book3s_64_mmu_hv.c 38.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 */

#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/gfp.h>
#include <linux/slab.h>
#include <linux/hugetlb.h>
26
#include <linux/vmalloc.h>
27
#include <linux/srcu.h>
28 29
#include <linux/anon_inodes.h>
#include <linux/file.h>
30 31 32 33 34 35 36 37 38 39

#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu-hash64.h>
#include <asm/hvcall.h>
#include <asm/synch.h>
#include <asm/ppc-opcode.h>
#include <asm/cputable.h>

40 41
#include "trace_hv.h"

42 43 44
/* Power architecture requires HPT is at least 256kB */
#define PPC_MIN_HPT_ORDER	18

45 46 47
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
				long pte_index, unsigned long pteh,
				unsigned long ptel, unsigned long *pte_idx_ret);
48
static void kvmppc_rmap_reset(struct kvm *kvm);
49

50
long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
51
{
52
	unsigned long hpt = 0;
53
	struct revmap_entry *rev;
54 55
	struct page *page = NULL;
	long order = KVM_DEFAULT_HPT_ORDER;
56

57 58 59 60 61 62
	if (htab_orderp) {
		order = *htab_orderp;
		if (order < PPC_MIN_HPT_ORDER)
			order = PPC_MIN_HPT_ORDER;
	}

63
	kvm->arch.hpt_cma_alloc = 0;
64
	page = kvm_alloc_hpt(1ul << (order - PAGE_SHIFT));
65 66
	if (page) {
		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
67
		memset((void *)hpt, 0, (1ul << order));
68
		kvm->arch.hpt_cma_alloc = 1;
69
	}
70 71 72 73 74 75 76 77 78 79 80 81

	/* Lastly try successively smaller sizes from the page allocator */
	while (!hpt && order > PPC_MIN_HPT_ORDER) {
		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
				       __GFP_NOWARN, order - PAGE_SHIFT);
		if (!hpt)
			--order;
	}

	if (!hpt)
		return -ENOMEM;

82
	kvm->arch.hpt_virt = hpt;
83 84 85 86 87
	kvm->arch.hpt_order = order;
	/* HPTEs are 2**4 bytes long */
	kvm->arch.hpt_npte = 1ul << (order - 4);
	/* 128 (2**7) bytes in each HPTEG */
	kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
88

89
	/* Allocate reverse map array */
90
	rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
91 92 93 94 95
	if (!rev) {
		pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
		goto out_freehpt;
	}
	kvm->arch.revmap = rev;
96
	kvm->arch.sdr1 = __pa(hpt) | (order - 18);
97

98 99
	pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
		hpt, order, kvm->arch.lpid);
100

101 102
	if (htab_orderp)
		*htab_orderp = order;
103
	return 0;
104 105

 out_freehpt:
106 107
	if (kvm->arch.hpt_cma_alloc)
		kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
108 109
	else
		free_pages(hpt, order - PAGE_SHIFT);
110
	return -ENOMEM;
111 112
}

113 114 115 116 117 118
long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
{
	long err = -EBUSY;
	long order;

	mutex_lock(&kvm->lock);
119 120 121
	if (kvm->arch.hpte_setup_done) {
		kvm->arch.hpte_setup_done = 0;
		/* order hpte_setup_done vs. vcpus_running */
122 123
		smp_mb();
		if (atomic_read(&kvm->arch.vcpus_running)) {
124
			kvm->arch.hpte_setup_done = 1;
125 126 127 128 129 130 131
			goto out;
		}
	}
	if (kvm->arch.hpt_virt) {
		order = kvm->arch.hpt_order;
		/* Set the entire HPT to 0, i.e. invalid HPTEs */
		memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
132 133 134 135
		/*
		 * Reset all the reverse-mapping chains for all memslots
		 */
		kvmppc_rmap_reset(kvm);
136 137
		/* Ensure that each vcpu will flush its TLB on next entry. */
		cpumask_setall(&kvm->arch.need_tlb_flush);
138 139 140 141 142 143 144 145 146 147 148
		*htab_orderp = order;
		err = 0;
	} else {
		err = kvmppc_alloc_hpt(kvm, htab_orderp);
		order = *htab_orderp;
	}
 out:
	mutex_unlock(&kvm->lock);
	return err;
}

149 150
void kvmppc_free_hpt(struct kvm *kvm)
{
151
	kvmppc_free_lpid(kvm->arch.lpid);
152
	vfree(kvm->arch.revmap);
153 154 155
	if (kvm->arch.hpt_cma_alloc)
		kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
				1 << (kvm->arch.hpt_order - PAGE_SHIFT));
A
Alexander Graf 已提交
156
	else
157 158
		free_pages(kvm->arch.hpt_virt,
			   kvm->arch.hpt_order - PAGE_SHIFT);
159 160
}

161 162 163 164 165 166 167 168 169 170 171 172 173 174
/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
{
	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
}

/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
{
	return (pgsize == 0x10000) ? 0x1000 : 0;
}

void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
		     unsigned long porder)
175 176
{
	unsigned long i;
177
	unsigned long npages;
178 179
	unsigned long hp_v, hp_r;
	unsigned long addr, hash;
180 181
	unsigned long psize;
	unsigned long hp0, hp1;
182
	unsigned long idx_ret;
183
	long ret;
184
	struct kvm *kvm = vcpu->kvm;
185

186 187
	psize = 1ul << porder;
	npages = memslot->npages >> (porder - PAGE_SHIFT);
188 189

	/* VRMA can't be > 1TB */
190 191
	if (npages > 1ul << (40 - porder))
		npages = 1ul << (40 - porder);
192
	/* Can't use more than 1 HPTE per HPTEG */
193 194
	if (npages > kvm->arch.hpt_mask + 1)
		npages = kvm->arch.hpt_mask + 1;
195

196 197 198 199 200
	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
	hp1 = hpte1_pgsize_encoding(psize) |
		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;

201
	for (i = 0; i < npages; ++i) {
202
		addr = i << porder;
203
		/* can't use hpt_hash since va > 64 bits */
204
		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
205 206 207 208 209 210
		/*
		 * We assume that the hash table is empty and no
		 * vcpus are using it at this stage.  Since we create
		 * at most one HPTE per HPTEG, we just assume entry 7
		 * is available and use it.
		 */
211
		hash = (hash << 3) + 7;
212 213
		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
		hp_r = hp1 | addr;
214 215
		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
						 &idx_ret);
216 217 218 219 220
		if (ret != H_SUCCESS) {
			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
			       addr, ret);
			break;
		}
221 222 223 224 225
	}
}

int kvmppc_mmu_hv_init(void)
{
226 227 228
	unsigned long host_lpid, rsvd_lpid;

	if (!cpu_has_feature(CPU_FTR_HVMODE))
229
		return -EINVAL;
230

231 232 233
	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
	host_lpid = mfspr(SPRN_LPID);
	rsvd_lpid = LPID_RSVD;
234

235 236 237
	kvmppc_init_lpid(rsvd_lpid + 1);

	kvmppc_claim_lpid(host_lpid);
238
	/* rsvd_lpid is reserved for use in partition switching */
239
	kvmppc_claim_lpid(rsvd_lpid);
240 241 242 243 244 245

	return 0;
}

static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
{
246 247 248 249 250 251 252 253
	unsigned long msr = vcpu->arch.intr_msr;

	/* If transactional, change to suspend mode on IRQ delivery */
	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
		msr |= MSR_TS_S;
	else
		msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
	kvmppc_set_msr(vcpu, msr);
254 255
}

256 257 258
long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
				long pte_index, unsigned long pteh,
				unsigned long ptel, unsigned long *pte_idx_ret)
259 260 261
{
	long ret;

262 263
	/* Protect linux PTE lookup from page table destruction */
	rcu_read_lock_sched();	/* this disables preemption too */
264 265
	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
				current->mm->pgd, false, pte_idx_ret);
266
	rcu_read_unlock_sched();
267 268 269 270 271 272 273 274 275
	if (ret == H_TOO_HARD) {
		/* this can't happen */
		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
		ret = H_RESOURCE;	/* or something */
	}
	return ret;

}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
							 gva_t eaddr)
{
	u64 mask;
	int i;

	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
			continue;

		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
			mask = ESID_MASK_1T;
		else
			mask = ESID_MASK;

		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
			return &vcpu->arch.slb[i];
	}
	return NULL;
}

static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
			unsigned long ea)
{
	unsigned long ra_mask;

	ra_mask = hpte_page_size(v, r) - 1;
	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
}

306
static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
307
			struct kvmppc_pte *gpte, bool data, bool iswrite)
308
{
309 310 311 312 313
	struct kvm *kvm = vcpu->kvm;
	struct kvmppc_slb *slbe;
	unsigned long slb_v;
	unsigned long pp, key;
	unsigned long v, gr;
314
	__be64 *hptep;
315 316 317 318 319 320 321 322 323 324 325 326 327 328
	int index;
	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);

	/* Get SLB entry */
	if (virtmode) {
		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
		if (!slbe)
			return -EINVAL;
		slb_v = slbe->origv;
	} else {
		/* real mode access */
		slb_v = vcpu->kvm->arch.vrma_slb_v;
	}

329
	preempt_disable();
330 331 332
	/* Find the HPTE in the hash table */
	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
					 HPTE_V_VALID | HPTE_V_ABSENT);
333 334
	if (index < 0) {
		preempt_enable();
335
		return -ENOENT;
336
	}
337 338
	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
	v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
339 340
	gr = kvm->arch.revmap[index].guest_rpte;

341
	unlock_hpte(hptep, v);
342
	preempt_enable();
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

	gpte->eaddr = eaddr;
	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);

	/* Get PP bits and key for permission check */
	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
	key &= slb_v;

	/* Calculate permissions */
	gpte->may_read = hpte_read_permission(pp, key);
	gpte->may_write = hpte_write_permission(pp, key);
	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));

	/* Storage key permission check for POWER7 */
358
	if (data && virtmode) {
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
		if (amrfield & 1)
			gpte->may_read = 0;
		if (amrfield & 2)
			gpte->may_write = 0;
	}

	/* Get the guest physical address */
	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
	return 0;
}

/*
 * Quick test for whether an instruction is a load or a store.
 * If the instruction is a load or a store, then this will indicate
 * which it is, at least on server processors.  (Embedded processors
 * have some external PID instructions that don't follow the rule
 * embodied here.)  If the instruction isn't a load or store, then
 * this doesn't return anything useful.
 */
static int instruction_is_store(unsigned int instr)
{
	unsigned int mask;

	mask = 0x10000000;
	if ((instr & 0xfc000000) == 0x7c000000)
		mask = 0x100;		/* major opcode 31 */
	return (instr & mask) != 0;
}

static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
390
				  unsigned long gpa, gva_t ea, int is_store)
391 392 393
{
	u32 last_inst;

394
	/*
395 396
	 * If we fail, we just return to the guest and try executing it again.
	 */
397 398 399
	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
		EMULATE_DONE)
		return RESUME_GUEST;
400 401 402 403 404 405 406 407 408 409 410 411 412

	/*
	 * WARNING: We do not know for sure whether the instruction we just
	 * read from memory is the same that caused the fault in the first
	 * place.  If the instruction we read is neither an load or a store,
	 * then it can't access memory, so we don't need to worry about
	 * enforcing access permissions.  So, assuming it is a load or
	 * store, we just check that its direction (load or store) is
	 * consistent with the original fault, since that's what we
	 * checked the access permissions against.  If there is a mismatch
	 * we just return and retry the instruction.
	 */

413
	if (instruction_is_store(last_inst) != !!is_store)
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
		return RESUME_GUEST;

	/*
	 * Emulated accesses are emulated by looking at the hash for
	 * translation once, then performing the access later. The
	 * translation could be invalidated in the meantime in which
	 * point performing the subsequent memory access on the old
	 * physical address could possibly be a security hole for the
	 * guest (but not the host).
	 *
	 * This is less of an issue for MMIO stores since they aren't
	 * globally visible. It could be an issue for MMIO loads to
	 * a certain extent but we'll ignore it for now.
	 */

	vcpu->arch.paddr_accessed = gpa;
430
	vcpu->arch.vaddr_accessed = ea;
431 432 433 434 435 436 437
	return kvmppc_emulate_mmio(run, vcpu);
}

int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
				unsigned long ea, unsigned long dsisr)
{
	struct kvm *kvm = vcpu->kvm;
438 439
	unsigned long hpte[3], r;
	__be64 *hptep;
440
	unsigned long mmu_seq, psize, pte_size;
441
	unsigned long gpa_base, gfn_base;
442
	unsigned long gpa, gfn, hva, pfn;
443
	struct kvm_memory_slot *memslot;
444
	unsigned long *rmap;
445
	struct revmap_entry *rev;
446 447 448
	struct page *page, *pages[1];
	long index, ret, npages;
	unsigned long is_io;
449
	unsigned int writing, write_ok;
450
	struct vm_area_struct *vma;
451
	unsigned long rcbits;
452 453 454 455 456 457 458 459 460 461

	/*
	 * Real-mode code has already searched the HPT and found the
	 * entry we're interested in.  Lock the entry and check that
	 * it hasn't changed.  If it has, just return and re-execute the
	 * instruction.
	 */
	if (ea != vcpu->arch.pgfault_addr)
		return RESUME_GUEST;
	index = vcpu->arch.pgfault_index;
462
	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
463 464 465 466
	rev = &kvm->arch.revmap[index];
	preempt_disable();
	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
		cpu_relax();
467 468
	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
	hpte[1] = be64_to_cpu(hptep[1]);
469
	hpte[2] = r = rev->guest_rpte;
470
	unlock_hpte(hptep, hpte[0]);
471 472 473 474 475 476 477
	preempt_enable();

	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
	    hpte[1] != vcpu->arch.pgfault_hpte[1])
		return RESUME_GUEST;

	/* Translate the logical address and get the page */
478
	psize = hpte_page_size(hpte[0], r);
479 480 481
	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
	gfn_base = gpa_base >> PAGE_SHIFT;
	gpa = gpa_base | (ea & (psize - 1));
482
	gfn = gpa >> PAGE_SHIFT;
483 484
	memslot = gfn_to_memslot(kvm, gfn);

485 486
	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);

487
	/* No memslot means it's an emulated MMIO region */
488
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
489
		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
490 491
					      dsisr & DSISR_ISSTORE);

492 493 494 495 496 497 498
	/*
	 * This should never happen, because of the slot_is_aligned()
	 * check in kvmppc_do_h_enter().
	 */
	if (gfn_base < memslot->base_gfn)
		return -EFAULT;

499 500 501 502
	/* used to check for invalidations in progress */
	mmu_seq = kvm->mmu_notifier_seq;
	smp_rmb();

503
	ret = -EFAULT;
504 505 506 507
	is_io = 0;
	pfn = 0;
	page = NULL;
	pte_size = PAGE_SIZE;
508 509 510
	writing = (dsisr & DSISR_ISSTORE) != 0;
	/* If writing != 0, then the HPTE must allow writing, if we get here */
	write_ok = writing;
511
	hva = gfn_to_hva_memslot(memslot, gfn);
512
	npages = get_user_pages_fast(hva, 1, writing, pages);
513 514 515 516 517 518 519 520 521 522
	if (npages < 1) {
		/* Check if it's an I/O mapping */
		down_read(&current->mm->mmap_sem);
		vma = find_vma(current->mm, hva);
		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
		    (vma->vm_flags & VM_PFNMAP)) {
			pfn = vma->vm_pgoff +
				((hva - vma->vm_start) >> PAGE_SHIFT);
			pte_size = psize;
			is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
523
			write_ok = vma->vm_flags & VM_WRITE;
524 525 526
		}
		up_read(&current->mm->mmap_sem);
		if (!pfn)
527
			goto out_put;
528 529
	} else {
		page = pages[0];
530
		pfn = page_to_pfn(page);
531 532 533 534
		if (PageHuge(page)) {
			page = compound_head(page);
			pte_size <<= compound_order(page);
		}
535 536
		/* if the guest wants write access, see if that is OK */
		if (!writing && hpte_is_writable(r)) {
537
			unsigned int hugepage_shift;
538 539 540 541 542 543 544 545
			pte_t *ptep, pte;

			/*
			 * We need to protect against page table destruction
			 * while looking up and updating the pte.
			 */
			rcu_read_lock_sched();
			ptep = find_linux_pte_or_hugepte(current->mm->pgd,
546 547 548 549
							 hva, &hugepage_shift);
			if (ptep) {
				pte = kvmppc_read_update_linux_pte(ptep, 1,
							   hugepage_shift);
550 551 552 553 554
				if (pte_write(pte))
					write_ok = 1;
			}
			rcu_read_unlock_sched();
		}
555 556 557 558 559 560 561 562
	}

	if (psize > pte_size)
		goto out_put;

	/* Check WIMG vs. the actual page we're accessing */
	if (!hpte_cache_flags_ok(r, is_io)) {
		if (is_io)
563 564
			goto out_put;

565 566 567 568 569 570 571
		/*
		 * Allow guest to map emulated device memory as
		 * uncacheable, but actually make it cacheable.
		 */
		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
	}

572 573 574 575 576 577 578 579
	/*
	 * Set the HPTE to point to pfn.
	 * Since the pfn is at PAGE_SIZE granularity, make sure we
	 * don't mask out lower-order bits if psize < PAGE_SIZE.
	 */
	if (psize < PAGE_SIZE)
		psize = PAGE_SIZE;
	r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
580 581
	if (hpte_is_writable(r) && !write_ok)
		r = hpte_make_readonly(r);
582 583 584 585
	ret = RESUME_GUEST;
	preempt_disable();
	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
		cpu_relax();
586 587 588
	if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
		be64_to_cpu(hptep[1]) != hpte[1] ||
		rev->guest_rpte != hpte[2])
589 590 591 592
		/* HPTE has been changed under us; let the guest retry */
		goto out_unlock;
	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;

593 594
	/* Always put the HPTE in the rmap chain for the page base address */
	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
595 596 597 598
	lock_rmap(rmap);

	/* Check if we might have been invalidated; let the guest retry if so */
	ret = RESUME_GUEST;
599
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
600 601 602
		unlock_rmap(rmap);
		goto out_unlock;
	}
603

604 605 606 607
	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);

608
	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
609 610
		/* HPTE was previously valid, so we need to invalidate it */
		unlock_rmap(rmap);
611
		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
612
		kvmppc_invalidate_hpte(kvm, hptep, index);
613
		/* don't lose previous R and C bits */
614
		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
615 616 617
	} else {
		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
	}
618

619
	hptep[1] = cpu_to_be64(r);
620
	eieio();
621
	__unlock_hpte(hptep, hpte[0]);
622 623
	asm volatile("ptesync" : : : "memory");
	preempt_enable();
624
	if (page && hpte_is_writable(r))
625 626 627
		SetPageDirty(page);

 out_put:
628 629
	trace_kvm_page_fault_exit(vcpu, hpte, ret);

630 631 632 633 634 635 636 637 638
	if (page) {
		/*
		 * We drop pages[0] here, not page because page might
		 * have been set to the head page of a compound, but
		 * we have to drop the reference on the correct tail
		 * page to match the get inside gup()
		 */
		put_page(pages[0]);
	}
639 640 641
	return ret;

 out_unlock:
642
	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
643 644 645 646
	preempt_enable();
	goto out_put;
}

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
static void kvmppc_rmap_reset(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int srcu_idx;

	srcu_idx = srcu_read_lock(&kvm->srcu);
	slots = kvm->memslots;
	kvm_for_each_memslot(memslot, slots) {
		/*
		 * This assumes it is acceptable to lose reference and
		 * change bits across a reset.
		 */
		memset(memslot->arch.rmap, 0,
		       memslot->npages * sizeof(*memslot->arch.rmap));
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
}

666 667 668 669 670 671
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
					       unsigned long gfn))
672 673 674 675 676 677 678 679
{
	int ret;
	int retval = 0;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
680 681 682 683 684 685 686 687 688 689 690 691 692 693
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
694

695
		for (; gfn < gfn_end; ++gfn) {
696
			gfn_t gfn_offset = gfn - memslot->base_gfn;
697

698
			ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
699 700 701 702 703 704 705
			retval |= ret;
		}
	}

	return retval;
}

706 707 708 709 710 711 712
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
					 unsigned long gfn))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
}

713 714 715 716 717
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
			   unsigned long gfn)
{
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long h, i, j;
718
	__be64 *hptep;
719
	unsigned long ptel, psize, rcbits;
720 721

	for (;;) {
722
		lock_rmap(rmapp);
723
		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
724
			unlock_rmap(rmapp);
725 726 727 728 729
			break;
		}

		/*
		 * To avoid an ABBA deadlock with the HPTE lock bit,
730 731
		 * we can't spin on the HPTE lock while holding the
		 * rmap chain lock.
732 733
		 */
		i = *rmapp & KVMPPC_RMAP_INDEX;
734
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
735 736 737
		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
738
			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
739 740 741
				cpu_relax();
			continue;
		}
742 743 744
		j = rev[i].forw;
		if (j == i) {
			/* chain is now empty */
745
			*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
746 747 748 749 750 751
		} else {
			/* remove i from chain */
			h = rev[i].back;
			rev[h].forw = j;
			rev[j].back = h;
			rev[i].forw = rev[i].back = i;
752
			*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
753 754
		}

755
		/* Now check and modify the HPTE */
756
		ptel = rev[i].guest_rpte;
757 758
		psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
759
		    hpte_rpn(ptel, psize) == gfn) {
760
			hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
761 762
			kvmppc_invalidate_hpte(kvm, hptep, i);
			/* Harvest R and C */
763
			rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
764
			*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
765 766 767 768
			if (rcbits & ~rev[i].guest_rpte) {
				rev[i].guest_rpte = ptel | rcbits;
				note_hpte_modification(kvm, &rev[i]);
			}
769
		}
770
		unlock_rmap(rmapp);
771
		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
772 773 774 775
	}
	return 0;
}

776
int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
777
{
778
	kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
779 780 781
	return 0;
}

782
int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
783
{
784
	kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
785 786 787
	return 0;
}

788 789
void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
				  struct kvm_memory_slot *memslot)
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
{
	unsigned long *rmapp;
	unsigned long gfn;
	unsigned long n;

	rmapp = memslot->arch.rmap;
	gfn = memslot->base_gfn;
	for (n = memslot->npages; n; --n) {
		/*
		 * Testing the present bit without locking is OK because
		 * the memslot has been marked invalid already, and hence
		 * no new HPTEs referencing this page can be created,
		 * thus the present bit can't go from 0 to 1.
		 */
		if (*rmapp & KVMPPC_RMAP_PRESENT)
			kvm_unmap_rmapp(kvm, rmapp, gfn);
		++rmapp;
		++gfn;
	}
}

811 812 813
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
			 unsigned long gfn)
{
814 815
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
816
	__be64 *hptep;
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
	int ret = 0;

 retry:
	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
		ret = 1;
	}
	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
		unlock_rmap(rmapp);
		return ret;
	}

	i = head = *rmapp & KVMPPC_RMAP_INDEX;
	do {
832
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
833 834 835
		j = rev[i].forw;

		/* If this HPTE isn't referenced, ignore it */
836
		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
837 838 839 840 841
			continue;

		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
842
			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
843 844 845 846 847
				cpu_relax();
			goto retry;
		}

		/* Now check and modify the HPTE */
848 849
		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
850
			kvmppc_clear_ref_hpte(kvm, hptep, i);
851 852 853 854
			if (!(rev[i].guest_rpte & HPTE_R_R)) {
				rev[i].guest_rpte |= HPTE_R_R;
				note_hpte_modification(kvm, &rev[i]);
			}
855 856
			ret = 1;
		}
857
		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
858 859 860 861
	} while ((i = j) != head);

	unlock_rmap(rmapp);
	return ret;
862 863
}

A
Andres Lagar-Cavilla 已提交
864
int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
865
{
A
Andres Lagar-Cavilla 已提交
866
	return kvm_handle_hva_range(kvm, start, end, kvm_age_rmapp);
867 868 869 870 871
}

static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
			      unsigned long gfn)
{
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
	unsigned long *hp;
	int ret = 1;

	if (*rmapp & KVMPPC_RMAP_REFERENCED)
		return 1;

	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_REFERENCED)
		goto out;

	if (*rmapp & KVMPPC_RMAP_PRESENT) {
		i = head = *rmapp & KVMPPC_RMAP_INDEX;
		do {
			hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
			j = rev[i].forw;
889
			if (be64_to_cpu(hp[1]) & HPTE_R_R)
890 891 892 893 894 895 896 897
				goto out;
		} while ((i = j) != head);
	}
	ret = 0;

 out:
	unlock_rmap(rmapp);
	return ret;
898 899
}

900
int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
901 902 903 904
{
	return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
}

905
void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
906 907
{
	kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
908 909
}

910 911 912 913 914
static int vcpus_running(struct kvm *kvm)
{
	return atomic_read(&kvm->arch.vcpus_running) != 0;
}

915 916 917 918 919
/*
 * Returns the number of system pages that are dirty.
 * This can be more than 1 if we find a huge-page HPTE.
 */
static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
920 921 922
{
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
923
	unsigned long n;
924
	unsigned long v, r;
925
	__be64 *hptep;
926
	int npages_dirty = 0;
927 928 929 930 931

 retry:
	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_CHANGED) {
		*rmapp &= ~KVMPPC_RMAP_CHANGED;
932
		npages_dirty = 1;
933 934 935
	}
	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
		unlock_rmap(rmapp);
936
		return npages_dirty;
937 938 939 940
	}

	i = head = *rmapp & KVMPPC_RMAP_INDEX;
	do {
941 942
		unsigned long hptep1;
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
943 944
		j = rev[i].forw;

945 946 947 948 949 950 951 952 953 954 955 956 957 958
		/*
		 * Checking the C (changed) bit here is racy since there
		 * is no guarantee about when the hardware writes it back.
		 * If the HPTE is not writable then it is stable since the
		 * page can't be written to, and we would have done a tlbie
		 * (which forces the hardware to complete any writeback)
		 * when making the HPTE read-only.
		 * If vcpus are running then this call is racy anyway
		 * since the page could get dirtied subsequently, so we
		 * expect there to be a further call which would pick up
		 * any delayed C bit writeback.
		 * Otherwise we need to do the tlbie even if C==0 in
		 * order to pick up any delayed writeback of C.
		 */
959 960 961
		hptep1 = be64_to_cpu(hptep[1]);
		if (!(hptep1 & HPTE_R_C) &&
		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
962 963 964 965 966
			continue;

		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
967
			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
968 969 970 971 972
				cpu_relax();
			goto retry;
		}

		/* Now check and modify the HPTE */
973
		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
974
			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
975
			continue;
976
		}
977 978

		/* need to make it temporarily absent so C is stable */
979
		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
980
		kvmppc_invalidate_hpte(kvm, hptep, i);
981 982
		v = be64_to_cpu(hptep[0]);
		r = be64_to_cpu(hptep[1]);
983
		if (r & HPTE_R_C) {
984
			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
985 986 987 988
			if (!(rev[i].guest_rpte & HPTE_R_C)) {
				rev[i].guest_rpte |= HPTE_R_C;
				note_hpte_modification(kvm, &rev[i]);
			}
989
			n = hpte_page_size(v, r);
990 991 992
			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
			if (n > npages_dirty)
				npages_dirty = n;
993
			eieio();
994
		}
995
		v &= ~HPTE_V_ABSENT;
996
		v |= HPTE_V_VALID;
997
		__unlock_hpte(hptep, v);
998 999 1000
	} while ((i = j) != head);

	unlock_rmap(rmapp);
1001
	return npages_dirty;
1002 1003
}

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
			      struct kvm_memory_slot *memslot,
			      unsigned long *map)
{
	unsigned long gfn;

	if (!vpa->dirty || !vpa->pinned_addr)
		return;
	gfn = vpa->gpa >> PAGE_SHIFT;
	if (gfn < memslot->base_gfn ||
	    gfn >= memslot->base_gfn + memslot->npages)
		return;

	vpa->dirty = false;
	if (map)
		__set_bit_le(gfn - memslot->base_gfn, map);
}

1022 1023
long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
			     unsigned long *map)
1024
{
1025
	unsigned long i, j;
1026
	unsigned long *rmapp;
1027
	struct kvm_vcpu *vcpu;
1028 1029

	preempt_disable();
1030
	rmapp = memslot->arch.rmap;
1031
	for (i = 0; i < memslot->npages; ++i) {
1032 1033 1034 1035 1036 1037 1038 1039 1040
		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
		/*
		 * Note that if npages > 0 then i must be a multiple of npages,
		 * since we always put huge-page HPTEs in the rmap chain
		 * corresponding to their page base address.
		 */
		if (npages && map)
			for (j = i; npages; ++j, --npages)
				__set_bit_le(j, map);
1041 1042
		++rmapp;
	}
1043 1044 1045 1046 1047 1048 1049 1050 1051

	/* Harvest dirty bits from VPA and DTL updates */
	/* Note: we never modify the SLB shadow buffer areas */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		spin_lock(&vcpu->arch.vpa_update_lock);
		harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
		harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
		spin_unlock(&vcpu->arch.vpa_update_lock);
	}
1052 1053 1054 1055
	preempt_enable();
	return 0;
}

1056 1057 1058 1059 1060
void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
			    unsigned long *nb_ret)
{
	struct kvm_memory_slot *memslot;
	unsigned long gfn = gpa >> PAGE_SHIFT;
1061 1062
	struct page *page, *pages[1];
	int npages;
1063
	unsigned long hva, offset;
1064
	int srcu_idx;
1065

1066
	srcu_idx = srcu_read_lock(&kvm->srcu);
1067 1068
	memslot = gfn_to_memslot(kvm, gfn);
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1069
		goto err;
1070 1071 1072 1073 1074
	hva = gfn_to_hva_memslot(memslot, gfn);
	npages = get_user_pages_fast(hva, 1, 1, pages);
	if (npages < 1)
		goto err;
	page = pages[0];
1075 1076
	srcu_read_unlock(&kvm->srcu, srcu_idx);

1077
	offset = gpa & (PAGE_SIZE - 1);
1078
	if (nb_ret)
1079
		*nb_ret = PAGE_SIZE - offset;
1080
	return page_address(page) + offset;
1081 1082 1083 1084

 err:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	return NULL;
1085 1086
}

1087 1088
void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
			     bool dirty)
1089 1090
{
	struct page *page = virt_to_page(va);
1091 1092 1093 1094
	struct kvm_memory_slot *memslot;
	unsigned long gfn;
	unsigned long *rmap;
	int srcu_idx;
1095 1096

	put_page(page);
1097

1098
	if (!dirty)
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
		return;

	/* We need to mark this page dirty in the rmap chain */
	gfn = gpa >> PAGE_SHIFT;
	srcu_idx = srcu_read_lock(&kvm->srcu);
	memslot = gfn_to_memslot(kvm, gfn);
	if (memslot) {
		rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
		lock_rmap(rmap);
		*rmap |= KVMPPC_RMAP_CHANGED;
		unlock_rmap(rmap);
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1112 1113
}

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
/*
 * Functions for reading and writing the hash table via reads and
 * writes on a file descriptor.
 *
 * Reads return the guest view of the hash table, which has to be
 * pieced together from the real hash table and the guest_rpte
 * values in the revmap array.
 *
 * On writes, each HPTE written is considered in turn, and if it
 * is valid, it is written to the HPT as if an H_ENTER with the
 * exact flag set was done.  When the invalid count is non-zero
 * in the header written to the stream, the kernel will make
 * sure that that many HPTEs are invalid, and invalidate them
 * if not.
 */

struct kvm_htab_ctx {
	unsigned long	index;
	unsigned long	flags;
	struct kvm	*kvm;
	int		first_pass;
};

#define HPTE_SIZE	(2 * sizeof(unsigned long))

1139 1140 1141 1142
/*
 * Returns 1 if this HPT entry has been modified or has pending
 * R/C bit changes.
 */
1143
static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1144 1145 1146 1147 1148 1149 1150 1151
{
	unsigned long rcbits_unset;

	if (revp->guest_rpte & HPTE_GR_MODIFIED)
		return 1;

	/* Also need to consider changes in reference and changed bits */
	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1152 1153
	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1154 1155 1156 1157 1158
		return 1;

	return 0;
}

1159
static long record_hpte(unsigned long flags, __be64 *hptp,
1160 1161 1162 1163
			unsigned long *hpte, struct revmap_entry *revp,
			int want_valid, int first_pass)
{
	unsigned long v, r;
1164
	unsigned long rcbits_unset;
1165 1166 1167 1168
	int ok = 1;
	int valid, dirty;

	/* Unmodified entries are uninteresting except on the first pass */
1169
	dirty = hpte_dirty(revp, hptp);
1170 1171 1172 1173
	if (!first_pass && !dirty)
		return 0;

	valid = 0;
1174
	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1175 1176
		valid = 1;
		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1177
		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
			valid = 0;
	}
	if (valid != want_valid)
		return 0;

	v = r = 0;
	if (valid || dirty) {
		/* lock the HPTE so it's stable and read it */
		preempt_disable();
		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
			cpu_relax();
1189
		v = be64_to_cpu(hptp[0]);
1190 1191 1192 1193 1194 1195 1196

		/* re-evaluate valid and dirty from synchronized HPTE value */
		valid = !!(v & HPTE_V_VALID);
		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);

		/* Harvest R and C into guest view if necessary */
		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1197 1198 1199
		if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
			revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1200 1201 1202
			dirty = 1;
		}

1203 1204 1205
		if (v & HPTE_V_ABSENT) {
			v &= ~HPTE_V_ABSENT;
			v |= HPTE_V_VALID;
1206
			valid = 1;
1207 1208 1209
		}
		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
			valid = 0;
1210 1211

		r = revp->guest_rpte;
1212 1213 1214 1215 1216
		/* only clear modified if this is the right sort of entry */
		if (valid == want_valid && dirty) {
			r &= ~HPTE_GR_MODIFIED;
			revp->guest_rpte = r;
		}
1217
		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1218 1219 1220 1221
		preempt_enable();
		if (!(valid == want_valid && (first_pass || dirty)))
			ok = 0;
	}
1222 1223
	hpte[0] = cpu_to_be64(v);
	hpte[1] = cpu_to_be64(r);
1224 1225 1226 1227 1228 1229 1230 1231 1232
	return ok;
}

static ssize_t kvm_htab_read(struct file *file, char __user *buf,
			     size_t count, loff_t *ppos)
{
	struct kvm_htab_ctx *ctx = file->private_data;
	struct kvm *kvm = ctx->kvm;
	struct kvm_get_htab_header hdr;
1233
	__be64 *hptp;
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	struct revmap_entry *revp;
	unsigned long i, nb, nw;
	unsigned long __user *lbuf;
	struct kvm_get_htab_header __user *hptr;
	unsigned long flags;
	int first_pass;
	unsigned long hpte[2];

	if (!access_ok(VERIFY_WRITE, buf, count))
		return -EFAULT;

	first_pass = ctx->first_pass;
	flags = ctx->flags;

	i = ctx->index;
1249
	hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	revp = kvm->arch.revmap + i;
	lbuf = (unsigned long __user *)buf;

	nb = 0;
	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
		/* Initialize header */
		hptr = (struct kvm_get_htab_header __user *)buf;
		hdr.n_valid = 0;
		hdr.n_invalid = 0;
		nw = nb;
		nb += sizeof(hdr);
		lbuf = (unsigned long __user *)(buf + sizeof(hdr));

		/* Skip uninteresting entries, i.e. clean on not-first pass */
		if (!first_pass) {
			while (i < kvm->arch.hpt_npte &&
1266
			       !hpte_dirty(revp, hptp)) {
1267 1268 1269 1270 1271
				++i;
				hptp += 2;
				++revp;
			}
		}
1272
		hdr.index = i;
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332

		/* Grab a series of valid entries */
		while (i < kvm->arch.hpt_npte &&
		       hdr.n_valid < 0xffff &&
		       nb + HPTE_SIZE < count &&
		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
			/* valid entry, write it out */
			++hdr.n_valid;
			if (__put_user(hpte[0], lbuf) ||
			    __put_user(hpte[1], lbuf + 1))
				return -EFAULT;
			nb += HPTE_SIZE;
			lbuf += 2;
			++i;
			hptp += 2;
			++revp;
		}
		/* Now skip invalid entries while we can */
		while (i < kvm->arch.hpt_npte &&
		       hdr.n_invalid < 0xffff &&
		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
			/* found an invalid entry */
			++hdr.n_invalid;
			++i;
			hptp += 2;
			++revp;
		}

		if (hdr.n_valid || hdr.n_invalid) {
			/* write back the header */
			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
				return -EFAULT;
			nw = nb;
			buf = (char __user *)lbuf;
		} else {
			nb = nw;
		}

		/* Check if we've wrapped around the hash table */
		if (i >= kvm->arch.hpt_npte) {
			i = 0;
			ctx->first_pass = 0;
			break;
		}
	}

	ctx->index = i;

	return nb;
}

static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *ppos)
{
	struct kvm_htab_ctx *ctx = file->private_data;
	struct kvm *kvm = ctx->kvm;
	struct kvm_get_htab_header hdr;
	unsigned long i, j;
	unsigned long v, r;
	unsigned long __user *lbuf;
1333
	__be64 *hptp;
1334 1335 1336
	unsigned long tmp[2];
	ssize_t nb;
	long int err, ret;
1337
	int hpte_setup;
1338 1339 1340 1341 1342 1343

	if (!access_ok(VERIFY_READ, buf, count))
		return -EFAULT;

	/* lock out vcpus from running while we're doing this */
	mutex_lock(&kvm->lock);
1344 1345 1346 1347
	hpte_setup = kvm->arch.hpte_setup_done;
	if (hpte_setup) {
		kvm->arch.hpte_setup_done = 0;	/* temporarily */
		/* order hpte_setup_done vs. vcpus_running */
1348 1349
		smp_mb();
		if (atomic_read(&kvm->arch.vcpus_running)) {
1350
			kvm->arch.hpte_setup_done = 1;
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
			mutex_unlock(&kvm->lock);
			return -EBUSY;
		}
	}

	err = 0;
	for (nb = 0; nb + sizeof(hdr) <= count; ) {
		err = -EFAULT;
		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
			break;

		err = 0;
		if (nb + hdr.n_valid * HPTE_SIZE > count)
			break;

		nb += sizeof(hdr);
		buf += sizeof(hdr);

		err = -EINVAL;
		i = hdr.index;
		if (i >= kvm->arch.hpt_npte ||
		    i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
			break;

1375
		hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1376 1377
		lbuf = (unsigned long __user *)buf;
		for (j = 0; j < hdr.n_valid; ++j) {
1378 1379 1380
			__be64 hpte_v;
			__be64 hpte_r;

1381
			err = -EFAULT;
1382 1383
			if (__get_user(hpte_v, lbuf) ||
			    __get_user(hpte_r, lbuf + 1))
1384
				goto out;
1385 1386
			v = be64_to_cpu(hpte_v);
			r = be64_to_cpu(hpte_r);
1387 1388 1389 1390 1391 1392
			err = -EINVAL;
			if (!(v & HPTE_V_VALID))
				goto out;
			lbuf += 2;
			nb += HPTE_SIZE;

1393
			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1394 1395 1396 1397 1398 1399 1400 1401 1402
				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
			err = -EIO;
			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
							 tmp);
			if (ret != H_SUCCESS) {
				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
				       "r=%lx\n", ret, i, v, r);
				goto out;
			}
1403
			if (!hpte_setup && is_vrma_hpte(v)) {
1404
				unsigned long psize = hpte_base_page_size(v, r);
1405 1406 1407 1408 1409
				unsigned long senc = slb_pgsize_encoding(psize);
				unsigned long lpcr;

				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1410 1411
				lpcr = senc << (LPCR_VRMASD_SH - 4);
				kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1412
				hpte_setup = 1;
1413 1414 1415 1416 1417 1418
			}
			++i;
			hptp += 2;
		}

		for (j = 0; j < hdr.n_invalid; ++j) {
1419
			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1420 1421 1422 1423 1424 1425 1426 1427
				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
			++i;
			hptp += 2;
		}
		err = 0;
	}

 out:
1428
	/* Order HPTE updates vs. hpte_setup_done */
1429
	smp_wmb();
1430
	kvm->arch.hpte_setup_done = hpte_setup;
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	mutex_unlock(&kvm->lock);

	if (err)
		return err;
	return nb;
}

static int kvm_htab_release(struct inode *inode, struct file *filp)
{
	struct kvm_htab_ctx *ctx = filp->private_data;

	filp->private_data = NULL;
	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
	kvm_put_kvm(ctx->kvm);
	kfree(ctx);
	return 0;
}

1450
static const struct file_operations kvm_htab_fops = {
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	.read		= kvm_htab_read,
	.write		= kvm_htab_write,
	.llseek		= default_llseek,
	.release	= kvm_htab_release,
};

int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
{
	int ret;
	struct kvm_htab_ctx *ctx;
	int rwflag;

	/* reject flags we don't recognize */
	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
		return -EINVAL;
	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
	if (!ctx)
		return -ENOMEM;
	kvm_get_kvm(kvm);
	ctx->kvm = kvm;
	ctx->index = ghf->start_index;
	ctx->flags = ghf->flags;
	ctx->first_pass = 1;

	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1476
	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	if (ret < 0) {
		kvm_put_kvm(kvm);
		return ret;
	}

	if (rwflag == O_RDONLY) {
		mutex_lock(&kvm->slots_lock);
		atomic_inc(&kvm->arch.hpte_mod_interest);
		/* make sure kvmppc_do_h_enter etc. see the increment */
		synchronize_srcu_expedited(&kvm->srcu);
		mutex_unlock(&kvm->slots_lock);
	}

	return ret;
}

1493 1494 1495 1496
void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
{
	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;

1497
	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
1498 1499 1500 1501 1502 1503

	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
	mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;

	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
}