book3s_64_mmu_hv.c 44.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 */

#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/gfp.h>
#include <linux/slab.h>
#include <linux/hugetlb.h>
26
#include <linux/vmalloc.h>
27
#include <linux/srcu.h>
28 29
#include <linux/anon_inodes.h>
#include <linux/file.h>
30
#include <linux/debugfs.h>
31 32 33 34

#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
35
#include <asm/book3s/64/mmu-hash.h>
36 37 38 39 40
#include <asm/hvcall.h>
#include <asm/synch.h>
#include <asm/ppc-opcode.h>
#include <asm/cputable.h>

41 42
#include "trace_hv.h"

43 44 45
/* Power architecture requires HPT is at least 256kB */
#define PPC_MIN_HPT_ORDER	18

46 47 48
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
				long pte_index, unsigned long pteh,
				unsigned long ptel, unsigned long *pte_idx_ret);
49
static void kvmppc_rmap_reset(struct kvm *kvm);
50

51
long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
52
{
53
	unsigned long hpt = 0;
54
	struct revmap_entry *rev;
55 56
	struct page *page = NULL;
	long order = KVM_DEFAULT_HPT_ORDER;
57

58 59 60 61 62 63
	if (htab_orderp) {
		order = *htab_orderp;
		if (order < PPC_MIN_HPT_ORDER)
			order = PPC_MIN_HPT_ORDER;
	}

64
	kvm->arch.hpt_cma_alloc = 0;
65
	page = kvm_alloc_hpt(1ul << (order - PAGE_SHIFT));
66 67
	if (page) {
		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
68
		memset((void *)hpt, 0, (1ul << order));
69
		kvm->arch.hpt_cma_alloc = 1;
70
	}
71 72

	/* Lastly try successively smaller sizes from the page allocator */
73 74
	/* Only do this if userspace didn't specify a size via ioctl */
	while (!hpt && order > PPC_MIN_HPT_ORDER && !htab_orderp) {
75 76 77 78 79 80 81 82 83
		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
				       __GFP_NOWARN, order - PAGE_SHIFT);
		if (!hpt)
			--order;
	}

	if (!hpt)
		return -ENOMEM;

84
	kvm->arch.hpt_virt = hpt;
85 86 87 88 89
	kvm->arch.hpt_order = order;
	/* HPTEs are 2**4 bytes long */
	kvm->arch.hpt_npte = 1ul << (order - 4);
	/* 128 (2**7) bytes in each HPTEG */
	kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
90

91 92
	atomic64_set(&kvm->arch.mmio_update, 0);

93
	/* Allocate reverse map array */
94
	rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
95 96 97 98 99
	if (!rev) {
		pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
		goto out_freehpt;
	}
	kvm->arch.revmap = rev;
100
	kvm->arch.sdr1 = __pa(hpt) | (order - 18);
101

102 103
	pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
		hpt, order, kvm->arch.lpid);
104

105 106
	if (htab_orderp)
		*htab_orderp = order;
107
	return 0;
108 109

 out_freehpt:
110 111
	if (kvm->arch.hpt_cma_alloc)
		kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
112 113
	else
		free_pages(hpt, order - PAGE_SHIFT);
114
	return -ENOMEM;
115 116
}

117 118 119 120 121
long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
{
	long err = -EBUSY;
	long order;

122 123 124
	if (kvm_is_radix(kvm))
		return -EINVAL;

125
	mutex_lock(&kvm->lock);
126 127 128
	if (kvm->arch.hpte_setup_done) {
		kvm->arch.hpte_setup_done = 0;
		/* order hpte_setup_done vs. vcpus_running */
129 130
		smp_mb();
		if (atomic_read(&kvm->arch.vcpus_running)) {
131
			kvm->arch.hpte_setup_done = 1;
132 133 134 135 136 137 138
			goto out;
		}
	}
	if (kvm->arch.hpt_virt) {
		order = kvm->arch.hpt_order;
		/* Set the entire HPT to 0, i.e. invalid HPTEs */
		memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
139 140 141 142
		/*
		 * Reset all the reverse-mapping chains for all memslots
		 */
		kvmppc_rmap_reset(kvm);
143 144
		/* Ensure that each vcpu will flush its TLB on next entry. */
		cpumask_setall(&kvm->arch.need_tlb_flush);
145 146 147 148 149 150 151 152 153 154 155
		*htab_orderp = order;
		err = 0;
	} else {
		err = kvmppc_alloc_hpt(kvm, htab_orderp);
		order = *htab_orderp;
	}
 out:
	mutex_unlock(&kvm->lock);
	return err;
}

156 157
void kvmppc_free_hpt(struct kvm *kvm)
{
158
	kvmppc_free_lpid(kvm->arch.lpid);
159
	vfree(kvm->arch.revmap);
160 161 162
	if (kvm->arch.hpt_cma_alloc)
		kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
				1 << (kvm->arch.hpt_order - PAGE_SHIFT));
163
	else if (kvm->arch.hpt_virt)
164 165
		free_pages(kvm->arch.hpt_virt,
			   kvm->arch.hpt_order - PAGE_SHIFT);
166 167
}

168 169 170 171 172 173 174 175 176 177 178 179 180 181
/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
{
	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
}

/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
{
	return (pgsize == 0x10000) ? 0x1000 : 0;
}

void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
		     unsigned long porder)
182 183
{
	unsigned long i;
184
	unsigned long npages;
185 186
	unsigned long hp_v, hp_r;
	unsigned long addr, hash;
187 188
	unsigned long psize;
	unsigned long hp0, hp1;
189
	unsigned long idx_ret;
190
	long ret;
191
	struct kvm *kvm = vcpu->kvm;
192

193 194
	psize = 1ul << porder;
	npages = memslot->npages >> (porder - PAGE_SHIFT);
195 196

	/* VRMA can't be > 1TB */
197 198
	if (npages > 1ul << (40 - porder))
		npages = 1ul << (40 - porder);
199
	/* Can't use more than 1 HPTE per HPTEG */
200 201
	if (npages > kvm->arch.hpt_mask + 1)
		npages = kvm->arch.hpt_mask + 1;
202

203 204 205 206 207
	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
	hp1 = hpte1_pgsize_encoding(psize) |
		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;

208
	for (i = 0; i < npages; ++i) {
209
		addr = i << porder;
210
		/* can't use hpt_hash since va > 64 bits */
211
		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
212 213 214 215 216 217
		/*
		 * We assume that the hash table is empty and no
		 * vcpus are using it at this stage.  Since we create
		 * at most one HPTE per HPTEG, we just assume entry 7
		 * is available and use it.
		 */
218
		hash = (hash << 3) + 7;
219 220
		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
		hp_r = hp1 | addr;
221 222
		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
						 &idx_ret);
223 224 225 226 227
		if (ret != H_SUCCESS) {
			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
			       addr, ret);
			break;
		}
228 229 230 231 232
	}
}

int kvmppc_mmu_hv_init(void)
{
233 234 235
	unsigned long host_lpid, rsvd_lpid;

	if (!cpu_has_feature(CPU_FTR_HVMODE))
236
		return -EINVAL;
237

238 239 240
	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
	host_lpid = mfspr(SPRN_LPID);
	rsvd_lpid = LPID_RSVD;
241

242 243 244
	kvmppc_init_lpid(rsvd_lpid + 1);

	kvmppc_claim_lpid(host_lpid);
245
	/* rsvd_lpid is reserved for use in partition switching */
246
	kvmppc_claim_lpid(rsvd_lpid);
247 248 249 250 251 252

	return 0;
}

static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
{
253 254 255 256 257 258 259 260
	unsigned long msr = vcpu->arch.intr_msr;

	/* If transactional, change to suspend mode on IRQ delivery */
	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
		msr |= MSR_TS_S;
	else
		msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
	kvmppc_set_msr(vcpu, msr);
261 262
}

263
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
264 265
				long pte_index, unsigned long pteh,
				unsigned long ptel, unsigned long *pte_idx_ret)
266 267 268
{
	long ret;

269 270
	/* Protect linux PTE lookup from page table destruction */
	rcu_read_lock_sched();	/* this disables preemption too */
271 272
	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
				current->mm->pgd, false, pte_idx_ret);
273
	rcu_read_unlock_sched();
274 275 276 277 278 279 280 281 282
	if (ret == H_TOO_HARD) {
		/* this can't happen */
		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
		ret = H_RESOURCE;	/* or something */
	}
	return ret;

}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
							 gva_t eaddr)
{
	u64 mask;
	int i;

	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
			continue;

		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
			mask = ESID_MASK_1T;
		else
			mask = ESID_MASK;

		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
			return &vcpu->arch.slb[i];
	}
	return NULL;
}

static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
			unsigned long ea)
{
	unsigned long ra_mask;

	ra_mask = hpte_page_size(v, r) - 1;
	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
}

313
static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
314
			struct kvmppc_pte *gpte, bool data, bool iswrite)
315
{
316 317 318 319
	struct kvm *kvm = vcpu->kvm;
	struct kvmppc_slb *slbe;
	unsigned long slb_v;
	unsigned long pp, key;
320
	unsigned long v, orig_v, gr;
321
	__be64 *hptep;
322 323 324 325 326 327 328 329 330 331 332 333 334 335
	int index;
	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);

	/* Get SLB entry */
	if (virtmode) {
		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
		if (!slbe)
			return -EINVAL;
		slb_v = slbe->origv;
	} else {
		/* real mode access */
		slb_v = vcpu->kvm->arch.vrma_slb_v;
	}

336
	preempt_disable();
337 338 339
	/* Find the HPTE in the hash table */
	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
					 HPTE_V_VALID | HPTE_V_ABSENT);
340 341
	if (index < 0) {
		preempt_enable();
342
		return -ENOENT;
343
	}
344
	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
345 346 347
	v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
348 349
	gr = kvm->arch.revmap[index].guest_rpte;

350
	unlock_hpte(hptep, orig_v);
351
	preempt_enable();
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366

	gpte->eaddr = eaddr;
	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);

	/* Get PP bits and key for permission check */
	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
	key &= slb_v;

	/* Calculate permissions */
	gpte->may_read = hpte_read_permission(pp, key);
	gpte->may_write = hpte_write_permission(pp, key);
	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));

	/* Storage key permission check for POWER7 */
367
	if (data && virtmode) {
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
		if (amrfield & 1)
			gpte->may_read = 0;
		if (amrfield & 2)
			gpte->may_write = 0;
	}

	/* Get the guest physical address */
	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
	return 0;
}

/*
 * Quick test for whether an instruction is a load or a store.
 * If the instruction is a load or a store, then this will indicate
 * which it is, at least on server processors.  (Embedded processors
 * have some external PID instructions that don't follow the rule
 * embodied here.)  If the instruction isn't a load or store, then
 * this doesn't return anything useful.
 */
static int instruction_is_store(unsigned int instr)
{
	unsigned int mask;

	mask = 0x10000000;
	if ((instr & 0xfc000000) == 0x7c000000)
		mask = 0x100;		/* major opcode 31 */
	return (instr & mask) != 0;
}

398 399
int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
			   unsigned long gpa, gva_t ea, int is_store)
400 401 402
{
	u32 last_inst;

403
	/*
404 405
	 * If we fail, we just return to the guest and try executing it again.
	 */
406 407 408
	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
		EMULATE_DONE)
		return RESUME_GUEST;
409 410 411 412 413 414 415 416 417 418 419 420 421

	/*
	 * WARNING: We do not know for sure whether the instruction we just
	 * read from memory is the same that caused the fault in the first
	 * place.  If the instruction we read is neither an load or a store,
	 * then it can't access memory, so we don't need to worry about
	 * enforcing access permissions.  So, assuming it is a load or
	 * store, we just check that its direction (load or store) is
	 * consistent with the original fault, since that's what we
	 * checked the access permissions against.  If there is a mismatch
	 * we just return and retry the instruction.
	 */

422
	if (instruction_is_store(last_inst) != !!is_store)
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
		return RESUME_GUEST;

	/*
	 * Emulated accesses are emulated by looking at the hash for
	 * translation once, then performing the access later. The
	 * translation could be invalidated in the meantime in which
	 * point performing the subsequent memory access on the old
	 * physical address could possibly be a security hole for the
	 * guest (but not the host).
	 *
	 * This is less of an issue for MMIO stores since they aren't
	 * globally visible. It could be an issue for MMIO loads to
	 * a certain extent but we'll ignore it for now.
	 */

	vcpu->arch.paddr_accessed = gpa;
439
	vcpu->arch.vaddr_accessed = ea;
440 441 442 443 444 445 446
	return kvmppc_emulate_mmio(run, vcpu);
}

int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
				unsigned long ea, unsigned long dsisr)
{
	struct kvm *kvm = vcpu->kvm;
447
	unsigned long hpte[3], r;
448
	unsigned long hnow_v, hnow_r;
449
	__be64 *hptep;
450
	unsigned long mmu_seq, psize, pte_size;
451
	unsigned long gpa_base, gfn_base;
452
	unsigned long gpa, gfn, hva, pfn;
453
	struct kvm_memory_slot *memslot;
454
	unsigned long *rmap;
455
	struct revmap_entry *rev;
456 457
	struct page *page, *pages[1];
	long index, ret, npages;
458
	bool is_ci;
459
	unsigned int writing, write_ok;
460
	struct vm_area_struct *vma;
461
	unsigned long rcbits;
462
	long mmio_update;
463

464 465 466
	if (kvm_is_radix(kvm))
		return kvmppc_book3s_radix_page_fault(run, vcpu, ea, dsisr);

467 468 469 470 471 472 473 474
	/*
	 * Real-mode code has already searched the HPT and found the
	 * entry we're interested in.  Lock the entry and check that
	 * it hasn't changed.  If it has, just return and re-execute the
	 * instruction.
	 */
	if (ea != vcpu->arch.pgfault_addr)
		return RESUME_GUEST;
475 476 477 478 479 480 481 482 483 484 485 486 487

	if (vcpu->arch.pgfault_cache) {
		mmio_update = atomic64_read(&kvm->arch.mmio_update);
		if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
			r = vcpu->arch.pgfault_cache->rpte;
			psize = hpte_page_size(vcpu->arch.pgfault_hpte[0], r);
			gpa_base = r & HPTE_R_RPN & ~(psize - 1);
			gfn_base = gpa_base >> PAGE_SHIFT;
			gpa = gpa_base | (ea & (psize - 1));
			return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
						dsisr & DSISR_ISSTORE);
		}
	}
488
	index = vcpu->arch.pgfault_index;
489
	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
490 491 492 493
	rev = &kvm->arch.revmap[index];
	preempt_disable();
	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
		cpu_relax();
494 495
	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
	hpte[1] = be64_to_cpu(hptep[1]);
496
	hpte[2] = r = rev->guest_rpte;
497
	unlock_hpte(hptep, hpte[0]);
498 499
	preempt_enable();

500 501 502 503
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
		hpte[1] = hpte_new_to_old_r(hpte[1]);
	}
504 505 506 507 508
	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
	    hpte[1] != vcpu->arch.pgfault_hpte[1])
		return RESUME_GUEST;

	/* Translate the logical address and get the page */
509
	psize = hpte_page_size(hpte[0], r);
510 511 512
	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
	gfn_base = gpa_base >> PAGE_SHIFT;
	gpa = gpa_base | (ea & (psize - 1));
513
	gfn = gpa >> PAGE_SHIFT;
514 515
	memslot = gfn_to_memslot(kvm, gfn);

516 517
	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);

518
	/* No memslot means it's an emulated MMIO region */
519
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
520
		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
521 522
					      dsisr & DSISR_ISSTORE);

523 524 525 526 527 528 529
	/*
	 * This should never happen, because of the slot_is_aligned()
	 * check in kvmppc_do_h_enter().
	 */
	if (gfn_base < memslot->base_gfn)
		return -EFAULT;

530 531 532 533
	/* used to check for invalidations in progress */
	mmu_seq = kvm->mmu_notifier_seq;
	smp_rmb();

534
	ret = -EFAULT;
535
	is_ci = false;
536 537 538
	pfn = 0;
	page = NULL;
	pte_size = PAGE_SIZE;
539 540 541
	writing = (dsisr & DSISR_ISSTORE) != 0;
	/* If writing != 0, then the HPTE must allow writing, if we get here */
	write_ok = writing;
542
	hva = gfn_to_hva_memslot(memslot, gfn);
543
	npages = get_user_pages_fast(hva, 1, writing, pages);
544 545 546 547 548 549 550 551 552
	if (npages < 1) {
		/* Check if it's an I/O mapping */
		down_read(&current->mm->mmap_sem);
		vma = find_vma(current->mm, hva);
		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
		    (vma->vm_flags & VM_PFNMAP)) {
			pfn = vma->vm_pgoff +
				((hva - vma->vm_start) >> PAGE_SHIFT);
			pte_size = psize;
553
			is_ci = pte_ci(__pte((pgprot_val(vma->vm_page_prot))));
554
			write_ok = vma->vm_flags & VM_WRITE;
555 556 557
		}
		up_read(&current->mm->mmap_sem);
		if (!pfn)
558
			goto out_put;
559 560
	} else {
		page = pages[0];
561
		pfn = page_to_pfn(page);
562 563 564 565
		if (PageHuge(page)) {
			page = compound_head(page);
			pte_size <<= compound_order(page);
		}
566 567 568
		/* if the guest wants write access, see if that is OK */
		if (!writing && hpte_is_writable(r)) {
			pte_t *ptep, pte;
569
			unsigned long flags;
570 571
			/*
			 * We need to protect against page table destruction
572
			 * hugepage split and collapse.
573
			 */
574
			local_irq_save(flags);
575
			ptep = find_linux_pte_or_hugepte(current->mm->pgd,
576
							 hva, NULL, NULL);
577
			if (ptep) {
578
				pte = kvmppc_read_update_linux_pte(ptep, 1);
579 580 581
				if (pte_write(pte))
					write_ok = 1;
			}
582
			local_irq_restore(flags);
583
		}
584 585 586 587 588 589
	}

	if (psize > pte_size)
		goto out_put;

	/* Check WIMG vs. the actual page we're accessing */
590 591
	if (!hpte_cache_flags_ok(r, is_ci)) {
		if (is_ci)
592
			goto out_put;
593 594 595 596 597 598 599
		/*
		 * Allow guest to map emulated device memory as
		 * uncacheable, but actually make it cacheable.
		 */
		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
	}

600 601 602 603 604 605 606
	/*
	 * Set the HPTE to point to pfn.
	 * Since the pfn is at PAGE_SIZE granularity, make sure we
	 * don't mask out lower-order bits if psize < PAGE_SIZE.
	 */
	if (psize < PAGE_SIZE)
		psize = PAGE_SIZE;
607 608
	r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) |
					((pfn << PAGE_SHIFT) & ~(psize - 1));
609 610
	if (hpte_is_writable(r) && !write_ok)
		r = hpte_make_readonly(r);
611 612 613 614
	ret = RESUME_GUEST;
	preempt_disable();
	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
		cpu_relax();
615 616 617 618 619 620 621 622
	hnow_v = be64_to_cpu(hptep[0]);
	hnow_r = be64_to_cpu(hptep[1]);
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
		hnow_r = hpte_new_to_old_r(hnow_r);
	}
	if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
	    rev->guest_rpte != hpte[2])
623 624 625 626
		/* HPTE has been changed under us; let the guest retry */
		goto out_unlock;
	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;

627 628
	/* Always put the HPTE in the rmap chain for the page base address */
	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
629 630 631 632
	lock_rmap(rmap);

	/* Check if we might have been invalidated; let the guest retry if so */
	ret = RESUME_GUEST;
633
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
634 635 636
		unlock_rmap(rmap);
		goto out_unlock;
	}
637

638 639 640 641
	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);

642
	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
643 644
		/* HPTE was previously valid, so we need to invalidate it */
		unlock_rmap(rmap);
645
		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
646
		kvmppc_invalidate_hpte(kvm, hptep, index);
647
		/* don't lose previous R and C bits */
648
		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
649 650 651
	} else {
		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
	}
652

653 654 655 656
	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
		r = hpte_old_to_new_r(hpte[0], r);
		hpte[0] = hpte_old_to_new_v(hpte[0]);
	}
657
	hptep[1] = cpu_to_be64(r);
658
	eieio();
659
	__unlock_hpte(hptep, hpte[0]);
660 661
	asm volatile("ptesync" : : : "memory");
	preempt_enable();
662
	if (page && hpte_is_writable(r))
663 664 665
		SetPageDirty(page);

 out_put:
666 667
	trace_kvm_page_fault_exit(vcpu, hpte, ret);

668 669 670 671 672 673 674 675 676
	if (page) {
		/*
		 * We drop pages[0] here, not page because page might
		 * have been set to the head page of a compound, but
		 * we have to drop the reference on the correct tail
		 * page to match the get inside gup()
		 */
		put_page(pages[0]);
	}
677 678 679
	return ret;

 out_unlock:
680
	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
681 682 683 684
	preempt_enable();
	goto out_put;
}

685 686 687 688 689 690 691
static void kvmppc_rmap_reset(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int srcu_idx;

	srcu_idx = srcu_read_lock(&kvm->srcu);
692
	slots = kvm_memslots(kvm);
693 694 695 696 697 698 699 700 701 702 703
	kvm_for_each_memslot(memslot, slots) {
		/*
		 * This assumes it is acceptable to lose reference and
		 * change bits across a reset.
		 */
		memset(memslot->arch.rmap, 0,
		       memslot->npages * sizeof(*memslot->arch.rmap));
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
}

704 705 706
typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot,
			      unsigned long gfn);

707 708 709
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
710
				hva_handler_fn handler)
711 712 713 714 715 716 717 718
{
	int ret;
	int retval = 0;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
719 720 721 722 723 724 725 726 727 728 729 730 731 732
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
733

734
		for (; gfn < gfn_end; ++gfn) {
735
			ret = handler(kvm, memslot, gfn);
736 737 738 739 740 741 742
			retval |= ret;
		}
	}

	return retval;
}

743
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
744
			  hva_handler_fn handler)
745 746 747 748
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
}

749
static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
750 751 752 753
			   unsigned long gfn)
{
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long h, i, j;
754
	__be64 *hptep;
755
	unsigned long ptel, psize, rcbits;
756
	unsigned long *rmapp;
757

758
	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
759
	for (;;) {
760
		lock_rmap(rmapp);
761
		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
762
			unlock_rmap(rmapp);
763 764 765 766 767
			break;
		}

		/*
		 * To avoid an ABBA deadlock with the HPTE lock bit,
768 769
		 * we can't spin on the HPTE lock while holding the
		 * rmap chain lock.
770 771
		 */
		i = *rmapp & KVMPPC_RMAP_INDEX;
772
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
773 774 775
		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
776
			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
777 778 779
				cpu_relax();
			continue;
		}
780 781 782
		j = rev[i].forw;
		if (j == i) {
			/* chain is now empty */
783
			*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
784 785 786 787 788 789
		} else {
			/* remove i from chain */
			h = rev[i].back;
			rev[h].forw = j;
			rev[j].back = h;
			rev[i].forw = rev[i].back = i;
790
			*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
791 792
		}

793
		/* Now check and modify the HPTE */
794
		ptel = rev[i].guest_rpte;
795 796
		psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
797
		    hpte_rpn(ptel, psize) == gfn) {
798
			hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
799
			kvmppc_invalidate_hpte(kvm, hptep, i);
800
			hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
801
			/* Harvest R and C */
802
			rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
803
			*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
804 805
			if (rcbits & HPTE_R_C)
				kvmppc_update_rmap_change(rmapp, psize);
806 807 808 809
			if (rcbits & ~rev[i].guest_rpte) {
				rev[i].guest_rpte = ptel | rcbits;
				note_hpte_modification(kvm, &rev[i]);
			}
810
		}
811
		unlock_rmap(rmapp);
812
		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
813 814 815 816
	}
	return 0;
}

817
int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
818
{
819 820 821 822
	hva_handler_fn handler;

	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
	kvm_handle_hva(kvm, hva, handler);
823 824 825
	return 0;
}

826
int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
827
{
828 829 830 831
	hva_handler_fn handler;

	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
	kvm_handle_hva_range(kvm, start, end, handler);
832 833 834
	return 0;
}

835 836
void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
				  struct kvm_memory_slot *memslot)
837 838 839
{
	unsigned long gfn;
	unsigned long n;
840
	unsigned long *rmapp;
841 842

	gfn = memslot->base_gfn;
843 844 845 846 847 848
	rmapp = memslot->arch.rmap;
	for (n = memslot->npages; n; --n, ++gfn) {
		if (kvm_is_radix(kvm)) {
			kvm_unmap_radix(kvm, memslot, gfn);
			continue;
		}
849 850 851 852 853 854 855
		/*
		 * Testing the present bit without locking is OK because
		 * the memslot has been marked invalid already, and hence
		 * no new HPTEs referencing this page can be created,
		 * thus the present bit can't go from 0 to 1.
		 */
		if (*rmapp & KVMPPC_RMAP_PRESENT)
856
			kvm_unmap_rmapp(kvm, memslot, gfn);
857 858 859 860
		++rmapp;
	}
}

861
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
862 863
			 unsigned long gfn)
{
864 865
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
866
	__be64 *hptep;
867
	int ret = 0;
868
	unsigned long *rmapp;
869

870
	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
871 872 873 874 875 876 877 878 879 880 881 882 883
 retry:
	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
		ret = 1;
	}
	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
		unlock_rmap(rmapp);
		return ret;
	}

	i = head = *rmapp & KVMPPC_RMAP_INDEX;
	do {
884
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
885 886 887
		j = rev[i].forw;

		/* If this HPTE isn't referenced, ignore it */
888
		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
889 890 891 892 893
			continue;

		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
894
			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
895 896 897 898 899
				cpu_relax();
			goto retry;
		}

		/* Now check and modify the HPTE */
900 901
		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
902
			kvmppc_clear_ref_hpte(kvm, hptep, i);
903 904 905 906
			if (!(rev[i].guest_rpte & HPTE_R_R)) {
				rev[i].guest_rpte |= HPTE_R_R;
				note_hpte_modification(kvm, &rev[i]);
			}
907 908
			ret = 1;
		}
909
		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
910 911 912 913
	} while ((i = j) != head);

	unlock_rmap(rmapp);
	return ret;
914 915
}

A
Andres Lagar-Cavilla 已提交
916
int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
917
{
918 919 920 921
	hva_handler_fn handler;

	handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp;
	return kvm_handle_hva_range(kvm, start, end, handler);
922 923
}

924
static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
925 926
			      unsigned long gfn)
{
927 928 929 930
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
	unsigned long *hp;
	int ret = 1;
931
	unsigned long *rmapp;
932

933
	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
934 935 936 937 938 939 940 941 942 943 944 945
	if (*rmapp & KVMPPC_RMAP_REFERENCED)
		return 1;

	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_REFERENCED)
		goto out;

	if (*rmapp & KVMPPC_RMAP_PRESENT) {
		i = head = *rmapp & KVMPPC_RMAP_INDEX;
		do {
			hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
			j = rev[i].forw;
946
			if (be64_to_cpu(hp[1]) & HPTE_R_R)
947 948 949 950 951 952 953 954
				goto out;
		} while ((i = j) != head);
	}
	ret = 0;

 out:
	unlock_rmap(rmapp);
	return ret;
955 956
}

957
int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
958
{
959 960 961 962
	hva_handler_fn handler;

	handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp;
	return kvm_handle_hva(kvm, hva, handler);
963 964
}

965
void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
966
{
967 968 969 970
	hva_handler_fn handler;

	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
	kvm_handle_hva(kvm, hva, handler);
971 972
}

973 974 975 976 977
static int vcpus_running(struct kvm *kvm)
{
	return atomic_read(&kvm->arch.vcpus_running) != 0;
}

978 979 980 981 982
/*
 * Returns the number of system pages that are dirty.
 * This can be more than 1 if we find a huge-page HPTE.
 */
static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
983 984 985
{
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
986
	unsigned long n;
987
	unsigned long v, r;
988
	__be64 *hptep;
989
	int npages_dirty = 0;
990 991 992 993

 retry:
	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_CHANGED) {
994 995 996
		long change_order = (*rmapp & KVMPPC_RMAP_CHG_ORDER)
			>> KVMPPC_RMAP_CHG_SHIFT;
		*rmapp &= ~(KVMPPC_RMAP_CHANGED | KVMPPC_RMAP_CHG_ORDER);
997
		npages_dirty = 1;
998 999
		if (change_order > PAGE_SHIFT)
			npages_dirty = 1ul << (change_order - PAGE_SHIFT);
1000 1001 1002
	}
	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
		unlock_rmap(rmapp);
1003
		return npages_dirty;
1004 1005 1006 1007
	}

	i = head = *rmapp & KVMPPC_RMAP_INDEX;
	do {
1008 1009
		unsigned long hptep1;
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
1010 1011
		j = rev[i].forw;

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
		/*
		 * Checking the C (changed) bit here is racy since there
		 * is no guarantee about when the hardware writes it back.
		 * If the HPTE is not writable then it is stable since the
		 * page can't be written to, and we would have done a tlbie
		 * (which forces the hardware to complete any writeback)
		 * when making the HPTE read-only.
		 * If vcpus are running then this call is racy anyway
		 * since the page could get dirtied subsequently, so we
		 * expect there to be a further call which would pick up
		 * any delayed C bit writeback.
		 * Otherwise we need to do the tlbie even if C==0 in
		 * order to pick up any delayed writeback of C.
		 */
1026 1027 1028
		hptep1 = be64_to_cpu(hptep[1]);
		if (!(hptep1 & HPTE_R_C) &&
		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1029 1030 1031 1032 1033
			continue;

		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
1034
			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1035 1036 1037 1038 1039
				cpu_relax();
			goto retry;
		}

		/* Now check and modify the HPTE */
1040
		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1041
			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1042
			continue;
1043
		}
1044 1045

		/* need to make it temporarily absent so C is stable */
1046
		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1047
		kvmppc_invalidate_hpte(kvm, hptep, i);
1048 1049
		v = be64_to_cpu(hptep[0]);
		r = be64_to_cpu(hptep[1]);
1050
		if (r & HPTE_R_C) {
1051
			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1052 1053 1054 1055
			if (!(rev[i].guest_rpte & HPTE_R_C)) {
				rev[i].guest_rpte |= HPTE_R_C;
				note_hpte_modification(kvm, &rev[i]);
			}
1056
			n = hpte_page_size(v, r);
1057 1058 1059
			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
			if (n > npages_dirty)
				npages_dirty = n;
1060
			eieio();
1061
		}
1062
		v &= ~HPTE_V_ABSENT;
1063
		v |= HPTE_V_VALID;
1064
		__unlock_hpte(hptep, v);
1065 1066 1067
	} while ((i = j) != head);

	unlock_rmap(rmapp);
1068
	return npages_dirty;
1069 1070
}

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
			      struct kvm_memory_slot *memslot,
			      unsigned long *map)
{
	unsigned long gfn;

	if (!vpa->dirty || !vpa->pinned_addr)
		return;
	gfn = vpa->gpa >> PAGE_SHIFT;
	if (gfn < memslot->base_gfn ||
	    gfn >= memslot->base_gfn + memslot->npages)
		return;

	vpa->dirty = false;
	if (map)
		__set_bit_le(gfn - memslot->base_gfn, map);
}

1089 1090
long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
			     unsigned long *map)
1091
{
1092
	unsigned long i, j;
1093
	unsigned long *rmapp;
1094
	struct kvm_vcpu *vcpu;
1095 1096

	preempt_disable();
1097
	rmapp = memslot->arch.rmap;
1098
	for (i = 0; i < memslot->npages; ++i) {
1099 1100 1101 1102 1103 1104 1105 1106 1107
		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
		/*
		 * Note that if npages > 0 then i must be a multiple of npages,
		 * since we always put huge-page HPTEs in the rmap chain
		 * corresponding to their page base address.
		 */
		if (npages && map)
			for (j = i; npages; ++j, --npages)
				__set_bit_le(j, map);
1108 1109
		++rmapp;
	}
1110 1111 1112 1113 1114 1115 1116 1117 1118

	/* Harvest dirty bits from VPA and DTL updates */
	/* Note: we never modify the SLB shadow buffer areas */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		spin_lock(&vcpu->arch.vpa_update_lock);
		harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
		harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
		spin_unlock(&vcpu->arch.vpa_update_lock);
	}
1119 1120 1121 1122
	preempt_enable();
	return 0;
}

1123 1124 1125 1126 1127
void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
			    unsigned long *nb_ret)
{
	struct kvm_memory_slot *memslot;
	unsigned long gfn = gpa >> PAGE_SHIFT;
1128 1129
	struct page *page, *pages[1];
	int npages;
1130
	unsigned long hva, offset;
1131
	int srcu_idx;
1132

1133
	srcu_idx = srcu_read_lock(&kvm->srcu);
1134 1135
	memslot = gfn_to_memslot(kvm, gfn);
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1136
		goto err;
1137 1138 1139 1140 1141
	hva = gfn_to_hva_memslot(memslot, gfn);
	npages = get_user_pages_fast(hva, 1, 1, pages);
	if (npages < 1)
		goto err;
	page = pages[0];
1142 1143
	srcu_read_unlock(&kvm->srcu, srcu_idx);

1144
	offset = gpa & (PAGE_SIZE - 1);
1145
	if (nb_ret)
1146
		*nb_ret = PAGE_SIZE - offset;
1147
	return page_address(page) + offset;
1148 1149 1150 1151

 err:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	return NULL;
1152 1153
}

1154 1155
void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
			     bool dirty)
1156 1157
{
	struct page *page = virt_to_page(va);
1158 1159 1160 1161
	struct kvm_memory_slot *memslot;
	unsigned long gfn;
	unsigned long *rmap;
	int srcu_idx;
1162 1163

	put_page(page);
1164

1165
	if (!dirty)
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
		return;

	/* We need to mark this page dirty in the rmap chain */
	gfn = gpa >> PAGE_SHIFT;
	srcu_idx = srcu_read_lock(&kvm->srcu);
	memslot = gfn_to_memslot(kvm, gfn);
	if (memslot) {
		rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
		lock_rmap(rmap);
		*rmap |= KVMPPC_RMAP_CHANGED;
		unlock_rmap(rmap);
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1179 1180
}

1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
/*
 * Functions for reading and writing the hash table via reads and
 * writes on a file descriptor.
 *
 * Reads return the guest view of the hash table, which has to be
 * pieced together from the real hash table and the guest_rpte
 * values in the revmap array.
 *
 * On writes, each HPTE written is considered in turn, and if it
 * is valid, it is written to the HPT as if an H_ENTER with the
 * exact flag set was done.  When the invalid count is non-zero
 * in the header written to the stream, the kernel will make
 * sure that that many HPTEs are invalid, and invalidate them
 * if not.
 */

struct kvm_htab_ctx {
	unsigned long	index;
	unsigned long	flags;
	struct kvm	*kvm;
	int		first_pass;
};

#define HPTE_SIZE	(2 * sizeof(unsigned long))

1206 1207 1208 1209
/*
 * Returns 1 if this HPT entry has been modified or has pending
 * R/C bit changes.
 */
1210
static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1211 1212 1213 1214 1215 1216 1217 1218
{
	unsigned long rcbits_unset;

	if (revp->guest_rpte & HPTE_GR_MODIFIED)
		return 1;

	/* Also need to consider changes in reference and changed bits */
	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1219 1220
	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1221 1222 1223 1224 1225
		return 1;

	return 0;
}

1226
static long record_hpte(unsigned long flags, __be64 *hptp,
1227 1228 1229
			unsigned long *hpte, struct revmap_entry *revp,
			int want_valid, int first_pass)
{
1230
	unsigned long v, r, hr;
1231
	unsigned long rcbits_unset;
1232 1233 1234 1235
	int ok = 1;
	int valid, dirty;

	/* Unmodified entries are uninteresting except on the first pass */
1236
	dirty = hpte_dirty(revp, hptp);
1237 1238 1239 1240
	if (!first_pass && !dirty)
		return 0;

	valid = 0;
1241
	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1242 1243
		valid = 1;
		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1244
		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
			valid = 0;
	}
	if (valid != want_valid)
		return 0;

	v = r = 0;
	if (valid || dirty) {
		/* lock the HPTE so it's stable and read it */
		preempt_disable();
		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
			cpu_relax();
1256
		v = be64_to_cpu(hptp[0]);
1257 1258 1259 1260 1261
		hr = be64_to_cpu(hptp[1]);
		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
			v = hpte_new_to_old_v(v, hr);
			hr = hpte_new_to_old_r(hr);
		}
1262 1263 1264 1265 1266 1267 1268

		/* re-evaluate valid and dirty from synchronized HPTE value */
		valid = !!(v & HPTE_V_VALID);
		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);

		/* Harvest R and C into guest view if necessary */
		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1269 1270
		if (valid && (rcbits_unset & hr)) {
			revp->guest_rpte |= (hr &
1271
				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1272 1273 1274
			dirty = 1;
		}

1275 1276 1277
		if (v & HPTE_V_ABSENT) {
			v &= ~HPTE_V_ABSENT;
			v |= HPTE_V_VALID;
1278
			valid = 1;
1279 1280 1281
		}
		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
			valid = 0;
1282 1283

		r = revp->guest_rpte;
1284 1285 1286 1287 1288
		/* only clear modified if this is the right sort of entry */
		if (valid == want_valid && dirty) {
			r &= ~HPTE_GR_MODIFIED;
			revp->guest_rpte = r;
		}
1289
		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1290 1291 1292 1293
		preempt_enable();
		if (!(valid == want_valid && (first_pass || dirty)))
			ok = 0;
	}
1294 1295
	hpte[0] = cpu_to_be64(v);
	hpte[1] = cpu_to_be64(r);
1296 1297 1298 1299 1300 1301 1302 1303 1304
	return ok;
}

static ssize_t kvm_htab_read(struct file *file, char __user *buf,
			     size_t count, loff_t *ppos)
{
	struct kvm_htab_ctx *ctx = file->private_data;
	struct kvm *kvm = ctx->kvm;
	struct kvm_get_htab_header hdr;
1305
	__be64 *hptp;
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
	struct revmap_entry *revp;
	unsigned long i, nb, nw;
	unsigned long __user *lbuf;
	struct kvm_get_htab_header __user *hptr;
	unsigned long flags;
	int first_pass;
	unsigned long hpte[2];

	if (!access_ok(VERIFY_WRITE, buf, count))
		return -EFAULT;

	first_pass = ctx->first_pass;
	flags = ctx->flags;

	i = ctx->index;
1321
	hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
	revp = kvm->arch.revmap + i;
	lbuf = (unsigned long __user *)buf;

	nb = 0;
	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
		/* Initialize header */
		hptr = (struct kvm_get_htab_header __user *)buf;
		hdr.n_valid = 0;
		hdr.n_invalid = 0;
		nw = nb;
		nb += sizeof(hdr);
		lbuf = (unsigned long __user *)(buf + sizeof(hdr));

		/* Skip uninteresting entries, i.e. clean on not-first pass */
		if (!first_pass) {
			while (i < kvm->arch.hpt_npte &&
1338
			       !hpte_dirty(revp, hptp)) {
1339 1340 1341 1342 1343
				++i;
				hptp += 2;
				++revp;
			}
		}
1344
		hdr.index = i;
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404

		/* Grab a series of valid entries */
		while (i < kvm->arch.hpt_npte &&
		       hdr.n_valid < 0xffff &&
		       nb + HPTE_SIZE < count &&
		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
			/* valid entry, write it out */
			++hdr.n_valid;
			if (__put_user(hpte[0], lbuf) ||
			    __put_user(hpte[1], lbuf + 1))
				return -EFAULT;
			nb += HPTE_SIZE;
			lbuf += 2;
			++i;
			hptp += 2;
			++revp;
		}
		/* Now skip invalid entries while we can */
		while (i < kvm->arch.hpt_npte &&
		       hdr.n_invalid < 0xffff &&
		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
			/* found an invalid entry */
			++hdr.n_invalid;
			++i;
			hptp += 2;
			++revp;
		}

		if (hdr.n_valid || hdr.n_invalid) {
			/* write back the header */
			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
				return -EFAULT;
			nw = nb;
			buf = (char __user *)lbuf;
		} else {
			nb = nw;
		}

		/* Check if we've wrapped around the hash table */
		if (i >= kvm->arch.hpt_npte) {
			i = 0;
			ctx->first_pass = 0;
			break;
		}
	}

	ctx->index = i;

	return nb;
}

static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *ppos)
{
	struct kvm_htab_ctx *ctx = file->private_data;
	struct kvm *kvm = ctx->kvm;
	struct kvm_get_htab_header hdr;
	unsigned long i, j;
	unsigned long v, r;
	unsigned long __user *lbuf;
1405
	__be64 *hptp;
1406 1407 1408
	unsigned long tmp[2];
	ssize_t nb;
	long int err, ret;
1409
	int hpte_setup;
1410 1411 1412 1413 1414 1415

	if (!access_ok(VERIFY_READ, buf, count))
		return -EFAULT;

	/* lock out vcpus from running while we're doing this */
	mutex_lock(&kvm->lock);
1416 1417 1418 1419
	hpte_setup = kvm->arch.hpte_setup_done;
	if (hpte_setup) {
		kvm->arch.hpte_setup_done = 0;	/* temporarily */
		/* order hpte_setup_done vs. vcpus_running */
1420 1421
		smp_mb();
		if (atomic_read(&kvm->arch.vcpus_running)) {
1422
			kvm->arch.hpte_setup_done = 1;
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
			mutex_unlock(&kvm->lock);
			return -EBUSY;
		}
	}

	err = 0;
	for (nb = 0; nb + sizeof(hdr) <= count; ) {
		err = -EFAULT;
		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
			break;

		err = 0;
		if (nb + hdr.n_valid * HPTE_SIZE > count)
			break;

		nb += sizeof(hdr);
		buf += sizeof(hdr);

		err = -EINVAL;
		i = hdr.index;
		if (i >= kvm->arch.hpt_npte ||
		    i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
			break;

1447
		hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1448 1449
		lbuf = (unsigned long __user *)buf;
		for (j = 0; j < hdr.n_valid; ++j) {
1450 1451 1452
			__be64 hpte_v;
			__be64 hpte_r;

1453
			err = -EFAULT;
1454 1455
			if (__get_user(hpte_v, lbuf) ||
			    __get_user(hpte_r, lbuf + 1))
1456
				goto out;
1457 1458
			v = be64_to_cpu(hpte_v);
			r = be64_to_cpu(hpte_r);
1459 1460 1461 1462 1463 1464
			err = -EINVAL;
			if (!(v & HPTE_V_VALID))
				goto out;
			lbuf += 2;
			nb += HPTE_SIZE;

1465
			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1466 1467 1468 1469 1470 1471 1472 1473 1474
				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
			err = -EIO;
			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
							 tmp);
			if (ret != H_SUCCESS) {
				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
				       "r=%lx\n", ret, i, v, r);
				goto out;
			}
1475
			if (!hpte_setup && is_vrma_hpte(v)) {
1476
				unsigned long psize = hpte_base_page_size(v, r);
1477 1478 1479 1480 1481
				unsigned long senc = slb_pgsize_encoding(psize);
				unsigned long lpcr;

				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1482 1483
				lpcr = senc << (LPCR_VRMASD_SH - 4);
				kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1484
				hpte_setup = 1;
1485 1486 1487 1488 1489 1490
			}
			++i;
			hptp += 2;
		}

		for (j = 0; j < hdr.n_invalid; ++j) {
1491
			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1492 1493 1494 1495 1496 1497 1498 1499
				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
			++i;
			hptp += 2;
		}
		err = 0;
	}

 out:
1500
	/* Order HPTE updates vs. hpte_setup_done */
1501
	smp_wmb();
1502
	kvm->arch.hpte_setup_done = hpte_setup;
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	mutex_unlock(&kvm->lock);

	if (err)
		return err;
	return nb;
}

static int kvm_htab_release(struct inode *inode, struct file *filp)
{
	struct kvm_htab_ctx *ctx = filp->private_data;

	filp->private_data = NULL;
	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
	kvm_put_kvm(ctx->kvm);
	kfree(ctx);
	return 0;
}

1522
static const struct file_operations kvm_htab_fops = {
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	.read		= kvm_htab_read,
	.write		= kvm_htab_write,
	.llseek		= default_llseek,
	.release	= kvm_htab_release,
};

int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
{
	int ret;
	struct kvm_htab_ctx *ctx;
	int rwflag;

	/* reject flags we don't recognize */
	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
		return -EINVAL;
	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
	if (!ctx)
		return -ENOMEM;
	kvm_get_kvm(kvm);
	ctx->kvm = kvm;
	ctx->index = ghf->start_index;
	ctx->flags = ghf->flags;
	ctx->first_pass = 1;

	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1548
	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	if (ret < 0) {
		kvm_put_kvm(kvm);
		return ret;
	}

	if (rwflag == O_RDONLY) {
		mutex_lock(&kvm->slots_lock);
		atomic_inc(&kvm->arch.hpte_mod_interest);
		/* make sure kvmppc_do_h_enter etc. see the increment */
		synchronize_srcu_expedited(&kvm->srcu);
		mutex_unlock(&kvm->slots_lock);
	}

	return ret;
}

1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
struct debugfs_htab_state {
	struct kvm	*kvm;
	struct mutex	mutex;
	unsigned long	hpt_index;
	int		chars_left;
	int		buf_index;
	char		buf[64];
};

static int debugfs_htab_open(struct inode *inode, struct file *file)
{
	struct kvm *kvm = inode->i_private;
	struct debugfs_htab_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(kvm);
	p->kvm = kvm;
	mutex_init(&p->mutex);
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_htab_release(struct inode *inode, struct file *file)
{
	struct debugfs_htab_state *p = file->private_data;

	kvm_put_kvm(p->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
				 size_t len, loff_t *ppos)
{
	struct debugfs_htab_state *p = file->private_data;
	ssize_t ret, r;
	unsigned long i, n;
	unsigned long v, hr, gr;
	struct kvm *kvm;
	__be64 *hptp;

	ret = mutex_lock_interruptible(&p->mutex);
	if (ret)
		return ret;

	if (p->chars_left) {
		n = p->chars_left;
		if (n > len)
			n = len;
		r = copy_to_user(buf, p->buf + p->buf_index, n);
		n -= r;
		p->chars_left -= n;
		p->buf_index += n;
		buf += n;
		len -= n;
		ret = n;
		if (r) {
			if (!n)
				ret = -EFAULT;
			goto out;
		}
	}

	kvm = p->kvm;
	i = p->hpt_index;
	hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
	for (; len != 0 && i < kvm->arch.hpt_npte; ++i, hptp += 2) {
		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
			continue;

		/* lock the HPTE so it's stable and read it */
		preempt_disable();
		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
			cpu_relax();
		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
		hr = be64_to_cpu(hptp[1]);
		gr = kvm->arch.revmap[i].guest_rpte;
		unlock_hpte(hptp, v);
		preempt_enable();

		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
			continue;

		n = scnprintf(p->buf, sizeof(p->buf),
			      "%6lx %.16lx %.16lx %.16lx\n",
			      i, v, hr, gr);
		p->chars_left = n;
		if (n > len)
			n = len;
		r = copy_to_user(buf, p->buf, n);
		n -= r;
		p->chars_left -= n;
		p->buf_index = n;
		buf += n;
		len -= n;
		ret += n;
		if (r) {
			if (!ret)
				ret = -EFAULT;
			goto out;
		}
	}
	p->hpt_index = i;

 out:
	mutex_unlock(&p->mutex);
	return ret;
}

1678
static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
			   size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_htab_fops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_htab_open,
	.release = debugfs_htab_release,
	.read	 = debugfs_htab_read,
	.write	 = debugfs_htab_write,
	.llseek	 = generic_file_llseek,
};

void kvmppc_mmu_debugfs_init(struct kvm *kvm)
{
	kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
						    kvm->arch.debugfs_dir, kvm,
						    &debugfs_htab_fops);
}

1700 1701 1702 1703
void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
{
	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;

1704
	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
1705

1706 1707 1708 1709
	if (kvm_is_radix(vcpu->kvm))
		mmu->xlate = kvmppc_mmu_radix_xlate;
	else
		mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1710 1711 1712 1713
	mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;

	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
}