i7core_edac.c 44.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Intel 7 core  Memory Controller kernel module (Nehalem)
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
 * Copyright (c) 2009 by:
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
#include <linux/edac.h>
#include <linux/mmzone.h>
30 31
#include <linux/edac_mce.h>
#include <linux/spinlock.h>
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

#include "edac_core.h"

/*
 * Alter this version for the module when modifications are made
 */
#define I7CORE_REVISION    " Ver: 1.0.0 " __DATE__
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

54 55 56 57
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90

58 59 60 61 62 63
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

64 65 66 67 68 69 70 71 72 73 74 75
/*
 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

76 77
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

78 79 80 81 82 83
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

84 85 86 87
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

88 89 90
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

91
#define MC_CHANNEL_ADDR_MATCH	0xf0
92 93 94 95 96 97 98 99 100 101
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
102

103
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
104

105 106 107 108 109 110 111
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
112 113 114 115
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
116
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
117
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
118 119
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
120

121 122
#define MC_RANK_PRESENT		0x7c

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

146 147 148 149 150
/*
 * i7core structs
 */

#define NUM_CHANS 3
151
#define MAX_DIMMS 3		/* Max DIMMS per channel */
152
#define NUM_SOCKETS 2		/* Max number of MC sockets */
153 154
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
155 156 157 158 159

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
160
	u32	ch_map;
161 162
};

163 164 165 166

struct i7core_inject {
	int	enable;

167
	u8	socket;
168 169 170 171 172 173 174 175
	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

176
struct i7core_channel {
177 178
	u32		ranks;
	u32		dimms;
179 180
};

181 182 183 184
struct pci_id_descr {
	int		dev;
	int		func;
	int 		dev_id;
185
	struct pci_dev	*pdev[NUM_SOCKETS];
186 187
};

188
struct i7core_pvt {
189 190 191 192
	struct pci_dev	*pci_noncore[NUM_SOCKETS];
	struct pci_dev	*pci_mcr[NUM_SOCKETS][MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_SOCKETS][NUM_CHANS][MAX_CHAN_FUNC + 1];

193
	struct i7core_info	info;
194
	struct i7core_inject	inject;
195 196 197
	struct i7core_channel	channel[NUM_SOCKETS][NUM_CHANS];

	int			sockets; /* Number of sockets */
198
	int			channels; /* Number of active channels */
199

200 201 202 203
	int		ce_count_available[NUM_SOCKETS];
			/* ECC corrected errors counts per dimm */
	unsigned long	ce_count[NUM_SOCKETS][MAX_DIMMS];
	int		last_ce_count[NUM_SOCKETS][MAX_DIMMS];
204

205 206 207 208 209
	/* mcelog glue */
	struct edac_mce		edac_mce;
	struct mce		mce_entry[MCE_LOG_LEN];
	unsigned		mce_count;
	spinlock_t		mce_lock;
210 211 212 213 214 215 216 217
};

/* Device name and register DID (Device ID) */
struct i7core_dev_info {
	const char *ctl_name;	/* name for this device */
	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
};

218 219 220 221 222 223 224 225 226
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

struct pci_id_descr pci_devs[] = {
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
227
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS)  }, /* if RDIMM */
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
247 248 249 250 251 252 253 254 255 256

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NOCORE)  },

257
};
258 259 260 261 262 263 264
#define N_DEVS ARRAY_SIZE(pci_devs)

/*
 *	pci_device_id	table for which devices we are looking for
 * This should match the first device at pci_devs table
 */
static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
265
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
266 267 268
	{0,}			/* 0 terminated list. */
};

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

/* Table of devices attributes supported by this driver */
static const struct i7core_dev_info i7core_devs[] = {
	{
		.ctl_name = "i7 Core",
		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I7_MCR,
	},
};

static struct edac_pci_ctl_info *i7core_pci;

/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
285 286
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
287 288

	/* MC_STATUS bits */
289
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
290
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
291 292

	/* MC_MAX_DOD read functions */
293
static inline int numdimms(u32 dimms)
294
{
295
	return (dimms & 0x3) + 1;
296 297
}

298
static inline int numrank(u32 rank)
299 300 301
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

302
	return ranks[rank & 0x3];
303 304
}

305
static inline int numbank(u32 bank)
306 307 308
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

309
	return banks[bank & 0x3];
310 311
}

312
static inline int numrow(u32 row)
313 314 315 316 317 318
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

319
	return rows[row & 0x7];
320 321
}

322
static inline int numcol(u32 col)
323 324 325 326
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
327
	return cols[col & 0x3];
328 329 330 331 332
}

/****************************************************************************
			Memory check routines
 ****************************************************************************/
333 334
static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
					  unsigned func)
335 336 337 338
{
	int i;

	for (i = 0; i < N_DEVS; i++) {
339
		if (!pci_devs[i].pdev[socket])
340 341
			continue;

342 343 344
		if (PCI_SLOT(pci_devs[i].pdev[socket]->devfn) == slot &&
		    PCI_FUNC(pci_devs[i].pdev[socket]->devfn) == func) {
			return pci_devs[i].pdev[socket];
345 346 347
		}
	}

348 349 350
	return NULL;
}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
/**
 * i7core_get_active_channels() - gets the number of channels and csrows
 * @socket:	Quick Path Interconnect socket
 * @channels:	Number of channels that will be returned
 * @csrows:	Number of csrows found
 *
 * Since EDAC core needs to know in advance the number of available channels
 * and csrows, in order to allocate memory for csrows/channels, it is needed
 * to run two similar steps. At the first step, implemented on this function,
 * it checks the number of csrows/channels present at one socket.
 * this is used in order to properly allocate the size of mci components.
 *
 * It should be noticed that none of the current available datasheets explain
 * or even mention how csrows are seen by the memory controller. So, we need
 * to add a fake description for csrows.
 * So, this driver is attributing one DIMM memory for one csrow.
 */
368 369
static int i7core_get_active_channels(u8 socket, unsigned *channels,
				      unsigned *csrows)
370 371 372 373 374 375 376 377
{
	struct pci_dev *pdev = NULL;
	int i, j;
	u32 status, control;

	*channels = 0;
	*csrows = 0;

378
	pdev = get_pdev_slot_func(socket, 3, 0);
379
	if (!pdev) {
380 381
		i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
			      socket);
382
		return -ENODEV;
383
	}
384 385 386 387 388 389

	/* Device 3 function 0 reads */
	pci_read_config_dword(pdev, MC_STATUS, &status);
	pci_read_config_dword(pdev, MC_CONTROL, &control);

	for (i = 0; i < NUM_CHANS; i++) {
390
		u32 dimm_dod[3];
391 392 393 394 395
		/* Check if the channel is active */
		if (!(control & (1 << (8 + i))))
			continue;

		/* Check if the channel is disabled */
396
		if (status & (1 << i))
397 398
			continue;

399
		pdev = get_pdev_slot_func(socket, i + 4, 1);
400
		if (!pdev) {
401 402 403
			i7core_printk(KERN_ERR, "Couldn't find socket %d "
						"fn %d.%d!!!\n",
						socket, i + 4, 1);
404 405 406 407 408 409 410 411 412 413
			return -ENODEV;
		}
		/* Devices 4-6 function 1 */
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM2, &dimm_dod[2]);

414
		(*channels)++;
415 416 417 418 419 420

		for (j = 0; j < 3; j++) {
			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;
			(*csrows)++;
		}
421 422
	}

423
	debugf0("Number of active channels on socket %d: %d\n",
424
		socket, *channels);
425

426 427 428
	return 0;
}

429
static int get_dimm_config(struct mem_ctl_info *mci, int *csrow, u8 socket)
430 431
{
	struct i7core_pvt *pvt = mci->pvt_info;
432
	struct csrow_info *csr;
433
	struct pci_dev *pdev;
434
	int i, j;
435
	unsigned long last_page = 0;
436
	enum edac_type mode;
437
	enum mem_type mtype;
438

439
	/* Get data from the MC register, function 0 */
440
	pdev = pvt->pci_mcr[socket][0];
441
	if (!pdev)
442 443
		return -ENODEV;

444
	/* Device 3 function 0 reads */
445 446 447 448
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
449

450 451
	debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
		socket, pvt->info.mc_control, pvt->info.mc_status,
452
		pvt->info.max_dod, pvt->info.ch_map);
453

454
	if (ECC_ENABLED(pvt)) {
455
		debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
456 457 458 459 460
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
461
		debugf0("ECC disabled\n");
462 463
		mode = EDAC_NONE;
	}
464 465

	/* FIXME: need to handle the error codes */
466 467
	debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
		"x%x x 0x%x\n",
468 469
		numdimms(pvt->info.max_dod),
		numrank(pvt->info.max_dod >> 2),
470
		numbank(pvt->info.max_dod >> 4),
471 472
		numrow(pvt->info.max_dod >> 6),
		numcol(pvt->info.max_dod >> 9));
473

474
	for (i = 0; i < NUM_CHANS; i++) {
475
		u32 data, dimm_dod[3], value[8];
476 477 478 479 480 481 482 483 484 485

		if (!CH_ACTIVE(pvt, i)) {
			debugf0("Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			debugf0("Channel %i is disabled\n", i);
			continue;
		}

486
		/* Devices 4-6 function 0 */
487
		pci_read_config_dword(pvt->pci_ch[socket][i][0],
488 489
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

490 491
		pvt->channel[socket][i].ranks = (data & QUAD_RANK_PRESENT) ?
						4 : 2;
492

493 494 495 496 497
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
		else
			mtype = MEM_DDR3;
#if 0
498 499 500 501 502 503
		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].dimms = 3;
		else if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].dimms = 1;
		else
			pvt->channel[i].dimms = 2;
504 505 506
#endif

		/* Devices 4-6 function 1 */
507
		pci_read_config_dword(pvt->pci_ch[socket][i][1],
508
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
509
		pci_read_config_dword(pvt->pci_ch[socket][i][1],
510
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
511
		pci_read_config_dword(pvt->pci_ch[socket][i][1],
512
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
513

514
		debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
515
			"%d ranks, %cDIMMs\n",
516 517 518
			i,
			RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			data,
519
			pvt->channel[socket][i].ranks,
520
			(data & REGISTERED_DIMM) ? 'R' : 'U');
521 522 523

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
524
			u32 size, npages;
525 526 527 528 529 530 531 532 533

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

534 535 536
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

537
			pvt->channel[socket][i].dimms++;
538

539 540 541
			debugf0("\tdimm %d %d Mb offset: %x, "
				"bank: %d, rank: %d, row: %#x, col: %#x\n",
				j, size,
542 543 544
				RANKOFFSET(dimm_dod[j]),
				banks, ranks, rows, cols);

545 546 547 548 549
#if PAGE_SHIFT > 20
			npages = size >> (PAGE_SHIFT - 20);
#else
			npages = size << (20 - PAGE_SHIFT);
#endif
550

551
			csr = &mci->csrows[*csrow];
552 553 554 555 556
			csr->first_page = last_page + 1;
			last_page += npages;
			csr->last_page = last_page;
			csr->nr_pages = npages;

557
			csr->page_mask = 0;
558
			csr->grain = 8;
559
			csr->csrow_idx = *csrow;
560 561 562 563
			csr->nr_channels = 1;

			csr->channels[0].chan_idx = i;
			csr->channels[0].ce_count = 0;
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

			switch (banks) {
			case 4:
				csr->dtype = DEV_X4;
				break;
			case 8:
				csr->dtype = DEV_X8;
				break;
			case 16:
				csr->dtype = DEV_X16;
				break;
			default:
				csr->dtype = DEV_UNKNOWN;
			}

			csr->edac_mode = mode;
			csr->mtype = mtype;

582
			(*csrow)++;
583
		}
584

585 586 587 588 589 590 591 592
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
593
		debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
594
		for (j = 0; j < 8; j++)
595
			debugf1("\t\t%#x\t%#x\t%#x\n",
596 597 598
				(value[j] >> 27) & 0x1,
				(value[j] >> 24) & 0x7,
				(value[j] && ((1 << 24) - 1)));
599 600
	}

601 602 603
	return 0;
}

604 605 606 607 608 609 610 611 612 613 614
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
615
static int disable_inject(struct mem_ctl_info *mci)
616 617 618 619 620
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

621
	if (!pvt->pci_ch[pvt->inject.socket][pvt->inject.channel][0])
622 623
		return -ENODEV;

624
	pci_write_config_dword(pvt->pci_ch[pvt->inject.socket][pvt->inject.channel][0],
625
				MC_CHANNEL_ERROR_INJECT, 0);
626 627

	return 0;
628 629
}

630 631 632 633 634 635 636 637 638 639 640 641 642
/*
 * i7core inject inject.socket
 *
 *	accept and store error injection inject.socket value
 */
static ssize_t i7core_inject_socket_store(struct mem_ctl_info *mci,
					   const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	rc = strict_strtoul(data, 10, &value);
643
	if ((rc < 0) || (value >= pvt->sockets))
644
		return -EIO;
645

646
	pvt->inject.socket = (u32) value;
647 648 649 650 651 652 653 654 655 656
	return count;
}

static ssize_t i7core_inject_socket_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "%d\n", pvt->inject.socket);
}

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
					   const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
672
		disable_inject(mci);
673 674 675

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
676
		return -EIO;
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704

	pvt->inject.section = (u32) value;
	return count;
}

static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
705
		disable_inject(mci);
706 707 708

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
709
		return -EIO;
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739

	pvt->inject.type = (u32) value;
	return count;
}

static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
740
		disable_inject(mci);
741 742 743

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
744
		return -EIO;
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

	pvt->inject.eccmask = (u32) value;
	return count;
}

static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_addrmatch_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	char *cmd, *val;
	long value;
	int rc;

	if (pvt->inject.enable)
776
		disable_inject(mci);
777 778 779 780 781 782 783 784 785

	do {
		cmd = strsep((char **) &data, ":");
		if (!cmd)
			break;
		val = strsep((char **) &data, " \n\t");
		if (!val)
			return cmd - data;

786
		if (!strcasecmp(val, "any"))
787 788 789 790 791 792 793
			value = -1;
		else {
			rc = strict_strtol(val, 10, &value);
			if ((rc < 0) || (value < 0))
				return cmd - data;
		}

794
		if (!strcasecmp(cmd, "channel")) {
795 796 797 798
			if (value < 3)
				pvt->inject.channel = value;
			else
				return cmd - data;
799
		} else if (!strcasecmp(cmd, "dimm")) {
800
			if (value < 3)
801 802 803
				pvt->inject.dimm = value;
			else
				return cmd - data;
804
		} else if (!strcasecmp(cmd, "rank")) {
805 806 807 808
			if (value < 4)
				pvt->inject.rank = value;
			else
				return cmd - data;
809
		} else if (!strcasecmp(cmd, "bank")) {
810
			if (value < 32)
811 812 813
				pvt->inject.bank = value;
			else
				return cmd - data;
814
		} else if (!strcasecmp(cmd, "page")) {
815 816 817 818
			if (value <= 0xffff)
				pvt->inject.page = value;
			else
				return cmd - data;
819 820
		} else if (!strcasecmp(cmd, "col") ||
			   !strcasecmp(cmd, "column")) {
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
			if (value <= 0x3fff)
				pvt->inject.col = value;
			else
				return cmd - data;
		}
	} while (1);

	return count;
}

static ssize_t i7core_inject_addrmatch_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	char channel[4], dimm[4], bank[4], rank[4], page[7], col[7];

	if (pvt->inject.channel < 0)
		sprintf(channel, "any");
	else
		sprintf(channel, "%d", pvt->inject.channel);
	if (pvt->inject.dimm < 0)
		sprintf(dimm, "any");
	else
		sprintf(dimm, "%d", pvt->inject.dimm);
	if (pvt->inject.bank < 0)
		sprintf(bank, "any");
	else
		sprintf(bank, "%d", pvt->inject.bank);
	if (pvt->inject.rank < 0)
		sprintf(rank, "any");
	else
		sprintf(rank, "%d", pvt->inject.rank);
	if (pvt->inject.page < 0)
		sprintf(page, "any");
	else
		sprintf(page, "0x%04x", pvt->inject.page);
	if (pvt->inject.col < 0)
		sprintf(col, "any");
	else
		sprintf(col, "0x%04x", pvt->inject.col);

	return sprintf(data, "channel: %s\ndimm: %s\nbank: %s\n"
			     "rank: %s\npage: %s\ncolumn: %s\n",
		       channel, dimm, bank, rank, page, col);
}

867 868 869 870 871
static int write_and_test(struct pci_dev *dev, int where, u32 val)
{
	u32 read;
	int count;

872 873 874 875
	debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val);

876 877
	for (count = 0; count < 10; count++) {
		if (count)
878
			msleep(100);
879 880 881 882 883 884 885
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

886 887 888 889
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
890 891 892 893

	return -EINVAL;
}

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
				       const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

921
	if (!pvt->pci_ch[pvt->inject.socket][pvt->inject.channel][0])
922 923
		return 0;

924 925 926 927 928 929 930 931 932 933 934 935 936
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
937
		mask |= 1L << 41;
938
	else {
939
		if (pvt->channel[pvt->inject.socket][pvt->inject.channel].dimms > 2)
940
			mask |= (pvt->inject.dimm & 0x3L) << 35;
941
		else
942
			mask |= (pvt->inject.dimm & 0x1L) << 36;
943 944 945 946
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
947
		mask |= 1L << 40;
948
	else {
949
		if (pvt->channel[pvt->inject.socket][pvt->inject.channel].dimms > 2)
950
			mask |= (pvt->inject.rank & 0x1L) << 34;
951
		else
952
			mask |= (pvt->inject.rank & 0x3L) << 34;
953 954 955 956
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
957
		mask |= 1L << 39;
958
	else
959
		mask |= (pvt->inject.bank & 0x15L) << 30;
960 961 962

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
963
		mask |= 1L << 38;
964
	else
965
		mask |= (pvt->inject.page & 0xffffL) << 14;
966 967 968

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
969
		mask |= 1L << 37;
970
	else
971
		mask |= (pvt->inject.col & 0x3fffL);
972

973 974 975 976 977 978 979 980 981 982 983 984
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
985 986
	pci_write_config_dword(pvt->pci_noncore[pvt->inject.socket],
			       MC_CFG_CONTROL, 0x2);
987

988
	write_and_test(pvt->pci_ch[pvt->inject.socket][pvt->inject.channel][0],
989
			       MC_CHANNEL_ADDR_MATCH, mask);
990
	write_and_test(pvt->pci_ch[pvt->inject.socket][pvt->inject.channel][0],
991 992
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

993
	write_and_test(pvt->pci_ch[pvt->inject.socket][pvt->inject.channel][0],
994 995
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

996
	write_and_test(pvt->pci_ch[pvt->inject.socket][pvt->inject.channel][0],
997
			       MC_CHANNEL_ERROR_INJECT, injectmask);
998

999
	/*
1000 1001 1002
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
1003
	 */
1004 1005
	pci_write_config_dword(pvt->pci_noncore[pvt->inject.socket],
			       MC_CFG_CONTROL, 8);
1006

1007 1008
	debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
		" inject 0x%08x\n",
1009 1010
		mask, pvt->inject.eccmask, injectmask);

1011

1012 1013 1014 1015 1016 1017 1018
	return count;
}

static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
					char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
1019 1020
	u32 injectmask;

1021
	pci_read_config_dword(pvt->pci_ch[pvt->inject.socket][pvt->inject.channel][0],
1022
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1023 1024 1025 1026 1027 1028

	debugf0("Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1029 1030 1031
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1032 1033
static ssize_t i7core_ce_regs_show(struct mem_ctl_info *mci, char *data)
{
1034
	unsigned i, count, total = 0;
1035 1036
	struct i7core_pvt *pvt = mci->pvt_info;

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	for (i = 0; i < pvt->sockets; i++) {
		if (!pvt->ce_count_available[i])
			count = sprintf(data, "socket 0 data unavailable\n");
		else
			count = sprintf(data, "socket %d, dimm0: %lu\n"
					      "dimm1: %lu\ndimm2: %lu\n",
					i,
					pvt->ce_count[i][0],
					pvt->ce_count[i][1],
					pvt->ce_count[i][2]);
		data  += count;
		total += count;
	}
1050

1051
	return total;
1052 1053
}

1054 1055 1056 1057 1058
/*
 * Sysfs struct
 */
static struct mcidev_sysfs_attribute i7core_inj_attrs[] = {
	{
1059 1060 1061 1062 1063 1064 1065
		.attr = {
			.name = "inject_socket",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_socket_show,
		.store = i7core_inject_socket_store,
	}, {
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
		.attr = {
			.name = "inject_addrmatch",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_addrmatch_show,
		.store = i7core_inject_addrmatch_store,
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
1100 1101 1102 1103 1104 1105 1106
	}, {
		.attr = {
			.name = "corrected_error_counts",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_ce_regs_show,
		.store = NULL,
1107 1108 1109
	},
};

1110 1111 1112 1113 1114 1115 1116 1117
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
 *	i7core_put_devices	'put' all the devices that we have
 *				reserved via 'get'
 */
1118
static void i7core_put_devices(void)
1119
{
1120
	int i, j;
1121

1122 1123 1124
	for (i = 0; i < NUM_SOCKETS; i++)
		for (j = 0; j < N_DEVS; j++)
			pci_dev_put(pci_devs[j].pdev[i]);
1125 1126 1127 1128 1129 1130 1131 1132
}

/*
 *	i7core_get_devices	Find and perform 'get' operation on the MCH's
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1133
int i7core_get_onedevice(struct pci_dev **prev, int devno)
1134
{
1135
	struct pci_dev *pdev = NULL;
1136 1137
	u8 bus = 0;
	u8 socket = 0;
1138

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
			      pci_devs[devno].dev_id, *prev);

	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core pci buses
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
	if (unlikely(!pdev && !devno && !prev)) {
		pcibios_scan_specific_bus(254);
		pcibios_scan_specific_bus(255);

1151
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1152 1153
				      pci_devs[devno].dev_id, *prev);
	}
1154

1155 1156 1157 1158 1159 1160 1161 1162
	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
	if (pci_devs[devno].dev_id == PCI_DEVICE_ID_INTEL_I7_NOCORE && !pdev)
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_I7_NOCORE_ALT, *prev);
1163

1164 1165 1166 1167
	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1168 1169
		}

1170
		/*
1171 1172
		 * Dev 3 function 2 only exists on chips with RDIMMs
		 * so, it is ok to not found it
1173
		 */
1174 1175 1176 1177
		if ((pci_devs[devno].dev == 3) && (pci_devs[devno].func == 2)) {
			*prev = pdev;
			return 0;
		}
1178

1179 1180 1181 1182
		i7core_printk(KERN_ERR,
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
			pci_devs[devno].dev, pci_devs[devno].func,
			PCI_VENDOR_ID_INTEL, pci_devs[devno].dev_id);
1183

1184 1185 1186 1187
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
	if (bus == 0x3f)
		socket = 0;
	else
		socket = 255 - bus;

	if (socket >= NUM_SOCKETS) {
		i7core_printk(KERN_ERR,
			"Unexpected socket for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
			bus, pci_devs[devno].dev, pci_devs[devno].func,
			PCI_VENDOR_ID_INTEL, pci_devs[devno].dev_id);
		pci_dev_put(pdev);
		return -ENODEV;
	}
1203

1204 1205 1206 1207 1208 1209 1210 1211 1212
	if (pci_devs[devno].pdev[socket]) {
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
			bus, pci_devs[devno].dev, pci_devs[devno].func,
			PCI_VENDOR_ID_INTEL, pci_devs[devno].dev_id);
		pci_dev_put(pdev);
		return -ENODEV;
	}
1213

1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	pci_devs[devno].pdev[socket] = pdev;

	/* Sanity check */
	if (unlikely(PCI_SLOT(pdev->devfn) != pci_devs[devno].dev ||
			PCI_FUNC(pdev->devfn) != pci_devs[devno].func)) {
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
			PCI_VENDOR_ID_INTEL, pci_devs[devno].dev_id,
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			bus, pci_devs[devno].dev, pci_devs[devno].func);
		return -ENODEV;
	}
1227

1228 1229 1230 1231 1232 1233 1234 1235 1236
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
			bus, pci_devs[devno].dev, pci_devs[devno].func,
			PCI_VENDOR_ID_INTEL, pci_devs[devno].dev_id);
		return -ENODEV;
	}
1237

1238 1239 1240 1241 1242
	i7core_printk(KERN_INFO,
			"Registered socket %d "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
			socket, bus, pci_devs[devno].dev, pci_devs[devno].func,
			PCI_VENDOR_ID_INTEL, pci_devs[devno].dev_id);
1243

1244
	*prev = pdev;
1245

1246 1247
	return 0;
}
1248

1249 1250 1251 1252
static int i7core_get_devices(void)
{
	int i;
	struct pci_dev *pdev = NULL;
1253

1254 1255 1256 1257 1258 1259 1260 1261 1262
	for (i = 0; i < N_DEVS; i++) {
		pdev = NULL;
		do {
			if (i7core_get_onedevice(&pdev, i) < 0) {
				i7core_put_devices();
				return -ENODEV;
			}
		} while (pdev);
	}
1263 1264 1265 1266 1267 1268 1269
	return 0;
}

static int mci_bind_devs(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1270
	int i, j, func, slot;
1271

1272 1273 1274 1275 1276
	for (i = 0; i < pvt->sockets; i++) {
		for (j = 0; j < N_DEVS; j++) {
			pdev = pci_devs[j].pdev[i];
			if (!pdev)
				continue;
1277

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
			func = PCI_FUNC(pdev->devfn);
			slot = PCI_SLOT(pdev->devfn);
			if (slot == 3) {
				if (unlikely(func > MAX_MCR_FUNC))
					goto error;
				pvt->pci_mcr[i][func] = pdev;
			} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
				if (unlikely(func > MAX_CHAN_FUNC))
					goto error;
				pvt->pci_ch[i][slot - 4][func] = pdev;
			} else if (!slot && !func)
				pvt->pci_noncore[i] = pdev;
			else
1291 1292
				goto error;

1293 1294 1295 1296
			debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
				PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
				pdev, i);
		}
1297
	}
1298

1299
	return 0;
1300 1301 1302 1303 1304 1305

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1306 1307
}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
/****************************************************************************
			Error check routines
 ****************************************************************************/

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1318
static void check_mc_test_err(struct mem_ctl_info *mci, u8 socket)
1319 1320 1321 1322 1323
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1324
	if (!pvt->pci_mcr[socket][4]) {
1325
		debugf0("%s MCR registers not found\n", __func__);
1326 1327 1328 1329
		return;
	}

	/* Corrected error reads */
1330 1331
	pci_read_config_dword(pvt->pci_mcr[socket][4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[socket][4], MC_TEST_ERR_RCV0, &rcv0);
1332 1333 1334 1335 1336 1337

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

1338
#if 0
1339 1340 1341
	debugf2("%s CE rcv1=0x%08x rcv0=0x%08x, %d %d %d\n",
		(pvt->ce_count_available ? "UPDATE" : "READ"),
		rcv1, rcv0, new0, new1, new2);
1342
#endif
1343 1344

	/* Updates CE counters if it is not the first time here */
1345
	if (pvt->ce_count_available[socket]) {
1346 1347 1348
		/* Updates CE counters */
		int add0, add1, add2;

1349 1350 1351
		add2 = new2 - pvt->last_ce_count[socket][2];
		add1 = new1 - pvt->last_ce_count[socket][1];
		add0 = new0 - pvt->last_ce_count[socket][0];
1352 1353 1354

		if (add2 < 0)
			add2 += 0x7fff;
1355
		pvt->ce_count[socket][2] += add2;
1356 1357 1358

		if (add1 < 0)
			add1 += 0x7fff;
1359
		pvt->ce_count[socket][1] += add1;
1360 1361 1362

		if (add0 < 0)
			add0 += 0x7fff;
1363
		pvt->ce_count[socket][0] += add0;
1364
	} else
1365
		pvt->ce_count_available[socket] = 1;
1366 1367

	/* Store the new values */
1368 1369 1370
	pvt->last_ce_count[socket][2] = new2;
	pvt->last_ce_count[socket][1] = new1;
	pvt->last_ce_count[socket][0] = new0;
1371 1372
}

1373 1374 1375
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1376 1377 1378
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1379
 *     struct mce field	MCA Register
1380 1381 1382
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1383 1384 1385
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1386 1387 1388
static void i7core_mce_output_error(struct mem_ctl_info *mci,
				    struct mce *m)
{
1389
	char *type, *optype, *err, *msg;
1390
	unsigned long error = m->status & 0x1ff0000l;
1391
	u32 optypenum = (m->status >> 4) & 0x07;
1392 1393 1394 1395 1396 1397
	u32 core_err_cnt = (m->status >> 38) && 0x7fff;
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);

1398 1399 1400 1401 1402
	if (m->mcgstatus & 1)
		type = "FATAL";
	else
		type = "NON_FATAL";

1403
	switch (optypenum) {
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1422 1423
	}

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundacy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1454 1455
	}

1456
	/* FIXME: should convert addr into bank and rank information */
1457
	msg = kasprintf(GFP_ATOMIC,
1458
		"%s (addr = 0x%08llx, socket=%d, Dimm=%d, Channel=%d, "
1459
		"syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
1460
		type, (long long) m->addr, m->cpu, dimm, channel,
1461 1462
		syndrome, core_err_cnt, (long long)m->status,
		(long long)m->misc, optype, err);
1463 1464

	debugf0("%s", msg);
1465 1466

	/* Call the helper to output message */
1467 1468 1469 1470
	edac_mc_handle_fbd_ue(mci, 0 /* FIXME: should be rank here */,
			      0, 0 /* FIXME: should be channel here */, msg);

	kfree(msg);
1471 1472
}

1473 1474 1475 1476 1477 1478
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci)
{
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
	struct i7core_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
	struct mce *m = NULL;
	unsigned long flags;

	/* Copy all mce errors into a temporary buffer */
	spin_lock_irqsave(&pvt->mce_lock, flags);
	if (pvt->mce_count) {
		m = kmalloc(sizeof(*m) * pvt->mce_count, GFP_ATOMIC);
		if (m) {
			count = pvt->mce_count;
			memcpy(m, &pvt->mce_entry, sizeof(*m) * count);
		}
		pvt->mce_count = 0;
	}
	spin_unlock_irqrestore(&pvt->mce_lock, flags);

	/* proccess mcelog errors */
	for (i = 0; i < count; i++)
		i7core_mce_output_error(mci, &m[i]);

	kfree(m);

	/* check memory count errors */
1504 1505
	for (i = 0; i < pvt->sockets; i++)
		check_mc_test_err(mci, i);
1506 1507
}

1508 1509 1510 1511 1512 1513 1514 1515
/*
 * i7core_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by i7core_check_error.
 */
static int i7core_mce_check_error(void *priv, struct mce *mce)
{
1516 1517
	struct mem_ctl_info *mci = priv;
	struct i7core_pvt *pvt = mci->pvt_info;
1518 1519
	unsigned long flags;

1520 1521 1522 1523 1524 1525 1526
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
		return 0;

1527 1528 1529 1530
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
		return 0;

1531 1532 1533 1534 1535 1536 1537
	spin_lock_irqsave(&pvt->mce_lock, flags);
	if (pvt->mce_count < MCE_LOG_LEN) {
		memcpy(&pvt->mce_entry[pvt->mce_count], mce, sizeof(*mce));
		pvt->mce_count++;
	}
	spin_unlock_irqrestore(&pvt->mce_lock, flags);

1538 1539 1540 1541
	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		i7core_check_error(mci);

1542
	/* Advice mcelog that the error were handled */
1543
	return 1;
1544 1545
}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
static int __devinit i7core_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
1558 1559
	int num_channels = 0;
	int num_csrows = 0;
1560
	int csrow = 0;
1561
	int dev_idx = id->driver_data;
1562 1563
	int rc, i;
	u8 sockets;
1564

1565
	if (unlikely(dev_idx >= ARRAY_SIZE(i7core_devs)))
1566 1567
		return -EINVAL;

1568
	/* get the pci devices we want to reserve for our use */
1569 1570 1571
	rc = i7core_get_devices();
	if (unlikely(rc < 0))
		return rc;
1572

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	sockets = 1;
	for (i = NUM_SOCKETS - 1; i > 0; i--)
		if (pci_devs[0].pdev[i]) {
			sockets = i + 1;
			break;
		}

	for (i = 0; i < sockets; i++) {
		int channels;
		int csrows;

		/* Check the number of active and not disabled channels */
		rc = i7core_get_active_channels(i, &channels, &csrows);
		if (unlikely(rc < 0))
			goto fail0;

		num_channels += channels;
		num_csrows += csrows;
	}
1592 1593 1594

	/* allocate a new MC control structure */
	mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
1595
	if (unlikely(!mci)) {
1596 1597 1598
		rc = -ENOMEM;
		goto fail0;
	}
1599 1600 1601

	debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);

1602
	mci->dev = &pdev->dev;	/* record ptr to the generic device */
1603
	pvt = mci->pvt_info;
1604
	memset(pvt, 0, sizeof(*pvt));
1605
	pvt->sockets = sockets;
1606
	mci->mc_idx = 0;
1607

1608 1609 1610 1611 1612 1613
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
1614 1615 1616 1617 1618 1619 1620
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
	mci->mod_ver = I7CORE_REVISION;
	mci->ctl_name = i7core_devs[dev_idx].ctl_name;
	mci->dev_name = pci_name(pdev);
	mci->ctl_page_to_phys = NULL;
1621
	mci->mc_driver_sysfs_attributes = i7core_inj_attrs;
1622 1623
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7core_check_error;
1624

1625
	/* Store pci devices at mci for faster access */
1626
	rc = mci_bind_devs(mci);
1627
	if (unlikely(rc < 0))
1628 1629 1630
		goto fail1;

	/* Get dimm basic config */
1631
	for (i = 0; i < sockets; i++)
1632
		get_dimm_config(mci, &csrow, i);
1633

1634
	/* add this new MC control structure to EDAC's list of MCs */
1635
	if (unlikely(edac_mc_add_mc(mci))) {
1636 1637 1638 1639 1640
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
1641 1642

		rc = -EINVAL;
1643 1644 1645 1646 1647
		goto fail1;
	}

	/* allocating generic PCI control info */
	i7core_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1648
	if (unlikely(!i7core_pci)) {
1649 1650 1651 1652 1653 1654 1655 1656
		printk(KERN_WARNING
			"%s(): Unable to create PCI control\n",
			__func__);
		printk(KERN_WARNING
			"%s(): PCI error report via EDAC not setup\n",
			__func__);
	}

1657
	/* Default error mask is any memory */
1658
	pvt->inject.channel = 0;
1659 1660 1661 1662 1663 1664
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

1665
	/* Registers on edac_mce in order to receive memory errors */
1666
	pvt->edac_mce.priv = mci;
1667 1668 1669 1670
	pvt->edac_mce.check_error = i7core_mce_check_error;
	spin_lock_init(&pvt->mce_lock);

	rc = edac_mce_register(&pvt->edac_mce);
1671
	if (unlikely(rc < 0)) {
1672 1673 1674 1675 1676
		debugf0("MC: " __FILE__
			": %s(): failed edac_mce_register()\n", __func__);
		goto fail1;
	}

1677
	i7core_printk(KERN_INFO, "Driver loaded.\n");
1678

1679 1680 1681
	return 0;

fail1:
1682
	edac_mc_free(mci);
1683 1684

fail0:
1685 1686
	i7core_put_devices();
	return rc;
1687 1688 1689 1690 1691 1692 1693 1694 1695
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void __devexit i7core_remove(struct pci_dev *pdev)
{
	struct mem_ctl_info *mci;
1696
	struct i7core_pvt *pvt;
1697 1698 1699 1700 1701 1702

	debugf0(__FILE__ ": %s()\n", __func__);

	if (i7core_pci)
		edac_pci_release_generic_ctl(i7core_pci);

1703

1704
	mci = edac_mc_del_mc(&pdev->dev);
1705 1706 1707
	if (!mci)
		return;

1708 1709 1710 1711
	/* Unregisters on edac_mce in order to receive memory errors */
	pvt = mci->pvt_info;
	edac_mce_unregister(&pvt->edac_mce);

1712
	/* retrieve references to resources, and free those resources */
1713
	i7core_put_devices();
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745

	edac_mc_free(mci);
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = __devexit_p(i7core_remove),
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

	pci_rc = pci_register_driver(&i7core_driver);

1746 1747 1748 1749 1750 1751 1752
	if (pci_rc >= 0)
		return 0;

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i7core_driver);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");