book3s_64_mmu_hv.c 43.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 *
 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
 */

#include <linux/types.h>
#include <linux/string.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/gfp.h>
#include <linux/slab.h>
#include <linux/hugetlb.h>
26
#include <linux/vmalloc.h>
27
#include <linux/srcu.h>
28 29
#include <linux/anon_inodes.h>
#include <linux/file.h>
30 31 32 33 34 35 36 37 38 39

#include <asm/tlbflush.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu-hash64.h>
#include <asm/hvcall.h>
#include <asm/synch.h>
#include <asm/ppc-opcode.h>
#include <asm/cputable.h>

40 41
/* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
#define MAX_LPID_970	63
42

43 44 45
/* Power architecture requires HPT is at least 256kB */
#define PPC_MIN_HPT_ORDER	18

46 47 48
static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
				long pte_index, unsigned long pteh,
				unsigned long ptel, unsigned long *pte_idx_ret);
49
static void kvmppc_rmap_reset(struct kvm *kvm);
50

51
long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
52
{
53
	unsigned long hpt = 0;
54
	struct revmap_entry *rev;
55 56
	struct page *page = NULL;
	long order = KVM_DEFAULT_HPT_ORDER;
57

58 59 60 61 62 63
	if (htab_orderp) {
		order = *htab_orderp;
		if (order < PPC_MIN_HPT_ORDER)
			order = PPC_MIN_HPT_ORDER;
	}

64
	kvm->arch.hpt_cma_alloc = 0;
65 66 67
	page = kvm_alloc_hpt(1 << (order - PAGE_SHIFT));
	if (page) {
		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
68
		memset((void *)hpt, 0, (1 << order));
69
		kvm->arch.hpt_cma_alloc = 1;
70
	}
71 72 73 74 75 76 77 78 79 80 81 82

	/* Lastly try successively smaller sizes from the page allocator */
	while (!hpt && order > PPC_MIN_HPT_ORDER) {
		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
				       __GFP_NOWARN, order - PAGE_SHIFT);
		if (!hpt)
			--order;
	}

	if (!hpt)
		return -ENOMEM;

83
	kvm->arch.hpt_virt = hpt;
84 85 86 87 88
	kvm->arch.hpt_order = order;
	/* HPTEs are 2**4 bytes long */
	kvm->arch.hpt_npte = 1ul << (order - 4);
	/* 128 (2**7) bytes in each HPTEG */
	kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
89

90
	/* Allocate reverse map array */
91
	rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
92 93 94 95 96
	if (!rev) {
		pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
		goto out_freehpt;
	}
	kvm->arch.revmap = rev;
97
	kvm->arch.sdr1 = __pa(hpt) | (order - 18);
98

99 100
	pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
		hpt, order, kvm->arch.lpid);
101

102 103
	if (htab_orderp)
		*htab_orderp = order;
104
	return 0;
105 106

 out_freehpt:
107 108
	if (kvm->arch.hpt_cma_alloc)
		kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
109 110
	else
		free_pages(hpt, order - PAGE_SHIFT);
111
	return -ENOMEM;
112 113
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
{
	long err = -EBUSY;
	long order;

	mutex_lock(&kvm->lock);
	if (kvm->arch.rma_setup_done) {
		kvm->arch.rma_setup_done = 0;
		/* order rma_setup_done vs. vcpus_running */
		smp_mb();
		if (atomic_read(&kvm->arch.vcpus_running)) {
			kvm->arch.rma_setup_done = 1;
			goto out;
		}
	}
	if (kvm->arch.hpt_virt) {
		order = kvm->arch.hpt_order;
		/* Set the entire HPT to 0, i.e. invalid HPTEs */
		memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
133 134 135 136
		/*
		 * Reset all the reverse-mapping chains for all memslots
		 */
		kvmppc_rmap_reset(kvm);
137 138
		/* Ensure that each vcpu will flush its TLB on next entry. */
		cpumask_setall(&kvm->arch.need_tlb_flush);
139 140 141 142 143 144 145 146 147 148 149
		*htab_orderp = order;
		err = 0;
	} else {
		err = kvmppc_alloc_hpt(kvm, htab_orderp);
		order = *htab_orderp;
	}
 out:
	mutex_unlock(&kvm->lock);
	return err;
}

150 151
void kvmppc_free_hpt(struct kvm *kvm)
{
152
	kvmppc_free_lpid(kvm->arch.lpid);
153
	vfree(kvm->arch.revmap);
154 155 156
	if (kvm->arch.hpt_cma_alloc)
		kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
				1 << (kvm->arch.hpt_order - PAGE_SHIFT));
A
Alexander Graf 已提交
157
	else
158 159
		free_pages(kvm->arch.hpt_virt,
			   kvm->arch.hpt_order - PAGE_SHIFT);
160 161
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175
/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
{
	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
}

/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
{
	return (pgsize == 0x10000) ? 0x1000 : 0;
}

void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
		     unsigned long porder)
176 177
{
	unsigned long i;
178
	unsigned long npages;
179 180
	unsigned long hp_v, hp_r;
	unsigned long addr, hash;
181 182
	unsigned long psize;
	unsigned long hp0, hp1;
183
	unsigned long idx_ret;
184
	long ret;
185
	struct kvm *kvm = vcpu->kvm;
186

187 188
	psize = 1ul << porder;
	npages = memslot->npages >> (porder - PAGE_SHIFT);
189 190

	/* VRMA can't be > 1TB */
191 192
	if (npages > 1ul << (40 - porder))
		npages = 1ul << (40 - porder);
193
	/* Can't use more than 1 HPTE per HPTEG */
194 195
	if (npages > kvm->arch.hpt_mask + 1)
		npages = kvm->arch.hpt_mask + 1;
196

197 198 199 200 201
	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
	hp1 = hpte1_pgsize_encoding(psize) |
		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;

202
	for (i = 0; i < npages; ++i) {
203
		addr = i << porder;
204
		/* can't use hpt_hash since va > 64 bits */
205
		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
206 207 208 209 210 211
		/*
		 * We assume that the hash table is empty and no
		 * vcpus are using it at this stage.  Since we create
		 * at most one HPTE per HPTEG, we just assume entry 7
		 * is available and use it.
		 */
212
		hash = (hash << 3) + 7;
213 214
		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
		hp_r = hp1 | addr;
215 216
		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
						 &idx_ret);
217 218 219 220 221
		if (ret != H_SUCCESS) {
			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
			       addr, ret);
			break;
		}
222 223 224 225 226
	}
}

int kvmppc_mmu_hv_init(void)
{
227 228 229
	unsigned long host_lpid, rsvd_lpid;

	if (!cpu_has_feature(CPU_FTR_HVMODE))
230
		return -EINVAL;
231

232
	/* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
233 234 235 236 237 238 239 240
	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
		host_lpid = mfspr(SPRN_LPID);	/* POWER7 */
		rsvd_lpid = LPID_RSVD;
	} else {
		host_lpid = 0;			/* PPC970 */
		rsvd_lpid = MAX_LPID_970;
	}

241 242 243
	kvmppc_init_lpid(rsvd_lpid + 1);

	kvmppc_claim_lpid(host_lpid);
244
	/* rsvd_lpid is reserved for use in partition switching */
245
	kvmppc_claim_lpid(rsvd_lpid);
246 247 248 249 250 251

	return 0;
}

static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
{
252 253 254 255 256 257 258 259
	unsigned long msr = vcpu->arch.intr_msr;

	/* If transactional, change to suspend mode on IRQ delivery */
	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
		msr |= MSR_TS_S;
	else
		msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
	kvmppc_set_msr(vcpu, msr);
260 261
}

262 263
/*
 * This is called to get a reference to a guest page if there isn't
264
 * one already in the memslot->arch.slot_phys[] array.
265 266
 */
static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
267 268
				  struct kvm_memory_slot *memslot,
				  unsigned long psize)
269 270
{
	unsigned long start;
271 272 273
	long np, err;
	struct page *page, *hpage, *pages[1];
	unsigned long s, pgsize;
274
	unsigned long *physp;
275 276
	unsigned int is_io, got, pgorder;
	struct vm_area_struct *vma;
277
	unsigned long pfn, i, npages;
278

279
	physp = memslot->arch.slot_phys;
280 281
	if (!physp)
		return -EINVAL;
282
	if (physp[gfn - memslot->base_gfn])
283 284
		return 0;

285 286
	is_io = 0;
	got = 0;
287
	page = NULL;
288
	pgsize = psize;
289
	err = -EINVAL;
290 291 292 293
	start = gfn_to_hva_memslot(memslot, gfn);

	/* Instantiate and get the page we want access to */
	np = get_user_pages_fast(start, 1, 1, pages);
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
	if (np != 1) {
		/* Look up the vma for the page */
		down_read(&current->mm->mmap_sem);
		vma = find_vma(current->mm, start);
		if (!vma || vma->vm_start > start ||
		    start + psize > vma->vm_end ||
		    !(vma->vm_flags & VM_PFNMAP))
			goto up_err;
		is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
		pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
		/* check alignment of pfn vs. requested page size */
		if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
			goto up_err;
		up_read(&current->mm->mmap_sem);

	} else {
		page = pages[0];
		got = KVMPPC_GOT_PAGE;

		/* See if this is a large page */
		s = PAGE_SIZE;
		if (PageHuge(page)) {
			hpage = compound_head(page);
			s <<= compound_order(hpage);
			/* Get the whole large page if slot alignment is ok */
			if (s > psize && slot_is_aligned(memslot, s) &&
			    !(memslot->userspace_addr & (s - 1))) {
				start &= ~(s - 1);
				pgsize = s;
323 324
				get_page(hpage);
				put_page(page);
325 326
				page = hpage;
			}
327
		}
328 329 330
		if (s < psize)
			goto out;
		pfn = page_to_pfn(page);
331 332
	}

333 334 335
	npages = pgsize >> PAGE_SHIFT;
	pgorder = __ilog2(npages);
	physp += (gfn - memslot->base_gfn) & ~(npages - 1);
336
	spin_lock(&kvm->arch.slot_phys_lock);
337 338
	for (i = 0; i < npages; ++i) {
		if (!physp[i]) {
339 340
			physp[i] = ((pfn + i) << PAGE_SHIFT) +
				got + is_io + pgorder;
341 342 343
			got = 0;
		}
	}
344
	spin_unlock(&kvm->arch.slot_phys_lock);
345
	err = 0;
346

347
 out:
348
	if (got)
349 350
		put_page(page);
	return err;
351 352 353 354

 up_err:
	up_read(&current->mm->mmap_sem);
	return err;
355 356
}

357 358 359
long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
				long pte_index, unsigned long pteh,
				unsigned long ptel, unsigned long *pte_idx_ret)
360 361 362 363 364
{
	unsigned long psize, gpa, gfn;
	struct kvm_memory_slot *memslot;
	long ret;

365 366 367
	if (kvm->arch.using_mmu_notifiers)
		goto do_insert;

368 369 370 371
	psize = hpte_page_size(pteh, ptel);
	if (!psize)
		return H_PARAMETER;

372 373
	pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);

374 375 376 377
	/* Find the memslot (if any) for this address */
	gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
	gfn = gpa >> PAGE_SHIFT;
	memslot = gfn_to_memslot(kvm, gfn);
378 379 380 381 382 383
	if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
		if (!slot_is_aligned(memslot, psize))
			return H_PARAMETER;
		if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
			return H_PARAMETER;
	}
384

385 386 387
 do_insert:
	/* Protect linux PTE lookup from page table destruction */
	rcu_read_lock_sched();	/* this disables preemption too */
388 389
	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
				current->mm->pgd, false, pte_idx_ret);
390
	rcu_read_unlock_sched();
391 392 393 394 395 396 397 398 399
	if (ret == H_TOO_HARD) {
		/* this can't happen */
		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
		ret = H_RESOURCE;	/* or something */
	}
	return ret;

}

400 401 402 403 404 405 406 407 408 409 410 411 412
/*
 * We come here on a H_ENTER call from the guest when we are not
 * using mmu notifiers and we don't have the requested page pinned
 * already.
 */
long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
			     long pte_index, unsigned long pteh,
			     unsigned long ptel)
{
	return kvmppc_virtmode_do_h_enter(vcpu->kvm, flags, pte_index,
					  pteh, ptel, &vcpu->arch.gpr[4]);
}

413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
							 gva_t eaddr)
{
	u64 mask;
	int i;

	for (i = 0; i < vcpu->arch.slb_nr; i++) {
		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
			continue;

		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
			mask = ESID_MASK_1T;
		else
			mask = ESID_MASK;

		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
			return &vcpu->arch.slb[i];
	}
	return NULL;
}

static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
			unsigned long ea)
{
	unsigned long ra_mask;

	ra_mask = hpte_page_size(v, r) - 1;
	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
}

443
static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
444
			struct kvmppc_pte *gpte, bool data, bool iswrite)
445
{
446 447 448 449 450
	struct kvm *kvm = vcpu->kvm;
	struct kvmppc_slb *slbe;
	unsigned long slb_v;
	unsigned long pp, key;
	unsigned long v, gr;
451
	__be64 *hptep;
452 453 454 455 456 457 458 459 460 461 462 463 464 465
	int index;
	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);

	/* Get SLB entry */
	if (virtmode) {
		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
		if (!slbe)
			return -EINVAL;
		slb_v = slbe->origv;
	} else {
		/* real mode access */
		slb_v = vcpu->kvm->arch.vrma_slb_v;
	}

466
	preempt_disable();
467 468 469
	/* Find the HPTE in the hash table */
	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
					 HPTE_V_VALID | HPTE_V_ABSENT);
470 471
	if (index < 0) {
		preempt_enable();
472
		return -ENOENT;
473
	}
474 475
	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
	v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
476 477 478 479
	gr = kvm->arch.revmap[index].guest_rpte;

	/* Unlock the HPTE */
	asm volatile("lwsync" : : : "memory");
480
	hptep[0] = cpu_to_be64(v);
481
	preempt_enable();
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528

	gpte->eaddr = eaddr;
	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);

	/* Get PP bits and key for permission check */
	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
	key &= slb_v;

	/* Calculate permissions */
	gpte->may_read = hpte_read_permission(pp, key);
	gpte->may_write = hpte_write_permission(pp, key);
	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));

	/* Storage key permission check for POWER7 */
	if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
		if (amrfield & 1)
			gpte->may_read = 0;
		if (amrfield & 2)
			gpte->may_write = 0;
	}

	/* Get the guest physical address */
	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
	return 0;
}

/*
 * Quick test for whether an instruction is a load or a store.
 * If the instruction is a load or a store, then this will indicate
 * which it is, at least on server processors.  (Embedded processors
 * have some external PID instructions that don't follow the rule
 * embodied here.)  If the instruction isn't a load or store, then
 * this doesn't return anything useful.
 */
static int instruction_is_store(unsigned int instr)
{
	unsigned int mask;

	mask = 0x10000000;
	if ((instr & 0xfc000000) == 0x7c000000)
		mask = 0x100;		/* major opcode 31 */
	return (instr & mask) != 0;
}

static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
529
				  unsigned long gpa, gva_t ea, int is_store)
530 531 532
{
	u32 last_inst;

533
	/*
534 535
	 * If we fail, we just return to the guest and try executing it again.
	 */
536 537 538
	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
		EMULATE_DONE)
		return RESUME_GUEST;
539 540 541 542 543 544 545 546 547 548 549 550 551

	/*
	 * WARNING: We do not know for sure whether the instruction we just
	 * read from memory is the same that caused the fault in the first
	 * place.  If the instruction we read is neither an load or a store,
	 * then it can't access memory, so we don't need to worry about
	 * enforcing access permissions.  So, assuming it is a load or
	 * store, we just check that its direction (load or store) is
	 * consistent with the original fault, since that's what we
	 * checked the access permissions against.  If there is a mismatch
	 * we just return and retry the instruction.
	 */

552
	if (instruction_is_store(last_inst) != !!is_store)
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
		return RESUME_GUEST;

	/*
	 * Emulated accesses are emulated by looking at the hash for
	 * translation once, then performing the access later. The
	 * translation could be invalidated in the meantime in which
	 * point performing the subsequent memory access on the old
	 * physical address could possibly be a security hole for the
	 * guest (but not the host).
	 *
	 * This is less of an issue for MMIO stores since they aren't
	 * globally visible. It could be an issue for MMIO loads to
	 * a certain extent but we'll ignore it for now.
	 */

	vcpu->arch.paddr_accessed = gpa;
569
	vcpu->arch.vaddr_accessed = ea;
570 571 572 573 574 575 576
	return kvmppc_emulate_mmio(run, vcpu);
}

int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
				unsigned long ea, unsigned long dsisr)
{
	struct kvm *kvm = vcpu->kvm;
577 578
	unsigned long hpte[3], r;
	__be64 *hptep;
579
	unsigned long mmu_seq, psize, pte_size;
580
	unsigned long gpa_base, gfn_base;
581
	unsigned long gpa, gfn, hva, pfn;
582
	struct kvm_memory_slot *memslot;
583
	unsigned long *rmap;
584
	struct revmap_entry *rev;
585 586 587
	struct page *page, *pages[1];
	long index, ret, npages;
	unsigned long is_io;
588
	unsigned int writing, write_ok;
589
	struct vm_area_struct *vma;
590
	unsigned long rcbits;
591 592 593 594 595 596 597 598 599 600

	/*
	 * Real-mode code has already searched the HPT and found the
	 * entry we're interested in.  Lock the entry and check that
	 * it hasn't changed.  If it has, just return and re-execute the
	 * instruction.
	 */
	if (ea != vcpu->arch.pgfault_addr)
		return RESUME_GUEST;
	index = vcpu->arch.pgfault_index;
601
	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
602 603 604 605
	rev = &kvm->arch.revmap[index];
	preempt_disable();
	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
		cpu_relax();
606 607
	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
	hpte[1] = be64_to_cpu(hptep[1]);
608
	hpte[2] = r = rev->guest_rpte;
609
	asm volatile("lwsync" : : : "memory");
610
	hptep[0] = cpu_to_be64(hpte[0]);
611 612 613 614 615 616 617
	preempt_enable();

	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
	    hpte[1] != vcpu->arch.pgfault_hpte[1])
		return RESUME_GUEST;

	/* Translate the logical address and get the page */
618
	psize = hpte_page_size(hpte[0], r);
619 620 621
	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
	gfn_base = gpa_base >> PAGE_SHIFT;
	gpa = gpa_base | (ea & (psize - 1));
622
	gfn = gpa >> PAGE_SHIFT;
623 624 625
	memslot = gfn_to_memslot(kvm, gfn);

	/* No memslot means it's an emulated MMIO region */
626
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
627
		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
628 629
					      dsisr & DSISR_ISSTORE);

630 631 632
	if (!kvm->arch.using_mmu_notifiers)
		return -EFAULT;		/* should never get here */

633 634 635 636 637 638 639
	/*
	 * This should never happen, because of the slot_is_aligned()
	 * check in kvmppc_do_h_enter().
	 */
	if (gfn_base < memslot->base_gfn)
		return -EFAULT;

640 641 642 643 644 645 646 647
	/* used to check for invalidations in progress */
	mmu_seq = kvm->mmu_notifier_seq;
	smp_rmb();

	is_io = 0;
	pfn = 0;
	page = NULL;
	pte_size = PAGE_SIZE;
648 649 650
	writing = (dsisr & DSISR_ISSTORE) != 0;
	/* If writing != 0, then the HPTE must allow writing, if we get here */
	write_ok = writing;
651
	hva = gfn_to_hva_memslot(memslot, gfn);
652
	npages = get_user_pages_fast(hva, 1, writing, pages);
653 654 655 656 657 658 659 660 661 662
	if (npages < 1) {
		/* Check if it's an I/O mapping */
		down_read(&current->mm->mmap_sem);
		vma = find_vma(current->mm, hva);
		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
		    (vma->vm_flags & VM_PFNMAP)) {
			pfn = vma->vm_pgoff +
				((hva - vma->vm_start) >> PAGE_SHIFT);
			pte_size = psize;
			is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
663
			write_ok = vma->vm_flags & VM_WRITE;
664 665 666 667 668 669
		}
		up_read(&current->mm->mmap_sem);
		if (!pfn)
			return -EFAULT;
	} else {
		page = pages[0];
670
		pfn = page_to_pfn(page);
671 672 673 674
		if (PageHuge(page)) {
			page = compound_head(page);
			pte_size <<= compound_order(page);
		}
675 676
		/* if the guest wants write access, see if that is OK */
		if (!writing && hpte_is_writable(r)) {
677
			unsigned int hugepage_shift;
678 679 680 681 682 683 684 685
			pte_t *ptep, pte;

			/*
			 * We need to protect against page table destruction
			 * while looking up and updating the pte.
			 */
			rcu_read_lock_sched();
			ptep = find_linux_pte_or_hugepte(current->mm->pgd,
686 687 688 689
							 hva, &hugepage_shift);
			if (ptep) {
				pte = kvmppc_read_update_linux_pte(ptep, 1,
							   hugepage_shift);
690 691 692 693 694
				if (pte_write(pte))
					write_ok = 1;
			}
			rcu_read_unlock_sched();
		}
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
	}

	ret = -EFAULT;
	if (psize > pte_size)
		goto out_put;

	/* Check WIMG vs. the actual page we're accessing */
	if (!hpte_cache_flags_ok(r, is_io)) {
		if (is_io)
			return -EFAULT;
		/*
		 * Allow guest to map emulated device memory as
		 * uncacheable, but actually make it cacheable.
		 */
		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
	}

712 713 714 715 716 717 718 719
	/*
	 * Set the HPTE to point to pfn.
	 * Since the pfn is at PAGE_SIZE granularity, make sure we
	 * don't mask out lower-order bits if psize < PAGE_SIZE.
	 */
	if (psize < PAGE_SIZE)
		psize = PAGE_SIZE;
	r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
720 721
	if (hpte_is_writable(r) && !write_ok)
		r = hpte_make_readonly(r);
722 723 724 725
	ret = RESUME_GUEST;
	preempt_disable();
	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
		cpu_relax();
726 727 728
	if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
		be64_to_cpu(hptep[1]) != hpte[1] ||
		rev->guest_rpte != hpte[2])
729 730 731 732
		/* HPTE has been changed under us; let the guest retry */
		goto out_unlock;
	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;

733 734
	/* Always put the HPTE in the rmap chain for the page base address */
	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
735 736 737 738
	lock_rmap(rmap);

	/* Check if we might have been invalidated; let the guest retry if so */
	ret = RESUME_GUEST;
739
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
740 741 742
		unlock_rmap(rmap);
		goto out_unlock;
	}
743

744 745 746 747
	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);

748
	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
749 750
		/* HPTE was previously valid, so we need to invalidate it */
		unlock_rmap(rmap);
751
		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
752
		kvmppc_invalidate_hpte(kvm, hptep, index);
753
		/* don't lose previous R and C bits */
754
		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
755 756 757
	} else {
		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
	}
758

759
	hptep[1] = cpu_to_be64(r);
760
	eieio();
761
	hptep[0] = cpu_to_be64(hpte[0]);
762 763
	asm volatile("ptesync" : : : "memory");
	preempt_enable();
764
	if (page && hpte_is_writable(r))
765 766 767
		SetPageDirty(page);

 out_put:
768 769 770 771 772 773 774 775 776
	if (page) {
		/*
		 * We drop pages[0] here, not page because page might
		 * have been set to the head page of a compound, but
		 * we have to drop the reference on the correct tail
		 * page to match the get inside gup()
		 */
		put_page(pages[0]);
	}
777 778 779
	return ret;

 out_unlock:
780
	hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
781 782 783 784
	preempt_enable();
	goto out_put;
}

785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
static void kvmppc_rmap_reset(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int srcu_idx;

	srcu_idx = srcu_read_lock(&kvm->srcu);
	slots = kvm->memslots;
	kvm_for_each_memslot(memslot, slots) {
		/*
		 * This assumes it is acceptable to lose reference and
		 * change bits across a reset.
		 */
		memset(memslot->arch.rmap, 0,
		       memslot->npages * sizeof(*memslot->arch.rmap));
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
}

804 805 806 807 808 809
static int kvm_handle_hva_range(struct kvm *kvm,
				unsigned long start,
				unsigned long end,
				int (*handler)(struct kvm *kvm,
					       unsigned long *rmapp,
					       unsigned long gfn))
810 811 812 813 814 815 816 817
{
	int ret;
	int retval = 0;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
818 819 820 821 822 823 824 825 826 827 828 829 830 831
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
832

833
		for (; gfn < gfn_end; ++gfn) {
834
			gfn_t gfn_offset = gfn - memslot->base_gfn;
835

836
			ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
837 838 839 840 841 842 843
			retval |= ret;
		}
	}

	return retval;
}

844 845 846 847 848 849 850
static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
					 unsigned long gfn))
{
	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
}

851 852 853 854 855
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
			   unsigned long gfn)
{
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long h, i, j;
856
	__be64 *hptep;
857
	unsigned long ptel, psize, rcbits;
858 859

	for (;;) {
860
		lock_rmap(rmapp);
861
		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
862
			unlock_rmap(rmapp);
863 864 865 866 867
			break;
		}

		/*
		 * To avoid an ABBA deadlock with the HPTE lock bit,
868 869
		 * we can't spin on the HPTE lock while holding the
		 * rmap chain lock.
870 871
		 */
		i = *rmapp & KVMPPC_RMAP_INDEX;
872
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
873 874 875
		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
876
			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
877 878 879
				cpu_relax();
			continue;
		}
880 881 882
		j = rev[i].forw;
		if (j == i) {
			/* chain is now empty */
883
			*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
884 885 886 887 888 889
		} else {
			/* remove i from chain */
			h = rev[i].back;
			rev[h].forw = j;
			rev[j].back = h;
			rev[i].forw = rev[i].back = i;
890
			*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
891 892
		}

893
		/* Now check and modify the HPTE */
894
		ptel = rev[i].guest_rpte;
895 896
		psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
897
		    hpte_rpn(ptel, psize) == gfn) {
898
			if (kvm->arch.using_mmu_notifiers)
899
				hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
900 901
			kvmppc_invalidate_hpte(kvm, hptep, i);
			/* Harvest R and C */
902
			rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
903
			*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
904 905 906 907
			if (rcbits & ~rev[i].guest_rpte) {
				rev[i].guest_rpte = ptel | rcbits;
				note_hpte_modification(kvm, &rev[i]);
			}
908
		}
909
		unlock_rmap(rmapp);
910
		hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
911 912 913 914
	}
	return 0;
}

915
int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
916 917 918 919 920 921
{
	if (kvm->arch.using_mmu_notifiers)
		kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
	return 0;
}

922
int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
923 924 925 926 927 928
{
	if (kvm->arch.using_mmu_notifiers)
		kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
	return 0;
}

929 930
void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
				  struct kvm_memory_slot *memslot)
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
{
	unsigned long *rmapp;
	unsigned long gfn;
	unsigned long n;

	rmapp = memslot->arch.rmap;
	gfn = memslot->base_gfn;
	for (n = memslot->npages; n; --n) {
		/*
		 * Testing the present bit without locking is OK because
		 * the memslot has been marked invalid already, and hence
		 * no new HPTEs referencing this page can be created,
		 * thus the present bit can't go from 0 to 1.
		 */
		if (*rmapp & KVMPPC_RMAP_PRESENT)
			kvm_unmap_rmapp(kvm, rmapp, gfn);
		++rmapp;
		++gfn;
	}
}

952 953 954
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
			 unsigned long gfn)
{
955 956
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
957
	__be64 *hptep;
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
	int ret = 0;

 retry:
	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
		ret = 1;
	}
	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
		unlock_rmap(rmapp);
		return ret;
	}

	i = head = *rmapp & KVMPPC_RMAP_INDEX;
	do {
973
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
974 975 976
		j = rev[i].forw;

		/* If this HPTE isn't referenced, ignore it */
977
		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
978 979 980 981 982
			continue;

		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
983
			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
984 985 986 987 988
				cpu_relax();
			goto retry;
		}

		/* Now check and modify the HPTE */
989 990
		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
991
			kvmppc_clear_ref_hpte(kvm, hptep, i);
992 993 994 995
			if (!(rev[i].guest_rpte & HPTE_R_R)) {
				rev[i].guest_rpte |= HPTE_R_R;
				note_hpte_modification(kvm, &rev[i]);
			}
996 997
			ret = 1;
		}
998
		hptep[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
999 1000 1001 1002
	} while ((i = j) != head);

	unlock_rmap(rmapp);
	return ret;
1003 1004
}

1005
int kvm_age_hva_hv(struct kvm *kvm, unsigned long hva)
1006 1007 1008 1009 1010 1011 1012 1013 1014
{
	if (!kvm->arch.using_mmu_notifiers)
		return 0;
	return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
}

static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
			      unsigned long gfn)
{
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
	unsigned long *hp;
	int ret = 1;

	if (*rmapp & KVMPPC_RMAP_REFERENCED)
		return 1;

	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_REFERENCED)
		goto out;

	if (*rmapp & KVMPPC_RMAP_PRESENT) {
		i = head = *rmapp & KVMPPC_RMAP_INDEX;
		do {
			hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
			j = rev[i].forw;
1032
			if (be64_to_cpu(hp[1]) & HPTE_R_R)
1033 1034 1035 1036 1037 1038 1039 1040
				goto out;
		} while ((i = j) != head);
	}
	ret = 0;

 out:
	unlock_rmap(rmapp);
	return ret;
1041 1042
}

1043
int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
1044 1045 1046 1047 1048 1049
{
	if (!kvm->arch.using_mmu_notifiers)
		return 0;
	return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
}

1050
void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1051 1052 1053 1054
{
	if (!kvm->arch.using_mmu_notifiers)
		return;
	kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
1055 1056
}

1057 1058 1059 1060 1061
static int vcpus_running(struct kvm *kvm)
{
	return atomic_read(&kvm->arch.vcpus_running) != 0;
}

1062 1063 1064 1065 1066
/*
 * Returns the number of system pages that are dirty.
 * This can be more than 1 if we find a huge-page HPTE.
 */
static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1067 1068 1069
{
	struct revmap_entry *rev = kvm->arch.revmap;
	unsigned long head, i, j;
1070
	unsigned long n;
1071
	unsigned long v, r;
1072
	__be64 *hptep;
1073
	int npages_dirty = 0;
1074 1075 1076 1077 1078

 retry:
	lock_rmap(rmapp);
	if (*rmapp & KVMPPC_RMAP_CHANGED) {
		*rmapp &= ~KVMPPC_RMAP_CHANGED;
1079
		npages_dirty = 1;
1080 1081 1082
	}
	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
		unlock_rmap(rmapp);
1083
		return npages_dirty;
1084 1085 1086 1087
	}

	i = head = *rmapp & KVMPPC_RMAP_INDEX;
	do {
1088 1089
		unsigned long hptep1;
		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
1090 1091
		j = rev[i].forw;

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
		/*
		 * Checking the C (changed) bit here is racy since there
		 * is no guarantee about when the hardware writes it back.
		 * If the HPTE is not writable then it is stable since the
		 * page can't be written to, and we would have done a tlbie
		 * (which forces the hardware to complete any writeback)
		 * when making the HPTE read-only.
		 * If vcpus are running then this call is racy anyway
		 * since the page could get dirtied subsequently, so we
		 * expect there to be a further call which would pick up
		 * any delayed C bit writeback.
		 * Otherwise we need to do the tlbie even if C==0 in
		 * order to pick up any delayed writeback of C.
		 */
1106 1107 1108
		hptep1 = be64_to_cpu(hptep[1]);
		if (!(hptep1 & HPTE_R_C) &&
		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1109 1110 1111 1112 1113
			continue;

		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
			/* unlock rmap before spinning on the HPTE lock */
			unlock_rmap(rmapp);
1114
			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1115 1116 1117 1118 1119
				cpu_relax();
			goto retry;
		}

		/* Now check and modify the HPTE */
1120
		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID)))
1121 1122 1123
			continue;

		/* need to make it temporarily absent so C is stable */
1124
		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1125
		kvmppc_invalidate_hpte(kvm, hptep, i);
1126 1127
		v = be64_to_cpu(hptep[0]);
		r = be64_to_cpu(hptep[1]);
1128
		if (r & HPTE_R_C) {
1129
			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1130 1131 1132 1133
			if (!(rev[i].guest_rpte & HPTE_R_C)) {
				rev[i].guest_rpte |= HPTE_R_C;
				note_hpte_modification(kvm, &rev[i]);
			}
1134
			n = hpte_page_size(v, r);
1135 1136 1137
			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
			if (n > npages_dirty)
				npages_dirty = n;
1138
			eieio();
1139
		}
1140 1141
		v &= ~(HPTE_V_ABSENT | HPTE_V_HVLOCK);
		v |= HPTE_V_VALID;
1142
		hptep[0] = cpu_to_be64(v);
1143 1144 1145
	} while ((i = j) != head);

	unlock_rmap(rmapp);
1146
	return npages_dirty;
1147 1148
}

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
			      struct kvm_memory_slot *memslot,
			      unsigned long *map)
{
	unsigned long gfn;

	if (!vpa->dirty || !vpa->pinned_addr)
		return;
	gfn = vpa->gpa >> PAGE_SHIFT;
	if (gfn < memslot->base_gfn ||
	    gfn >= memslot->base_gfn + memslot->npages)
		return;

	vpa->dirty = false;
	if (map)
		__set_bit_le(gfn - memslot->base_gfn, map);
}

1167 1168
long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
			     unsigned long *map)
1169
{
1170
	unsigned long i, j;
1171
	unsigned long *rmapp;
1172
	struct kvm_vcpu *vcpu;
1173 1174

	preempt_disable();
1175
	rmapp = memslot->arch.rmap;
1176
	for (i = 0; i < memslot->npages; ++i) {
1177 1178 1179 1180 1181 1182 1183 1184 1185
		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
		/*
		 * Note that if npages > 0 then i must be a multiple of npages,
		 * since we always put huge-page HPTEs in the rmap chain
		 * corresponding to their page base address.
		 */
		if (npages && map)
			for (j = i; npages; ++j, --npages)
				__set_bit_le(j, map);
1186 1187
		++rmapp;
	}
1188 1189 1190 1191 1192 1193 1194 1195 1196

	/* Harvest dirty bits from VPA and DTL updates */
	/* Note: we never modify the SLB shadow buffer areas */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		spin_lock(&vcpu->arch.vpa_update_lock);
		harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
		harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
		spin_unlock(&vcpu->arch.vpa_update_lock);
	}
1197 1198 1199 1200
	preempt_enable();
	return 0;
}

1201 1202 1203 1204 1205
void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
			    unsigned long *nb_ret)
{
	struct kvm_memory_slot *memslot;
	unsigned long gfn = gpa >> PAGE_SHIFT;
1206 1207
	struct page *page, *pages[1];
	int npages;
1208
	unsigned long hva, offset;
1209
	unsigned long pa;
1210
	unsigned long *physp;
1211
	int srcu_idx;
1212

1213
	srcu_idx = srcu_read_lock(&kvm->srcu);
1214 1215
	memslot = gfn_to_memslot(kvm, gfn);
	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1216
		goto err;
1217
	if (!kvm->arch.using_mmu_notifiers) {
1218
		physp = memslot->arch.slot_phys;
1219
		if (!physp)
1220
			goto err;
1221
		physp += gfn - memslot->base_gfn;
1222
		pa = *physp;
1223 1224 1225
		if (!pa) {
			if (kvmppc_get_guest_page(kvm, gfn, memslot,
						  PAGE_SIZE) < 0)
1226
				goto err;
1227 1228 1229
			pa = *physp;
		}
		page = pfn_to_page(pa >> PAGE_SHIFT);
1230
		get_page(page);
1231 1232 1233 1234
	} else {
		hva = gfn_to_hva_memslot(memslot, gfn);
		npages = get_user_pages_fast(hva, 1, 1, pages);
		if (npages < 1)
1235
			goto err;
1236
		page = pages[0];
1237
	}
1238 1239
	srcu_read_unlock(&kvm->srcu, srcu_idx);

1240
	offset = gpa & (PAGE_SIZE - 1);
1241
	if (nb_ret)
1242
		*nb_ret = PAGE_SIZE - offset;
1243
	return page_address(page) + offset;
1244 1245 1246 1247

 err:
	srcu_read_unlock(&kvm->srcu, srcu_idx);
	return NULL;
1248 1249
}

1250 1251
void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
			     bool dirty)
1252 1253
{
	struct page *page = virt_to_page(va);
1254 1255 1256 1257
	struct kvm_memory_slot *memslot;
	unsigned long gfn;
	unsigned long *rmap;
	int srcu_idx;
1258 1259

	put_page(page);
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274

	if (!dirty || !kvm->arch.using_mmu_notifiers)
		return;

	/* We need to mark this page dirty in the rmap chain */
	gfn = gpa >> PAGE_SHIFT;
	srcu_idx = srcu_read_lock(&kvm->srcu);
	memslot = gfn_to_memslot(kvm, gfn);
	if (memslot) {
		rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
		lock_rmap(rmap);
		*rmap |= KVMPPC_RMAP_CHANGED;
		unlock_rmap(rmap);
	}
	srcu_read_unlock(&kvm->srcu, srcu_idx);
1275 1276
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
/*
 * Functions for reading and writing the hash table via reads and
 * writes on a file descriptor.
 *
 * Reads return the guest view of the hash table, which has to be
 * pieced together from the real hash table and the guest_rpte
 * values in the revmap array.
 *
 * On writes, each HPTE written is considered in turn, and if it
 * is valid, it is written to the HPT as if an H_ENTER with the
 * exact flag set was done.  When the invalid count is non-zero
 * in the header written to the stream, the kernel will make
 * sure that that many HPTEs are invalid, and invalidate them
 * if not.
 */

struct kvm_htab_ctx {
	unsigned long	index;
	unsigned long	flags;
	struct kvm	*kvm;
	int		first_pass;
};

#define HPTE_SIZE	(2 * sizeof(unsigned long))

1302 1303 1304 1305
/*
 * Returns 1 if this HPT entry has been modified or has pending
 * R/C bit changes.
 */
1306
static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1307 1308 1309 1310 1311 1312 1313 1314
{
	unsigned long rcbits_unset;

	if (revp->guest_rpte & HPTE_GR_MODIFIED)
		return 1;

	/* Also need to consider changes in reference and changed bits */
	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1315 1316
	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1317 1318 1319 1320 1321
		return 1;

	return 0;
}

1322
static long record_hpte(unsigned long flags, __be64 *hptp,
1323 1324 1325 1326
			unsigned long *hpte, struct revmap_entry *revp,
			int want_valid, int first_pass)
{
	unsigned long v, r;
1327
	unsigned long rcbits_unset;
1328 1329 1330 1331
	int ok = 1;
	int valid, dirty;

	/* Unmodified entries are uninteresting except on the first pass */
1332
	dirty = hpte_dirty(revp, hptp);
1333 1334 1335 1336
	if (!first_pass && !dirty)
		return 0;

	valid = 0;
1337
	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1338 1339
		valid = 1;
		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1340
		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
			valid = 0;
	}
	if (valid != want_valid)
		return 0;

	v = r = 0;
	if (valid || dirty) {
		/* lock the HPTE so it's stable and read it */
		preempt_disable();
		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
			cpu_relax();
1352
		v = be64_to_cpu(hptp[0]);
1353 1354 1355 1356 1357 1358 1359

		/* re-evaluate valid and dirty from synchronized HPTE value */
		valid = !!(v & HPTE_V_VALID);
		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);

		/* Harvest R and C into guest view if necessary */
		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1360 1361 1362
		if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
			revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1363 1364 1365
			dirty = 1;
		}

1366 1367 1368
		if (v & HPTE_V_ABSENT) {
			v &= ~HPTE_V_ABSENT;
			v |= HPTE_V_VALID;
1369
			valid = 1;
1370 1371 1372
		}
		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
			valid = 0;
1373 1374

		r = revp->guest_rpte;
1375 1376 1377 1378 1379 1380
		/* only clear modified if this is the right sort of entry */
		if (valid == want_valid && dirty) {
			r &= ~HPTE_GR_MODIFIED;
			revp->guest_rpte = r;
		}
		asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
1381
		hptp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
1382 1383 1384 1385
		preempt_enable();
		if (!(valid == want_valid && (first_pass || dirty)))
			ok = 0;
	}
1386 1387
	hpte[0] = cpu_to_be64(v);
	hpte[1] = cpu_to_be64(r);
1388 1389 1390 1391 1392 1393 1394 1395 1396
	return ok;
}

static ssize_t kvm_htab_read(struct file *file, char __user *buf,
			     size_t count, loff_t *ppos)
{
	struct kvm_htab_ctx *ctx = file->private_data;
	struct kvm *kvm = ctx->kvm;
	struct kvm_get_htab_header hdr;
1397
	__be64 *hptp;
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
	struct revmap_entry *revp;
	unsigned long i, nb, nw;
	unsigned long __user *lbuf;
	struct kvm_get_htab_header __user *hptr;
	unsigned long flags;
	int first_pass;
	unsigned long hpte[2];

	if (!access_ok(VERIFY_WRITE, buf, count))
		return -EFAULT;

	first_pass = ctx->first_pass;
	flags = ctx->flags;

	i = ctx->index;
1413
	hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
	revp = kvm->arch.revmap + i;
	lbuf = (unsigned long __user *)buf;

	nb = 0;
	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
		/* Initialize header */
		hptr = (struct kvm_get_htab_header __user *)buf;
		hdr.n_valid = 0;
		hdr.n_invalid = 0;
		nw = nb;
		nb += sizeof(hdr);
		lbuf = (unsigned long __user *)(buf + sizeof(hdr));

		/* Skip uninteresting entries, i.e. clean on not-first pass */
		if (!first_pass) {
			while (i < kvm->arch.hpt_npte &&
1430
			       !hpte_dirty(revp, hptp)) {
1431 1432 1433 1434 1435
				++i;
				hptp += 2;
				++revp;
			}
		}
1436
		hdr.index = i;
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496

		/* Grab a series of valid entries */
		while (i < kvm->arch.hpt_npte &&
		       hdr.n_valid < 0xffff &&
		       nb + HPTE_SIZE < count &&
		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
			/* valid entry, write it out */
			++hdr.n_valid;
			if (__put_user(hpte[0], lbuf) ||
			    __put_user(hpte[1], lbuf + 1))
				return -EFAULT;
			nb += HPTE_SIZE;
			lbuf += 2;
			++i;
			hptp += 2;
			++revp;
		}
		/* Now skip invalid entries while we can */
		while (i < kvm->arch.hpt_npte &&
		       hdr.n_invalid < 0xffff &&
		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
			/* found an invalid entry */
			++hdr.n_invalid;
			++i;
			hptp += 2;
			++revp;
		}

		if (hdr.n_valid || hdr.n_invalid) {
			/* write back the header */
			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
				return -EFAULT;
			nw = nb;
			buf = (char __user *)lbuf;
		} else {
			nb = nw;
		}

		/* Check if we've wrapped around the hash table */
		if (i >= kvm->arch.hpt_npte) {
			i = 0;
			ctx->first_pass = 0;
			break;
		}
	}

	ctx->index = i;

	return nb;
}

static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *ppos)
{
	struct kvm_htab_ctx *ctx = file->private_data;
	struct kvm *kvm = ctx->kvm;
	struct kvm_get_htab_header hdr;
	unsigned long i, j;
	unsigned long v, r;
	unsigned long __user *lbuf;
1497
	__be64 *hptp;
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
	unsigned long tmp[2];
	ssize_t nb;
	long int err, ret;
	int rma_setup;

	if (!access_ok(VERIFY_READ, buf, count))
		return -EFAULT;

	/* lock out vcpus from running while we're doing this */
	mutex_lock(&kvm->lock);
	rma_setup = kvm->arch.rma_setup_done;
	if (rma_setup) {
		kvm->arch.rma_setup_done = 0;	/* temporarily */
		/* order rma_setup_done vs. vcpus_running */
		smp_mb();
		if (atomic_read(&kvm->arch.vcpus_running)) {
			kvm->arch.rma_setup_done = 1;
			mutex_unlock(&kvm->lock);
			return -EBUSY;
		}
	}

	err = 0;
	for (nb = 0; nb + sizeof(hdr) <= count; ) {
		err = -EFAULT;
		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
			break;

		err = 0;
		if (nb + hdr.n_valid * HPTE_SIZE > count)
			break;

		nb += sizeof(hdr);
		buf += sizeof(hdr);

		err = -EINVAL;
		i = hdr.index;
		if (i >= kvm->arch.hpt_npte ||
		    i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
			break;

1539
		hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
		lbuf = (unsigned long __user *)buf;
		for (j = 0; j < hdr.n_valid; ++j) {
			err = -EFAULT;
			if (__get_user(v, lbuf) || __get_user(r, lbuf + 1))
				goto out;
			err = -EINVAL;
			if (!(v & HPTE_V_VALID))
				goto out;
			lbuf += 2;
			nb += HPTE_SIZE;

1551
			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
			err = -EIO;
			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
							 tmp);
			if (ret != H_SUCCESS) {
				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
				       "r=%lx\n", ret, i, v, r);
				goto out;
			}
			if (!rma_setup && is_vrma_hpte(v)) {
1562
				unsigned long psize = hpte_base_page_size(v, r);
1563 1564 1565 1566 1567
				unsigned long senc = slb_pgsize_encoding(psize);
				unsigned long lpcr;

				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1568 1569
				lpcr = senc << (LPCR_VRMASD_SH - 4);
				kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1570 1571 1572 1573 1574 1575 1576
				rma_setup = 1;
			}
			++i;
			hptp += 2;
		}

		for (j = 0; j < hdr.n_invalid; ++j) {
1577
			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
			++i;
			hptp += 2;
		}
		err = 0;
	}

 out:
	/* Order HPTE updates vs. rma_setup_done */
	smp_wmb();
	kvm->arch.rma_setup_done = rma_setup;
	mutex_unlock(&kvm->lock);

	if (err)
		return err;
	return nb;
}

static int kvm_htab_release(struct inode *inode, struct file *filp)
{
	struct kvm_htab_ctx *ctx = filp->private_data;

	filp->private_data = NULL;
	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
	kvm_put_kvm(ctx->kvm);
	kfree(ctx);
	return 0;
}

1608
static const struct file_operations kvm_htab_fops = {
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
	.read		= kvm_htab_read,
	.write		= kvm_htab_write,
	.llseek		= default_llseek,
	.release	= kvm_htab_release,
};

int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
{
	int ret;
	struct kvm_htab_ctx *ctx;
	int rwflag;

	/* reject flags we don't recognize */
	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
		return -EINVAL;
	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
	if (!ctx)
		return -ENOMEM;
	kvm_get_kvm(kvm);
	ctx->kvm = kvm;
	ctx->index = ghf->start_index;
	ctx->flags = ghf->flags;
	ctx->first_pass = 1;

	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1634
	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
	if (ret < 0) {
		kvm_put_kvm(kvm);
		return ret;
	}

	if (rwflag == O_RDONLY) {
		mutex_lock(&kvm->slots_lock);
		atomic_inc(&kvm->arch.hpte_mod_interest);
		/* make sure kvmppc_do_h_enter etc. see the increment */
		synchronize_srcu_expedited(&kvm->srcu);
		mutex_unlock(&kvm->slots_lock);
	}

	return ret;
}

1651 1652 1653 1654
void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
{
	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;

1655 1656 1657 1658
	if (cpu_has_feature(CPU_FTR_ARCH_206))
		vcpu->arch.slb_nr = 32;		/* POWER7 */
	else
		vcpu->arch.slb_nr = 64;
1659 1660 1661 1662 1663 1664

	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
	mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;

	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
}