book3s_64_mmu_hv.c 42.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 */

#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/gfp.h>
#include <linux/slab.h>
#include <linux/hugetlb.h>
26
#include <linux/vmalloc.h>
27
#include <linux/srcu.h>
28 29
#include <linux/anon_inodes.h>
#include <linux/file.h>
30
#include <linux/debugfs.h>
31 32 33 34

#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
35
#include <asm/book3s/64/mmu-hash.h>
36 37 38 39 40
#include <asm/hvcall.h>
#include <asm/synch.h>
#include <asm/ppc-opcode.h>
#include <asm/cputable.h>

41 42
#include "trace_hv.h"

43 44 45
/* Power architecture requires HPT is at least 256kB */
#define PPC_MIN_HPT_ORDER	18

46 47 48
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
				long pte_index, unsigned long pteh,
				unsigned long ptel, unsigned long *pte_idx_ret);
49
static void kvmppc_rmap_reset(struct kvm *kvm);
50

51
long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
52
{
53
	unsigned long hpt = 0;
54
	struct revmap_entry *rev;
55 56
	struct page *page = NULL;
	long order = KVM_DEFAULT_HPT_ORDER;
57

58 59 60 61 62 63
	if (htab_orderp) {
		order = *htab_orderp;
		if (order < PPC_MIN_HPT_ORDER)
			order = PPC_MIN_HPT_ORDER;
	}

64
	kvm->arch.hpt_cma_alloc = 0;
65
	page = kvm_alloc_hpt(1ul << (order - PAGE_SHIFT));
66 67
	if (page) {
		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
68
		memset((void *)hpt, 0, (1ul << order));
69
		kvm->arch.hpt_cma_alloc = 1;
70
	}
71 72

	/* Lastly try successively smaller sizes from the page allocator */
73 74
	/* Only do this if userspace didn't specify a size via ioctl */
	while (!hpt && order > PPC_MIN_HPT_ORDER && !htab_orderp) {
75 76 77 78 79 80 81 82 83
		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
				       __GFP_NOWARN, order - PAGE_SHIFT);
		if (!hpt)
			--order;
	}

	if (!hpt)
		return -ENOMEM;

84
	kvm->arch.hpt_virt = hpt;
85 86 87 88 89
	kvm->arch.hpt_order = order;
	/* HPTEs are 2**4 bytes long */
	kvm->arch.hpt_npte = 1ul << (order - 4);
	/* 128 (2**7) bytes in each HPTEG */
	kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
90

91 92
	atomic64_set(&kvm->arch.mmio_update, 0);

93
	/* Allocate reverse map array */
94
	rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
95 96 97 98 99
	if (!rev) {
		pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
		goto out_freehpt;
	}
	kvm->arch.revmap = rev;
100
	kvm->arch.sdr1 = __pa(hpt) | (order - 18);
101

102 103
	pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
		hpt, order, kvm->arch.lpid);
104

105 106
	if (htab_orderp)
		*htab_orderp = order;
107
	return 0;
108 109

 out_freehpt:
110 111
	if (kvm->arch.hpt_cma_alloc)
		kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
112 113
	else
		free_pages(hpt, order - PAGE_SHIFT);
114
	return -ENOMEM;
115 116
}

117 118 119 120 121 122
long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
{
	long err = -EBUSY;
	long order;

	mutex_lock(&kvm->lock);
123 124 125
	if (kvm->arch.hpte_setup_done) {
		kvm->arch.hpte_setup_done = 0;
		/* order hpte_setup_done vs. vcpus_running */
126 127
		smp_mb();
		if (atomic_read(&kvm->arch.vcpus_running)) {
128
			kvm->arch.hpte_setup_done = 1;
129 130 131 132 133 134 135
			goto out;
		}
	}
	if (kvm->arch.hpt_virt) {
		order = kvm->arch.hpt_order;
		/* Set the entire HPT to 0, i.e. invalid HPTEs */
		memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
136 137 138 139
		/*
		 * Reset all the reverse-mapping chains for all memslots
		 */
		kvmppc_rmap_reset(kvm);
140 141
		/* Ensure that each vcpu will flush its TLB on next entry. */
		cpumask_setall(&kvm->arch.need_tlb_flush);
142 143 144 145 146 147 148 149 150 151 152
		*htab_orderp = order;
		err = 0;
	} else {
		err = kvmppc_alloc_hpt(kvm, htab_orderp);
		order = *htab_orderp;
	}
 out:
	mutex_unlock(&kvm->lock);
	return err;
}

153 154
void kvmppc_free_hpt(struct kvm *kvm)
{
155
	kvmppc_free_lpid(kvm->arch.lpid);
156
	vfree(kvm->arch.revmap);
157 158 159
	if (kvm->arch.hpt_cma_alloc)
		kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
				1 << (kvm->arch.hpt_order - PAGE_SHIFT));
A
Alexander Graf 已提交
160
	else
161 162
		free_pages(kvm->arch.hpt_virt,
			   kvm->arch.hpt_order - PAGE_SHIFT);
163 164
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178
/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
{
	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
}

/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
{
	return (pgsize == 0x10000) ? 0x1000 : 0;
}

void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
		     unsigned long porder)
179 180
{
	unsigned long i;
181
	unsigned long npages;
182 183
	unsigned long hp_v, hp_r;
	unsigned long addr, hash;
184 185
	unsigned long psize;
	unsigned long hp0, hp1;
186
	unsigned long idx_ret;
187
	long ret;
188
	struct kvm *kvm = vcpu->kvm;
189

190 191
	psize = 1ul << porder;
	npages = memslot->npages >> (porder - PAGE_SHIFT);
192 193

	/* VRMA can't be > 1TB */
194 195
	if (npages > 1ul << (40 - porder))
		npages = 1ul << (40 - porder);
196
	/* Can't use more than 1 HPTE per HPTEG */
197 198
	if (npages > kvm->arch.hpt_mask + 1)
		npages = kvm->arch.hpt_mask + 1;
199

200 201 202 203 204
	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
	hp1 = hpte1_pgsize_encoding(psize) |
		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;

205
	for (i = 0; i < npages; ++i) {
206
		addr = i << porder;
207
		/* can't use hpt_hash since va > 64 bits */
208
		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
209 210 211 212 213 214
		/*
		 * We assume that the hash table is empty and no
		 * vcpus are using it at this stage.  Since we create
		 * at most one HPTE per HPTEG, we just assume entry 7
		 * is available and use it.
		 */
215
		hash = (hash << 3) + 7;
216 217
		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
		hp_r = hp1 | addr;
218 219
		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
						 &idx_ret);
220 221 222 223 224
		if (ret != H_SUCCESS) {
			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
			       addr, ret);
			break;
		}
225 226 227 228 229
	}
}

int kvmppc_mmu_hv_init(void)
{
230 231 232
	unsigned long host_lpid, rsvd_lpid;

	if (!cpu_has_feature(CPU_FTR_HVMODE))
233
		return -EINVAL;
234

235 236 237
	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
	host_lpid = mfspr(SPRN_LPID);
	rsvd_lpid = LPID_RSVD;
238

239 240 241
	kvmppc_init_lpid(rsvd_lpid + 1);

	kvmppc_claim_lpid(host_lpid);
242
	/* rsvd_lpid is reserved for use in partition switching */
243
	kvmppc_claim_lpid(rsvd_lpid);
244 245 246 247 248 249

	return 0;
}

static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
{
250 251 252 253 254 255 256 257
	unsigned long msr = vcpu->arch.intr_msr;

	/* If transactional, change to suspend mode on IRQ delivery */
	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
		msr |= MSR_TS_S;
	else
		msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
	kvmppc_set_msr(vcpu, msr);
258 259
}

260
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
261 262
				long pte_index, unsigned long pteh,
				unsigned long ptel, unsigned long *pte_idx_ret)
263 264 265
{
	long ret;

266 267
	/* Protect linux PTE lookup from page table destruction */
	rcu_read_lock_sched();	/* this disables preemption too */
268 269
	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
				current->mm->pgd, false, pte_idx_ret);
270
	rcu_read_unlock_sched();
271 272 273 274 275 276 277 278 279
	if (ret == H_TOO_HARD) {
		/* this can't happen */
		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
		ret = H_RESOURCE;	/* or something */
	}
	return ret;

}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
							 gva_t eaddr)
{
	u64 mask;
	int i;

	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
			continue;

		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
			mask = ESID_MASK_1T;
		else
			mask = ESID_MASK;

		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
			return &vcpu->arch.slb[i];
	}
	return NULL;
}

static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
			unsigned long ea)
{
	unsigned long ra_mask;

	ra_mask = hpte_page_size(v, r) - 1;
	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
}

310
static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
311
			struct kvmppc_pte *gpte, bool data, bool iswrite)
312
{
313 314 315 316 317
	struct kvm *kvm = vcpu->kvm;
	struct kvmppc_slb *slbe;
	unsigned long slb_v;
	unsigned long pp, key;
	unsigned long v, gr;
318
	__be64 *hptep;
319 320 321 322 323 324 325 326 327 328 329 330 331 332
	int index;
	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);

	/* Get SLB entry */
	if (virtmode) {
		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
		if (!slbe)
			return -EINVAL;
		slb_v = slbe->origv;
	} else {
		/* real mode access */
		slb_v = vcpu->kvm->arch.vrma_slb_v;
	}

333
	preempt_disable();
334 335 336
	/* Find the HPTE in the hash table */
	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
					 HPTE_V_VALID | HPTE_V_ABSENT);
337 338
	if (index < 0) {
		preempt_enable();
339
		return -ENOENT;
340
	}
341 342
	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
	v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
343 344
	gr = kvm->arch.revmap[index].guest_rpte;

345
	unlock_hpte(hptep, v);
346
	preempt_enable();
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

	gpte->eaddr = eaddr;
	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);

	/* Get PP bits and key for permission check */
	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
	key &= slb_v;

	/* Calculate permissions */
	gpte->may_read = hpte_read_permission(pp, key);
	gpte->may_write = hpte_write_permission(pp, key);
	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));

	/* Storage key permission check for POWER7 */
362
	if (data && virtmode) {
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
		if (amrfield & 1)
			gpte->may_read = 0;
		if (amrfield & 2)
			gpte->may_write = 0;
	}

	/* Get the guest physical address */
	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
	return 0;
}

/*
 * Quick test for whether an instruction is a load or a store.
 * If the instruction is a load or a store, then this will indicate
 * which it is, at least on server processors.  (Embedded processors
 * have some external PID instructions that don't follow the rule
 * embodied here.)  If the instruction isn't a load or store, then
 * this doesn't return anything useful.
 */
static int instruction_is_store(unsigned int instr)
{
	unsigned int mask;

	mask = 0x10000000;
	if ((instr & 0xfc000000) == 0x7c000000)
		mask = 0x100;		/* major opcode 31 */
	return (instr & mask) != 0;
}

static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
394
				  unsigned long gpa, gva_t ea, int is_store)
395 396 397
{
	u32 last_inst;

398
	/*
399 400
	 * If we fail, we just return to the guest and try executing it again.
	 */
401 402 403
	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
		EMULATE_DONE)
		return RESUME_GUEST;
404 405 406 407 408 409 410 411 412 413 414 415 416

	/*
	 * WARNING: We do not know for sure whether the instruction we just
	 * read from memory is the same that caused the fault in the first
	 * place.  If the instruction we read is neither an load or a store,
	 * then it can't access memory, so we don't need to worry about
	 * enforcing access permissions.  So, assuming it is a load or
	 * store, we just check that its direction (load or store) is
	 * consistent with the original fault, since that's what we
	 * checked the access permissions against.  If there is a mismatch
	 * we just return and retry the instruction.
	 */

417
	if (instruction_is_store(last_inst) != !!is_store)
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
		return RESUME_GUEST;

	/*
	 * Emulated accesses are emulated by looking at the hash for
	 * translation once, then performing the access later. The
	 * translation could be invalidated in the meantime in which
	 * point performing the subsequent memory access on the old
	 * physical address could possibly be a security hole for the
	 * guest (but not the host).
	 *
	 * This is less of an issue for MMIO stores since they aren't
	 * globally visible. It could be an issue for MMIO loads to
	 * a certain extent but we'll ignore it for now.
	 */

	vcpu->arch.paddr_accessed = gpa;
434
	vcpu->arch.vaddr_accessed = ea;
435 436 437 438 439 440 441
	return kvmppc_emulate_mmio(run, vcpu);
}

int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
				unsigned long ea, unsigned long dsisr)
{
	struct kvm *kvm = vcpu->kvm;
442 443
	unsigned long hpte[3], r;
	__be64 *hptep;
444
	unsigned long mmu_seq, psize, pte_size;
445
	unsigned long gpa_base, gfn_base;
446
	unsigned long gpa, gfn, hva, pfn;
447
	struct kvm_memory_slot *memslot;
448
	unsigned long *rmap;
449
	struct revmap_entry *rev;
450 451
	struct page *page, *pages[1];
	long index, ret, npages;
452
	bool is_ci;
453
	unsigned int writing, write_ok;
454
	struct vm_area_struct *vma;
455
	unsigned long rcbits;
456
	long mmio_update;
457 458 459 460 461 462 463 464 465

	/*
	 * Real-mode code has already searched the HPT and found the
	 * entry we're interested in.  Lock the entry and check that
	 * it hasn't changed.  If it has, just return and re-execute the
	 * instruction.
	 */
	if (ea != vcpu->arch.pgfault_addr)
		return RESUME_GUEST;
466 467 468 469 470 471 472 473 474 475 476 477 478

	if (vcpu->arch.pgfault_cache) {
		mmio_update = atomic64_read(&kvm->arch.mmio_update);
		if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
			r = vcpu->arch.pgfault_cache->rpte;
			psize = hpte_page_size(vcpu->arch.pgfault_hpte[0], r);
			gpa_base = r & HPTE_R_RPN & ~(psize - 1);
			gfn_base = gpa_base >> PAGE_SHIFT;
			gpa = gpa_base | (ea & (psize - 1));
			return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
						dsisr & DSISR_ISSTORE);
		}
	}
479
	index = vcpu->arch.pgfault_index;
480
	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
481 482 483 484
	rev = &kvm->arch.revmap[index];
	preempt_disable();
	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
		cpu_relax();
485 486
	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
	hpte[1] = be64_to_cpu(hptep[1]);
487
	hpte[2] = r = rev->guest_rpte;
488
	unlock_hpte(hptep, hpte[0]);
489 490 491 492 493 494 495
	preempt_enable();

	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
	    hpte[1] != vcpu->arch.pgfault_hpte[1])
		return RESUME_GUEST;

	/* Translate the logical address and get the page */
496
	psize = hpte_page_size(hpte[0], r);
497 498 499
	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
	gfn_base = gpa_base >> PAGE_SHIFT;
	gpa = gpa_base | (ea & (psize - 1));
500
	gfn = gpa >> PAGE_SHIFT;
501 502
	memslot = gfn_to_memslot(kvm, gfn);

503 504
	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);

505
	/* No memslot means it's an emulated MMIO region */
506
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
507
		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
508 509
					      dsisr & DSISR_ISSTORE);

510 511 512 513 514 515 516
	/*
	 * This should never happen, because of the slot_is_aligned()
	 * check in kvmppc_do_h_enter().
	 */
	if (gfn_base < memslot->base_gfn)
		return -EFAULT;

517 518 519 520
	/* used to check for invalidations in progress */
	mmu_seq = kvm->mmu_notifier_seq;
	smp_rmb();

521
	ret = -EFAULT;
522
	is_ci = false;
523 524 525
	pfn = 0;
	page = NULL;
	pte_size = PAGE_SIZE;
526 527 528
	writing = (dsisr & DSISR_ISSTORE) != 0;
	/* If writing != 0, then the HPTE must allow writing, if we get here */
	write_ok = writing;
529
	hva = gfn_to_hva_memslot(memslot, gfn);
530
	npages = get_user_pages_fast(hva, 1, writing, pages);
531 532 533 534 535 536 537 538 539
	if (npages < 1) {
		/* Check if it's an I/O mapping */
		down_read(&current->mm->mmap_sem);
		vma = find_vma(current->mm, hva);
		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
		    (vma->vm_flags & VM_PFNMAP)) {
			pfn = vma->vm_pgoff +
				((hva - vma->vm_start) >> PAGE_SHIFT);
			pte_size = psize;
540
			is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot))));
541
			write_ok = vma->vm_flags & VM_WRITE;
542 543 544
		}
		up_read(&current->mm->mmap_sem);
		if (!pfn)
545
			goto out_put;
546 547
	} else {
		page = pages[0];
548
		pfn = page_to_pfn(page);
549 550 551 552
		if (PageHuge(page)) {
			page = compound_head(page);
			pte_size <<= compound_order(page);
		}
553 554 555
		/* if the guest wants write access, see if that is OK */
		if (!writing && hpte_is_writable(r)) {
			pte_t *ptep, pte;
556
			unsigned long flags;
557 558
			/*
			 * We need to protect against page table destruction
559
			 * hugepage split and collapse.
560
			 */
561
			local_irq_save(flags);
562
			ptep = find_linux_pte_or_hugepte(current->mm->pgd,
563
							 hva, NULL, NULL);
564
			if (ptep) {
565
				pte = kvmppc_read_update_linux_pte(ptep, 1);
566 567 568
				if (pte_write(pte))
					write_ok = 1;
			}
569
			local_irq_restore(flags);
570
		}
571 572 573 574 575 576
	}

	if (psize > pte_size)
		goto out_put;

	/* Check WIMG vs. the actual page we're accessing */
577 578
	if (!hpte_cache_flags_ok(r, is_ci)) {
		if (is_ci)
579
			goto out_put;
580 581 582 583 584 585 586
		/*
		 * Allow guest to map emulated device memory as
		 * uncacheable, but actually make it cacheable.
		 */
		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
	}

587 588 589 590 591 592 593
	/*
	 * Set the HPTE to point to pfn.
	 * Since the pfn is at PAGE_SIZE granularity, make sure we
	 * don't mask out lower-order bits if psize < PAGE_SIZE.
	 */
	if (psize < PAGE_SIZE)
		psize = PAGE_SIZE;
594 595
	r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) |
					((pfn << PAGE_SHIFT) & ~(psize - 1));
596 597
	if (hpte_is_writable(r) && !write_ok)
		r = hpte_make_readonly(r);
598 599 600 601
	ret = RESUME_GUEST;
	preempt_disable();
	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
		cpu_relax();
602 603 604
	if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
		be64_to_cpu(hptep[1]) != hpte[1] ||
		rev->guest_rpte != hpte[2])
605 606 607 608
		/* HPTE has been changed under us; let the guest retry */
		goto out_unlock;
	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;

609 610
	/* Always put the HPTE in the rmap chain for the page base address */
	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
611 612 613 614
	lock_rmap(rmap);

	/* Check if we might have been invalidated; let the guest retry if so */
	ret = RESUME_GUEST;
615
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
616 617 618
		unlock_rmap(rmap);
		goto out_unlock;
	}
619

620 621 622 623
	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);

624
	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
625 626
		/* HPTE was previously valid, so we need to invalidate it */
		unlock_rmap(rmap);
627
		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
628
		kvmppc_invalidate_hpte(kvm, hptep, index);
629
		/* don't lose previous R and C bits */
630
		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
631 632 633
	} else {
		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
	}
634

635
	hptep[1] = cpu_to_be64(r);
636
	eieio();
637
	__unlock_hpte(hptep, hpte[0]);
638 639
	asm volatile("ptesync" : : : "memory");
	preempt_enable();
640
	if (page && hpte_is_writable(r))
641 642 643
		SetPageDirty(page);

 out_put:
644 645
	trace_kvm_page_fault_exit(vcpu, hpte, ret);

646 647 648 649 650 651 652 653 654
	if (page) {
		/*
		 * We drop pages[0] here, not page because page might
		 * have been set to the head page of a compound, but
		 * we have to drop the reference on the correct tail
		 * page to match the get inside gup()
		 */
		put_page(pages[0]);
	}
655 656 657
	return ret;

 out_unlock:
658
	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
659 660 661 662
	preempt_enable();
	goto out_put;
}

663 664 665 666 667 668 669
static void kvmppc_rmap_reset(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int srcu_idx;

	srcu_idx = srcu_read_lock(&kvm->srcu);
670
	slots = kvm_memslots(kvm);
671 672 673 674 675 676 677 678 679 680 681
	kvm_for_each_memslot(memslot, slots) {
		/*
		 * This assumes it is acceptable to lose reference and
		 * change bits across a reset.
		 */
		memset(memslot->arch.rmap, 0,
		       memslot->npages * sizeof(*memslot->arch.rmap));
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
}

682 683 684 685 686 687
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
					       unsigned long gfn))
688 689 690 691 692 693 694 695
{
	int ret;
	int retval = 0;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
696 697 698 699 700 701 702 703 704 705 706 707 708 709
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
710

711
		for (; gfn < gfn_end; ++gfn) {
712
			gfn_t gfn_offset = gfn - memslot->base_gfn;
713

714
			ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
715 716 717 718 719 720 721
			retval |= ret;
		}
	}

	return retval;
}

722 723 724 725 726 727 728
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
					 unsigned long gfn))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
}

729 730 731 732 733
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
			   unsigned long gfn)
{
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long h, i, j;
734
	__be64 *hptep;
735
	unsigned long ptel, psize, rcbits;
736 737

	for (;;) {
738
		lock_rmap(rmapp);
739
		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
740
			unlock_rmap(rmapp);
741 742 743 744 745
			break;
		}

		/*
		 * To avoid an ABBA deadlock with the HPTE lock bit,
746 747
		 * we can't spin on the HPTE lock while holding the
		 * rmap chain lock.
748 749
		 */
		i = *rmapp & KVMPPC_RMAP_INDEX;
750
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
751 752 753
		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
754
			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
755 756 757
				cpu_relax();
			continue;
		}
758 759 760
		j = rev[i].forw;
		if (j == i) {
			/* chain is now empty */
761
			*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
762 763 764 765 766 767
		} else {
			/* remove i from chain */
			h = rev[i].back;
			rev[h].forw = j;
			rev[j].back = h;
			rev[i].forw = rev[i].back = i;
768
			*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
769 770
		}

771
		/* Now check and modify the HPTE */
772
		ptel = rev[i].guest_rpte;
773 774
		psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
775
		    hpte_rpn(ptel, psize) == gfn) {
776
			hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
777
			kvmppc_invalidate_hpte(kvm, hptep, i);
778
			hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
779
			/* Harvest R and C */
780
			rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
781
			*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
782 783
			if (rcbits & HPTE_R_C)
				kvmppc_update_rmap_change(rmapp, psize);
784 785 786 787
			if (rcbits & ~rev[i].guest_rpte) {
				rev[i].guest_rpte = ptel | rcbits;
				note_hpte_modification(kvm, &rev[i]);
			}
788
		}
789
		unlock_rmap(rmapp);
790
		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
791 792 793 794
	}
	return 0;
}

795
int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
796
{
797
	kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
798 799 800
	return 0;
}

801
int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
802
{
803
	kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
804 805 806
	return 0;
}

807 808
void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
				  struct kvm_memory_slot *memslot)
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
{
	unsigned long *rmapp;
	unsigned long gfn;
	unsigned long n;

	rmapp = memslot->arch.rmap;
	gfn = memslot->base_gfn;
	for (n = memslot->npages; n; --n) {
		/*
		 * Testing the present bit without locking is OK because
		 * the memslot has been marked invalid already, and hence
		 * no new HPTEs referencing this page can be created,
		 * thus the present bit can't go from 0 to 1.
		 */
		if (*rmapp & KVMPPC_RMAP_PRESENT)
			kvm_unmap_rmapp(kvm, rmapp, gfn);
		++rmapp;
		++gfn;
	}
}

830 831 832
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
			 unsigned long gfn)
{
833 834
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
835
	__be64 *hptep;
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
	int ret = 0;

 retry:
	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
		ret = 1;
	}
	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
		unlock_rmap(rmapp);
		return ret;
	}

	i = head = *rmapp & KVMPPC_RMAP_INDEX;
	do {
851
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
852 853 854
		j = rev[i].forw;

		/* If this HPTE isn't referenced, ignore it */
855
		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
856 857 858 859 860
			continue;

		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
861
			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
862 863 864 865 866
				cpu_relax();
			goto retry;
		}

		/* Now check and modify the HPTE */
867 868
		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
869
			kvmppc_clear_ref_hpte(kvm, hptep, i);
870 871 872 873
			if (!(rev[i].guest_rpte & HPTE_R_R)) {
				rev[i].guest_rpte |= HPTE_R_R;
				note_hpte_modification(kvm, &rev[i]);
			}
874 875
			ret = 1;
		}
876
		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
877 878 879 880
	} while ((i = j) != head);

	unlock_rmap(rmapp);
	return ret;
881 882
}

A
Andres Lagar-Cavilla 已提交
883
int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
884
{
A
Andres Lagar-Cavilla 已提交
885
	return kvm_handle_hva_range(kvm, start, end, kvm_age_rmapp);
886 887 888 889 890
}

static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
			      unsigned long gfn)
{
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
	unsigned long *hp;
	int ret = 1;

	if (*rmapp & KVMPPC_RMAP_REFERENCED)
		return 1;

	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_REFERENCED)
		goto out;

	if (*rmapp & KVMPPC_RMAP_PRESENT) {
		i = head = *rmapp & KVMPPC_RMAP_INDEX;
		do {
			hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
			j = rev[i].forw;
908
			if (be64_to_cpu(hp[1]) & HPTE_R_R)
909 910 911 912 913 914 915 916
				goto out;
		} while ((i = j) != head);
	}
	ret = 0;

 out:
	unlock_rmap(rmapp);
	return ret;
917 918
}

919
int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
920 921 922 923
{
	return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
}

924
void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
925 926
{
	kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
927 928
}

929 930 931 932 933
static int vcpus_running(struct kvm *kvm)
{
	return atomic_read(&kvm->arch.vcpus_running) != 0;
}

934 935 936 937 938
/*
 * Returns the number of system pages that are dirty.
 * This can be more than 1 if we find a huge-page HPTE.
 */
static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
939 940 941
{
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
942
	unsigned long n;
943
	unsigned long v, r;
944
	__be64 *hptep;
945
	int npages_dirty = 0;
946 947 948 949

 retry:
	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_CHANGED) {
950 951 952
		long change_order = (*rmapp & KVMPPC_RMAP_CHG_ORDER)
			>> KVMPPC_RMAP_CHG_SHIFT;
		*rmapp &= ~(KVMPPC_RMAP_CHANGED | KVMPPC_RMAP_CHG_ORDER);
953
		npages_dirty = 1;
954 955
		if (change_order > PAGE_SHIFT)
			npages_dirty = 1ul << (change_order - PAGE_SHIFT);
956 957 958
	}
	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
		unlock_rmap(rmapp);
959
		return npages_dirty;
960 961 962 963
	}

	i = head = *rmapp & KVMPPC_RMAP_INDEX;
	do {
964 965
		unsigned long hptep1;
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
966 967
		j = rev[i].forw;

968 969 970 971 972 973 974 975 976 977 978 979 980 981
		/*
		 * Checking the C (changed) bit here is racy since there
		 * is no guarantee about when the hardware writes it back.
		 * If the HPTE is not writable then it is stable since the
		 * page can't be written to, and we would have done a tlbie
		 * (which forces the hardware to complete any writeback)
		 * when making the HPTE read-only.
		 * If vcpus are running then this call is racy anyway
		 * since the page could get dirtied subsequently, so we
		 * expect there to be a further call which would pick up
		 * any delayed C bit writeback.
		 * Otherwise we need to do the tlbie even if C==0 in
		 * order to pick up any delayed writeback of C.
		 */
982 983 984
		hptep1 = be64_to_cpu(hptep[1]);
		if (!(hptep1 & HPTE_R_C) &&
		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
985 986 987 988 989
			continue;

		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
990
			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
991 992 993 994 995
				cpu_relax();
			goto retry;
		}

		/* Now check and modify the HPTE */
996
		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
997
			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
998
			continue;
999
		}
1000 1001

		/* need to make it temporarily absent so C is stable */
1002
		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1003
		kvmppc_invalidate_hpte(kvm, hptep, i);
1004 1005
		v = be64_to_cpu(hptep[0]);
		r = be64_to_cpu(hptep[1]);
1006
		if (r & HPTE_R_C) {
1007
			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1008 1009 1010 1011
			if (!(rev[i].guest_rpte & HPTE_R_C)) {
				rev[i].guest_rpte |= HPTE_R_C;
				note_hpte_modification(kvm, &rev[i]);
			}
1012
			n = hpte_page_size(v, r);
1013 1014 1015
			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
			if (n > npages_dirty)
				npages_dirty = n;
1016
			eieio();
1017
		}
1018
		v &= ~HPTE_V_ABSENT;
1019
		v |= HPTE_V_VALID;
1020
		__unlock_hpte(hptep, v);
1021 1022 1023
	} while ((i = j) != head);

	unlock_rmap(rmapp);
1024
	return npages_dirty;
1025 1026
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
			      struct kvm_memory_slot *memslot,
			      unsigned long *map)
{
	unsigned long gfn;

	if (!vpa->dirty || !vpa->pinned_addr)
		return;
	gfn = vpa->gpa >> PAGE_SHIFT;
	if (gfn < memslot->base_gfn ||
	    gfn >= memslot->base_gfn + memslot->npages)
		return;

	vpa->dirty = false;
	if (map)
		__set_bit_le(gfn - memslot->base_gfn, map);
}

1045 1046
long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
			     unsigned long *map)
1047
{
1048
	unsigned long i, j;
1049
	unsigned long *rmapp;
1050
	struct kvm_vcpu *vcpu;
1051 1052

	preempt_disable();
1053
	rmapp = memslot->arch.rmap;
1054
	for (i = 0; i < memslot->npages; ++i) {
1055 1056 1057 1058 1059 1060 1061 1062 1063
		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
		/*
		 * Note that if npages > 0 then i must be a multiple of npages,
		 * since we always put huge-page HPTEs in the rmap chain
		 * corresponding to their page base address.
		 */
		if (npages && map)
			for (j = i; npages; ++j, --npages)
				__set_bit_le(j, map);
1064 1065
		++rmapp;
	}
1066 1067 1068 1069 1070 1071 1072 1073 1074

	/* Harvest dirty bits from VPA and DTL updates */
	/* Note: we never modify the SLB shadow buffer areas */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		spin_lock(&vcpu->arch.vpa_update_lock);
		harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
		harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
		spin_unlock(&vcpu->arch.vpa_update_lock);
	}
1075 1076 1077 1078
	preempt_enable();
	return 0;
}

1079 1080 1081 1082 1083
void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
			    unsigned long *nb_ret)
{
	struct kvm_memory_slot *memslot;
	unsigned long gfn = gpa >> PAGE_SHIFT;
1084 1085
	struct page *page, *pages[1];
	int npages;
1086
	unsigned long hva, offset;
1087
	int srcu_idx;
1088

1089
	srcu_idx = srcu_read_lock(&kvm->srcu);
1090 1091
	memslot = gfn_to_memslot(kvm, gfn);
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1092
		goto err;
1093 1094 1095 1096 1097
	hva = gfn_to_hva_memslot(memslot, gfn);
	npages = get_user_pages_fast(hva, 1, 1, pages);
	if (npages < 1)
		goto err;
	page = pages[0];
1098 1099
	srcu_read_unlock(&kvm->srcu, srcu_idx);

1100
	offset = gpa & (PAGE_SIZE - 1);
1101
	if (nb_ret)
1102
		*nb_ret = PAGE_SIZE - offset;
1103
	return page_address(page) + offset;
1104 1105 1106 1107

 err:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	return NULL;
1108 1109
}

1110 1111
void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
			     bool dirty)
1112 1113
{
	struct page *page = virt_to_page(va);
1114 1115 1116 1117
	struct kvm_memory_slot *memslot;
	unsigned long gfn;
	unsigned long *rmap;
	int srcu_idx;
1118 1119

	put_page(page);
1120

1121
	if (!dirty)
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
		return;

	/* We need to mark this page dirty in the rmap chain */
	gfn = gpa >> PAGE_SHIFT;
	srcu_idx = srcu_read_lock(&kvm->srcu);
	memslot = gfn_to_memslot(kvm, gfn);
	if (memslot) {
		rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
		lock_rmap(rmap);
		*rmap |= KVMPPC_RMAP_CHANGED;
		unlock_rmap(rmap);
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
/*
 * Functions for reading and writing the hash table via reads and
 * writes on a file descriptor.
 *
 * Reads return the guest view of the hash table, which has to be
 * pieced together from the real hash table and the guest_rpte
 * values in the revmap array.
 *
 * On writes, each HPTE written is considered in turn, and if it
 * is valid, it is written to the HPT as if an H_ENTER with the
 * exact flag set was done.  When the invalid count is non-zero
 * in the header written to the stream, the kernel will make
 * sure that that many HPTEs are invalid, and invalidate them
 * if not.
 */

struct kvm_htab_ctx {
	unsigned long	index;
	unsigned long	flags;
	struct kvm	*kvm;
	int		first_pass;
};

#define HPTE_SIZE	(2 * sizeof(unsigned long))

1162 1163 1164 1165
/*
 * Returns 1 if this HPT entry has been modified or has pending
 * R/C bit changes.
 */
1166
static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1167 1168 1169 1170 1171 1172 1173 1174
{
	unsigned long rcbits_unset;

	if (revp->guest_rpte & HPTE_GR_MODIFIED)
		return 1;

	/* Also need to consider changes in reference and changed bits */
	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1175 1176
	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1177 1178 1179 1180 1181
		return 1;

	return 0;
}

1182
static long record_hpte(unsigned long flags, __be64 *hptp,
1183 1184 1185 1186
			unsigned long *hpte, struct revmap_entry *revp,
			int want_valid, int first_pass)
{
	unsigned long v, r;
1187
	unsigned long rcbits_unset;
1188 1189 1190 1191
	int ok = 1;
	int valid, dirty;

	/* Unmodified entries are uninteresting except on the first pass */
1192
	dirty = hpte_dirty(revp, hptp);
1193 1194 1195 1196
	if (!first_pass && !dirty)
		return 0;

	valid = 0;
1197
	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1198 1199
		valid = 1;
		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1200
		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
			valid = 0;
	}
	if (valid != want_valid)
		return 0;

	v = r = 0;
	if (valid || dirty) {
		/* lock the HPTE so it's stable and read it */
		preempt_disable();
		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
			cpu_relax();
1212
		v = be64_to_cpu(hptp[0]);
1213 1214 1215 1216 1217 1218 1219

		/* re-evaluate valid and dirty from synchronized HPTE value */
		valid = !!(v & HPTE_V_VALID);
		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);

		/* Harvest R and C into guest view if necessary */
		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1220 1221 1222
		if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
			revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1223 1224 1225
			dirty = 1;
		}

1226 1227 1228
		if (v & HPTE_V_ABSENT) {
			v &= ~HPTE_V_ABSENT;
			v |= HPTE_V_VALID;
1229
			valid = 1;
1230 1231 1232
		}
		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
			valid = 0;
1233 1234

		r = revp->guest_rpte;
1235 1236 1237 1238 1239
		/* only clear modified if this is the right sort of entry */
		if (valid == want_valid && dirty) {
			r &= ~HPTE_GR_MODIFIED;
			revp->guest_rpte = r;
		}
1240
		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1241 1242 1243 1244
		preempt_enable();
		if (!(valid == want_valid && (first_pass || dirty)))
			ok = 0;
	}
1245 1246
	hpte[0] = cpu_to_be64(v);
	hpte[1] = cpu_to_be64(r);
1247 1248 1249 1250 1251 1252 1253 1254 1255
	return ok;
}

static ssize_t kvm_htab_read(struct file *file, char __user *buf,
			     size_t count, loff_t *ppos)
{
	struct kvm_htab_ctx *ctx = file->private_data;
	struct kvm *kvm = ctx->kvm;
	struct kvm_get_htab_header hdr;
1256
	__be64 *hptp;
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	struct revmap_entry *revp;
	unsigned long i, nb, nw;
	unsigned long __user *lbuf;
	struct kvm_get_htab_header __user *hptr;
	unsigned long flags;
	int first_pass;
	unsigned long hpte[2];

	if (!access_ok(VERIFY_WRITE, buf, count))
		return -EFAULT;

	first_pass = ctx->first_pass;
	flags = ctx->flags;

	i = ctx->index;
1272
	hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	revp = kvm->arch.revmap + i;
	lbuf = (unsigned long __user *)buf;

	nb = 0;
	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
		/* Initialize header */
		hptr = (struct kvm_get_htab_header __user *)buf;
		hdr.n_valid = 0;
		hdr.n_invalid = 0;
		nw = nb;
		nb += sizeof(hdr);
		lbuf = (unsigned long __user *)(buf + sizeof(hdr));

		/* Skip uninteresting entries, i.e. clean on not-first pass */
		if (!first_pass) {
			while (i < kvm->arch.hpt_npte &&
1289
			       !hpte_dirty(revp, hptp)) {
1290 1291 1292 1293 1294
				++i;
				hptp += 2;
				++revp;
			}
		}
1295
		hdr.index = i;
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355

		/* Grab a series of valid entries */
		while (i < kvm->arch.hpt_npte &&
		       hdr.n_valid < 0xffff &&
		       nb + HPTE_SIZE < count &&
		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
			/* valid entry, write it out */
			++hdr.n_valid;
			if (__put_user(hpte[0], lbuf) ||
			    __put_user(hpte[1], lbuf + 1))
				return -EFAULT;
			nb += HPTE_SIZE;
			lbuf += 2;
			++i;
			hptp += 2;
			++revp;
		}
		/* Now skip invalid entries while we can */
		while (i < kvm->arch.hpt_npte &&
		       hdr.n_invalid < 0xffff &&
		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
			/* found an invalid entry */
			++hdr.n_invalid;
			++i;
			hptp += 2;
			++revp;
		}

		if (hdr.n_valid || hdr.n_invalid) {
			/* write back the header */
			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
				return -EFAULT;
			nw = nb;
			buf = (char __user *)lbuf;
		} else {
			nb = nw;
		}

		/* Check if we've wrapped around the hash table */
		if (i >= kvm->arch.hpt_npte) {
			i = 0;
			ctx->first_pass = 0;
			break;
		}
	}

	ctx->index = i;

	return nb;
}

static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *ppos)
{
	struct kvm_htab_ctx *ctx = file->private_data;
	struct kvm *kvm = ctx->kvm;
	struct kvm_get_htab_header hdr;
	unsigned long i, j;
	unsigned long v, r;
	unsigned long __user *lbuf;
1356
	__be64 *hptp;
1357 1358 1359
	unsigned long tmp[2];
	ssize_t nb;
	long int err, ret;
1360
	int hpte_setup;
1361 1362 1363 1364 1365 1366

	if (!access_ok(VERIFY_READ, buf, count))
		return -EFAULT;

	/* lock out vcpus from running while we're doing this */
	mutex_lock(&kvm->lock);
1367 1368 1369 1370
	hpte_setup = kvm->arch.hpte_setup_done;
	if (hpte_setup) {
		kvm->arch.hpte_setup_done = 0;	/* temporarily */
		/* order hpte_setup_done vs. vcpus_running */
1371 1372
		smp_mb();
		if (atomic_read(&kvm->arch.vcpus_running)) {
1373
			kvm->arch.hpte_setup_done = 1;
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
			mutex_unlock(&kvm->lock);
			return -EBUSY;
		}
	}

	err = 0;
	for (nb = 0; nb + sizeof(hdr) <= count; ) {
		err = -EFAULT;
		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
			break;

		err = 0;
		if (nb + hdr.n_valid * HPTE_SIZE > count)
			break;

		nb += sizeof(hdr);
		buf += sizeof(hdr);

		err = -EINVAL;
		i = hdr.index;
		if (i >= kvm->arch.hpt_npte ||
		    i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
			break;

1398
		hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1399 1400
		lbuf = (unsigned long __user *)buf;
		for (j = 0; j < hdr.n_valid; ++j) {
1401 1402 1403
			__be64 hpte_v;
			__be64 hpte_r;

1404
			err = -EFAULT;
1405 1406
			if (__get_user(hpte_v, lbuf) ||
			    __get_user(hpte_r, lbuf + 1))
1407
				goto out;
1408 1409
			v = be64_to_cpu(hpte_v);
			r = be64_to_cpu(hpte_r);
1410 1411 1412 1413 1414 1415
			err = -EINVAL;
			if (!(v & HPTE_V_VALID))
				goto out;
			lbuf += 2;
			nb += HPTE_SIZE;

1416
			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1417 1418 1419 1420 1421 1422 1423 1424 1425
				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
			err = -EIO;
			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
							 tmp);
			if (ret != H_SUCCESS) {
				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
				       "r=%lx\n", ret, i, v, r);
				goto out;
			}
1426
			if (!hpte_setup && is_vrma_hpte(v)) {
1427
				unsigned long psize = hpte_base_page_size(v, r);
1428 1429 1430 1431 1432
				unsigned long senc = slb_pgsize_encoding(psize);
				unsigned long lpcr;

				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1433 1434
				lpcr = senc << (LPCR_VRMASD_SH - 4);
				kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1435
				hpte_setup = 1;
1436 1437 1438 1439 1440 1441
			}
			++i;
			hptp += 2;
		}

		for (j = 0; j < hdr.n_invalid; ++j) {
1442
			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1443 1444 1445 1446 1447 1448 1449 1450
				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
			++i;
			hptp += 2;
		}
		err = 0;
	}

 out:
1451
	/* Order HPTE updates vs. hpte_setup_done */
1452
	smp_wmb();
1453
	kvm->arch.hpte_setup_done = hpte_setup;
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	mutex_unlock(&kvm->lock);

	if (err)
		return err;
	return nb;
}

static int kvm_htab_release(struct inode *inode, struct file *filp)
{
	struct kvm_htab_ctx *ctx = filp->private_data;

	filp->private_data = NULL;
	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
	kvm_put_kvm(ctx->kvm);
	kfree(ctx);
	return 0;
}

1473
static const struct file_operations kvm_htab_fops = {
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	.read		= kvm_htab_read,
	.write		= kvm_htab_write,
	.llseek		= default_llseek,
	.release	= kvm_htab_release,
};

int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
{
	int ret;
	struct kvm_htab_ctx *ctx;
	int rwflag;

	/* reject flags we don't recognize */
	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
		return -EINVAL;
	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
	if (!ctx)
		return -ENOMEM;
	kvm_get_kvm(kvm);
	ctx->kvm = kvm;
	ctx->index = ghf->start_index;
	ctx->flags = ghf->flags;
	ctx->first_pass = 1;

	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1499
	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	if (ret < 0) {
		kvm_put_kvm(kvm);
		return ret;
	}

	if (rwflag == O_RDONLY) {
		mutex_lock(&kvm->slots_lock);
		atomic_inc(&kvm->arch.hpte_mod_interest);
		/* make sure kvmppc_do_h_enter etc. see the increment */
		synchronize_srcu_expedited(&kvm->srcu);
		mutex_unlock(&kvm->slots_lock);
	}

	return ret;
}

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
struct debugfs_htab_state {
	struct kvm	*kvm;
	struct mutex	mutex;
	unsigned long	hpt_index;
	int		chars_left;
	int		buf_index;
	char		buf[64];
};

static int debugfs_htab_open(struct inode *inode, struct file *file)
{
	struct kvm *kvm = inode->i_private;
	struct debugfs_htab_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(kvm);
	p->kvm = kvm;
	mutex_init(&p->mutex);
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_htab_release(struct inode *inode, struct file *file)
{
	struct debugfs_htab_state *p = file->private_data;

	kvm_put_kvm(p->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
				 size_t len, loff_t *ppos)
{
	struct debugfs_htab_state *p = file->private_data;
	ssize_t ret, r;
	unsigned long i, n;
	unsigned long v, hr, gr;
	struct kvm *kvm;
	__be64 *hptp;

	ret = mutex_lock_interruptible(&p->mutex);
	if (ret)
		return ret;

	if (p->chars_left) {
		n = p->chars_left;
		if (n > len)
			n = len;
		r = copy_to_user(buf, p->buf + p->buf_index, n);
		n -= r;
		p->chars_left -= n;
		p->buf_index += n;
		buf += n;
		len -= n;
		ret = n;
		if (r) {
			if (!n)
				ret = -EFAULT;
			goto out;
		}
	}

	kvm = p->kvm;
	i = p->hpt_index;
	hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
	for (; len != 0 && i < kvm->arch.hpt_npte; ++i, hptp += 2) {
		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
			continue;

		/* lock the HPTE so it's stable and read it */
		preempt_disable();
		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
			cpu_relax();
		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
		hr = be64_to_cpu(hptp[1]);
		gr = kvm->arch.revmap[i].guest_rpte;
		unlock_hpte(hptp, v);
		preempt_enable();

		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
			continue;

		n = scnprintf(p->buf, sizeof(p->buf),
			      "%6lx %.16lx %.16lx %.16lx\n",
			      i, v, hr, gr);
		p->chars_left = n;
		if (n > len)
			n = len;
		r = copy_to_user(buf, p->buf, n);
		n -= r;
		p->chars_left -= n;
		p->buf_index = n;
		buf += n;
		len -= n;
		ret += n;
		if (r) {
			if (!ret)
				ret = -EFAULT;
			goto out;
		}
	}
	p->hpt_index = i;

 out:
	mutex_unlock(&p->mutex);
	return ret;
}

1629
static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
			   size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_htab_fops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_htab_open,
	.release = debugfs_htab_release,
	.read	 = debugfs_htab_read,
	.write	 = debugfs_htab_write,
	.llseek	 = generic_file_llseek,
};

void kvmppc_mmu_debugfs_init(struct kvm *kvm)
{
	kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
						    kvm->arch.debugfs_dir, kvm,
						    &debugfs_htab_fops);
}

1651 1652 1653 1654
void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
{
	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;

1655
	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
1656 1657 1658 1659 1660 1661

	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
	mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;

	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
}