book3s_64_mmu_hv.c 41.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 */

#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/gfp.h>
#include <linux/slab.h>
#include <linux/hugetlb.h>
26
#include <linux/vmalloc.h>
27
#include <linux/srcu.h>
28 29
#include <linux/anon_inodes.h>
#include <linux/file.h>
30
#include <linux/debugfs.h>
31 32 33 34 35 36 37 38 39 40

#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu-hash64.h>
#include <asm/hvcall.h>
#include <asm/synch.h>
#include <asm/ppc-opcode.h>
#include <asm/cputable.h>

41 42
#include "trace_hv.h"

43 44 45
/* Power architecture requires HPT is at least 256kB */
#define PPC_MIN_HPT_ORDER	18

46 47 48
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
				long pte_index, unsigned long pteh,
				unsigned long ptel, unsigned long *pte_idx_ret);
49
static void kvmppc_rmap_reset(struct kvm *kvm);
50

51
long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
52
{
53
	unsigned long hpt = 0;
54
	struct revmap_entry *rev;
55 56
	struct page *page = NULL;
	long order = KVM_DEFAULT_HPT_ORDER;
57

58 59 60 61 62 63
	if (htab_orderp) {
		order = *htab_orderp;
		if (order < PPC_MIN_HPT_ORDER)
			order = PPC_MIN_HPT_ORDER;
	}

64
	kvm->arch.hpt_cma_alloc = 0;
65
	page = kvm_alloc_hpt(1ul << (order - PAGE_SHIFT));
66 67
	if (page) {
		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
68
		memset((void *)hpt, 0, (1ul << order));
69
		kvm->arch.hpt_cma_alloc = 1;
70
	}
71 72

	/* Lastly try successively smaller sizes from the page allocator */
73 74
	/* Only do this if userspace didn't specify a size via ioctl */
	while (!hpt && order > PPC_MIN_HPT_ORDER && !htab_orderp) {
75 76 77 78 79 80 81 82 83
		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
				       __GFP_NOWARN, order - PAGE_SHIFT);
		if (!hpt)
			--order;
	}

	if (!hpt)
		return -ENOMEM;

84
	kvm->arch.hpt_virt = hpt;
85 86 87 88 89
	kvm->arch.hpt_order = order;
	/* HPTEs are 2**4 bytes long */
	kvm->arch.hpt_npte = 1ul << (order - 4);
	/* 128 (2**7) bytes in each HPTEG */
	kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
90

91
	/* Allocate reverse map array */
92
	rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
93 94 95 96 97
	if (!rev) {
		pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
		goto out_freehpt;
	}
	kvm->arch.revmap = rev;
98
	kvm->arch.sdr1 = __pa(hpt) | (order - 18);
99

100 101
	pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
		hpt, order, kvm->arch.lpid);
102

103 104
	if (htab_orderp)
		*htab_orderp = order;
105
	return 0;
106 107

 out_freehpt:
108 109
	if (kvm->arch.hpt_cma_alloc)
		kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
110 111
	else
		free_pages(hpt, order - PAGE_SHIFT);
112
	return -ENOMEM;
113 114
}

115 116 117 118 119 120
long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
{
	long err = -EBUSY;
	long order;

	mutex_lock(&kvm->lock);
121 122 123
	if (kvm->arch.hpte_setup_done) {
		kvm->arch.hpte_setup_done = 0;
		/* order hpte_setup_done vs. vcpus_running */
124 125
		smp_mb();
		if (atomic_read(&kvm->arch.vcpus_running)) {
126
			kvm->arch.hpte_setup_done = 1;
127 128 129 130 131 132 133
			goto out;
		}
	}
	if (kvm->arch.hpt_virt) {
		order = kvm->arch.hpt_order;
		/* Set the entire HPT to 0, i.e. invalid HPTEs */
		memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
134 135 136 137
		/*
		 * Reset all the reverse-mapping chains for all memslots
		 */
		kvmppc_rmap_reset(kvm);
138 139
		/* Ensure that each vcpu will flush its TLB on next entry. */
		cpumask_setall(&kvm->arch.need_tlb_flush);
140 141 142 143 144 145 146 147 148 149 150
		*htab_orderp = order;
		err = 0;
	} else {
		err = kvmppc_alloc_hpt(kvm, htab_orderp);
		order = *htab_orderp;
	}
 out:
	mutex_unlock(&kvm->lock);
	return err;
}

151 152
void kvmppc_free_hpt(struct kvm *kvm)
{
153
	kvmppc_free_lpid(kvm->arch.lpid);
154
	vfree(kvm->arch.revmap);
155 156 157
	if (kvm->arch.hpt_cma_alloc)
		kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
				1 << (kvm->arch.hpt_order - PAGE_SHIFT));
A
Alexander Graf 已提交
158
	else
159 160
		free_pages(kvm->arch.hpt_virt,
			   kvm->arch.hpt_order - PAGE_SHIFT);
161 162
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176
/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
{
	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
}

/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
{
	return (pgsize == 0x10000) ? 0x1000 : 0;
}

void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
		     unsigned long porder)
177 178
{
	unsigned long i;
179
	unsigned long npages;
180 181
	unsigned long hp_v, hp_r;
	unsigned long addr, hash;
182 183
	unsigned long psize;
	unsigned long hp0, hp1;
184
	unsigned long idx_ret;
185
	long ret;
186
	struct kvm *kvm = vcpu->kvm;
187

188 189
	psize = 1ul << porder;
	npages = memslot->npages >> (porder - PAGE_SHIFT);
190 191

	/* VRMA can't be > 1TB */
192 193
	if (npages > 1ul << (40 - porder))
		npages = 1ul << (40 - porder);
194
	/* Can't use more than 1 HPTE per HPTEG */
195 196
	if (npages > kvm->arch.hpt_mask + 1)
		npages = kvm->arch.hpt_mask + 1;
197

198 199 200 201 202
	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
	hp1 = hpte1_pgsize_encoding(psize) |
		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;

203
	for (i = 0; i < npages; ++i) {
204
		addr = i << porder;
205
		/* can't use hpt_hash since va > 64 bits */
206
		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
207 208 209 210 211 212
		/*
		 * We assume that the hash table is empty and no
		 * vcpus are using it at this stage.  Since we create
		 * at most one HPTE per HPTEG, we just assume entry 7
		 * is available and use it.
		 */
213
		hash = (hash << 3) + 7;
214 215
		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
		hp_r = hp1 | addr;
216 217
		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
						 &idx_ret);
218 219 220 221 222
		if (ret != H_SUCCESS) {
			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
			       addr, ret);
			break;
		}
223 224 225 226 227
	}
}

int kvmppc_mmu_hv_init(void)
{
228 229 230
	unsigned long host_lpid, rsvd_lpid;

	if (!cpu_has_feature(CPU_FTR_HVMODE))
231
		return -EINVAL;
232

233 234 235
	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
	host_lpid = mfspr(SPRN_LPID);
	rsvd_lpid = LPID_RSVD;
236

237 238 239
	kvmppc_init_lpid(rsvd_lpid + 1);

	kvmppc_claim_lpid(host_lpid);
240
	/* rsvd_lpid is reserved for use in partition switching */
241
	kvmppc_claim_lpid(rsvd_lpid);
242 243 244 245 246 247

	return 0;
}

static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
{
248 249 250 251 252 253 254 255
	unsigned long msr = vcpu->arch.intr_msr;

	/* If transactional, change to suspend mode on IRQ delivery */
	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
		msr |= MSR_TS_S;
	else
		msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
	kvmppc_set_msr(vcpu, msr);
256 257
}

258 259 260
long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
				long pte_index, unsigned long pteh,
				unsigned long ptel, unsigned long *pte_idx_ret)
261 262 263
{
	long ret;

264 265
	/* Protect linux PTE lookup from page table destruction */
	rcu_read_lock_sched();	/* this disables preemption too */
266 267
	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
				current->mm->pgd, false, pte_idx_ret);
268
	rcu_read_unlock_sched();
269 270 271 272 273 274 275 276 277
	if (ret == H_TOO_HARD) {
		/* this can't happen */
		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
		ret = H_RESOURCE;	/* or something */
	}
	return ret;

}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
							 gva_t eaddr)
{
	u64 mask;
	int i;

	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
			continue;

		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
			mask = ESID_MASK_1T;
		else
			mask = ESID_MASK;

		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
			return &vcpu->arch.slb[i];
	}
	return NULL;
}

static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
			unsigned long ea)
{
	unsigned long ra_mask;

	ra_mask = hpte_page_size(v, r) - 1;
	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
}

308
static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
309
			struct kvmppc_pte *gpte, bool data, bool iswrite)
310
{
311 312 313 314 315
	struct kvm *kvm = vcpu->kvm;
	struct kvmppc_slb *slbe;
	unsigned long slb_v;
	unsigned long pp, key;
	unsigned long v, gr;
316
	__be64 *hptep;
317 318 319 320 321 322 323 324 325 326 327 328 329 330
	int index;
	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);

	/* Get SLB entry */
	if (virtmode) {
		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
		if (!slbe)
			return -EINVAL;
		slb_v = slbe->origv;
	} else {
		/* real mode access */
		slb_v = vcpu->kvm->arch.vrma_slb_v;
	}

331
	preempt_disable();
332 333 334
	/* Find the HPTE in the hash table */
	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
					 HPTE_V_VALID | HPTE_V_ABSENT);
335 336
	if (index < 0) {
		preempt_enable();
337
		return -ENOENT;
338
	}
339 340
	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
	v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
341 342
	gr = kvm->arch.revmap[index].guest_rpte;

343
	unlock_hpte(hptep, v);
344
	preempt_enable();
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

	gpte->eaddr = eaddr;
	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);

	/* Get PP bits and key for permission check */
	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
	key &= slb_v;

	/* Calculate permissions */
	gpte->may_read = hpte_read_permission(pp, key);
	gpte->may_write = hpte_write_permission(pp, key);
	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));

	/* Storage key permission check for POWER7 */
360
	if (data && virtmode) {
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
		if (amrfield & 1)
			gpte->may_read = 0;
		if (amrfield & 2)
			gpte->may_write = 0;
	}

	/* Get the guest physical address */
	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
	return 0;
}

/*
 * Quick test for whether an instruction is a load or a store.
 * If the instruction is a load or a store, then this will indicate
 * which it is, at least on server processors.  (Embedded processors
 * have some external PID instructions that don't follow the rule
 * embodied here.)  If the instruction isn't a load or store, then
 * this doesn't return anything useful.
 */
static int instruction_is_store(unsigned int instr)
{
	unsigned int mask;

	mask = 0x10000000;
	if ((instr & 0xfc000000) == 0x7c000000)
		mask = 0x100;		/* major opcode 31 */
	return (instr & mask) != 0;
}

static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
392
				  unsigned long gpa, gva_t ea, int is_store)
393 394 395
{
	u32 last_inst;

396
	/*
397 398
	 * If we fail, we just return to the guest and try executing it again.
	 */
399 400 401
	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
		EMULATE_DONE)
		return RESUME_GUEST;
402 403 404 405 406 407 408 409 410 411 412 413 414

	/*
	 * WARNING: We do not know for sure whether the instruction we just
	 * read from memory is the same that caused the fault in the first
	 * place.  If the instruction we read is neither an load or a store,
	 * then it can't access memory, so we don't need to worry about
	 * enforcing access permissions.  So, assuming it is a load or
	 * store, we just check that its direction (load or store) is
	 * consistent with the original fault, since that's what we
	 * checked the access permissions against.  If there is a mismatch
	 * we just return and retry the instruction.
	 */

415
	if (instruction_is_store(last_inst) != !!is_store)
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
		return RESUME_GUEST;

	/*
	 * Emulated accesses are emulated by looking at the hash for
	 * translation once, then performing the access later. The
	 * translation could be invalidated in the meantime in which
	 * point performing the subsequent memory access on the old
	 * physical address could possibly be a security hole for the
	 * guest (but not the host).
	 *
	 * This is less of an issue for MMIO stores since they aren't
	 * globally visible. It could be an issue for MMIO loads to
	 * a certain extent but we'll ignore it for now.
	 */

	vcpu->arch.paddr_accessed = gpa;
432
	vcpu->arch.vaddr_accessed = ea;
433 434 435 436 437 438 439
	return kvmppc_emulate_mmio(run, vcpu);
}

int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
				unsigned long ea, unsigned long dsisr)
{
	struct kvm *kvm = vcpu->kvm;
440 441
	unsigned long hpte[3], r;
	__be64 *hptep;
442
	unsigned long mmu_seq, psize, pte_size;
443
	unsigned long gpa_base, gfn_base;
444
	unsigned long gpa, gfn, hva, pfn;
445
	struct kvm_memory_slot *memslot;
446
	unsigned long *rmap;
447
	struct revmap_entry *rev;
448 449 450
	struct page *page, *pages[1];
	long index, ret, npages;
	unsigned long is_io;
451
	unsigned int writing, write_ok;
452
	struct vm_area_struct *vma;
453
	unsigned long rcbits;
454 455 456 457 458 459 460 461 462 463

	/*
	 * Real-mode code has already searched the HPT and found the
	 * entry we're interested in.  Lock the entry and check that
	 * it hasn't changed.  If it has, just return and re-execute the
	 * instruction.
	 */
	if (ea != vcpu->arch.pgfault_addr)
		return RESUME_GUEST;
	index = vcpu->arch.pgfault_index;
464
	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
465 466 467 468
	rev = &kvm->arch.revmap[index];
	preempt_disable();
	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
		cpu_relax();
469 470
	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
	hpte[1] = be64_to_cpu(hptep[1]);
471
	hpte[2] = r = rev->guest_rpte;
472
	unlock_hpte(hptep, hpte[0]);
473 474 475 476 477 478 479
	preempt_enable();

	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
	    hpte[1] != vcpu->arch.pgfault_hpte[1])
		return RESUME_GUEST;

	/* Translate the logical address and get the page */
480
	psize = hpte_page_size(hpte[0], r);
481 482 483
	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
	gfn_base = gpa_base >> PAGE_SHIFT;
	gpa = gpa_base | (ea & (psize - 1));
484
	gfn = gpa >> PAGE_SHIFT;
485 486
	memslot = gfn_to_memslot(kvm, gfn);

487 488
	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);

489
	/* No memslot means it's an emulated MMIO region */
490
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
491
		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
492 493
					      dsisr & DSISR_ISSTORE);

494 495 496 497 498 499 500
	/*
	 * This should never happen, because of the slot_is_aligned()
	 * check in kvmppc_do_h_enter().
	 */
	if (gfn_base < memslot->base_gfn)
		return -EFAULT;

501 502 503 504
	/* used to check for invalidations in progress */
	mmu_seq = kvm->mmu_notifier_seq;
	smp_rmb();

505
	ret = -EFAULT;
506 507 508 509
	is_io = 0;
	pfn = 0;
	page = NULL;
	pte_size = PAGE_SIZE;
510 511 512
	writing = (dsisr & DSISR_ISSTORE) != 0;
	/* If writing != 0, then the HPTE must allow writing, if we get here */
	write_ok = writing;
513
	hva = gfn_to_hva_memslot(memslot, gfn);
514
	npages = get_user_pages_fast(hva, 1, writing, pages);
515 516 517 518 519 520 521 522 523 524
	if (npages < 1) {
		/* Check if it's an I/O mapping */
		down_read(&current->mm->mmap_sem);
		vma = find_vma(current->mm, hva);
		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
		    (vma->vm_flags & VM_PFNMAP)) {
			pfn = vma->vm_pgoff +
				((hva - vma->vm_start) >> PAGE_SHIFT);
			pte_size = psize;
			is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
525
			write_ok = vma->vm_flags & VM_WRITE;
526 527 528
		}
		up_read(&current->mm->mmap_sem);
		if (!pfn)
529
			goto out_put;
530 531
	} else {
		page = pages[0];
532
		pfn = page_to_pfn(page);
533 534 535 536
		if (PageHuge(page)) {
			page = compound_head(page);
			pte_size <<= compound_order(page);
		}
537 538 539
		/* if the guest wants write access, see if that is OK */
		if (!writing && hpte_is_writable(r)) {
			pte_t *ptep, pte;
540
			unsigned long flags;
541 542
			/*
			 * We need to protect against page table destruction
543
			 * hugepage split and collapse.
544
			 */
545
			local_irq_save(flags);
546
			ptep = find_linux_pte_or_hugepte(current->mm->pgd,
547
							 hva, NULL, NULL);
548
			if (ptep) {
549
				pte = kvmppc_read_update_linux_pte(ptep, 1);
550 551 552
				if (pte_write(pte))
					write_ok = 1;
			}
553
			local_irq_restore(flags);
554
		}
555 556 557 558 559 560 561 562
	}

	if (psize > pte_size)
		goto out_put;

	/* Check WIMG vs. the actual page we're accessing */
	if (!hpte_cache_flags_ok(r, is_io)) {
		if (is_io)
563 564
			goto out_put;

565 566 567 568 569 570 571
		/*
		 * Allow guest to map emulated device memory as
		 * uncacheable, but actually make it cacheable.
		 */
		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
	}

572 573 574 575 576 577 578 579
	/*
	 * Set the HPTE to point to pfn.
	 * Since the pfn is at PAGE_SIZE granularity, make sure we
	 * don't mask out lower-order bits if psize < PAGE_SIZE.
	 */
	if (psize < PAGE_SIZE)
		psize = PAGE_SIZE;
	r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
580 581
	if (hpte_is_writable(r) && !write_ok)
		r = hpte_make_readonly(r);
582 583 584 585
	ret = RESUME_GUEST;
	preempt_disable();
	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
		cpu_relax();
586 587 588
	if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
		be64_to_cpu(hptep[1]) != hpte[1] ||
		rev->guest_rpte != hpte[2])
589 590 591 592
		/* HPTE has been changed under us; let the guest retry */
		goto out_unlock;
	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;

593 594
	/* Always put the HPTE in the rmap chain for the page base address */
	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
595 596 597 598
	lock_rmap(rmap);

	/* Check if we might have been invalidated; let the guest retry if so */
	ret = RESUME_GUEST;
599
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
600 601 602
		unlock_rmap(rmap);
		goto out_unlock;
	}
603

604 605 606 607
	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);

608
	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
609 610
		/* HPTE was previously valid, so we need to invalidate it */
		unlock_rmap(rmap);
611
		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
612
		kvmppc_invalidate_hpte(kvm, hptep, index);
613
		/* don't lose previous R and C bits */
614
		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
615 616 617
	} else {
		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
	}
618

619
	hptep[1] = cpu_to_be64(r);
620
	eieio();
621
	__unlock_hpte(hptep, hpte[0]);
622 623
	asm volatile("ptesync" : : : "memory");
	preempt_enable();
624
	if (page && hpte_is_writable(r))
625 626 627
		SetPageDirty(page);

 out_put:
628 629
	trace_kvm_page_fault_exit(vcpu, hpte, ret);

630 631 632 633 634 635 636 637 638
	if (page) {
		/*
		 * We drop pages[0] here, not page because page might
		 * have been set to the head page of a compound, but
		 * we have to drop the reference on the correct tail
		 * page to match the get inside gup()
		 */
		put_page(pages[0]);
	}
639 640 641
	return ret;

 out_unlock:
642
	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
643 644 645 646
	preempt_enable();
	goto out_put;
}

647 648 649 650 651 652 653
static void kvmppc_rmap_reset(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int srcu_idx;

	srcu_idx = srcu_read_lock(&kvm->srcu);
654
	slots = kvm_memslots(kvm);
655 656 657 658 659 660 661 662 663 664 665
	kvm_for_each_memslot(memslot, slots) {
		/*
		 * This assumes it is acceptable to lose reference and
		 * change bits across a reset.
		 */
		memset(memslot->arch.rmap, 0,
		       memslot->npages * sizeof(*memslot->arch.rmap));
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
}

666 667 668 669 670 671
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
					       unsigned long gfn))
672 673 674 675 676 677 678 679
{
	int ret;
	int retval = 0;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
680 681 682 683 684 685 686 687 688 689 690 691 692 693
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
694

695
		for (; gfn < gfn_end; ++gfn) {
696
			gfn_t gfn_offset = gfn - memslot->base_gfn;
697

698
			ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
699 700 701 702 703 704 705
			retval |= ret;
		}
	}

	return retval;
}

706 707 708 709 710 711 712
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
					 unsigned long gfn))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
}

713 714 715 716 717
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
			   unsigned long gfn)
{
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long h, i, j;
718
	__be64 *hptep;
719
	unsigned long ptel, psize, rcbits;
720 721

	for (;;) {
722
		lock_rmap(rmapp);
723
		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
724
			unlock_rmap(rmapp);
725 726 727 728 729
			break;
		}

		/*
		 * To avoid an ABBA deadlock with the HPTE lock bit,
730 731
		 * we can't spin on the HPTE lock while holding the
		 * rmap chain lock.
732 733
		 */
		i = *rmapp & KVMPPC_RMAP_INDEX;
734
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
735 736 737
		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
738
			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
739 740 741
				cpu_relax();
			continue;
		}
742 743 744
		j = rev[i].forw;
		if (j == i) {
			/* chain is now empty */
745
			*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
746 747 748 749 750 751
		} else {
			/* remove i from chain */
			h = rev[i].back;
			rev[h].forw = j;
			rev[j].back = h;
			rev[i].forw = rev[i].back = i;
752
			*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
753 754
		}

755
		/* Now check and modify the HPTE */
756
		ptel = rev[i].guest_rpte;
757 758
		psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
759
		    hpte_rpn(ptel, psize) == gfn) {
760
			hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
761 762
			kvmppc_invalidate_hpte(kvm, hptep, i);
			/* Harvest R and C */
763
			rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
764
			*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
765 766
			if (rcbits & HPTE_R_C)
				kvmppc_update_rmap_change(rmapp, psize);
767 768 769 770
			if (rcbits & ~rev[i].guest_rpte) {
				rev[i].guest_rpte = ptel | rcbits;
				note_hpte_modification(kvm, &rev[i]);
			}
771
		}
772
		unlock_rmap(rmapp);
773
		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
774 775 776 777
	}
	return 0;
}

778
int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
779
{
780
	kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
781 782 783
	return 0;
}

784
int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
785
{
786
	kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
787 788 789
	return 0;
}

790 791
void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
				  struct kvm_memory_slot *memslot)
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
{
	unsigned long *rmapp;
	unsigned long gfn;
	unsigned long n;

	rmapp = memslot->arch.rmap;
	gfn = memslot->base_gfn;
	for (n = memslot->npages; n; --n) {
		/*
		 * Testing the present bit without locking is OK because
		 * the memslot has been marked invalid already, and hence
		 * no new HPTEs referencing this page can be created,
		 * thus the present bit can't go from 0 to 1.
		 */
		if (*rmapp & KVMPPC_RMAP_PRESENT)
			kvm_unmap_rmapp(kvm, rmapp, gfn);
		++rmapp;
		++gfn;
	}
}

813 814 815
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
			 unsigned long gfn)
{
816 817
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
818
	__be64 *hptep;
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
	int ret = 0;

 retry:
	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
		ret = 1;
	}
	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
		unlock_rmap(rmapp);
		return ret;
	}

	i = head = *rmapp & KVMPPC_RMAP_INDEX;
	do {
834
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
835 836 837
		j = rev[i].forw;

		/* If this HPTE isn't referenced, ignore it */
838
		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
839 840 841 842 843
			continue;

		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
844
			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
845 846 847 848 849
				cpu_relax();
			goto retry;
		}

		/* Now check and modify the HPTE */
850 851
		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
852
			kvmppc_clear_ref_hpte(kvm, hptep, i);
853 854 855 856
			if (!(rev[i].guest_rpte & HPTE_R_R)) {
				rev[i].guest_rpte |= HPTE_R_R;
				note_hpte_modification(kvm, &rev[i]);
			}
857 858
			ret = 1;
		}
859
		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
860 861 862 863
	} while ((i = j) != head);

	unlock_rmap(rmapp);
	return ret;
864 865
}

A
Andres Lagar-Cavilla 已提交
866
int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
867
{
A
Andres Lagar-Cavilla 已提交
868
	return kvm_handle_hva_range(kvm, start, end, kvm_age_rmapp);
869 870 871 872 873
}

static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
			      unsigned long gfn)
{
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
	unsigned long *hp;
	int ret = 1;

	if (*rmapp & KVMPPC_RMAP_REFERENCED)
		return 1;

	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_REFERENCED)
		goto out;

	if (*rmapp & KVMPPC_RMAP_PRESENT) {
		i = head = *rmapp & KVMPPC_RMAP_INDEX;
		do {
			hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
			j = rev[i].forw;
891
			if (be64_to_cpu(hp[1]) & HPTE_R_R)
892 893 894 895 896 897 898 899
				goto out;
		} while ((i = j) != head);
	}
	ret = 0;

 out:
	unlock_rmap(rmapp);
	return ret;
900 901
}

902
int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
903 904 905 906
{
	return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
}

907
void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
908 909
{
	kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
910 911
}

912 913 914 915 916
static int vcpus_running(struct kvm *kvm)
{
	return atomic_read(&kvm->arch.vcpus_running) != 0;
}

917 918 919 920 921
/*
 * Returns the number of system pages that are dirty.
 * This can be more than 1 if we find a huge-page HPTE.
 */
static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
922 923 924
{
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
925
	unsigned long n;
926
	unsigned long v, r;
927
	__be64 *hptep;
928
	int npages_dirty = 0;
929 930 931 932

 retry:
	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_CHANGED) {
933 934 935
		long change_order = (*rmapp & KVMPPC_RMAP_CHG_ORDER)
			>> KVMPPC_RMAP_CHG_SHIFT;
		*rmapp &= ~(KVMPPC_RMAP_CHANGED | KVMPPC_RMAP_CHG_ORDER);
936
		npages_dirty = 1;
937 938
		if (change_order > PAGE_SHIFT)
			npages_dirty = 1ul << (change_order - PAGE_SHIFT);
939 940 941
	}
	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
		unlock_rmap(rmapp);
942
		return npages_dirty;
943 944 945 946
	}

	i = head = *rmapp & KVMPPC_RMAP_INDEX;
	do {
947 948
		unsigned long hptep1;
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
949 950
		j = rev[i].forw;

951 952 953 954 955 956 957 958 959 960 961 962 963 964
		/*
		 * Checking the C (changed) bit here is racy since there
		 * is no guarantee about when the hardware writes it back.
		 * If the HPTE is not writable then it is stable since the
		 * page can't be written to, and we would have done a tlbie
		 * (which forces the hardware to complete any writeback)
		 * when making the HPTE read-only.
		 * If vcpus are running then this call is racy anyway
		 * since the page could get dirtied subsequently, so we
		 * expect there to be a further call which would pick up
		 * any delayed C bit writeback.
		 * Otherwise we need to do the tlbie even if C==0 in
		 * order to pick up any delayed writeback of C.
		 */
965 966 967
		hptep1 = be64_to_cpu(hptep[1]);
		if (!(hptep1 & HPTE_R_C) &&
		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
968 969 970 971 972
			continue;

		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
973
			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
974 975 976 977 978
				cpu_relax();
			goto retry;
		}

		/* Now check and modify the HPTE */
979
		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
980
			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
981
			continue;
982
		}
983 984

		/* need to make it temporarily absent so C is stable */
985
		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
986
		kvmppc_invalidate_hpte(kvm, hptep, i);
987 988
		v = be64_to_cpu(hptep[0]);
		r = be64_to_cpu(hptep[1]);
989
		if (r & HPTE_R_C) {
990
			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
991 992 993 994
			if (!(rev[i].guest_rpte & HPTE_R_C)) {
				rev[i].guest_rpte |= HPTE_R_C;
				note_hpte_modification(kvm, &rev[i]);
			}
995
			n = hpte_page_size(v, r);
996 997 998
			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
			if (n > npages_dirty)
				npages_dirty = n;
999
			eieio();
1000
		}
1001
		v &= ~HPTE_V_ABSENT;
1002
		v |= HPTE_V_VALID;
1003
		__unlock_hpte(hptep, v);
1004 1005 1006
	} while ((i = j) != head);

	unlock_rmap(rmapp);
1007
	return npages_dirty;
1008 1009
}

1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
			      struct kvm_memory_slot *memslot,
			      unsigned long *map)
{
	unsigned long gfn;

	if (!vpa->dirty || !vpa->pinned_addr)
		return;
	gfn = vpa->gpa >> PAGE_SHIFT;
	if (gfn < memslot->base_gfn ||
	    gfn >= memslot->base_gfn + memslot->npages)
		return;

	vpa->dirty = false;
	if (map)
		__set_bit_le(gfn - memslot->base_gfn, map);
}

1028 1029
long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
			     unsigned long *map)
1030
{
1031
	unsigned long i, j;
1032
	unsigned long *rmapp;
1033
	struct kvm_vcpu *vcpu;
1034 1035

	preempt_disable();
1036
	rmapp = memslot->arch.rmap;
1037
	for (i = 0; i < memslot->npages; ++i) {
1038 1039 1040 1041 1042 1043 1044 1045 1046
		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
		/*
		 * Note that if npages > 0 then i must be a multiple of npages,
		 * since we always put huge-page HPTEs in the rmap chain
		 * corresponding to their page base address.
		 */
		if (npages && map)
			for (j = i; npages; ++j, --npages)
				__set_bit_le(j, map);
1047 1048
		++rmapp;
	}
1049 1050 1051 1052 1053 1054 1055 1056 1057

	/* Harvest dirty bits from VPA and DTL updates */
	/* Note: we never modify the SLB shadow buffer areas */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		spin_lock(&vcpu->arch.vpa_update_lock);
		harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
		harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
		spin_unlock(&vcpu->arch.vpa_update_lock);
	}
1058 1059 1060 1061
	preempt_enable();
	return 0;
}

1062 1063 1064 1065 1066
void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
			    unsigned long *nb_ret)
{
	struct kvm_memory_slot *memslot;
	unsigned long gfn = gpa >> PAGE_SHIFT;
1067 1068
	struct page *page, *pages[1];
	int npages;
1069
	unsigned long hva, offset;
1070
	int srcu_idx;
1071

1072
	srcu_idx = srcu_read_lock(&kvm->srcu);
1073 1074
	memslot = gfn_to_memslot(kvm, gfn);
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1075
		goto err;
1076 1077 1078 1079 1080
	hva = gfn_to_hva_memslot(memslot, gfn);
	npages = get_user_pages_fast(hva, 1, 1, pages);
	if (npages < 1)
		goto err;
	page = pages[0];
1081 1082
	srcu_read_unlock(&kvm->srcu, srcu_idx);

1083
	offset = gpa & (PAGE_SIZE - 1);
1084
	if (nb_ret)
1085
		*nb_ret = PAGE_SIZE - offset;
1086
	return page_address(page) + offset;
1087 1088 1089 1090

 err:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	return NULL;
1091 1092
}

1093 1094
void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
			     bool dirty)
1095 1096
{
	struct page *page = virt_to_page(va);
1097 1098 1099 1100
	struct kvm_memory_slot *memslot;
	unsigned long gfn;
	unsigned long *rmap;
	int srcu_idx;
1101 1102

	put_page(page);
1103

1104
	if (!dirty)
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
		return;

	/* We need to mark this page dirty in the rmap chain */
	gfn = gpa >> PAGE_SHIFT;
	srcu_idx = srcu_read_lock(&kvm->srcu);
	memslot = gfn_to_memslot(kvm, gfn);
	if (memslot) {
		rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
		lock_rmap(rmap);
		*rmap |= KVMPPC_RMAP_CHANGED;
		unlock_rmap(rmap);
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1118 1119
}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
/*
 * Functions for reading and writing the hash table via reads and
 * writes on a file descriptor.
 *
 * Reads return the guest view of the hash table, which has to be
 * pieced together from the real hash table and the guest_rpte
 * values in the revmap array.
 *
 * On writes, each HPTE written is considered in turn, and if it
 * is valid, it is written to the HPT as if an H_ENTER with the
 * exact flag set was done.  When the invalid count is non-zero
 * in the header written to the stream, the kernel will make
 * sure that that many HPTEs are invalid, and invalidate them
 * if not.
 */

struct kvm_htab_ctx {
	unsigned long	index;
	unsigned long	flags;
	struct kvm	*kvm;
	int		first_pass;
};

#define HPTE_SIZE	(2 * sizeof(unsigned long))

1145 1146 1147 1148
/*
 * Returns 1 if this HPT entry has been modified or has pending
 * R/C bit changes.
 */
1149
static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1150 1151 1152 1153 1154 1155 1156 1157
{
	unsigned long rcbits_unset;

	if (revp->guest_rpte & HPTE_GR_MODIFIED)
		return 1;

	/* Also need to consider changes in reference and changed bits */
	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1158 1159
	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1160 1161 1162 1163 1164
		return 1;

	return 0;
}

1165
static long record_hpte(unsigned long flags, __be64 *hptp,
1166 1167 1168 1169
			unsigned long *hpte, struct revmap_entry *revp,
			int want_valid, int first_pass)
{
	unsigned long v, r;
1170
	unsigned long rcbits_unset;
1171 1172 1173 1174
	int ok = 1;
	int valid, dirty;

	/* Unmodified entries are uninteresting except on the first pass */
1175
	dirty = hpte_dirty(revp, hptp);
1176 1177 1178 1179
	if (!first_pass && !dirty)
		return 0;

	valid = 0;
1180
	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1181 1182
		valid = 1;
		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1183
		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
			valid = 0;
	}
	if (valid != want_valid)
		return 0;

	v = r = 0;
	if (valid || dirty) {
		/* lock the HPTE so it's stable and read it */
		preempt_disable();
		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
			cpu_relax();
1195
		v = be64_to_cpu(hptp[0]);
1196 1197 1198 1199 1200 1201 1202

		/* re-evaluate valid and dirty from synchronized HPTE value */
		valid = !!(v & HPTE_V_VALID);
		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);

		/* Harvest R and C into guest view if necessary */
		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1203 1204 1205
		if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
			revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1206 1207 1208
			dirty = 1;
		}

1209 1210 1211
		if (v & HPTE_V_ABSENT) {
			v &= ~HPTE_V_ABSENT;
			v |= HPTE_V_VALID;
1212
			valid = 1;
1213 1214 1215
		}
		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
			valid = 0;
1216 1217

		r = revp->guest_rpte;
1218 1219 1220 1221 1222
		/* only clear modified if this is the right sort of entry */
		if (valid == want_valid && dirty) {
			r &= ~HPTE_GR_MODIFIED;
			revp->guest_rpte = r;
		}
1223
		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1224 1225 1226 1227
		preempt_enable();
		if (!(valid == want_valid && (first_pass || dirty)))
			ok = 0;
	}
1228 1229
	hpte[0] = cpu_to_be64(v);
	hpte[1] = cpu_to_be64(r);
1230 1231 1232 1233 1234 1235 1236 1237 1238
	return ok;
}

static ssize_t kvm_htab_read(struct file *file, char __user *buf,
			     size_t count, loff_t *ppos)
{
	struct kvm_htab_ctx *ctx = file->private_data;
	struct kvm *kvm = ctx->kvm;
	struct kvm_get_htab_header hdr;
1239
	__be64 *hptp;
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	struct revmap_entry *revp;
	unsigned long i, nb, nw;
	unsigned long __user *lbuf;
	struct kvm_get_htab_header __user *hptr;
	unsigned long flags;
	int first_pass;
	unsigned long hpte[2];

	if (!access_ok(VERIFY_WRITE, buf, count))
		return -EFAULT;

	first_pass = ctx->first_pass;
	flags = ctx->flags;

	i = ctx->index;
1255
	hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	revp = kvm->arch.revmap + i;
	lbuf = (unsigned long __user *)buf;

	nb = 0;
	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
		/* Initialize header */
		hptr = (struct kvm_get_htab_header __user *)buf;
		hdr.n_valid = 0;
		hdr.n_invalid = 0;
		nw = nb;
		nb += sizeof(hdr);
		lbuf = (unsigned long __user *)(buf + sizeof(hdr));

		/* Skip uninteresting entries, i.e. clean on not-first pass */
		if (!first_pass) {
			while (i < kvm->arch.hpt_npte &&
1272
			       !hpte_dirty(revp, hptp)) {
1273 1274 1275 1276 1277
				++i;
				hptp += 2;
				++revp;
			}
		}
1278
		hdr.index = i;
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338

		/* Grab a series of valid entries */
		while (i < kvm->arch.hpt_npte &&
		       hdr.n_valid < 0xffff &&
		       nb + HPTE_SIZE < count &&
		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
			/* valid entry, write it out */
			++hdr.n_valid;
			if (__put_user(hpte[0], lbuf) ||
			    __put_user(hpte[1], lbuf + 1))
				return -EFAULT;
			nb += HPTE_SIZE;
			lbuf += 2;
			++i;
			hptp += 2;
			++revp;
		}
		/* Now skip invalid entries while we can */
		while (i < kvm->arch.hpt_npte &&
		       hdr.n_invalid < 0xffff &&
		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
			/* found an invalid entry */
			++hdr.n_invalid;
			++i;
			hptp += 2;
			++revp;
		}

		if (hdr.n_valid || hdr.n_invalid) {
			/* write back the header */
			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
				return -EFAULT;
			nw = nb;
			buf = (char __user *)lbuf;
		} else {
			nb = nw;
		}

		/* Check if we've wrapped around the hash table */
		if (i >= kvm->arch.hpt_npte) {
			i = 0;
			ctx->first_pass = 0;
			break;
		}
	}

	ctx->index = i;

	return nb;
}

static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *ppos)
{
	struct kvm_htab_ctx *ctx = file->private_data;
	struct kvm *kvm = ctx->kvm;
	struct kvm_get_htab_header hdr;
	unsigned long i, j;
	unsigned long v, r;
	unsigned long __user *lbuf;
1339
	__be64 *hptp;
1340 1341 1342
	unsigned long tmp[2];
	ssize_t nb;
	long int err, ret;
1343
	int hpte_setup;
1344 1345 1346 1347 1348 1349

	if (!access_ok(VERIFY_READ, buf, count))
		return -EFAULT;

	/* lock out vcpus from running while we're doing this */
	mutex_lock(&kvm->lock);
1350 1351 1352 1353
	hpte_setup = kvm->arch.hpte_setup_done;
	if (hpte_setup) {
		kvm->arch.hpte_setup_done = 0;	/* temporarily */
		/* order hpte_setup_done vs. vcpus_running */
1354 1355
		smp_mb();
		if (atomic_read(&kvm->arch.vcpus_running)) {
1356
			kvm->arch.hpte_setup_done = 1;
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
			mutex_unlock(&kvm->lock);
			return -EBUSY;
		}
	}

	err = 0;
	for (nb = 0; nb + sizeof(hdr) <= count; ) {
		err = -EFAULT;
		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
			break;

		err = 0;
		if (nb + hdr.n_valid * HPTE_SIZE > count)
			break;

		nb += sizeof(hdr);
		buf += sizeof(hdr);

		err = -EINVAL;
		i = hdr.index;
		if (i >= kvm->arch.hpt_npte ||
		    i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
			break;

1381
		hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1382 1383
		lbuf = (unsigned long __user *)buf;
		for (j = 0; j < hdr.n_valid; ++j) {
1384 1385 1386
			__be64 hpte_v;
			__be64 hpte_r;

1387
			err = -EFAULT;
1388 1389
			if (__get_user(hpte_v, lbuf) ||
			    __get_user(hpte_r, lbuf + 1))
1390
				goto out;
1391 1392
			v = be64_to_cpu(hpte_v);
			r = be64_to_cpu(hpte_r);
1393 1394 1395 1396 1397 1398
			err = -EINVAL;
			if (!(v & HPTE_V_VALID))
				goto out;
			lbuf += 2;
			nb += HPTE_SIZE;

1399
			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1400 1401 1402 1403 1404 1405 1406 1407 1408
				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
			err = -EIO;
			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
							 tmp);
			if (ret != H_SUCCESS) {
				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
				       "r=%lx\n", ret, i, v, r);
				goto out;
			}
1409
			if (!hpte_setup && is_vrma_hpte(v)) {
1410
				unsigned long psize = hpte_base_page_size(v, r);
1411 1412 1413 1414 1415
				unsigned long senc = slb_pgsize_encoding(psize);
				unsigned long lpcr;

				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1416 1417
				lpcr = senc << (LPCR_VRMASD_SH - 4);
				kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1418
				hpte_setup = 1;
1419 1420 1421 1422 1423 1424
			}
			++i;
			hptp += 2;
		}

		for (j = 0; j < hdr.n_invalid; ++j) {
1425
			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1426 1427 1428 1429 1430 1431 1432 1433
				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
			++i;
			hptp += 2;
		}
		err = 0;
	}

 out:
1434
	/* Order HPTE updates vs. hpte_setup_done */
1435
	smp_wmb();
1436
	kvm->arch.hpte_setup_done = hpte_setup;
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	mutex_unlock(&kvm->lock);

	if (err)
		return err;
	return nb;
}

static int kvm_htab_release(struct inode *inode, struct file *filp)
{
	struct kvm_htab_ctx *ctx = filp->private_data;

	filp->private_data = NULL;
	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
	kvm_put_kvm(ctx->kvm);
	kfree(ctx);
	return 0;
}

1456
static const struct file_operations kvm_htab_fops = {
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
	.read		= kvm_htab_read,
	.write		= kvm_htab_write,
	.llseek		= default_llseek,
	.release	= kvm_htab_release,
};

int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
{
	int ret;
	struct kvm_htab_ctx *ctx;
	int rwflag;

	/* reject flags we don't recognize */
	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
		return -EINVAL;
	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
	if (!ctx)
		return -ENOMEM;
	kvm_get_kvm(kvm);
	ctx->kvm = kvm;
	ctx->index = ghf->start_index;
	ctx->flags = ghf->flags;
	ctx->first_pass = 1;

	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1482
	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	if (ret < 0) {
		kvm_put_kvm(kvm);
		return ret;
	}

	if (rwflag == O_RDONLY) {
		mutex_lock(&kvm->slots_lock);
		atomic_inc(&kvm->arch.hpte_mod_interest);
		/* make sure kvmppc_do_h_enter etc. see the increment */
		synchronize_srcu_expedited(&kvm->srcu);
		mutex_unlock(&kvm->slots_lock);
	}

	return ret;
}

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
struct debugfs_htab_state {
	struct kvm	*kvm;
	struct mutex	mutex;
	unsigned long	hpt_index;
	int		chars_left;
	int		buf_index;
	char		buf[64];
};

static int debugfs_htab_open(struct inode *inode, struct file *file)
{
	struct kvm *kvm = inode->i_private;
	struct debugfs_htab_state *p;

	p = kzalloc(sizeof(*p), GFP_KERNEL);
	if (!p)
		return -ENOMEM;

	kvm_get_kvm(kvm);
	p->kvm = kvm;
	mutex_init(&p->mutex);
	file->private_data = p;

	return nonseekable_open(inode, file);
}

static int debugfs_htab_release(struct inode *inode, struct file *file)
{
	struct debugfs_htab_state *p = file->private_data;

	kvm_put_kvm(p->kvm);
	kfree(p);
	return 0;
}

static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
				 size_t len, loff_t *ppos)
{
	struct debugfs_htab_state *p = file->private_data;
	ssize_t ret, r;
	unsigned long i, n;
	unsigned long v, hr, gr;
	struct kvm *kvm;
	__be64 *hptp;

	ret = mutex_lock_interruptible(&p->mutex);
	if (ret)
		return ret;

	if (p->chars_left) {
		n = p->chars_left;
		if (n > len)
			n = len;
		r = copy_to_user(buf, p->buf + p->buf_index, n);
		n -= r;
		p->chars_left -= n;
		p->buf_index += n;
		buf += n;
		len -= n;
		ret = n;
		if (r) {
			if (!n)
				ret = -EFAULT;
			goto out;
		}
	}

	kvm = p->kvm;
	i = p->hpt_index;
	hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
	for (; len != 0 && i < kvm->arch.hpt_npte; ++i, hptp += 2) {
		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
			continue;

		/* lock the HPTE so it's stable and read it */
		preempt_disable();
		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
			cpu_relax();
		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
		hr = be64_to_cpu(hptp[1]);
		gr = kvm->arch.revmap[i].guest_rpte;
		unlock_hpte(hptp, v);
		preempt_enable();

		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
			continue;

		n = scnprintf(p->buf, sizeof(p->buf),
			      "%6lx %.16lx %.16lx %.16lx\n",
			      i, v, hr, gr);
		p->chars_left = n;
		if (n > len)
			n = len;
		r = copy_to_user(buf, p->buf, n);
		n -= r;
		p->chars_left -= n;
		p->buf_index = n;
		buf += n;
		len -= n;
		ret += n;
		if (r) {
			if (!ret)
				ret = -EFAULT;
			goto out;
		}
	}
	p->hpt_index = i;

 out:
	mutex_unlock(&p->mutex);
	return ret;
}

ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
			   size_t len, loff_t *ppos)
{
	return -EACCES;
}

static const struct file_operations debugfs_htab_fops = {
	.owner	 = THIS_MODULE,
	.open	 = debugfs_htab_open,
	.release = debugfs_htab_release,
	.read	 = debugfs_htab_read,
	.write	 = debugfs_htab_write,
	.llseek	 = generic_file_llseek,
};

void kvmppc_mmu_debugfs_init(struct kvm *kvm)
{
	kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
						    kvm->arch.debugfs_dir, kvm,
						    &debugfs_htab_fops);
}

1634 1635 1636 1637
void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
{
	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;

1638
	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
1639 1640 1641 1642 1643 1644

	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
	mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;

	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
}