making the HPTE read-only.
		 * If vcpus are running then this call is racy anyway
		 * since the page could get dirtied subsequently, so we
		 * expect there to be a further call which would pick up
		 * any delayed C bit writeback.
		 * Otherwise we need to do the tlbie even if C==0 in
		 * order to pick up any delayed writeback of C.
		 */
962 963 964
		hptep1 = be64_to_cpu(hptep[1]);
		if (!(hptep1 & HPTE_R_C) &&
		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
965 966 967 968 969
			continue;

		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
970
			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
971 972 973 974 975
				cpu_relax();
			goto retry;
		}

		/* Now check and modify the HPTE */
976 977 978
		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
			/* unlock and continue */
			hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
979
			continue;
980
		}
981 982

		/* need to make it temporarily absent so C is stable */
983
		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
984
		kvmppc_invalidate_hpte(kvm, hptep, i);
985 986
		v = be64_to_cpu(hptep[0]);
		r = be64_to_cpu(hptep[1]);
987
		if (r & HPTE_R_C) {
988
			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
989 990 991 992
			if (!(rev[i].guest_rpte & HPTE_R_C)) {
				rev[i].guest_rpte |= HPTE_R_C;
				note_hpte_modification(kvm, &rev[i]);
			}
993
			n = hpte_page_size(v, r);
994 995 996
			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
			if (n > npages_dirty)
				npages_dirty = n;
997
			eieio();
998
		}
999 1000
		v &= ~(HPTE_V_ABSENT | HPTE_V_HVLOCK);
		v |= HPTE_V_VALID;
1001
		hptep[0] = cpu_to_be64(v);
1002 1003 1004
	} while ((i = j) != head);

	unlock_rmap(rmapp);
1005
	return npages_dirty;
1006 1007
}

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
			      struct kvm_memory_slot *memslot,
			      unsigned long *map)
{
	unsigned long gfn;

	if (!vpa->dirty || !vpa->pinned_addr)
		return;
	gfn = vpa->gpa >> PAGE_SHIFT;
	if (gfn < memslot->base_gfn ||
	    gfn >= memslot->base_gfn + memslot->npages)
		return;

	vpa->dirty = false;
	if (map)
		__set_bit_le(gfn - memslot->base_gfn, map);
}

1026 1027
long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
			     unsigned long *map)
1028
{
1029
	unsigned long i, j;
1030
	unsigned long *rmapp;
1031
	struct kvm_vcpu *vcpu;
1032 1033

	preempt_disable();
1034
	rmapp = memslot->arch.rmap;
1035
	for (i = 0; i < memslot->npages; ++i) {
1036 1037 1038 1039 1040 1041 1042 1043 1044
		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
		/*
		 * Note that if npages > 0 then i must be a multiple of npages,
		 * since we always put huge-page HPTEs in the rmap chain
		 * corresponding to their page base address.
		 */
		if (npages && map)
			for (j = i; npages; ++j, --npages)
				__set_bit_le(j, map);
1045 1046
		++rmapp;
	}
1047 1048 1049 1050 1051 1052 1053 1054 1055

	/* Harvest dirty bits from VPA and DTL updates */
	/* Note: we never modify the SLB shadow buffer areas */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		spin_lock(&vcpu->arch.vpa_update_lock);
		harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
		harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
		spin_unlock(&vcpu->arch.vpa_update_lock);
	}
1056 1057 1058 1059
	preempt_enable();
	return 0;
}

1060 1061 1062 1063 1064
void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
			    unsigned long *nb_ret)
{
	struct kvm_memory_slot *memslot;
	unsigned long gfn = gpa >> PAGE_SHIFT;
1065 1066
	struct page *page, *pages[1];
	int npages;
1067
	unsigned long hva, offset;
1068
	int srcu_idx;
1069

1070
	srcu_idx = srcu_read_lock(&kvm->srcu);
1071 1072
	memslot = gfn_to_memslot(kvm, gfn);
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1073
		goto err;
1074 1075 1076 1077 1078
	hva = gfn_to_hva_memslot(memslot, gfn);
	npages = get_user_pages_fast(hva, 1, 1, pages);
	if (npages < 1)
		goto err;
	page = pages[0];
1079 1080
	srcu_read_unlock(&kvm->srcu, srcu_idx);

1081
	offset = gpa & (PAGE_SIZE - 1);
1082
	if (nb_ret)
1083
		*nb_ret = PAGE_SIZE - offset;
1084
	return page_address(page) + offset;
1085 1086 1087 1088

 err:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	return NULL;
1089 1090
}

1091 1092
void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
			     bool dirty)
1093 1094
{
	struct page *page = virt_to_page(va);
1095 1096 1097 1098
	struct kvm_memory_slot *memslot;
	unsigned long gfn;
	unsigned long *rmap;
	int srcu_idx;
1099 1100

	put_page(page);
1101

1102
	if (!dirty)
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
		return;

	/* We need to mark this page dirty in the rmap chain */
	gfn = gpa >> PAGE_SHIFT;
	srcu_idx = srcu_read_lock(&kvm->srcu);
	memslot = gfn_to_memslot(kvm, gfn);
	if (memslot) {
		rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
		lock_rmap(rmap);
		*rmap |= KVMPPC_RMAP_CHANGED;
		unlock_rmap(rmap);
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1116 1117
}

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
/*
 * Functions for reading and writing the hash table via reads and
 * writes on a file descriptor.
 *
 * Reads return the guest view of the hash table, which has to be
 * pieced together from the real hash table and the guest_rpte
 * values in the revmap array.
 *
 * On writes, each HPTE written is considered in turn, and if it
 * is valid, it is written to the HPT as if an H_ENTER with the
 * exact flag set was done.  When the invalid count is non-zero
 * in the header written to the stream, the kernel will make
 * sure that that many HPTEs are invalid, and invalidate them
 * if not.
 */

struct kvm_htab_ctx {
	unsigned long	index;
	unsigned long	flags;
	struct kvm	*kvm;
	int		first_pass;
};

#define HPTE_SIZE	(2 * sizeof(unsigned long))

1143 1144 1145 1146
/*
 * Returns 1 if this HPT entry has been modified or has pending
 * R/C bit changes.
 */
1147
static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1148 1149 1150 1151 1152 1153 1154 1155
{
	unsigned long rcbits_unset;

	if (revp->guest_rpte & HPTE_GR_MODIFIED)
		return 1;

	/* Also need to consider changes in reference and changed bits */
	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1156 1157
	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1158 1159 1160 1161 1162
		return 1;

	return 0;
}

1163
static long record_hpte(unsigned long flags, __be64 *hptp,
1164 1165 1166 1167
			unsigned long *hpte, struct revmap_entry *revp,
			int want_valid, int first_pass)
{
	unsigned long v, r;
1168
	unsigned long rcbits_unset;
1169 1170 1171 1172
	int ok = 1;
	int valid, dirty;

	/* Unmodified entries are uninteresting except on the first pass */
1173
	dirty = hpte_dirty(revp, hptp);
1174 1175 1176 1177
	if (!first_pass && !dirty)
		return 0;

	valid = 0;
1178
	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1179 1180
		valid = 1;
		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1181
		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
			valid = 0;
	}
	if (valid != want_valid)
		return 0;

	v = r = 0;
	if (valid || dirty) {
		/* lock the HPTE so it's stable and read it */
		preempt_disable();
		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
			cpu_relax();
1193
		v = be64_to_cpu(hptp[0]);
1194 1195 1196 1197 1198 1199 1200

		/* re-evaluate valid and dirty from synchronized HPTE value */
		valid = !!(v & HPTE_V_VALID);
		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);

		/* Harvest R and C into guest view if necessary */
		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1201 1202 1203
		if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
			revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1204 1205 1206
			dirty = 1;
		}

1207 1208 1209
		if (v & HPTE_V_ABSENT) {
			v &= ~HPTE_V_ABSENT;
			v |= HPTE_V_VALID;
1210
			valid = 1;
1211 1212 1213
		}
		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
			valid = 0;
1214 1215

		r = revp->guest_rpte;
1216 1217 1218 1219 1220 1221
		/* only clear modified if this is the right sort of entry */
		if (valid == want_valid && dirty) {
			r &= ~HPTE_GR_MODIFIED;
			revp->guest_rpte = r;
		}
		asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
1222
		hptp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
1223 1224 1225 1226
		preempt_enable();
		if (!(valid == want_valid && (first_pass || dirty)))
			ok = 0;
	}
1227 1228
	hpte[0] = cpu_to_be64(v);
	hpte[1] = cpu_to_be64(r);
1229 1230 1231 1232 1233 1234 1235 1236 1237
	return ok;
}

static ssize_t kvm_htab_read(struct file *file, char __user *buf,
			     size_t count, loff_t *ppos)
{
	struct kvm_htab_ctx *ctx = file->private_data;
	struct kvm *kvm = ctx->kvm;
	struct kvm_get_htab_header hdr;
1238
	__be64 *hptp;
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	struct revmap_entry *revp;
	unsigned long i, nb, nw;
	unsigned long __user *lbuf;
	struct kvm_get_htab_header __user *hptr;
	unsigned long flags;
	int first_pass;
	unsigned long hpte[2];

	if (!access_ok(VERIFY_WRITE, buf, count))
		return -EFAULT;

	first_pass = ctx->first_pass;
	flags = ctx->flags;

	i = ctx->index;
1254
	hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
	revp = kvm->arch.revmap + i;
	lbuf = (unsigned long __user *)buf;

	nb = 0;
	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
		/* Initialize header */
		hptr = (struct kvm_get_htab_header __user *)buf;
		hdr.n_valid = 0;
		hdr.n_invalid = 0;
		nw = nb;
		nb += sizeof(hdr);
		lbuf = (unsigned long __user *)(buf + sizeof(hdr));

		/* Skip uninteresting entries, i.e. clean on not-first pass */
		if (!first_pass) {
			while (i < kvm->arch.hpt_npte &&
1271
			       !hpte_dirty(revp, hptp)) {
1272 1273 1274 1275 1276
				++i;
				hptp += 2;
				++revp;
			}
		}
1277
		hdr.index = i;
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

		/* Grab a series of valid entries */
		while (i < kvm->arch.hpt_npte &&
		       hdr.n_valid < 0xffff &&
		       nb + HPTE_SIZE < count &&
		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
			/* valid entry, write it out */
			++hdr.n_valid;
			if (__put_user(hpte[0], lbuf) ||
			    __put_user(hpte[1], lbuf + 1))
				return -EFAULT;
			nb += HPTE_SIZE;
			lbuf += 2;
			++i;
			hptp += 2;
			++revp;
		}
		/* Now skip invalid entries while we can */
		while (i < kvm->arch.hpt_npte &&
		       hdr.n_invalid < 0xffff &&
		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
			/* found an invalid entry */
			++hdr.n_invalid;
			++i;
			hptp += 2;
			++revp;
		}

		if (hdr.n_valid || hdr.n_invalid) {
			/* write back the header */
			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
				return -EFAULT;
			nw = nb;
			buf = (char __user *)lbuf;
		} else {
			nb = nw;
		}

		/* Check if we've wrapped around the hash table */
		if (i >= kvm->arch.hpt_npte) {
			i = 0;
			ctx->first_pass = 0;
			break;
		}
	}

	ctx->index = i;

	return nb;
}

static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *ppos)
{
	struct kvm_htab_ctx *ctx = file->private_data;
	struct kvm *kvm = ctx->kvm;
	struct kvm_get_htab_header hdr;
	unsigned long i, j;
	unsigned long v, r;
	unsigned long __user *lbuf;
1338
	__be64 *hptp;
1339 1340 1341
	unsigned long tmp[2];
	ssize_t nb;
	long int err, ret;
1342
	int hpte_setup;
1343 1344 1345 1346 1347 1348

	if (!access_ok(VERIFY_READ, buf, count))
		return -EFAULT;

	/* lock out vcpus from running while we're doing this */
	mutex_lock(&kvm->lock);
1349 1350 1351 1352
	hpte_setup = kvm->arch.hpte_setup_done;
	if (hpte_setup) {
		kvm->arch.hpte_setup_done = 0;	/* temporarily */
		/* order hpte_setup_done vs. vcpus_running */
1353 1354
		smp_mb();
		if (atomic_read(&kvm->arch.vcpus_running)) {
1355
			kvm->arch.hpte_setup_done = 1;
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
			mutex_unlock(&kvm->lock);
			return -EBUSY;
		}
	}

	err = 0;
	for (nb = 0; nb + sizeof(hdr) <= count; ) {
		err = -EFAULT;
		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
			break;

		err = 0;
		if (nb + hdr.n_valid * HPTE_SIZE > count)
			break;

		nb += sizeof(hdr);
		buf += sizeof(hdr);

		err = -EINVAL;
		i = hdr.index;
		if (i >= kvm->arch.hpt_npte ||
		    i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
			break;

1380
		hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1381 1382
		lbuf = (unsigned long __user *)buf;
		for (j = 0; j < hdr.n_valid; ++j) {
1383 1384 1385
			__be64 hpte_v;
			__be64 hpte_r;

1386
			err = -EFAULT;
1387 1388
			if (__get_user(hpte_v, lbuf) ||
			    __get_user(hpte_r, lbuf + 1))
1389
				goto out;
1390 1391
			v = be64_to_cpu(hpte_v);
			r = be64_to_cpu(hpte_r);
1392 1393 1394 1395 1396 1397
			err = -EINVAL;
			if (!(v & HPTE_V_VALID))
				goto out;
			lbuf += 2;
			nb += HPTE_SIZE;

1398
			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1399 1400 1401 1402 1403 1404 1405 1406 1407
				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
			err = -EIO;
			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
							 tmp);
			if (ret != H_SUCCESS) {
				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
				       "r=%lx\n", ret, i, v, r);
				goto out;
			}
1408
			if (!hpte_setup && is_vrma_hpte(v)) {
1409
				unsigned long psize = hpte_base_page_size(v, r);
1410 1411 1412 1413 1414
				unsigned long senc = slb_pgsize_encoding(psize);
				unsigned long lpcr;

				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1415 1416
				lpcr = senc << (LPCR_VRMASD_SH - 4);
				kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1417
				hpte_setup = 1;
1418 1419 1420 1421 1422 1423
			}
			++i;
			hptp += 2;
		}

		for (j = 0; j < hdr.n_invalid; ++j) {
1424
			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1425 1426 1427 1428 1429 1430 1431 1432
				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
			++i;
			hptp += 2;
		}
		err = 0;
	}

 out:
1433
	/* Order HPTE updates vs. hpte_setup_done */
1434
	smp_wmb();
1435
	kvm->arch.hpte_setup_done = hpte_setup;
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
	mutex_unlock(&kvm->lock);

	if (err)
		return err;
	return nb;
}

static int kvm_htab_release(struct inode *inode, struct file *filp)
{
	struct kvm_htab_ctx *ctx = filp->private_data;

	filp->private_data = NULL;
	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
	kvm_put_kvm(ctx->kvm);
	kfree(ctx);
	return 0;
}

1455
static const struct file_operations kvm_htab_fops = {
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
	.read		= kvm_htab_read,
	.write		= kvm_htab_write,
	.llseek		= default_llseek,
	.release	= kvm_htab_release,
};

int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
{
	int ret;
	struct kvm_htab_ctx *ctx;
	int rwflag;

	/* reject flags we don't recognize */
	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
		return -EINVAL;
	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
	if (!ctx)
		return -ENOMEM;
	kvm_get_kvm(kvm);
	ctx->kvm = kvm;
	ctx->index = ghf->start_index;
	ctx->flags = ghf->flags;
	ctx->first_pass = 1;

	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1481
	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
	if (ret < 0) {
		kvm_put_kvm(kvm);
		return ret;
	}

	if (rwflag == O_RDONLY) {
		mutex_lock(&kvm->slots_lock);
		atomic_inc(&kvm->arch.hpte_mod_interest);
		/* make sure kvmppc_do_h_enter etc. see the increment */
		synchronize_srcu_expedited(&kvm->srcu);
		mutex_unlock(&kvm->slots_lock);
	}

	return ret;
}

1498 1499 1500 1501
void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
{
	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;

1502
	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
1503 1504 1505 1506 1507 1508

	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
	mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;

	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
}