i7core_edac.c 55.1 KB
Newer Older
1 2
/* Intel i7 core/Nehalem Memory Controller kernel module
 *
D
David Sterba 已提交
3
 * This driver supports the memory controllers found on the Intel
4 5 6
 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
 * and Westmere-EP.
7 8 9 10
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
11
 * Copyright (c) 2009-2010 by:
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
R
Randy Dunlap 已提交
33
#include <linux/delay.h>
34 35
#include <linux/edac.h>
#include <linux/mmzone.h>
36
#include <linux/edac_mce.h>
37
#include <linux/smp.h>
38
#include <asm/processor.h>
39 40 41

#include "edac_core.h"

42 43 44 45 46
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
static int probed;

47 48 49
static int use_pci_fixup;
module_param(use_pci_fixup, int, 0444);
MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
50 51 52 53 54 55 56 57 58
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
/*
 * Alter this version for the module when modifications are made
 */
#define I7CORE_REVISION    " Ver: 1.0.0 " __DATE__
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

78 79 80 81
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90

82 83 84 85 86 87
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

88 89 90 91 92 93 94 95 96 97 98 99
/*
 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

100 101 102 103 104 105 106 107 108 109 110 111
/* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


112 113
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

114 115 116 117 118 119
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

120 121 122 123
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

124 125 126
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

127
#define MC_CHANNEL_ADDR_MATCH	0xf0
128 129 130 131 132 133 134 135 136 137
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
138

139
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
140

141 142 143 144 145 146 147
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
148 149 150 151
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
152
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
153
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
154 155
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
156

157 158
#define MC_RANK_PRESENT		0x7c

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

182 183 184 185 186
/*
 * i7core structs
 */

#define NUM_CHANS 3
187 188 189
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
190 191 192 193 194

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
195
	u32	ch_map;
196 197
};

198 199 200 201 202 203 204 205 206 207 208 209

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

210
struct i7core_channel {
211 212
	u32		ranks;
	u32		dimms;
213 214
};

215
struct pci_id_descr {
216 217 218
	int			dev;
	int			func;
	int 			dev_id;
219
	int			optional;
220 221
};

222
struct pci_id_table {
223 224
	const struct pci_id_descr	*descr;
	int				n_devs;
225 226
};

227 228 229 230
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
231
	int			n_devs;
232 233 234
	struct mem_ctl_info	*mci;
};

235
struct i7core_pvt {
236 237 238 239 240
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
241

242
	struct i7core_info	info;
243
	struct i7core_inject	inject;
244
	struct i7core_channel	channel[NUM_CHANS];
245

246 247
	int		ce_count_available;
	int 		csrow_map[NUM_CHANS][MAX_DIMMS];
248 249

			/* ECC corrected errors counts per udimm */
250 251
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
252
			/* ECC corrected errors counts per rdimm */
253 254
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
255

256
	unsigned int	is_registered;
257

258 259
	/* mcelog glue */
	struct edac_mce		edac_mce;
260 261

	/* Fifo double buffers */
262
	struct mce		mce_entry[MCE_LOG_LEN];
263 264 265 266 267 268 269
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;
270 271 272

	/* Struct to control EDAC polling */
	struct edac_pci_ctl_info *i7core_pci;
273 274
};

275 276 277 278 279
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

280
static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
281 282 283
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
284 285

		/* Exists only for RDIMM */
286
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
306
};
307

308
static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
309 310 311 312 313 314 315 316 317
	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },

318 319 320 321
	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
322 323
};

324
static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },
};

351 352
#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_table[] = {
353 354 355
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
356
	{0,}			/* 0 terminated list. */
357 358
};

359 360 361 362
/*
 *	pci_device_id	table for which devices we are looking for
 */
static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
363
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
364
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
365 366 367
	{0,}			/* 0 terminated list. */
};

368 369 370 371 372
/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
373 374
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
375 376

	/* MC_STATUS bits */
377
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
378
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
379 380

	/* MC_MAX_DOD read functions */
381
static inline int numdimms(u32 dimms)
382
{
383
	return (dimms & 0x3) + 1;
384 385
}

386
static inline int numrank(u32 rank)
387 388 389
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

390
	return ranks[rank & 0x3];
391 392
}

393
static inline int numbank(u32 bank)
394 395 396
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

397
	return banks[bank & 0x3];
398 399
}

400
static inline int numrow(u32 row)
401 402 403 404 405 406
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

407
	return rows[row & 0x7];
408 409
}

410
static inline int numcol(u32 col)
411 412 413 414
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
415
	return cols[col & 0x3];
416 417
}

418
static struct i7core_dev *get_i7core_dev(u8 socket)
419 420 421 422 423 424 425 426 427 428 429
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
static struct i7core_dev *alloc_i7core_dev(u8 socket,
					   const struct pci_id_table *table)
{
	struct i7core_dev *i7core_dev;

	i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
	if (!i7core_dev)
		return NULL;

	i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
				   GFP_KERNEL);
	if (!i7core_dev->pdev) {
		kfree(i7core_dev);
		return NULL;
	}

	i7core_dev->socket = socket;
	i7core_dev->n_devs = table->n_devs;
	list_add_tail(&i7core_dev->list, &i7core_edac_list);

	return i7core_dev;
}

453 454 455 456 457 458 459
static void free_i7core_dev(struct i7core_dev *i7core_dev)
{
	list_del(&i7core_dev->list);
	kfree(i7core_dev->pdev);
	kfree(i7core_dev);
}

460 461 462
/****************************************************************************
			Memory check routines
 ****************************************************************************/
463 464
static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
					  unsigned func)
465
{
466
	struct i7core_dev *i7core_dev = get_i7core_dev(socket);
467 468
	int i;

469 470 471
	if (!i7core_dev)
		return NULL;

472
	for (i = 0; i < i7core_dev->n_devs; i++) {
473
		if (!i7core_dev->pdev[i])
474 475
			continue;

476 477 478
		if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
		    PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
			return i7core_dev->pdev[i];
479 480 481
		}
	}

482 483 484
	return NULL;
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
/**
 * i7core_get_active_channels() - gets the number of channels and csrows
 * @socket:	Quick Path Interconnect socket
 * @channels:	Number of channels that will be returned
 * @csrows:	Number of csrows found
 *
 * Since EDAC core needs to know in advance the number of available channels
 * and csrows, in order to allocate memory for csrows/channels, it is needed
 * to run two similar steps. At the first step, implemented on this function,
 * it checks the number of csrows/channels present at one socket.
 * this is used in order to properly allocate the size of mci components.
 *
 * It should be noticed that none of the current available datasheets explain
 * or even mention how csrows are seen by the memory controller. So, we need
 * to add a fake description for csrows.
 * So, this driver is attributing one DIMM memory for one csrow.
 */
502
static int i7core_get_active_channels(const u8 socket, unsigned *channels,
503
				      unsigned *csrows)
504 505 506 507 508 509 510 511
{
	struct pci_dev *pdev = NULL;
	int i, j;
	u32 status, control;

	*channels = 0;
	*csrows = 0;

512
	pdev = get_pdev_slot_func(socket, 3, 0);
513
	if (!pdev) {
514 515
		i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
			      socket);
516
		return -ENODEV;
517
	}
518 519 520 521 522 523

	/* Device 3 function 0 reads */
	pci_read_config_dword(pdev, MC_STATUS, &status);
	pci_read_config_dword(pdev, MC_CONTROL, &control);

	for (i = 0; i < NUM_CHANS; i++) {
524
		u32 dimm_dod[3];
525 526 527 528 529
		/* Check if the channel is active */
		if (!(control & (1 << (8 + i))))
			continue;

		/* Check if the channel is disabled */
530
		if (status & (1 << i))
531 532
			continue;

533
		pdev = get_pdev_slot_func(socket, i + 4, 1);
534
		if (!pdev) {
535 536 537
			i7core_printk(KERN_ERR, "Couldn't find socket %d "
						"fn %d.%d!!!\n",
						socket, i + 4, 1);
538 539 540 541 542 543 544 545 546 547
			return -ENODEV;
		}
		/* Devices 4-6 function 1 */
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM2, &dimm_dod[2]);

548
		(*channels)++;
549 550 551 552 553 554

		for (j = 0; j < 3; j++) {
			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;
			(*csrows)++;
		}
555 556
	}

557
	debugf0("Number of active channels on socket %d: %d\n",
558
		socket, *channels);
559

560 561 562
	return 0;
}

563
static int get_dimm_config(const struct mem_ctl_info *mci)
564 565
{
	struct i7core_pvt *pvt = mci->pvt_info;
566
	struct csrow_info *csr;
567
	struct pci_dev *pdev;
568
	int i, j;
569
	int csrow = 0;
570
	unsigned long last_page = 0;
571
	enum edac_type mode;
572
	enum mem_type mtype;
573

574
	/* Get data from the MC register, function 0 */
575
	pdev = pvt->pci_mcr[0];
576
	if (!pdev)
577 578
		return -ENODEV;

579
	/* Device 3 function 0 reads */
580 581 582 583
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
584

585
	debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
586
		pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
587
		pvt->info.max_dod, pvt->info.ch_map);
588

589
	if (ECC_ENABLED(pvt)) {
590
		debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
591 592 593 594 595
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
596
		debugf0("ECC disabled\n");
597 598
		mode = EDAC_NONE;
	}
599 600

	/* FIXME: need to handle the error codes */
601 602
	debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
		"x%x x 0x%x\n",
603 604
		numdimms(pvt->info.max_dod),
		numrank(pvt->info.max_dod >> 2),
605
		numbank(pvt->info.max_dod >> 4),
606 607
		numrow(pvt->info.max_dod >> 6),
		numcol(pvt->info.max_dod >> 9));
608

609
	for (i = 0; i < NUM_CHANS; i++) {
610
		u32 data, dimm_dod[3], value[8];
611

612 613 614
		if (!pvt->pci_ch[i][0])
			continue;

615 616 617 618 619 620 621 622 623
		if (!CH_ACTIVE(pvt, i)) {
			debugf0("Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			debugf0("Channel %i is disabled\n", i);
			continue;
		}

624
		/* Devices 4-6 function 0 */
625
		pci_read_config_dword(pvt->pci_ch[i][0],
626 627
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

628
		pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
629
						4 : 2;
630

631 632
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
633
		else
634 635
			mtype = MEM_DDR3;
#if 0
636 637 638 639 640 641
		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].dimms = 3;
		else if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].dimms = 1;
		else
			pvt->channel[i].dimms = 2;
642 643 644
#endif

		/* Devices 4-6 function 1 */
645
		pci_read_config_dword(pvt->pci_ch[i][1],
646
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
647
		pci_read_config_dword(pvt->pci_ch[i][1],
648
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
649
		pci_read_config_dword(pvt->pci_ch[i][1],
650
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
651

652
		debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
653
			"%d ranks, %cDIMMs\n",
654 655 656
			i,
			RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			data,
657
			pvt->channel[i].ranks,
658
			(data & REGISTERED_DIMM) ? 'R' : 'U');
659 660 661

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
662
			u32 size, npages;
663 664 665 666 667 668 669 670 671

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

672 673 674
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

675
			pvt->channel[i].dimms++;
676

677 678 679
			debugf0("\tdimm %d %d Mb offset: %x, "
				"bank: %d, rank: %d, row: %#x, col: %#x\n",
				j, size,
680 681 682
				RANKOFFSET(dimm_dod[j]),
				banks, ranks, rows, cols);

683
			npages = MiB_TO_PAGES(size);
684

685
			csr = &mci->csrows[csrow];
686 687 688 689 690
			csr->first_page = last_page + 1;
			last_page += npages;
			csr->last_page = last_page;
			csr->nr_pages = npages;

691
			csr->page_mask = 0;
692
			csr->grain = 8;
693
			csr->csrow_idx = csrow;
694 695 696 697
			csr->nr_channels = 1;

			csr->channels[0].chan_idx = i;
			csr->channels[0].ce_count = 0;
698

699
			pvt->csrow_map[i][j] = csrow;
700

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
			switch (banks) {
			case 4:
				csr->dtype = DEV_X4;
				break;
			case 8:
				csr->dtype = DEV_X8;
				break;
			case 16:
				csr->dtype = DEV_X16;
				break;
			default:
				csr->dtype = DEV_UNKNOWN;
			}

			csr->edac_mode = mode;
			csr->mtype = mtype;

718
			csrow++;
719
		}
720

721 722 723 724 725 726 727 728
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
729
		debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
730
		for (j = 0; j < 8; j++)
731
			debugf1("\t\t%#x\t%#x\t%#x\n",
732 733 734
				(value[j] >> 27) & 0x1,
				(value[j] >> 24) & 0x7,
				(value[j] && ((1 << 24) - 1)));
735 736
	}

737 738 739
	return 0;
}

740 741 742 743 744 745 746 747 748 749 750
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
751
static int disable_inject(const struct mem_ctl_info *mci)
752 753 754 755 756
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

757
	if (!pvt->pci_ch[pvt->inject.channel][0])
758 759
		return -ENODEV;

760
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
761
				MC_CHANNEL_ERROR_INJECT, 0);
762 763

	return 0;
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
					   const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
781
		disable_inject(mci);
782 783 784

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
785
		return -EIO;
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813

	pvt->inject.section = (u32) value;
	return count;
}

static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
814
		disable_inject(mci);
815 816 817

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
818
		return -EIO;
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848

	pvt->inject.type = (u32) value;
	return count;
}

static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
849
		disable_inject(mci);
850 851 852

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
853
		return -EIO;
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876

	pvt->inject.eccmask = (u32) value;
	return count;
}

static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

877 878 879 880 881
#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
		struct mem_ctl_info *mci,			\
		const char *data, size_t count)			\
{								\
882
	struct i7core_pvt *pvt;					\
883 884 885
	long value;						\
	int rc;							\
								\
886 887 888
	debugf1("%s()\n", __func__);				\
	pvt = mci->pvt_info;					\
								\
889 890 891
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
892
	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
		value = -1;					\
	else {							\
		rc = strict_strtoul(data, 10, &value);		\
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
909 910 911 912
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
	debugf1("%s() pvt=%p\n", __func__, pvt);		\
913 914 915 916
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
917 918
}

919 920 921 922 923 924 925 926 927
#define ATTR_ADDR_MATCH(param)					\
	{							\
		.attr = {					\
			.name = #param,				\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_inject_show_##param,		\
		.store = i7core_inject_store_##param,		\
	}
928

929 930 931 932 933 934
DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);
935

936
static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
937 938 939 940
{
	u32 read;
	int count;

941 942 943 944
	debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val);

945 946
	for (count = 0; count < 10; count++) {
		if (count)
947
			msleep(100);
948 949 950 951 952 953 954
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

955 956 957 958
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
959 960 961 962

	return -EINVAL;
}

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
				       const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

990
	if (!pvt->pci_ch[pvt->inject.channel][0])
991 992
		return 0;

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
1006
		mask |= 1LL << 41;
1007
	else {
1008
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1009
			mask |= (pvt->inject.dimm & 0x3LL) << 35;
1010
		else
1011
			mask |= (pvt->inject.dimm & 0x1LL) << 36;
1012 1013 1014 1015
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
1016
		mask |= 1LL << 40;
1017
	else {
1018
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1019
			mask |= (pvt->inject.rank & 0x1LL) << 34;
1020
		else
1021
			mask |= (pvt->inject.rank & 0x3LL) << 34;
1022 1023 1024 1025
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
1026
		mask |= 1LL << 39;
1027
	else
1028
		mask |= (pvt->inject.bank & 0x15LL) << 30;
1029 1030 1031

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
1032
		mask |= 1LL << 38;
1033
	else
1034
		mask |= (pvt->inject.page & 0xffff) << 14;
1035 1036 1037

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
1038
		mask |= 1LL << 37;
1039
	else
1040
		mask |= (pvt->inject.col & 0x3fff);
1041

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
1054
	pci_write_config_dword(pvt->pci_noncore,
1055
			       MC_CFG_CONTROL, 0x2);
1056

1057
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1058
			       MC_CHANNEL_ADDR_MATCH, mask);
1059
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1060 1061
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

1062
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1063 1064
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

1065
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1066
			       MC_CHANNEL_ERROR_INJECT, injectmask);
1067

1068
	/*
1069 1070 1071
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
1072
	 */
1073
	pci_write_config_dword(pvt->pci_noncore,
1074
			       MC_CFG_CONTROL, 8);
1075

1076 1077
	debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
		" inject 0x%08x\n",
1078 1079
		mask, pvt->inject.eccmask, injectmask);

1080

1081 1082 1083 1084 1085 1086 1087
	return count;
}

static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
					char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
1088 1089
	u32 injectmask;

1090 1091 1092
	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

1093
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1094
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1095 1096 1097 1098 1099 1100

	debugf0("Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1101 1102 1103
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
	debugf1("%s() \n", __func__);				\
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}
1117

1118 1119 1120 1121 1122 1123 1124
#define ATTR_COUNTER(param)					\
	{							\
		.attr = {					\
			.name = __stringify(udimm##param),	\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_show_counter_##param		\
1125
	}
1126

1127 1128 1129
DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);
1130

1131 1132 1133
/*
 * Sysfs struct
 */
1134

1135
static const struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
1136 1137 1138 1139 1140 1141
	ATTR_ADDR_MATCH(channel),
	ATTR_ADDR_MATCH(dimm),
	ATTR_ADDR_MATCH(rank),
	ATTR_ADDR_MATCH(bank),
	ATTR_ADDR_MATCH(page),
	ATTR_ADDR_MATCH(col),
1142
	{ } /* End of list */
1143 1144
};

1145
static const struct mcidev_sysfs_group i7core_inject_addrmatch = {
1146 1147 1148 1149
	.name  = "inject_addrmatch",
	.mcidev_attr = i7core_addrmatch_attrs,
};

1150
static const struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
1151 1152 1153
	ATTR_COUNTER(0),
	ATTR_COUNTER(1),
	ATTR_COUNTER(2),
1154
	{ .attr = { .name = NULL } }
1155 1156
};

1157
static const struct mcidev_sysfs_group i7core_udimm_counters = {
1158 1159 1160 1161
	.name  = "all_channel_counts",
	.mcidev_attr = i7core_udimm_counters_attrs,
};

1162
static const struct mcidev_sysfs_attribute i7core_sysfs_rdimm_attrs[] = {
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
1185
		.grp = &i7core_inject_addrmatch,
1186 1187 1188 1189 1190 1191 1192 1193
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	},
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	{ }	/* End of list */
};

static const struct mcidev_sysfs_attribute i7core_sysfs_udimm_attrs[] = {
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
		.grp = &i7core_inject_addrmatch,
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	}, {
		.grp = &i7core_udimm_counters,
	},
	{ }	/* End of list */
1232 1233
};

1234 1235 1236 1237 1238
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
1239
 *	i7core_put_all_devices	'put' all the devices that we have
1240 1241
 *				reserved via 'get'
 */
1242
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1243
{
1244
	int i;
1245

1246
	debugf0(__FILE__ ": %s()\n", __func__);
1247
	for (i = 0; i < i7core_dev->n_devs; i++) {
1248 1249 1250 1251 1252 1253 1254 1255
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
		debugf0("Removing dev %02x:%02x.%d\n",
			pdev->bus->number,
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
1256
}
1257

1258 1259
static void i7core_put_all_devices(void)
{
1260
	struct i7core_dev *i7core_dev, *tmp;
1261

1262
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1263
		i7core_put_devices(i7core_dev);
1264
		free_i7core_dev(i7core_dev);
1265
	}
1266 1267
}

1268
static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1269 1270 1271
{
	struct pci_dev *pdev = NULL;
	int i;
1272

1273
	/*
D
David Sterba 已提交
1274
	 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
1275 1276 1277
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
1278 1279 1280 1281 1282 1283
	while (table && table->descr) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
		if (unlikely(!pdev)) {
			for (i = 0; i < MAX_SOCKET_BUSES; i++)
				pcibios_scan_specific_bus(255-i);
		}
1284
		pci_dev_put(pdev);
1285
		table++;
1286 1287 1288
	}
}

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
static unsigned i7core_pci_lastbus(void)
{
	int last_bus = 0, bus;
	struct pci_bus *b = NULL;

	while ((b = pci_find_next_bus(b)) != NULL) {
		bus = b->number;
		debugf0("Found bus %d\n", bus);
		if (bus > last_bus)
			last_bus = bus;
	}

	debugf0("Last bus %d\n", last_bus);

	return last_bus;
}

1306
/*
1307
 *	i7core_get_all_devices	Find and perform 'get' operation on the MCH's
1308 1309 1310 1311
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1312 1313 1314 1315
static int i7core_get_onedevice(struct pci_dev **prev,
				const struct pci_id_table *table,
				const unsigned devno,
				const unsigned last_bus)
1316
{
1317
	struct i7core_dev *i7core_dev;
1318
	const struct pci_id_descr *dev_descr = &table->descr[devno];
1319

1320
	struct pci_dev *pdev = NULL;
1321 1322
	u8 bus = 0;
	u8 socket = 0;
1323

1324
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1325
			      dev_descr->dev_id, *prev);
1326 1327 1328 1329 1330

	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1331 1332
		}

1333
		if (dev_descr->optional)
1334
			return 0;
1335

1336 1337 1338
		if (devno == 0)
			return -ENODEV;

1339
		i7core_printk(KERN_INFO,
1340
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1341 1342
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1343

1344 1345 1346 1347
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1348

1349
	socket = last_bus - bus;
1350

1351 1352
	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
1353
		i7core_dev = alloc_i7core_dev(socket, table);
1354 1355
		if (!i7core_dev) {
			pci_dev_put(pdev);
1356
			return -ENOMEM;
1357
		}
1358
	}
1359

1360
	if (i7core_dev->pdev[devno]) {
1361 1362 1363
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1364 1365
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1366 1367 1368
		pci_dev_put(pdev);
		return -ENODEV;
	}
1369

1370
	i7core_dev->pdev[devno] = pdev;
1371 1372

	/* Sanity check */
1373 1374
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1375 1376 1377
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1378
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1379
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1380
			bus, dev_descr->dev, dev_descr->func);
1381 1382
		return -ENODEV;
	}
1383

1384 1385 1386 1387 1388
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1389 1390
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1391 1392
		return -ENODEV;
	}
1393

1394
	debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1395 1396 1397
		socket, bus, dev_descr->dev,
		dev_descr->func,
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1398

1399 1400 1401 1402 1403 1404 1405
	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

1406
	*prev = pdev;
1407

1408 1409
	return 0;
}
1410

1411
static int i7core_get_all_devices(void)
1412
{
1413
	int i, rc, last_bus;
1414
	struct pci_dev *pdev = NULL;
1415
	const struct pci_id_table *table = pci_dev_table;
1416

1417 1418
	last_bus = i7core_pci_lastbus();

1419
	while (table && table->descr) {
1420 1421 1422
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
1423
				rc = i7core_get_onedevice(&pdev, table, i,
1424
							  last_bus);
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					i7core_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
1435
		table++;
1436
	}
1437

1438 1439 1440
	return 0;
}

1441 1442
static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
1443 1444 1445
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1446
	int i, func, slot;
1447

1448
	pvt->is_registered = 0;
1449
	for (i = 0; i < i7core_dev->n_devs; i++) {
1450 1451
		pdev = i7core_dev->pdev[i];
		if (!pdev)
1452 1453
			continue;

1454 1455 1456 1457 1458 1459 1460 1461
		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
1462
				goto error;
1463 1464 1465 1466 1467
			pvt->pci_ch[slot - 4][func] = pdev;
		} else if (!slot && !func)
			pvt->pci_noncore = pdev;
		else
			goto error;
1468

1469 1470 1471
		debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			pdev, i7core_dev->socket);
1472

1473 1474 1475
		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
			pvt->is_registered = 1;
1476
	}
1477

1478
	return 0;
1479 1480 1481 1482 1483 1484

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1485 1486
}

1487 1488 1489
/****************************************************************************
			Error check routines
 ****************************************************************************/
1490
static void i7core_rdimm_update_csrow(struct mem_ctl_info *mci,
1491 1492 1493
				      const int chan,
				      const int dimm,
				      const int add)
1494 1495 1496
{
	char *msg;
	struct i7core_pvt *pvt = mci->pvt_info;
1497
	int row = pvt->csrow_map[chan][dimm], i;
1498 1499 1500

	for (i = 0; i < add; i++) {
		msg = kasprintf(GFP_KERNEL, "Corrected error "
1501 1502
				"(Socket=%d channel=%d dimm=%d)",
				pvt->i7core_dev->socket, chan, dimm);
1503 1504 1505 1506 1507 1508 1509

		edac_mc_handle_fbd_ce(mci, row, 0, msg);
		kfree (msg);
	}
}

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1510 1511 1512 1513
					 const int chan,
					 const int new0,
					 const int new1,
					 const int new2)
1514 1515 1516 1517
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
1518
	if (pvt->ce_count_available) {
1519 1520
		/* Updates CE counters */

1521 1522 1523
		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1524 1525 1526

		if (add2 < 0)
			add2 += 0x7fff;
1527
		pvt->rdimm_ce_count[chan][2] += add2;
1528 1529 1530

		if (add1 < 0)
			add1 += 0x7fff;
1531
		pvt->rdimm_ce_count[chan][1] += add1;
1532 1533 1534

		if (add0 < 0)
			add0 += 0x7fff;
1535
		pvt->rdimm_ce_count[chan][0] += add0;
1536
	} else
1537
		pvt->ce_count_available = 1;
1538 1539

	/* Store the new values */
1540 1541 1542
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;
1543 1544 1545

	/*updated the edac core */
	if (add0 != 0)
1546
		i7core_rdimm_update_csrow(mci, chan, 0, add0);
1547
	if (add1 != 0)
1548
		i7core_rdimm_update_csrow(mci, chan, 1, add1);
1549
	if (add2 != 0)
1550
		i7core_rdimm_update_csrow(mci, chan, 2, add2);
1551 1552 1553

}

1554
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1555 1556 1557 1558 1559 1560
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1561
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1562
								&rcv[0][0]);
1563
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1564
								&rcv[0][1]);
1565
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1566
								&rcv[1][0]);
1567
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1568
								&rcv[1][1]);
1569
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1570
								&rcv[2][0]);
1571
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1572 1573 1574 1575 1576
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
		debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			(i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
		/*if the channel has 3 dimms*/
1577
		if (pvt->channel[i].dimms > 2) {
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

1589
		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1590 1591
	}
}
1592 1593 1594 1595 1596 1597 1598

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1599
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1600 1601 1602 1603 1604
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1605
	if (!pvt->pci_mcr[4]) {
1606
		debugf0("%s MCR registers not found\n", __func__);
1607 1608 1609
		return;
	}

1610
	/* Corrected test errors */
1611 1612
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1613 1614 1615 1616 1617 1618 1619

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
1620
	if (pvt->ce_count_available) {
1621 1622 1623
		/* Updates CE counters */
		int add0, add1, add2;

1624 1625 1626
		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];
1627 1628 1629

		if (add2 < 0)
			add2 += 0x7fff;
1630
		pvt->udimm_ce_count[2] += add2;
1631 1632 1633

		if (add1 < 0)
			add1 += 0x7fff;
1634
		pvt->udimm_ce_count[1] += add1;
1635 1636 1637

		if (add0 < 0)
			add0 += 0x7fff;
1638
		pvt->udimm_ce_count[0] += add0;
1639 1640 1641 1642 1643

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
1644
	} else
1645
		pvt->ce_count_available = 1;
1646 1647

	/* Store the new values */
1648 1649 1650
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
1651 1652
}

1653 1654 1655
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1656 1657 1658
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1659
 *     struct mce field	MCA Register
1660 1661 1662
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1663 1664 1665
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1666
static void i7core_mce_output_error(struct mem_ctl_info *mci,
1667
				    const struct mce *m)
1668
{
1669
	struct i7core_pvt *pvt = mci->pvt_info;
1670
	char *type, *optype, *err, *msg;
1671
	unsigned long error = m->status & 0x1ff0000l;
1672
	u32 optypenum = (m->status >> 4) & 0x07;
1673 1674 1675 1676 1677
	u32 core_err_cnt = (m->status >> 38) && 0x7fff;
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);
1678
	int csrow;
1679

1680 1681 1682 1683 1684
	if (m->mcgstatus & 1)
		type = "FATAL";
	else
		type = "NON_FATAL";

1685
	switch (optypenum) {
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1704 1705
	}

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundacy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1736 1737
	}

1738
	/* FIXME: should convert addr into bank and rank information */
1739
	msg = kasprintf(GFP_ATOMIC,
1740
		"%s (addr = 0x%08llx, cpu=%d, Dimm=%d, Channel=%d, "
1741
		"syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
1742
		type, (long long) m->addr, m->cpu, dimm, channel,
1743 1744
		syndrome, core_err_cnt, (long long)m->status,
		(long long)m->misc, optype, err);
1745 1746

	debugf0("%s", msg);
1747

1748
	csrow = pvt->csrow_map[channel][dimm];
1749

1750
	/* Call the helper to output message */
1751 1752 1753
	if (m->mcgstatus & 1)
		edac_mc_handle_fbd_ue(mci, csrow, 0,
				0 /* FIXME: should be channel here */, msg);
1754
	else if (!pvt->is_registered)
1755 1756
		edac_mc_handle_fbd_ce(mci, csrow,
				0 /* FIXME: should be channel here */, msg);
1757 1758

	kfree(msg);
1759 1760
}

1761 1762 1763 1764 1765 1766
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci)
{
1767 1768 1769
	struct i7core_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
1770
	struct mce *m;
1771

1772 1773 1774 1775 1776 1777
	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
	 * loosing an error.
	 */
	smp_rmb();
1778 1779
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
1780
	if (!count)
1781
		goto check_ce_error;
1782

1783
	m = pvt->mce_outentry;
1784 1785
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1786

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		i7core_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}
1804

1805 1806 1807
	/*
	 * MCE second step: parse errors and display
	 */
1808
	for (i = 0; i < count; i++)
1809
		i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1810

1811 1812 1813
	/*
	 * Now, let's increment CE error counts
	 */
1814
check_ce_error:
1815 1816 1817 1818
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
1819 1820
}

1821 1822 1823 1824 1825
/*
 * i7core_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by i7core_check_error.
1826 1827
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
1828 1829 1830
 */
static int i7core_mce_check_error(void *priv, struct mce *mce)
{
1831 1832
	struct mem_ctl_info *mci = priv;
	struct i7core_pvt *pvt = mci->pvt_info;
1833

1834 1835 1836 1837 1838 1839 1840
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
		return 0;

1841 1842 1843 1844
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
		return 0;

R
Randy Dunlap 已提交
1845
#ifdef CONFIG_SMP
1846
	/* Only handle if it is the right mc controller */
1847
	if (cpu_data(mce->cpu).phys_proc_id != pvt->i7core_dev->socket)
1848
		return 0;
R
Randy Dunlap 已提交
1849
#endif
1850

1851
	smp_rmb();
1852
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1853 1854 1855
		smp_wmb();
		pvt->mce_overrun++;
		return 0;
1856
	}
1857 1858 1859

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1860
	smp_wmb();
1861
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1862

1863 1864 1865 1866
	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		i7core_check_error(mci);

D
David Sterba 已提交
1867
	/* Advise mcelog that the errors were handled */
1868
	return 1;
1869 1870
}

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
{
	pvt->i7core_pci = edac_pci_create_generic_ctl(
						&pvt->i7core_dev->pdev[0]->dev,
						EDAC_MOD_STR);
	if (unlikely(!pvt->i7core_pci))
		pr_warn("Unable to setup PCI error report via EDAC\n");
}

static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
{
	if (likely(pvt->i7core_pci))
		edac_pci_release_generic_ctl(pvt->i7core_pci);
	else
		i7core_printk(KERN_ERR,
				"Couldn't find mem_ctl_info for socket %d\n",
				pvt->i7core_dev->socket);
	pvt->i7core_pci = NULL;
}

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
{
	struct mem_ctl_info *mci = i7core_dev->mci;
	struct i7core_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
		debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
			__func__, &i7core_dev->pdev[0]->dev);

		i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);

	/* Disable MCE NMI handler */
	edac_mce_unregister(&pvt->edac_mce);

	/* Disable EDAC polling */
	i7core_pci_ctl_release(pvt);

	/* Remove MC sysfs nodes */
	edac_mc_del_mc(mci->dev);

	debugf1("%s: free mci struct\n", mci->ctl_name);
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	i7core_dev->mci = NULL;
}

1924
static int i7core_register_mci(struct i7core_dev *i7core_dev)
1925 1926 1927
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
1928 1929 1930 1931 1932 1933
	int rc, channels, csrows;

	/* Check the number of active and not disabled channels */
	rc = i7core_get_active_channels(i7core_dev->socket, &channels, &csrows);
	if (unlikely(rc < 0))
		return rc;
1934 1935

	/* allocate a new MC control structure */
1936
	mci = edac_mc_alloc(sizeof(*pvt), csrows, channels, i7core_dev->socket);
1937 1938
	if (unlikely(!mci))
		return -ENOMEM;
1939

1940 1941
	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);
1942 1943

	pvt = mci->pvt_info;
1944
	memset(pvt, 0, sizeof(*pvt));
1945

1946 1947 1948 1949
	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;

1950 1951 1952 1953 1954 1955
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
1956 1957 1958 1959
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
	mci->mod_ver = I7CORE_REVISION;
1960 1961 1962
	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
				  i7core_dev->socket);
	mci->dev_name = pci_name(i7core_dev->pdev[0]);
1963
	mci->ctl_page_to_phys = NULL;
1964

1965
	/* Store pci devices at mci for faster access */
1966
	rc = mci_bind_devs(mci, i7core_dev);
1967
	if (unlikely(rc < 0))
1968
		goto fail0;
1969

1970 1971 1972 1973 1974
	if (pvt->is_registered)
		mci->mc_driver_sysfs_attributes = i7core_sysfs_rdimm_attrs;
	else
		mci->mc_driver_sysfs_attributes = i7core_sysfs_udimm_attrs;

1975
	/* Get dimm basic config */
1976
	get_dimm_config(mci);
1977 1978 1979 1980
	/* record ptr to the generic device */
	mci->dev = &i7core_dev->pdev[0]->dev;
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7core_check_error;
1981

1982
	/* add this new MC control structure to EDAC's list of MCs */
1983
	if (unlikely(edac_mc_add_mc(mci))) {
1984 1985 1986 1987 1988
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
1989 1990

		rc = -EINVAL;
1991
		goto fail0;
1992 1993
	}

1994
	/* Default error mask is any memory */
1995
	pvt->inject.channel = 0;
1996 1997 1998 1999 2000 2001
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

2002 2003 2004
	/* allocating generic PCI control info */
	i7core_pci_ctl_create(pvt);

2005
	/* Registers on edac_mce in order to receive memory errors */
2006
	pvt->edac_mce.priv = mci;
2007 2008
	pvt->edac_mce.check_error = i7core_mce_check_error;
	rc = edac_mce_register(&pvt->edac_mce);
2009
	if (unlikely(rc < 0)) {
2010 2011
		debugf0("MC: " __FILE__
			": %s(): failed edac_mce_register()\n", __func__);
2012
		goto fail1;
2013 2014
	}

2015 2016 2017 2018 2019 2020 2021 2022
	return 0;

fail1:
	i7core_pci_ctl_release(pvt);
	edac_mc_del_mc(mci->dev);
fail0:
	kfree(mci->ctl_name);
	edac_mc_free(mci);
2023
	i7core_dev->mci = NULL;
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
2034

2035 2036 2037 2038 2039 2040
static int __devinit i7core_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
	int rc;
	struct i7core_dev *i7core_dev;

2041 2042 2043
	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);

2044
	/*
2045
	 * All memory controllers are allocated at the first pass.
2046
	 */
2047 2048
	if (unlikely(probed >= 1)) {
		mutex_unlock(&i7core_edac_lock);
2049
		return -ENODEV;
2050 2051
	}
	probed++;
2052

2053
	rc = i7core_get_all_devices();
2054 2055 2056 2057
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2058
		rc = i7core_register_mci(i7core_dev);
2059 2060
		if (unlikely(rc < 0))
			goto fail1;
2061 2062
	}

2063
	i7core_printk(KERN_INFO, "Driver loaded.\n");
2064

2065
	mutex_unlock(&i7core_edac_lock);
2066 2067
	return 0;

2068
fail1:
2069 2070 2071
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);

2072
	i7core_put_all_devices();
2073 2074
fail0:
	mutex_unlock(&i7core_edac_lock);
2075
	return rc;
2076 2077 2078 2079 2080 2081 2082 2083
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void __devexit i7core_remove(struct pci_dev *pdev)
{
2084
	struct i7core_dev *i7core_dev;
2085 2086 2087

	debugf0(__FILE__ ": %s()\n", __func__);

2088 2089 2090 2091 2092 2093 2094
	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */
2095

2096
	mutex_lock(&i7core_edac_lock);
2097 2098 2099 2100 2101 2102

	if (unlikely(!probed)) {
		mutex_unlock(&i7core_edac_lock);
		return;
	}

2103 2104
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);
2105 2106 2107 2108

	/* Release PCI resources */
	i7core_put_all_devices();

2109 2110
	probed--;

2111
	mutex_unlock(&i7core_edac_lock);
2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = __devexit_p(i7core_remove),
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

2140 2141
	if (use_pci_fixup)
		i7core_xeon_pci_fixup(pci_dev_table);
2142

2143 2144
	pci_rc = pci_register_driver(&i7core_driver);

2145 2146 2147 2148 2149 2150 2151
	if (pci_rc >= 0)
		return 0;

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i7core_driver);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");