i7core_edac.c 61.2 KB
Newer Older
1 2
/* Intel i7 core/Nehalem Memory Controller kernel module
 *
D
David Sterba 已提交
3
 * This driver supports the memory controllers found on the Intel
4 5 6
 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
 * and Westmere-EP.
7 8 9 10
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
11
 * Copyright (c) 2009-2010 by:
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
R
Randy Dunlap 已提交
33
#include <linux/delay.h>
N
Nils Carlson 已提交
34
#include <linux/dmi.h>
35 36
#include <linux/edac.h>
#include <linux/mmzone.h>
37
#include <linux/smp.h>
38
#include <asm/mce.h>
39
#include <asm/processor.h>
40
#include <asm/div64.h>
41 42 43

#include "edac_core.h"

44 45 46 47 48
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
static int probed;

49 50 51
static int use_pci_fixup;
module_param(use_pci_fixup, int, 0444);
MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
52 53 54 55 56 57 58 59 60
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


61 62 63
/*
 * Alter this version for the module when modifications are made
 */
M
Michal Marek 已提交
64
#define I7CORE_REVISION    " Ver: 1.0.0"
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

80 81 82
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90
83 84
  #define MC_CFG_UNLOCK		0x02
  #define MC_CFG_LOCK		0x00
85

86 87 88 89 90 91
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

92 93 94 95 96 97 98 99 100 101 102 103
/*
 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

104
/* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
105 106 107 108 109 110 111
#define MC_SSRCONTROL		0x48
  #define SSR_MODE_DISABLE	0x00
  #define SSR_MODE_ENABLE	0x01
  #define SSR_MODE_MASK		0x03

#define MC_SCRUB_CONTROL	0x4c
  #define STARTSCRUB		(1 << 24)
N
Nils Carlson 已提交
112
  #define SCRUBINTERVAL_MASK    0xffffff
113

114 115 116 117 118 119 120 121 122 123 124
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


125 126
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

127 128 129 130 131 132
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

133 134 135 136
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

137 138 139
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

140
#define MC_CHANNEL_ADDR_MATCH	0xf0
141 142 143 144 145 146 147 148 149 150
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
151

152
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
153

154 155 156 157 158 159 160
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
161 162 163 164
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
165
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
166
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
167 168
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
169

170 171
#define MC_RANK_PRESENT		0x7c

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

195 196 197 198 199
/*
 * i7core structs
 */

#define NUM_CHANS 3
200 201 202
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
203 204 205 206 207

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
208
	u32	ch_map;
209 210
};

211 212 213 214 215 216 217 218 219 220 221 222

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

223
struct i7core_channel {
224 225
	u32		ranks;
	u32		dimms;
226 227
};

228
struct pci_id_descr {
229 230 231
	int			dev;
	int			func;
	int 			dev_id;
232
	int			optional;
233 234
};

235
struct pci_id_table {
236 237
	const struct pci_id_descr	*descr;
	int				n_devs;
238 239
};

240 241 242 243
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
244
	int			n_devs;
245 246 247
	struct mem_ctl_info	*mci;
};

248
struct i7core_pvt {
249 250 251 252 253
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
254

255
	struct i7core_info	info;
256
	struct i7core_inject	inject;
257
	struct i7core_channel	channel[NUM_CHANS];
258

259
	int		ce_count_available;
260 261

			/* ECC corrected errors counts per udimm */
262 263
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
264
			/* ECC corrected errors counts per rdimm */
265 266
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
267

268
	bool		is_registered, enable_scrub;
269

270
	/* Fifo double buffers */
271
	struct mce		mce_entry[MCE_LOG_LEN];
272 273 274 275 276 277 278
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;
279

N
Nils Carlson 已提交
280 281 282
	/* DCLK Frequency used for computing scrub rate */
	int			dclk_freq;

283 284
	/* Struct to control EDAC polling */
	struct edac_pci_ctl_info *i7core_pci;
285 286
};

287 288 289 290 291
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

292
static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
293 294 295
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
296
			/* Exists only for RDIMM */
297
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
317 318 319 320 321 322 323 324 325 326

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },

327
};
328

329
static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
330 331 332 333 334 335 336 337 338
	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },

339 340 341 342
	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
343 344 345 346 347 348

	/*
	 * This is the PCI device has an alternate address on some
	 * processors like Core i7 860
	 */
	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
349 350
};

351
static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },
376 377 378 379

		/* Generic Non-core registers */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },

380 381
};

382 383
#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_table[] = {
384 385 386
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
387
	{0,}			/* 0 terminated list. */
388 389
};

390 391 392
/*
 *	pci_device_id	table for which devices we are looking for
 */
393
static DEFINE_PCI_DEVICE_TABLE(i7core_pci_tbl) = {
394
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
395
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
396 397 398
	{0,}			/* 0 terminated list. */
};

399 400 401 402 403
/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
404 405
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
406 407

	/* MC_STATUS bits */
408
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
409
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
410 411

	/* MC_MAX_DOD read functions */
412
static inline int numdimms(u32 dimms)
413
{
414
	return (dimms & 0x3) + 1;
415 416
}

417
static inline int numrank(u32 rank)
418 419 420
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

421
	return ranks[rank & 0x3];
422 423
}

424
static inline int numbank(u32 bank)
425 426 427
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

428
	return banks[bank & 0x3];
429 430
}

431
static inline int numrow(u32 row)
432 433 434 435 436 437
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

438
	return rows[row & 0x7];
439 440
}

441
static inline int numcol(u32 col)
442 443 444 445
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
446
	return cols[col & 0x3];
447 448
}

449
static struct i7core_dev *get_i7core_dev(u8 socket)
450 451 452 453 454 455 456 457 458 459 460
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static struct i7core_dev *alloc_i7core_dev(u8 socket,
					   const struct pci_id_table *table)
{
	struct i7core_dev *i7core_dev;

	i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
	if (!i7core_dev)
		return NULL;

	i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
				   GFP_KERNEL);
	if (!i7core_dev->pdev) {
		kfree(i7core_dev);
		return NULL;
	}

	i7core_dev->socket = socket;
	i7core_dev->n_devs = table->n_devs;
	list_add_tail(&i7core_dev->list, &i7core_edac_list);

	return i7core_dev;
}

484 485 486 487 488 489 490
static void free_i7core_dev(struct i7core_dev *i7core_dev)
{
	list_del(&i7core_dev->list);
	kfree(i7core_dev->pdev);
	kfree(i7core_dev);
}

491 492 493
/****************************************************************************
			Memory check routines
 ****************************************************************************/
494

495
static int get_dimm_config(struct mem_ctl_info *mci)
496 497
{
	struct i7core_pvt *pvt = mci->pvt_info;
498
	struct pci_dev *pdev;
499
	int i, j;
500
	enum edac_type mode;
501
	enum mem_type mtype;
502
	struct dimm_info *dimm;
503

504
	/* Get data from the MC register, function 0 */
505
	pdev = pvt->pci_mcr[0];
506
	if (!pdev)
507 508
		return -ENODEV;

509
	/* Device 3 function 0 reads */
510 511 512 513
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
514

515
	debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
516
		pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
517
		pvt->info.max_dod, pvt->info.ch_map);
518

519
	if (ECC_ENABLED(pvt)) {
520
		debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
521 522 523 524 525
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
526
		debugf0("ECC disabled\n");
527 528
		mode = EDAC_NONE;
	}
529 530

	/* FIXME: need to handle the error codes */
531 532
	debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
		"x%x x 0x%x\n",
533 534
		numdimms(pvt->info.max_dod),
		numrank(pvt->info.max_dod >> 2),
535
		numbank(pvt->info.max_dod >> 4),
536 537
		numrow(pvt->info.max_dod >> 6),
		numcol(pvt->info.max_dod >> 9));
538

539
	for (i = 0; i < NUM_CHANS; i++) {
540
		u32 data, dimm_dod[3], value[8];
541

542 543 544
		if (!pvt->pci_ch[i][0])
			continue;

545 546 547 548 549 550 551 552 553
		if (!CH_ACTIVE(pvt, i)) {
			debugf0("Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			debugf0("Channel %i is disabled\n", i);
			continue;
		}

554
		/* Devices 4-6 function 0 */
555
		pci_read_config_dword(pvt->pci_ch[i][0],
556 557
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

558
		pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
559
						4 : 2;
560

561 562
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
563
		else
564 565
			mtype = MEM_DDR3;
#if 0
566 567 568 569 570 571
		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].dimms = 3;
		else if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].dimms = 1;
		else
			pvt->channel[i].dimms = 2;
572 573 574
#endif

		/* Devices 4-6 function 1 */
575
		pci_read_config_dword(pvt->pci_ch[i][1],
576
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
577
		pci_read_config_dword(pvt->pci_ch[i][1],
578
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
579
		pci_read_config_dword(pvt->pci_ch[i][1],
580
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
581

582
		debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
583
			"%d ranks, %cDIMMs\n",
584 585 586
			i,
			RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			data,
587
			pvt->channel[i].ranks,
588
			(data & REGISTERED_DIMM) ? 'R' : 'U');
589 590 591

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
592
			u32 size, npages;
593 594 595 596

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

597 598
			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
				       i, j, 0);
599 600 601 602 603
			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

604 605 606
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

607 608 609
			debugf0("\tdimm %d %d Mb offset: %x, "
				"bank: %d, rank: %d, row: %#x, col: %#x\n",
				j, size,
610 611 612
				RANKOFFSET(dimm_dod[j]),
				banks, ranks, rows, cols);

613
			npages = MiB_TO_PAGES(size);
614

615 616
			dimm->nr_pages = npages;

617 618
			switch (banks) {
			case 4:
619
				dimm->dtype = DEV_X4;
620 621
				break;
			case 8:
622
				dimm->dtype = DEV_X8;
623 624
				break;
			case 16:
625
				dimm->dtype = DEV_X16;
626 627
				break;
			default:
628
				dimm->dtype = DEV_UNKNOWN;
629 630
			}

631 632 633 634 635 636
			snprintf(dimm->label, sizeof(dimm->label),
				 "CPU#%uChannel#%u_DIMM#%u",
				 pvt->i7core_dev->socket, i, j);
			dimm->grain = 8;
			dimm->edac_mode = mode;
			dimm->mtype = mtype;
637
		}
638

639 640 641 642 643 644 645 646
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
647
		debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
648
		for (j = 0; j < 8; j++)
649
			debugf1("\t\t%#x\t%#x\t%#x\n",
650 651
				(value[j] >> 27) & 0x1,
				(value[j] >> 24) & 0x7,
652
				(value[j] & ((1 << 24) - 1)));
653 654
	}

655 656 657
	return 0;
}

658 659 660 661 662 663 664 665 666 667 668
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
669
static int disable_inject(const struct mem_ctl_info *mci)
670 671 672 673 674
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

675
	if (!pvt->pci_ch[pvt->inject.channel][0])
676 677
		return -ENODEV;

678
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
679
				MC_CHANNEL_ERROR_INJECT, 0);
680 681

	return 0;
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
					   const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
699
		disable_inject(mci);
700 701 702

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
703
		return -EIO;
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731

	pvt->inject.section = (u32) value;
	return count;
}

static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
732
		disable_inject(mci);
733 734 735

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
736
		return -EIO;
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766

	pvt->inject.type = (u32) value;
	return count;
}

static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
767
		disable_inject(mci);
768 769 770

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
771
		return -EIO;
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794

	pvt->inject.eccmask = (u32) value;
	return count;
}

static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

795 796 797 798 799
#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
		struct mem_ctl_info *mci,			\
		const char *data, size_t count)			\
{								\
800
	struct i7core_pvt *pvt;					\
801 802 803
	long value;						\
	int rc;							\
								\
804 805 806
	debugf1("%s()\n", __func__);				\
	pvt = mci->pvt_info;					\
								\
807 808 809
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
810
	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
		value = -1;					\
	else {							\
		rc = strict_strtoul(data, 10, &value);		\
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
827 828 829 830
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
	debugf1("%s() pvt=%p\n", __func__, pvt);		\
831 832 833 834
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
835 836
}

837 838 839 840 841 842 843 844 845
#define ATTR_ADDR_MATCH(param)					\
	{							\
		.attr = {					\
			.name = #param,				\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_inject_show_##param,		\
		.store = i7core_inject_store_##param,		\
	}
846

847 848 849 850 851 852
DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);
853

854
static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
855 856 857 858
{
	u32 read;
	int count;

859 860 861 862
	debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val);

863 864
	for (count = 0; count < 10; count++) {
		if (count)
865
			msleep(100);
866 867 868 869 870 871 872
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

873 874 875 876
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
877 878 879 880

	return -EINVAL;
}

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
				       const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

908
	if (!pvt->pci_ch[pvt->inject.channel][0])
909 910
		return 0;

911 912 913 914 915 916 917 918 919 920 921 922 923
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
924
		mask |= 1LL << 41;
925
	else {
926
		if (pvt->channel[pvt->inject.channel].dimms > 2)
927
			mask |= (pvt->inject.dimm & 0x3LL) << 35;
928
		else
929
			mask |= (pvt->inject.dimm & 0x1LL) << 36;
930 931 932 933
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
934
		mask |= 1LL << 40;
935
	else {
936
		if (pvt->channel[pvt->inject.channel].dimms > 2)
937
			mask |= (pvt->inject.rank & 0x1LL) << 34;
938
		else
939
			mask |= (pvt->inject.rank & 0x3LL) << 34;
940 941 942 943
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
944
		mask |= 1LL << 39;
945
	else
946
		mask |= (pvt->inject.bank & 0x15LL) << 30;
947 948 949

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
950
		mask |= 1LL << 38;
951
	else
952
		mask |= (pvt->inject.page & 0xffff) << 14;
953 954 955

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
956
		mask |= 1LL << 37;
957
	else
958
		mask |= (pvt->inject.col & 0x3fff);
959

960 961 962 963 964 965 966 967 968 969 970 971
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
972
	pci_write_config_dword(pvt->pci_noncore,
973
			       MC_CFG_CONTROL, 0x2);
974

975
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
976
			       MC_CHANNEL_ADDR_MATCH, mask);
977
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
978 979
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

980
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
981 982
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

983
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
984
			       MC_CHANNEL_ERROR_INJECT, injectmask);
985

986
	/*
987 988 989
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
990
	 */
991
	pci_write_config_dword(pvt->pci_noncore,
992
			       MC_CFG_CONTROL, 8);
993

994 995
	debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
		" inject 0x%08x\n",
996 997
		mask, pvt->inject.eccmask, injectmask);

998

999 1000 1001 1002 1003 1004 1005
	return count;
}

static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
					char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
1006 1007
	u32 injectmask;

1008 1009 1010
	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

1011
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1012
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1013 1014 1015 1016 1017 1018

	debugf0("Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1019 1020 1021
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
	debugf1("%s() \n", __func__);				\
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}
1035

1036 1037 1038 1039 1040 1041 1042
#define ATTR_COUNTER(param)					\
	{							\
		.attr = {					\
			.name = __stringify(udimm##param),	\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_show_counter_##param		\
1043
	}
1044

1045 1046 1047
DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);
1048

1049 1050 1051
/*
 * Sysfs struct
 */
1052

1053
static const struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
1054 1055 1056 1057 1058 1059
	ATTR_ADDR_MATCH(channel),
	ATTR_ADDR_MATCH(dimm),
	ATTR_ADDR_MATCH(rank),
	ATTR_ADDR_MATCH(bank),
	ATTR_ADDR_MATCH(page),
	ATTR_ADDR_MATCH(col),
1060
	{ } /* End of list */
1061 1062
};

1063
static const struct mcidev_sysfs_group i7core_inject_addrmatch = {
1064 1065 1066 1067
	.name  = "inject_addrmatch",
	.mcidev_attr = i7core_addrmatch_attrs,
};

1068
static const struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
1069 1070 1071
	ATTR_COUNTER(0),
	ATTR_COUNTER(1),
	ATTR_COUNTER(2),
1072
	{ .attr = { .name = NULL } }
1073 1074
};

1075
static const struct mcidev_sysfs_group i7core_udimm_counters = {
1076 1077 1078 1079
	.name  = "all_channel_counts",
	.mcidev_attr = i7core_udimm_counters_attrs,
};

1080
static const struct mcidev_sysfs_attribute i7core_sysfs_rdimm_attrs[] = {
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
1103
		.grp = &i7core_inject_addrmatch,
1104 1105 1106 1107 1108 1109 1110 1111
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	},
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	{ }	/* End of list */
};

static const struct mcidev_sysfs_attribute i7core_sysfs_udimm_attrs[] = {
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
		.grp = &i7core_inject_addrmatch,
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	}, {
		.grp = &i7core_udimm_counters,
	},
	{ }	/* End of list */
1150 1151
};

1152 1153 1154 1155 1156
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
1157
 *	i7core_put_all_devices	'put' all the devices that we have
1158 1159
 *				reserved via 'get'
 */
1160
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1161
{
1162
	int i;
1163

1164
	debugf0(__FILE__ ": %s()\n", __func__);
1165
	for (i = 0; i < i7core_dev->n_devs; i++) {
1166 1167 1168 1169 1170 1171 1172 1173
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
		debugf0("Removing dev %02x:%02x.%d\n",
			pdev->bus->number,
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
1174
}
1175

1176 1177
static void i7core_put_all_devices(void)
{
1178
	struct i7core_dev *i7core_dev, *tmp;
1179

1180
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1181
		i7core_put_devices(i7core_dev);
1182
		free_i7core_dev(i7core_dev);
1183
	}
1184 1185
}

1186
static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1187 1188 1189
{
	struct pci_dev *pdev = NULL;
	int i;
1190

1191
	/*
D
David Sterba 已提交
1192
	 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
1193 1194 1195
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
1196 1197 1198 1199 1200 1201
	while (table && table->descr) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
		if (unlikely(!pdev)) {
			for (i = 0; i < MAX_SOCKET_BUSES; i++)
				pcibios_scan_specific_bus(255-i);
		}
1202
		pci_dev_put(pdev);
1203
		table++;
1204 1205 1206
	}
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
static unsigned i7core_pci_lastbus(void)
{
	int last_bus = 0, bus;
	struct pci_bus *b = NULL;

	while ((b = pci_find_next_bus(b)) != NULL) {
		bus = b->number;
		debugf0("Found bus %d\n", bus);
		if (bus > last_bus)
			last_bus = bus;
	}

	debugf0("Last bus %d\n", last_bus);

	return last_bus;
}

1224
/*
1225
 *	i7core_get_all_devices	Find and perform 'get' operation on the MCH's
1226 1227 1228 1229
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1230 1231 1232 1233
static int i7core_get_onedevice(struct pci_dev **prev,
				const struct pci_id_table *table,
				const unsigned devno,
				const unsigned last_bus)
1234
{
1235
	struct i7core_dev *i7core_dev;
1236
	const struct pci_id_descr *dev_descr = &table->descr[devno];
1237

1238
	struct pci_dev *pdev = NULL;
1239 1240
	u8 bus = 0;
	u8 socket = 0;
1241

1242
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1243
			      dev_descr->dev_id, *prev);
1244

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);

	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev)
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
				      *prev);

1259 1260 1261 1262
	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1263 1264
		}

1265
		if (dev_descr->optional)
1266
			return 0;
1267

1268 1269 1270
		if (devno == 0)
			return -ENODEV;

1271
		i7core_printk(KERN_INFO,
1272
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1273 1274
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1275

1276 1277 1278 1279
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1280

1281
	socket = last_bus - bus;
1282

1283 1284
	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
1285
		i7core_dev = alloc_i7core_dev(socket, table);
1286 1287
		if (!i7core_dev) {
			pci_dev_put(pdev);
1288
			return -ENOMEM;
1289
		}
1290
	}
1291

1292
	if (i7core_dev->pdev[devno]) {
1293 1294 1295
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1296 1297
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1298 1299 1300
		pci_dev_put(pdev);
		return -ENODEV;
	}
1301

1302
	i7core_dev->pdev[devno] = pdev;
1303 1304

	/* Sanity check */
1305 1306
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1307 1308 1309
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1310
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1311
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1312
			bus, dev_descr->dev, dev_descr->func);
1313 1314
		return -ENODEV;
	}
1315

1316 1317 1318 1319 1320
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1321 1322
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1323 1324
		return -ENODEV;
	}
1325

1326
	debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1327 1328 1329
		socket, bus, dev_descr->dev,
		dev_descr->func,
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1330

1331 1332 1333 1334 1335 1336 1337
	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

1338
	*prev = pdev;
1339

1340 1341
	return 0;
}
1342

1343
static int i7core_get_all_devices(void)
1344
{
1345
	int i, rc, last_bus;
1346
	struct pci_dev *pdev = NULL;
1347
	const struct pci_id_table *table = pci_dev_table;
1348

1349 1350
	last_bus = i7core_pci_lastbus();

1351
	while (table && table->descr) {
1352 1353 1354
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
1355
				rc = i7core_get_onedevice(&pdev, table, i,
1356
							  last_bus);
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					i7core_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
1367
		table++;
1368
	}
1369

1370 1371 1372
	return 0;
}

1373 1374
static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
1375 1376 1377
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1378
	int i, func, slot;
1379
	char *family;
1380

1381 1382
	pvt->is_registered = false;
	pvt->enable_scrub  = false;
1383
	for (i = 0; i < i7core_dev->n_devs; i++) {
1384 1385
		pdev = i7core_dev->pdev[i];
		if (!pdev)
1386 1387
			continue;

1388 1389 1390 1391 1392 1393 1394 1395
		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
1396
				goto error;
1397
			pvt->pci_ch[slot - 4][func] = pdev;
1398
		} else if (!slot && !func) {
1399
			pvt->pci_noncore = pdev;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428

			/* Detect the processor family */
			switch (pdev->device) {
			case PCI_DEVICE_ID_INTEL_I7_NONCORE:
				family = "Xeon 35xx/ i7core";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT:
				family = "i7-800/i5-700";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE:
				family = "Xeon 34xx";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT:
				family = "Xeon 55xx";
				pvt->enable_scrub = true;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2:
				family = "Xeon 56xx / i7-900";
				pvt->enable_scrub = true;
				break;
			default:
				family = "unknown";
				pvt->enable_scrub = false;
			}
			debugf0("Detected a processor type %s\n", family);
		} else
1429
			goto error;
1430

1431 1432 1433
		debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			pdev, i7core_dev->socket);
1434

1435 1436
		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
1437
			pvt->is_registered = true;
1438
	}
1439

1440
	return 0;
1441 1442 1443 1444 1445 1446

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1447 1448
}

1449 1450 1451
/****************************************************************************
			Error check routines
 ****************************************************************************/
1452
static void i7core_rdimm_update_errcount(struct mem_ctl_info *mci,
1453 1454 1455
				      const int chan,
				      const int dimm,
				      const int add)
1456
{
1457
	int i;
1458 1459

	for (i = 0; i < add; i++) {
1460 1461
		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 0, 0, 0,
				     chan, dimm, -1, "error", "", NULL);
1462 1463 1464 1465
	}
}

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1466 1467 1468 1469
					 const int chan,
					 const int new0,
					 const int new1,
					 const int new2)
1470 1471 1472 1473
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
1474
	if (pvt->ce_count_available) {
1475 1476
		/* Updates CE counters */

1477 1478 1479
		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1480 1481 1482

		if (add2 < 0)
			add2 += 0x7fff;
1483
		pvt->rdimm_ce_count[chan][2] += add2;
1484 1485 1486

		if (add1 < 0)
			add1 += 0x7fff;
1487
		pvt->rdimm_ce_count[chan][1] += add1;
1488 1489 1490

		if (add0 < 0)
			add0 += 0x7fff;
1491
		pvt->rdimm_ce_count[chan][0] += add0;
1492
	} else
1493
		pvt->ce_count_available = 1;
1494 1495

	/* Store the new values */
1496 1497 1498
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;
1499 1500 1501

	/*updated the edac core */
	if (add0 != 0)
1502
		i7core_rdimm_update_errcount(mci, chan, 0, add0);
1503
	if (add1 != 0)
1504
		i7core_rdimm_update_errcount(mci, chan, 1, add1);
1505
	if (add2 != 0)
1506
		i7core_rdimm_update_errcount(mci, chan, 2, add2);
1507 1508 1509

}

1510
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1511 1512 1513 1514 1515 1516
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1517
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1518
								&rcv[0][0]);
1519
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1520
								&rcv[0][1]);
1521
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1522
								&rcv[1][0]);
1523
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1524
								&rcv[1][1]);
1525
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1526
								&rcv[2][0]);
1527
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1528 1529 1530 1531 1532
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
		debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			(i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
		/*if the channel has 3 dimms*/
1533
		if (pvt->channel[i].dimms > 2) {
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

1545
		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1546 1547
	}
}
1548 1549 1550 1551 1552 1553 1554

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1555
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1556 1557 1558 1559 1560
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1561
	if (!pvt->pci_mcr[4]) {
1562
		debugf0("%s MCR registers not found\n", __func__);
1563 1564 1565
		return;
	}

1566
	/* Corrected test errors */
1567 1568
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1569 1570 1571 1572 1573 1574 1575

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
1576
	if (pvt->ce_count_available) {
1577 1578 1579
		/* Updates CE counters */
		int add0, add1, add2;

1580 1581 1582
		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];
1583 1584 1585

		if (add2 < 0)
			add2 += 0x7fff;
1586
		pvt->udimm_ce_count[2] += add2;
1587 1588 1589

		if (add1 < 0)
			add1 += 0x7fff;
1590
		pvt->udimm_ce_count[1] += add1;
1591 1592 1593

		if (add0 < 0)
			add0 += 0x7fff;
1594
		pvt->udimm_ce_count[0] += add0;
1595 1596 1597 1598 1599

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
1600
	} else
1601
		pvt->ce_count_available = 1;
1602 1603

	/* Store the new values */
1604 1605 1606
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
1607 1608
}

1609 1610 1611
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1612 1613 1614
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1615
 *     struct mce field	MCA Register
1616 1617 1618
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1619 1620 1621
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1622
static void i7core_mce_output_error(struct mem_ctl_info *mci,
1623
				    const struct mce *m)
1624
{
1625
	struct i7core_pvt *pvt = mci->pvt_info;
1626
	char *type, *optype, *err, *msg;
1627
	enum hw_event_mc_err_type tp_event;
1628
	unsigned long error = m->status & 0x1ff0000l;
1629 1630
	bool uncorrected_error = m->mcgstatus & 1ll << 61;
	bool ripv = m->mcgstatus & 1;
1631
	u32 optypenum = (m->status >> 4) & 0x07;
1632
	u32 core_err_cnt = (m->status >> 38) & 0x7fff;
1633 1634 1635 1636 1637
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);

1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	if (uncorrected_error) {
		if (ripv) {
			type = "FATAL";
			tp_event = HW_EVENT_ERR_FATAL;
		} else {
			type = "NON_FATAL";
			tp_event = HW_EVENT_ERR_UNCORRECTED;
		}
	} else {
		type = "CORRECTED";
		tp_event = HW_EVENT_ERR_CORRECTED;
	}
1650

1651
	switch (optypenum) {
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1670 1671
	}

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundacy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1702 1703
	}

1704
	msg = kasprintf(GFP_ATOMIC,
1705 1706 1707
		"addr=0x%08llx cpu=%d count=%d Err=%08llx:%08llx (%s: %s))\n",
		(long long) m->addr, m->cpu, core_err_cnt,
		(long long)m->status, (long long)m->misc, optype, err);
1708

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
	/*
	 * Call the helper to output message
	 * FIXME: what to do if core_err_cnt > 1? Currently, it generates
	 * only one event
	 */
	if (uncorrected_error || !pvt->is_registered)
		edac_mc_handle_error(tp_event, mci,
				     m->addr >> PAGE_SHIFT,
				     m->addr & ~PAGE_MASK,
				     syndrome,
				     channel, dimm, -1,
				     err, msg, m);
1721 1722

	kfree(msg);
1723 1724
}

1725 1726 1727 1728 1729 1730
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci)
{
1731 1732 1733
	struct i7core_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
1734
	struct mce *m;
1735

1736 1737 1738
	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
L
Lucas De Marchi 已提交
1739
	 * losing an error.
1740 1741
	 */
	smp_rmb();
1742 1743
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
1744
	if (!count)
1745
		goto check_ce_error;
1746

1747
	m = pvt->mce_outentry;
1748 1749
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1750

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		i7core_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}
1768

1769 1770 1771
	/*
	 * MCE second step: parse errors and display
	 */
1772
	for (i = 0; i < count; i++)
1773
		i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1774

1775 1776 1777
	/*
	 * Now, let's increment CE error counts
	 */
1778
check_ce_error:
1779 1780 1781 1782
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
1783 1784
}

1785 1786 1787 1788 1789
/*
 * i7core_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by i7core_check_error.
1790 1791
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
1792
 */
1793 1794
static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val,
				  void *data)
1795
{
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
	struct mce *mce = (struct mce *)data;
	struct i7core_dev *i7_dev;
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;

	i7_dev = get_i7core_dev(mce->socketid);
	if (!i7_dev)
		return NOTIFY_BAD;

	mci = i7_dev->mci;
	pvt = mci->pvt_info;
1807

1808 1809 1810 1811 1812
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
1813
		return NOTIFY_DONE;
1814

1815 1816
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
1817
		return NOTIFY_DONE;
1818

R
Randy Dunlap 已提交
1819
#ifdef CONFIG_SMP
1820
	/* Only handle if it is the right mc controller */
1821
	if (mce->socketid != pvt->i7core_dev->socket)
1822
		return NOTIFY_DONE;
R
Randy Dunlap 已提交
1823
#endif
1824

1825
	smp_rmb();
1826
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1827 1828
		smp_wmb();
		pvt->mce_overrun++;
1829
		return NOTIFY_DONE;
1830
	}
1831 1832 1833

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1834
	smp_wmb();
1835
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1836

1837 1838 1839 1840
	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		i7core_check_error(mci);

D
David Sterba 已提交
1841
	/* Advise mcelog that the errors were handled */
1842
	return NOTIFY_STOP;
1843 1844
}

1845 1846 1847 1848
static struct notifier_block i7_mce_dec = {
	.notifier_call	= i7core_mce_check_error,
};

N
Nils Carlson 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
struct memdev_dmi_entry {
	u8 type;
	u8 length;
	u16 handle;
	u16 phys_mem_array_handle;
	u16 mem_err_info_handle;
	u16 total_width;
	u16 data_width;
	u16 size;
	u8 form;
	u8 device_set;
	u8 device_locator;
	u8 bank_locator;
	u8 memory_type;
	u16 type_detail;
	u16 speed;
	u8 manufacturer;
	u8 serial_number;
	u8 asset_tag;
	u8 part_number;
	u8 attributes;
	u32 extended_size;
	u16 conf_mem_clk_speed;
} __attribute__((__packed__));


/*
 * Decode the DRAM Clock Frequency, be paranoid, make sure that all
 * memory devices show the same speed, and if they don't then consider
 * all speeds to be invalid.
 */
static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq)
{
	int *dclk_freq = _dclk_freq;
	u16 dmi_mem_clk_speed;

	if (*dclk_freq == -1)
		return;

	if (dh->type == DMI_ENTRY_MEM_DEVICE) {
		struct memdev_dmi_entry *memdev_dmi_entry =
			(struct memdev_dmi_entry *)dh;
		unsigned long conf_mem_clk_speed_offset =
			(unsigned long)&memdev_dmi_entry->conf_mem_clk_speed -
			(unsigned long)&memdev_dmi_entry->type;
		unsigned long speed_offset =
			(unsigned long)&memdev_dmi_entry->speed -
			(unsigned long)&memdev_dmi_entry->type;

		/* Check that a DIMM is present */
		if (memdev_dmi_entry->size == 0)
			return;

		/*
		 * Pick the configured speed if it's available, otherwise
		 * pick the DIMM speed, or we don't have a speed.
		 */
		if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) {
			dmi_mem_clk_speed =
				memdev_dmi_entry->conf_mem_clk_speed;
		} else if (memdev_dmi_entry->length > speed_offset) {
			dmi_mem_clk_speed = memdev_dmi_entry->speed;
		} else {
			*dclk_freq = -1;
			return;
		}

		if (*dclk_freq == 0) {
			/* First pass, speed was 0 */
			if (dmi_mem_clk_speed > 0) {
				/* Set speed if a valid speed is read */
				*dclk_freq = dmi_mem_clk_speed;
			} else {
				/* Otherwise we don't have a valid speed */
				*dclk_freq = -1;
			}
		} else if (*dclk_freq > 0 &&
			   *dclk_freq != dmi_mem_clk_speed) {
			/*
			 * If we have a speed, check that all DIMMS are the same
			 * speed, otherwise set the speed as invalid.
			 */
			*dclk_freq = -1;
		}
	}
}

/*
 * The default DCLK frequency is used as a fallback if we
 * fail to find anything reliable in the DMI. The value
 * is taken straight from the datasheet.
 */
#define DEFAULT_DCLK_FREQ 800

static int get_dclk_freq(void)
{
	int dclk_freq = 0;

	dmi_walk(decode_dclk, (void *)&dclk_freq);

	if (dclk_freq < 1)
		return DEFAULT_DCLK_FREQ;

	return dclk_freq;
}

1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
/*
 * set_sdram_scrub_rate		This routine sets byte/sec bandwidth scrub rate
 *				to hardware according to SCRUBINTERVAL formula
 *				found in datasheet.
 */
static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	u32 dw_scrub;
	u32 dw_ssr;

	/* Get data from the MC register, function 2 */
	pdev = pvt->pci_mcr[2];
	if (!pdev)
		return -ENODEV;

	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub);

	if (new_bw == 0) {
		/* Prepare to disable petrol scrub */
		dw_scrub &= ~STARTSCRUB;
		/* Stop the patrol scrub engine */
N
Nils Carlson 已提交
1978 1979
		write_and_test(pdev, MC_SCRUB_CONTROL,
			       dw_scrub & ~SCRUBINTERVAL_MASK);
1980 1981 1982 1983 1984 1985

		/* Get current status of scrub rate and set bit to disable */
		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
		dw_ssr &= ~SSR_MODE_MASK;
		dw_ssr |= SSR_MODE_DISABLE;
	} else {
N
Nils Carlson 已提交
1986 1987 1988
		const int cache_line_size = 64;
		const u32 freq_dclk_mhz = pvt->dclk_freq;
		unsigned long long scrub_interval;
1989 1990
		/*
		 * Translate the desired scrub rate to a register value and
N
Nils Carlson 已提交
1991
		 * program the corresponding register value.
1992
		 */
N
Nils Carlson 已提交
1993
		scrub_interval = (unsigned long long)freq_dclk_mhz *
1994 1995
			cache_line_size * 1000000;
		do_div(scrub_interval, new_bw);
N
Nils Carlson 已提交
1996 1997 1998 1999 2000

		if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK)
			return -EINVAL;

		dw_scrub = SCRUBINTERVAL_MASK & scrub_interval;
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

		/* Start the patrol scrub engine */
		pci_write_config_dword(pdev, MC_SCRUB_CONTROL,
				       STARTSCRUB | dw_scrub);

		/* Get current status of scrub rate and set bit to enable */
		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
		dw_ssr &= ~SSR_MODE_MASK;
		dw_ssr |= SSR_MODE_ENABLE;
	}
	/* Disable or enable scrubbing */
	pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr);

	return new_bw;
}

/*
 * get_sdram_scrub_rate		This routine convert current scrub rate value
 *				into byte/sec bandwidth accourding to
 *				SCRUBINTERVAL formula found in datasheet.
 */
static int get_sdram_scrub_rate(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	const u32 cache_line_size = 64;
N
Nils Carlson 已提交
2027 2028
	const u32 freq_dclk_mhz = pvt->dclk_freq;
	unsigned long long scrub_rate;
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
	u32 scrubval;

	/* Get data from the MC register, function 2 */
	pdev = pvt->pci_mcr[2];
	if (!pdev)
		return -ENODEV;

	/* Get current scrub control data */
	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval);

	/* Mask highest 8-bits to 0 */
N
Nils Carlson 已提交
2040
	scrubval &=  SCRUBINTERVAL_MASK;
2041 2042 2043 2044
	if (!scrubval)
		return 0;

	/* Calculate scrub rate value into byte/sec bandwidth */
N
Nils Carlson 已提交
2045
	scrub_rate =  (unsigned long long)freq_dclk_mhz *
2046 2047
		1000000 * cache_line_size;
	do_div(scrub_rate, scrubval);
N
Nils Carlson 已提交
2048
	return (int)scrub_rate;
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
}

static void enable_sdram_scrub_setting(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 pci_lock;

	/* Unlock writes to pci registers */
	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
	pci_lock &= ~0x3;
	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
			       pci_lock | MC_CFG_UNLOCK);

	mci->set_sdram_scrub_rate = set_sdram_scrub_rate;
	mci->get_sdram_scrub_rate = get_sdram_scrub_rate;
}

static void disable_sdram_scrub_setting(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 pci_lock;

	/* Lock writes to pci registers */
	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
	pci_lock &= ~0x3;
	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
			       pci_lock | MC_CFG_LOCK);
}

2078 2079 2080 2081 2082 2083
static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
{
	pvt->i7core_pci = edac_pci_create_generic_ctl(
						&pvt->i7core_dev->pdev[0]->dev,
						EDAC_MOD_STR);
	if (unlikely(!pvt->i7core_pci))
2084 2085
		i7core_printk(KERN_WARNING,
			      "Unable to setup PCI error report via EDAC\n");
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
}

static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
{
	if (likely(pvt->i7core_pci))
		edac_pci_release_generic_ctl(pvt->i7core_pci);
	else
		i7core_printk(KERN_ERR,
				"Couldn't find mem_ctl_info for socket %d\n",
				pvt->i7core_dev->socket);
	pvt->i7core_pci = NULL;
}

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
{
	struct mem_ctl_info *mci = i7core_dev->mci;
	struct i7core_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
		debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
			__func__, &i7core_dev->pdev[0]->dev);

		i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);

2117
	/* Disable scrubrate setting */
2118 2119
	if (pvt->enable_scrub)
		disable_sdram_scrub_setting(mci);
2120

2121
	mce_unregister_decode_chain(&i7_mce_dec);
2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134

	/* Disable EDAC polling */
	i7core_pci_ctl_release(pvt);

	/* Remove MC sysfs nodes */
	edac_mc_del_mc(mci->dev);

	debugf1("%s: free mci struct\n", mci->ctl_name);
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	i7core_dev->mci = NULL;
}

2135
static int i7core_register_mci(struct i7core_dev *i7core_dev)
2136 2137 2138
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
2139 2140
	int rc;
	struct edac_mc_layer layers[2];
2141 2142

	/* allocate a new MC control structure */
2143 2144 2145 2146 2147 2148 2149 2150 2151

	layers[0].type = EDAC_MC_LAYER_CHANNEL;
	layers[0].size = NUM_CHANS;
	layers[0].is_virt_csrow = false;
	layers[1].type = EDAC_MC_LAYER_SLOT;
	layers[1].size = MAX_DIMMS;
	layers[1].is_virt_csrow = true;
	mci = new_edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers,
			    sizeof(*pvt));
2152 2153
	if (unlikely(!mci))
		return -ENOMEM;
2154

2155 2156
	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);
2157 2158

	pvt = mci->pvt_info;
2159
	memset(pvt, 0, sizeof(*pvt));
2160

2161 2162 2163 2164
	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;

2165 2166 2167 2168 2169 2170
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
2171 2172 2173 2174
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
	mci->mod_ver = I7CORE_REVISION;
2175 2176 2177
	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
				  i7core_dev->socket);
	mci->dev_name = pci_name(i7core_dev->pdev[0]);
2178
	mci->ctl_page_to_phys = NULL;
2179

2180
	/* Store pci devices at mci for faster access */
2181
	rc = mci_bind_devs(mci, i7core_dev);
2182
	if (unlikely(rc < 0))
2183
		goto fail0;
2184

2185 2186 2187 2188 2189
	if (pvt->is_registered)
		mci->mc_driver_sysfs_attributes = i7core_sysfs_rdimm_attrs;
	else
		mci->mc_driver_sysfs_attributes = i7core_sysfs_udimm_attrs;

2190
	/* Get dimm basic config */
2191
	get_dimm_config(mci);
2192 2193 2194 2195
	/* record ptr to the generic device */
	mci->dev = &i7core_dev->pdev[0]->dev;
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7core_check_error;
2196

2197
	/* Enable scrubrate setting */
2198 2199
	if (pvt->enable_scrub)
		enable_sdram_scrub_setting(mci);
2200

2201
	/* add this new MC control structure to EDAC's list of MCs */
2202
	if (unlikely(edac_mc_add_mc(mci))) {
2203 2204 2205 2206 2207
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
2208 2209

		rc = -EINVAL;
2210
		goto fail0;
2211 2212
	}

2213
	/* Default error mask is any memory */
2214
	pvt->inject.channel = 0;
2215 2216 2217 2218 2219 2220
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

2221 2222 2223
	/* allocating generic PCI control info */
	i7core_pci_ctl_create(pvt);

N
Nils Carlson 已提交
2224 2225 2226
	/* DCLK for scrub rate setting */
	pvt->dclk_freq = get_dclk_freq();

2227
	mce_register_decode_chain(&i7_mce_dec);
2228

2229 2230 2231 2232 2233
	return 0;

fail0:
	kfree(mci->ctl_name);
	edac_mc_free(mci);
2234
	i7core_dev->mci = NULL;
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
2245

2246 2247 2248
static int __devinit i7core_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
2249
	int rc, count = 0;
2250 2251
	struct i7core_dev *i7core_dev;

2252 2253 2254
	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);

2255
	/*
2256
	 * All memory controllers are allocated at the first pass.
2257
	 */
2258 2259
	if (unlikely(probed >= 1)) {
		mutex_unlock(&i7core_edac_lock);
2260
		return -ENODEV;
2261 2262
	}
	probed++;
2263

2264
	rc = i7core_get_all_devices();
2265 2266 2267 2268
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2269
		count++;
2270
		rc = i7core_register_mci(i7core_dev);
2271 2272
		if (unlikely(rc < 0))
			goto fail1;
2273 2274
	}

2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
	/*
	 * Nehalem-EX uses a different memory controller. However, as the
	 * memory controller is not visible on some Nehalem/Nehalem-EP, we
	 * need to indirectly probe via a X58 PCI device. The same devices
	 * are found on (some) Nehalem-EX. So, on those machines, the
	 * probe routine needs to return -ENODEV, as the actual Memory
	 * Controller registers won't be detected.
	 */
	if (!count) {
		rc = -ENODEV;
		goto fail1;
	}

	i7core_printk(KERN_INFO,
		      "Driver loaded, %d memory controller(s) found.\n",
		      count);
2291

2292
	mutex_unlock(&i7core_edac_lock);
2293 2294
	return 0;

2295
fail1:
2296 2297 2298
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);

2299
	i7core_put_all_devices();
2300 2301
fail0:
	mutex_unlock(&i7core_edac_lock);
2302
	return rc;
2303 2304 2305 2306 2307 2308 2309 2310
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void __devexit i7core_remove(struct pci_dev *pdev)
{
2311
	struct i7core_dev *i7core_dev;
2312 2313 2314

	debugf0(__FILE__ ": %s()\n", __func__);

2315 2316 2317 2318 2319 2320 2321
	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */
2322

2323
	mutex_lock(&i7core_edac_lock);
2324 2325 2326 2327 2328 2329

	if (unlikely(!probed)) {
		mutex_unlock(&i7core_edac_lock);
		return;
	}

2330 2331
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);
2332 2333 2334 2335

	/* Release PCI resources */
	i7core_put_all_devices();

2336 2337
	probed--;

2338
	mutex_unlock(&i7core_edac_lock);
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = __devexit_p(i7core_remove),
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

2367 2368
	if (use_pci_fixup)
		i7core_xeon_pci_fixup(pci_dev_table);
2369

2370 2371
	pci_rc = pci_register_driver(&i7core_driver);

2372 2373 2374 2375 2376 2377 2378
	if (pci_rc >= 0)
		return 0;

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i7core_driver);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");