i7core_edac.c 64.0 KB
Newer Older
1 2
/* Intel i7 core/Nehalem Memory Controller kernel module
 *
D
David Sterba 已提交
3
 * This driver supports the memory controllers found on the Intel
4 5 6
 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
 * and Westmere-EP.
7 8 9 10
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
11
 * Copyright (c) 2009-2010 by:
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
R
Randy Dunlap 已提交
33
#include <linux/delay.h>
N
Nils Carlson 已提交
34
#include <linux/dmi.h>
35 36
#include <linux/edac.h>
#include <linux/mmzone.h>
37
#include <linux/smp.h>
38
#include <asm/mce.h>
39
#include <asm/processor.h>
40 41 42

#include "edac_core.h"

43 44 45 46 47
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
static int probed;

48 49 50
static int use_pci_fixup;
module_param(use_pci_fixup, int, 0444);
MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
51 52 53 54 55 56 57 58 59
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


60 61 62
/*
 * Alter this version for the module when modifications are made
 */
M
Michal Marek 已提交
63
#define I7CORE_REVISION    " Ver: 1.0.0"
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

79 80 81
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90
82 83
  #define MC_CFG_UNLOCK		0x02
  #define MC_CFG_LOCK		0x00
84

85 86 87 88 89 90
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

91 92 93 94 95 96 97 98 99 100 101 102
/*
 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

103
/* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
104 105 106 107 108 109 110
#define MC_SSRCONTROL		0x48
  #define SSR_MODE_DISABLE	0x00
  #define SSR_MODE_ENABLE	0x01
  #define SSR_MODE_MASK		0x03

#define MC_SCRUB_CONTROL	0x4c
  #define STARTSCRUB		(1 << 24)
N
Nils Carlson 已提交
111
  #define SCRUBINTERVAL_MASK    0xffffff
112

113 114 115 116 117 118 119 120 121 122 123
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


124 125
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

126 127 128 129 130 131
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

132 133 134 135
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

136 137 138
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

139
#define MC_CHANNEL_ADDR_MATCH	0xf0
140 141 142 143 144 145 146 147 148 149
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
150

151
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
152

153 154 155 156 157 158 159
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
160 161 162 163
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
164
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
165
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
166 167
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
168

169 170
#define MC_RANK_PRESENT		0x7c

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

194 195 196 197 198
/*
 * i7core structs
 */

#define NUM_CHANS 3
199 200 201
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
202 203 204 205 206

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
207
	u32	ch_map;
208 209
};

210 211 212 213 214 215 216 217 218 219 220 221

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

222
struct i7core_channel {
223 224
	u32		ranks;
	u32		dimms;
225 226
};

227
struct pci_id_descr {
228 229 230
	int			dev;
	int			func;
	int 			dev_id;
231
	int			optional;
232 233
};

234
struct pci_id_table {
235 236
	const struct pci_id_descr	*descr;
	int				n_devs;
237 238
};

239 240 241 242
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
243
	int			n_devs;
244 245 246
	struct mem_ctl_info	*mci;
};

247
struct i7core_pvt {
248 249 250 251 252
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
253

254
	struct i7core_info	info;
255
	struct i7core_inject	inject;
256
	struct i7core_channel	channel[NUM_CHANS];
257

258 259
	int		ce_count_available;
	int 		csrow_map[NUM_CHANS][MAX_DIMMS];
260 261

			/* ECC corrected errors counts per udimm */
262 263
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
264
			/* ECC corrected errors counts per rdimm */
265 266
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
267

268
	bool		is_registered, enable_scrub;
269

270
	/* Fifo double buffers */
271
	struct mce		mce_entry[MCE_LOG_LEN];
272 273 274 275 276 277 278
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;
279

N
Nils Carlson 已提交
280 281 282
	/* DCLK Frequency used for computing scrub rate */
	int			dclk_freq;

283 284
	/* Struct to control EDAC polling */
	struct edac_pci_ctl_info *i7core_pci;
285 286
};

287 288 289 290 291
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

292
static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
293 294 295
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
296
			/* Exists only for RDIMM */
297
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
317 318 319 320 321 322 323 324 325 326

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },

327
};
328

329
static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
330 331 332 333 334 335 336 337 338
	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },

339 340 341 342
	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
343 344 345 346 347 348

	/*
	 * This is the PCI device has an alternate address on some
	 * processors like Core i7 860
	 */
	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
349 350
};

351
static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },
376 377 378 379

		/* Generic Non-core registers */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },

380 381
};

382 383
#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_table[] = {
384 385 386
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
387
	{0,}			/* 0 terminated list. */
388 389
};

390 391 392 393
/*
 *	pci_device_id	table for which devices we are looking for
 */
static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
394
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
395
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
396 397 398
	{0,}			/* 0 terminated list. */
};

399 400 401 402 403
/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
404 405
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
406 407

	/* MC_STATUS bits */
408
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
409
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
410 411

	/* MC_MAX_DOD read functions */
412
static inline int numdimms(u32 dimms)
413
{
414
	return (dimms & 0x3) + 1;
415 416
}

417
static inline int numrank(u32 rank)
418 419 420
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

421
	return ranks[rank & 0x3];
422 423
}

424
static inline int numbank(u32 bank)
425 426 427
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

428
	return banks[bank & 0x3];
429 430
}

431
static inline int numrow(u32 row)
432 433 434 435 436 437
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

438
	return rows[row & 0x7];
439 440
}

441
static inline int numcol(u32 col)
442 443 444 445
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
446
	return cols[col & 0x3];
447 448
}

449
static struct i7core_dev *get_i7core_dev(u8 socket)
450 451 452 453 454 455 456 457 458 459 460
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static struct i7core_dev *alloc_i7core_dev(u8 socket,
					   const struct pci_id_table *table)
{
	struct i7core_dev *i7core_dev;

	i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
	if (!i7core_dev)
		return NULL;

	i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
				   GFP_KERNEL);
	if (!i7core_dev->pdev) {
		kfree(i7core_dev);
		return NULL;
	}

	i7core_dev->socket = socket;
	i7core_dev->n_devs = table->n_devs;
	list_add_tail(&i7core_dev->list, &i7core_edac_list);

	return i7core_dev;
}

484 485 486 487 488 489 490
static void free_i7core_dev(struct i7core_dev *i7core_dev)
{
	list_del(&i7core_dev->list);
	kfree(i7core_dev->pdev);
	kfree(i7core_dev);
}

491 492 493
/****************************************************************************
			Memory check routines
 ****************************************************************************/
494 495
static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
					  unsigned func)
496
{
497
	struct i7core_dev *i7core_dev = get_i7core_dev(socket);
498 499
	int i;

500 501 502
	if (!i7core_dev)
		return NULL;

503
	for (i = 0; i < i7core_dev->n_devs; i++) {
504
		if (!i7core_dev->pdev[i])
505 506
			continue;

507 508 509
		if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
		    PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
			return i7core_dev->pdev[i];
510 511 512
		}
	}

513 514 515
	return NULL;
}

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
/**
 * i7core_get_active_channels() - gets the number of channels and csrows
 * @socket:	Quick Path Interconnect socket
 * @channels:	Number of channels that will be returned
 * @csrows:	Number of csrows found
 *
 * Since EDAC core needs to know in advance the number of available channels
 * and csrows, in order to allocate memory for csrows/channels, it is needed
 * to run two similar steps. At the first step, implemented on this function,
 * it checks the number of csrows/channels present at one socket.
 * this is used in order to properly allocate the size of mci components.
 *
 * It should be noticed that none of the current available datasheets explain
 * or even mention how csrows are seen by the memory controller. So, we need
 * to add a fake description for csrows.
 * So, this driver is attributing one DIMM memory for one csrow.
 */
533
static int i7core_get_active_channels(const u8 socket, unsigned *channels,
534
				      unsigned *csrows)
535 536 537 538 539 540 541 542
{
	struct pci_dev *pdev = NULL;
	int i, j;
	u32 status, control;

	*channels = 0;
	*csrows = 0;

543
	pdev = get_pdev_slot_func(socket, 3, 0);
544
	if (!pdev) {
545 546
		i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
			      socket);
547
		return -ENODEV;
548
	}
549 550 551 552 553 554

	/* Device 3 function 0 reads */
	pci_read_config_dword(pdev, MC_STATUS, &status);
	pci_read_config_dword(pdev, MC_CONTROL, &control);

	for (i = 0; i < NUM_CHANS; i++) {
555
		u32 dimm_dod[3];
556 557 558 559 560
		/* Check if the channel is active */
		if (!(control & (1 << (8 + i))))
			continue;

		/* Check if the channel is disabled */
561
		if (status & (1 << i))
562 563
			continue;

564
		pdev = get_pdev_slot_func(socket, i + 4, 1);
565
		if (!pdev) {
566 567 568
			i7core_printk(KERN_ERR, "Couldn't find socket %d "
						"fn %d.%d!!!\n",
						socket, i + 4, 1);
569 570 571 572 573 574 575 576 577 578
			return -ENODEV;
		}
		/* Devices 4-6 function 1 */
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM2, &dimm_dod[2]);

579
		(*channels)++;
580 581 582 583 584 585

		for (j = 0; j < 3; j++) {
			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;
			(*csrows)++;
		}
586 587
	}

588
	debugf0("Number of active channels on socket %d: %d\n",
589
		socket, *channels);
590

591 592 593
	return 0;
}

594
static int get_dimm_config(const struct mem_ctl_info *mci)
595 596
{
	struct i7core_pvt *pvt = mci->pvt_info;
597
	struct csrow_info *csr;
598
	struct pci_dev *pdev;
599
	int i, j;
600
	int csrow = 0;
601
	unsigned long last_page = 0;
602
	enum edac_type mode;
603
	enum mem_type mtype;
604

605
	/* Get data from the MC register, function 0 */
606
	pdev = pvt->pci_mcr[0];
607
	if (!pdev)
608 609
		return -ENODEV;

610
	/* Device 3 function 0 reads */
611 612 613 614
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
615

616
	debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
617
		pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
618
		pvt->info.max_dod, pvt->info.ch_map);
619

620
	if (ECC_ENABLED(pvt)) {
621
		debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
622 623 624 625 626
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
627
		debugf0("ECC disabled\n");
628 629
		mode = EDAC_NONE;
	}
630 631

	/* FIXME: need to handle the error codes */
632 633
	debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
		"x%x x 0x%x\n",
634 635
		numdimms(pvt->info.max_dod),
		numrank(pvt->info.max_dod >> 2),
636
		numbank(pvt->info.max_dod >> 4),
637 638
		numrow(pvt->info.max_dod >> 6),
		numcol(pvt->info.max_dod >> 9));
639

640
	for (i = 0; i < NUM_CHANS; i++) {
641
		u32 data, dimm_dod[3], value[8];
642

643 644 645
		if (!pvt->pci_ch[i][0])
			continue;

646 647 648 649 650 651 652 653 654
		if (!CH_ACTIVE(pvt, i)) {
			debugf0("Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			debugf0("Channel %i is disabled\n", i);
			continue;
		}

655
		/* Devices 4-6 function 0 */
656
		pci_read_config_dword(pvt->pci_ch[i][0],
657 658
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

659
		pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
660
						4 : 2;
661

662 663
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
664
		else
665 666
			mtype = MEM_DDR3;
#if 0
667 668 669 670 671 672
		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].dimms = 3;
		else if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].dimms = 1;
		else
			pvt->channel[i].dimms = 2;
673 674 675
#endif

		/* Devices 4-6 function 1 */
676
		pci_read_config_dword(pvt->pci_ch[i][1],
677
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
678
		pci_read_config_dword(pvt->pci_ch[i][1],
679
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
680
		pci_read_config_dword(pvt->pci_ch[i][1],
681
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
682

683
		debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
684
			"%d ranks, %cDIMMs\n",
685 686 687
			i,
			RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			data,
688
			pvt->channel[i].ranks,
689
			(data & REGISTERED_DIMM) ? 'R' : 'U');
690 691 692

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
693
			u32 size, npages;
694 695 696 697 698 699 700 701 702

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

703 704 705
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

706
			pvt->channel[i].dimms++;
707

708 709 710
			debugf0("\tdimm %d %d Mb offset: %x, "
				"bank: %d, rank: %d, row: %#x, col: %#x\n",
				j, size,
711 712 713
				RANKOFFSET(dimm_dod[j]),
				banks, ranks, rows, cols);

714
			npages = MiB_TO_PAGES(size);
715

716
			csr = &mci->csrows[csrow];
717 718 719 720 721
			csr->first_page = last_page + 1;
			last_page += npages;
			csr->last_page = last_page;
			csr->nr_pages = npages;

722
			csr->page_mask = 0;
723
			csr->grain = 8;
724
			csr->csrow_idx = csrow;
725 726 727 728
			csr->nr_channels = 1;

			csr->channels[0].chan_idx = i;
			csr->channels[0].ce_count = 0;
729

730
			pvt->csrow_map[i][j] = csrow;
731

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
			switch (banks) {
			case 4:
				csr->dtype = DEV_X4;
				break;
			case 8:
				csr->dtype = DEV_X8;
				break;
			case 16:
				csr->dtype = DEV_X16;
				break;
			default:
				csr->dtype = DEV_UNKNOWN;
			}

			csr->edac_mode = mode;
			csr->mtype = mtype;

749
			csrow++;
750
		}
751

752 753 754 755 756 757 758 759
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
760
		debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
761
		for (j = 0; j < 8; j++)
762
			debugf1("\t\t%#x\t%#x\t%#x\n",
763 764
				(value[j] >> 27) & 0x1,
				(value[j] >> 24) & 0x7,
765
				(value[j] & ((1 << 24) - 1)));
766 767
	}

768 769 770
	return 0;
}

771 772 773 774 775 776 777 778 779 780 781
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
782
static int disable_inject(const struct mem_ctl_info *mci)
783 784 785 786 787
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

788
	if (!pvt->pci_ch[pvt->inject.channel][0])
789 790
		return -ENODEV;

791
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
792
				MC_CHANNEL_ERROR_INJECT, 0);
793 794

	return 0;
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
					   const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
812
		disable_inject(mci);
813 814 815

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
816
		return -EIO;
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844

	pvt->inject.section = (u32) value;
	return count;
}

static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
845
		disable_inject(mci);
846 847 848

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
849
		return -EIO;
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879

	pvt->inject.type = (u32) value;
	return count;
}

static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
880
		disable_inject(mci);
881 882 883

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
884
		return -EIO;
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907

	pvt->inject.eccmask = (u32) value;
	return count;
}

static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

908 909 910 911 912
#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
		struct mem_ctl_info *mci,			\
		const char *data, size_t count)			\
{								\
913
	struct i7core_pvt *pvt;					\
914 915 916
	long value;						\
	int rc;							\
								\
917 918 919
	debugf1("%s()\n", __func__);				\
	pvt = mci->pvt_info;					\
								\
920 921 922
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
923
	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
		value = -1;					\
	else {							\
		rc = strict_strtoul(data, 10, &value);		\
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
940 941 942 943
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
	debugf1("%s() pvt=%p\n", __func__, pvt);		\
944 945 946 947
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
948 949
}

950 951 952 953 954 955 956 957 958
#define ATTR_ADDR_MATCH(param)					\
	{							\
		.attr = {					\
			.name = #param,				\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_inject_show_##param,		\
		.store = i7core_inject_store_##param,		\
	}
959

960 961 962 963 964 965
DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);
966

967
static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
968 969 970 971
{
	u32 read;
	int count;

972 973 974 975
	debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val);

976 977
	for (count = 0; count < 10; count++) {
		if (count)
978
			msleep(100);
979 980 981 982 983 984 985
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

986 987 988 989
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
990 991 992 993

	return -EINVAL;
}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
				       const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

1021
	if (!pvt->pci_ch[pvt->inject.channel][0])
1022 1023
		return 0;

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
1037
		mask |= 1LL << 41;
1038
	else {
1039
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1040
			mask |= (pvt->inject.dimm & 0x3LL) << 35;
1041
		else
1042
			mask |= (pvt->inject.dimm & 0x1LL) << 36;
1043 1044 1045 1046
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
1047
		mask |= 1LL << 40;
1048
	else {
1049
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1050
			mask |= (pvt->inject.rank & 0x1LL) << 34;
1051
		else
1052
			mask |= (pvt->inject.rank & 0x3LL) << 34;
1053 1054 1055 1056
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
1057
		mask |= 1LL << 39;
1058
	else
1059
		mask |= (pvt->inject.bank & 0x15LL) << 30;
1060 1061 1062

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
1063
		mask |= 1LL << 38;
1064
	else
1065
		mask |= (pvt->inject.page & 0xffff) << 14;
1066 1067 1068

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
1069
		mask |= 1LL << 37;
1070
	else
1071
		mask |= (pvt->inject.col & 0x3fff);
1072

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
1085
	pci_write_config_dword(pvt->pci_noncore,
1086
			       MC_CFG_CONTROL, 0x2);
1087

1088
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1089
			       MC_CHANNEL_ADDR_MATCH, mask);
1090
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1091 1092
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

1093
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1094 1095
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

1096
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1097
			       MC_CHANNEL_ERROR_INJECT, injectmask);
1098

1099
	/*
1100 1101 1102
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
1103
	 */
1104
	pci_write_config_dword(pvt->pci_noncore,
1105
			       MC_CFG_CONTROL, 8);
1106

1107 1108
	debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
		" inject 0x%08x\n",
1109 1110
		mask, pvt->inject.eccmask, injectmask);

1111

1112 1113 1114 1115 1116 1117 1118
	return count;
}

static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
					char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
1119 1120
	u32 injectmask;

1121 1122 1123
	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

1124
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1125
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1126 1127 1128 1129 1130 1131

	debugf0("Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1132 1133 1134
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
	debugf1("%s() \n", __func__);				\
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}
1148

1149 1150 1151 1152 1153 1154 1155
#define ATTR_COUNTER(param)					\
	{							\
		.attr = {					\
			.name = __stringify(udimm##param),	\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_show_counter_##param		\
1156
	}
1157

1158 1159 1160
DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);
1161

1162 1163 1164
/*
 * Sysfs struct
 */
1165

1166
static const struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
1167 1168 1169 1170 1171 1172
	ATTR_ADDR_MATCH(channel),
	ATTR_ADDR_MATCH(dimm),
	ATTR_ADDR_MATCH(rank),
	ATTR_ADDR_MATCH(bank),
	ATTR_ADDR_MATCH(page),
	ATTR_ADDR_MATCH(col),
1173
	{ } /* End of list */
1174 1175
};

1176
static const struct mcidev_sysfs_group i7core_inject_addrmatch = {
1177 1178 1179 1180
	.name  = "inject_addrmatch",
	.mcidev_attr = i7core_addrmatch_attrs,
};

1181
static const struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
1182 1183 1184
	ATTR_COUNTER(0),
	ATTR_COUNTER(1),
	ATTR_COUNTER(2),
1185
	{ .attr = { .name = NULL } }
1186 1187
};

1188
static const struct mcidev_sysfs_group i7core_udimm_counters = {
1189 1190 1191 1192
	.name  = "all_channel_counts",
	.mcidev_attr = i7core_udimm_counters_attrs,
};

1193
static const struct mcidev_sysfs_attribute i7core_sysfs_rdimm_attrs[] = {
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
1216
		.grp = &i7core_inject_addrmatch,
1217 1218 1219 1220 1221 1222 1223 1224
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	},
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
	{ }	/* End of list */
};

static const struct mcidev_sysfs_attribute i7core_sysfs_udimm_attrs[] = {
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
		.grp = &i7core_inject_addrmatch,
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	}, {
		.grp = &i7core_udimm_counters,
	},
	{ }	/* End of list */
1263 1264
};

1265 1266 1267 1268 1269
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
1270
 *	i7core_put_all_devices	'put' all the devices that we have
1271 1272
 *				reserved via 'get'
 */
1273
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1274
{
1275
	int i;
1276

1277
	debugf0(__FILE__ ": %s()\n", __func__);
1278
	for (i = 0; i < i7core_dev->n_devs; i++) {
1279 1280 1281 1282 1283 1284 1285 1286
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
		debugf0("Removing dev %02x:%02x.%d\n",
			pdev->bus->number,
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
1287
}
1288

1289 1290
static void i7core_put_all_devices(void)
{
1291
	struct i7core_dev *i7core_dev, *tmp;
1292

1293
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1294
		i7core_put_devices(i7core_dev);
1295
		free_i7core_dev(i7core_dev);
1296
	}
1297 1298
}

1299
static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1300 1301 1302
{
	struct pci_dev *pdev = NULL;
	int i;
1303

1304
	/*
D
David Sterba 已提交
1305
	 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
1306 1307 1308
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
1309 1310 1311 1312 1313 1314
	while (table && table->descr) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
		if (unlikely(!pdev)) {
			for (i = 0; i < MAX_SOCKET_BUSES; i++)
				pcibios_scan_specific_bus(255-i);
		}
1315
		pci_dev_put(pdev);
1316
		table++;
1317 1318 1319
	}
}

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
static unsigned i7core_pci_lastbus(void)
{
	int last_bus = 0, bus;
	struct pci_bus *b = NULL;

	while ((b = pci_find_next_bus(b)) != NULL) {
		bus = b->number;
		debugf0("Found bus %d\n", bus);
		if (bus > last_bus)
			last_bus = bus;
	}

	debugf0("Last bus %d\n", last_bus);

	return last_bus;
}

1337
/*
1338
 *	i7core_get_all_devices	Find and perform 'get' operation on the MCH's
1339 1340 1341 1342
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1343 1344 1345 1346
static int i7core_get_onedevice(struct pci_dev **prev,
				const struct pci_id_table *table,
				const unsigned devno,
				const unsigned last_bus)
1347
{
1348
	struct i7core_dev *i7core_dev;
1349
	const struct pci_id_descr *dev_descr = &table->descr[devno];
1350

1351
	struct pci_dev *pdev = NULL;
1352 1353
	u8 bus = 0;
	u8 socket = 0;
1354

1355
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1356
			      dev_descr->dev_id, *prev);
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);

	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev)
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
				      *prev);

1372 1373 1374 1375
	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1376 1377
		}

1378
		if (dev_descr->optional)
1379
			return 0;
1380

1381 1382 1383
		if (devno == 0)
			return -ENODEV;

1384
		i7core_printk(KERN_INFO,
1385
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1386 1387
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1388

1389 1390 1391 1392
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1393

1394
	socket = last_bus - bus;
1395

1396 1397
	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
1398
		i7core_dev = alloc_i7core_dev(socket, table);
1399 1400
		if (!i7core_dev) {
			pci_dev_put(pdev);
1401
			return -ENOMEM;
1402
		}
1403
	}
1404

1405
	if (i7core_dev->pdev[devno]) {
1406 1407 1408
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1409 1410
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1411 1412 1413
		pci_dev_put(pdev);
		return -ENODEV;
	}
1414

1415
	i7core_dev->pdev[devno] = pdev;
1416 1417

	/* Sanity check */
1418 1419
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1420 1421 1422
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1423
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1424
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1425
			bus, dev_descr->dev, dev_descr->func);
1426 1427
		return -ENODEV;
	}
1428

1429 1430 1431 1432 1433
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1434 1435
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1436 1437
		return -ENODEV;
	}
1438

1439
	debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1440 1441 1442
		socket, bus, dev_descr->dev,
		dev_descr->func,
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1443

1444 1445 1446 1447 1448 1449 1450
	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

1451
	*prev = pdev;
1452

1453 1454
	return 0;
}
1455

1456
static int i7core_get_all_devices(void)
1457
{
1458
	int i, rc, last_bus;
1459
	struct pci_dev *pdev = NULL;
1460
	const struct pci_id_table *table = pci_dev_table;
1461

1462 1463
	last_bus = i7core_pci_lastbus();

1464
	while (table && table->descr) {
1465 1466 1467
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
1468
				rc = i7core_get_onedevice(&pdev, table, i,
1469
							  last_bus);
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					i7core_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
1480
		table++;
1481
	}
1482

1483 1484 1485
	return 0;
}

1486 1487
static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
1488 1489 1490
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1491
	int i, func, slot;
1492
	char *family;
1493

1494 1495
	pvt->is_registered = false;
	pvt->enable_scrub  = false;
1496
	for (i = 0; i < i7core_dev->n_devs; i++) {
1497 1498
		pdev = i7core_dev->pdev[i];
		if (!pdev)
1499 1500
			continue;

1501 1502 1503 1504 1505 1506 1507 1508
		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
1509
				goto error;
1510
			pvt->pci_ch[slot - 4][func] = pdev;
1511
		} else if (!slot && !func) {
1512
			pvt->pci_noncore = pdev;
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

			/* Detect the processor family */
			switch (pdev->device) {
			case PCI_DEVICE_ID_INTEL_I7_NONCORE:
				family = "Xeon 35xx/ i7core";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT:
				family = "i7-800/i5-700";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE:
				family = "Xeon 34xx";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT:
				family = "Xeon 55xx";
				pvt->enable_scrub = true;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2:
				family = "Xeon 56xx / i7-900";
				pvt->enable_scrub = true;
				break;
			default:
				family = "unknown";
				pvt->enable_scrub = false;
			}
			debugf0("Detected a processor type %s\n", family);
		} else
1542
			goto error;
1543

1544 1545 1546
		debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			pdev, i7core_dev->socket);
1547

1548 1549
		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
1550
			pvt->is_registered = true;
1551
	}
1552

1553
	return 0;
1554 1555 1556 1557 1558 1559

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1560 1561
}

1562 1563 1564
/****************************************************************************
			Error check routines
 ****************************************************************************/
1565
static void i7core_rdimm_update_csrow(struct mem_ctl_info *mci,
1566 1567 1568
				      const int chan,
				      const int dimm,
				      const int add)
1569 1570 1571
{
	char *msg;
	struct i7core_pvt *pvt = mci->pvt_info;
1572
	int row = pvt->csrow_map[chan][dimm], i;
1573 1574 1575

	for (i = 0; i < add; i++) {
		msg = kasprintf(GFP_KERNEL, "Corrected error "
1576 1577
				"(Socket=%d channel=%d dimm=%d)",
				pvt->i7core_dev->socket, chan, dimm);
1578 1579 1580 1581 1582 1583 1584

		edac_mc_handle_fbd_ce(mci, row, 0, msg);
		kfree (msg);
	}
}

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1585 1586 1587 1588
					 const int chan,
					 const int new0,
					 const int new1,
					 const int new2)
1589 1590 1591 1592
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
1593
	if (pvt->ce_count_available) {
1594 1595
		/* Updates CE counters */

1596 1597 1598
		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1599 1600 1601

		if (add2 < 0)
			add2 += 0x7fff;
1602
		pvt->rdimm_ce_count[chan][2] += add2;
1603 1604 1605

		if (add1 < 0)
			add1 += 0x7fff;
1606
		pvt->rdimm_ce_count[chan][1] += add1;
1607 1608 1609

		if (add0 < 0)
			add0 += 0x7fff;
1610
		pvt->rdimm_ce_count[chan][0] += add0;
1611
	} else
1612
		pvt->ce_count_available = 1;
1613 1614

	/* Store the new values */
1615 1616 1617
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;
1618 1619 1620

	/*updated the edac core */
	if (add0 != 0)
1621
		i7core_rdimm_update_csrow(mci, chan, 0, add0);
1622
	if (add1 != 0)
1623
		i7core_rdimm_update_csrow(mci, chan, 1, add1);
1624
	if (add2 != 0)
1625
		i7core_rdimm_update_csrow(mci, chan, 2, add2);
1626 1627 1628

}

1629
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1630 1631 1632 1633 1634 1635
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1636
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1637
								&rcv[0][0]);
1638
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1639
								&rcv[0][1]);
1640
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1641
								&rcv[1][0]);
1642
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1643
								&rcv[1][1]);
1644
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1645
								&rcv[2][0]);
1646
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1647 1648 1649 1650 1651
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
		debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			(i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
		/*if the channel has 3 dimms*/
1652
		if (pvt->channel[i].dimms > 2) {
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

1664
		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1665 1666
	}
}
1667 1668 1669 1670 1671 1672 1673

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1674
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1675 1676 1677 1678 1679
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1680
	if (!pvt->pci_mcr[4]) {
1681
		debugf0("%s MCR registers not found\n", __func__);
1682 1683 1684
		return;
	}

1685
	/* Corrected test errors */
1686 1687
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1688 1689 1690 1691 1692 1693 1694

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
1695
	if (pvt->ce_count_available) {
1696 1697 1698
		/* Updates CE counters */
		int add0, add1, add2;

1699 1700 1701
		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];
1702 1703 1704

		if (add2 < 0)
			add2 += 0x7fff;
1705
		pvt->udimm_ce_count[2] += add2;
1706 1707 1708

		if (add1 < 0)
			add1 += 0x7fff;
1709
		pvt->udimm_ce_count[1] += add1;
1710 1711 1712

		if (add0 < 0)
			add0 += 0x7fff;
1713
		pvt->udimm_ce_count[0] += add0;
1714 1715 1716 1717 1718

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
1719
	} else
1720
		pvt->ce_count_available = 1;
1721 1722

	/* Store the new values */
1723 1724 1725
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
1726 1727
}

1728 1729 1730
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1731 1732 1733
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1734
 *     struct mce field	MCA Register
1735 1736 1737
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1738 1739 1740
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1741
static void i7core_mce_output_error(struct mem_ctl_info *mci,
1742
				    const struct mce *m)
1743
{
1744
	struct i7core_pvt *pvt = mci->pvt_info;
1745
	char *type, *optype, *err, *msg;
1746
	unsigned long error = m->status & 0x1ff0000l;
1747
	u32 optypenum = (m->status >> 4) & 0x07;
1748
	u32 core_err_cnt = (m->status >> 38) & 0x7fff;
1749 1750 1751 1752
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);
1753
	int csrow;
1754

1755 1756 1757 1758 1759
	if (m->mcgstatus & 1)
		type = "FATAL";
	else
		type = "NON_FATAL";

1760
	switch (optypenum) {
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1779 1780
	}

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundacy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1811 1812
	}

1813
	/* FIXME: should convert addr into bank and rank information */
1814
	msg = kasprintf(GFP_ATOMIC,
1815
		"%s (addr = 0x%08llx, cpu=%d, Dimm=%d, Channel=%d, "
1816
		"syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
1817
		type, (long long) m->addr, m->cpu, dimm, channel,
1818 1819
		syndrome, core_err_cnt, (long long)m->status,
		(long long)m->misc, optype, err);
1820 1821

	debugf0("%s", msg);
1822

1823
	csrow = pvt->csrow_map[channel][dimm];
1824

1825
	/* Call the helper to output message */
1826 1827 1828
	if (m->mcgstatus & 1)
		edac_mc_handle_fbd_ue(mci, csrow, 0,
				0 /* FIXME: should be channel here */, msg);
1829
	else if (!pvt->is_registered)
1830 1831
		edac_mc_handle_fbd_ce(mci, csrow,
				0 /* FIXME: should be channel here */, msg);
1832 1833

	kfree(msg);
1834 1835
}

1836 1837 1838 1839 1840 1841
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci)
{
1842 1843 1844
	struct i7core_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
1845
	struct mce *m;
1846

1847 1848 1849
	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
L
Lucas De Marchi 已提交
1850
	 * losing an error.
1851 1852
	 */
	smp_rmb();
1853 1854
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
1855
	if (!count)
1856
		goto check_ce_error;
1857

1858
	m = pvt->mce_outentry;
1859 1860
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1861

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		i7core_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}
1879

1880 1881 1882
	/*
	 * MCE second step: parse errors and display
	 */
1883
	for (i = 0; i < count; i++)
1884
		i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1885

1886 1887 1888
	/*
	 * Now, let's increment CE error counts
	 */
1889
check_ce_error:
1890 1891 1892 1893
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
1894 1895
}

1896 1897 1898 1899 1900
/*
 * i7core_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by i7core_check_error.
1901 1902
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
1903
 */
1904 1905
static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val,
				  void *data)
1906
{
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
	struct mce *mce = (struct mce *)data;
	struct i7core_dev *i7_dev;
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;

	i7_dev = get_i7core_dev(mce->socketid);
	if (!i7_dev)
		return NOTIFY_BAD;

	mci = i7_dev->mci;
	pvt = mci->pvt_info;
1918

1919 1920 1921 1922 1923
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
1924
		return NOTIFY_DONE;
1925

1926 1927
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
1928
		return NOTIFY_DONE;
1929

R
Randy Dunlap 已提交
1930
#ifdef CONFIG_SMP
1931
	/* Only handle if it is the right mc controller */
1932
	if (mce->socketid != pvt->i7core_dev->socket)
1933
		return NOTIFY_DONE;
R
Randy Dunlap 已提交
1934
#endif
1935

1936
	smp_rmb();
1937
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1938 1939
		smp_wmb();
		pvt->mce_overrun++;
1940
		return NOTIFY_DONE;
1941
	}
1942 1943 1944

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1945
	smp_wmb();
1946
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1947

1948 1949 1950 1951
	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		i7core_check_error(mci);

D
David Sterba 已提交
1952
	/* Advise mcelog that the errors were handled */
1953
	return NOTIFY_STOP;
1954 1955
}

1956 1957 1958 1959
static struct notifier_block i7_mce_dec = {
	.notifier_call	= i7core_mce_check_error,
};

N
Nils Carlson 已提交
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
struct memdev_dmi_entry {
	u8 type;
	u8 length;
	u16 handle;
	u16 phys_mem_array_handle;
	u16 mem_err_info_handle;
	u16 total_width;
	u16 data_width;
	u16 size;
	u8 form;
	u8 device_set;
	u8 device_locator;
	u8 bank_locator;
	u8 memory_type;
	u16 type_detail;
	u16 speed;
	u8 manufacturer;
	u8 serial_number;
	u8 asset_tag;
	u8 part_number;
	u8 attributes;
	u32 extended_size;
	u16 conf_mem_clk_speed;
} __attribute__((__packed__));


/*
 * Decode the DRAM Clock Frequency, be paranoid, make sure that all
 * memory devices show the same speed, and if they don't then consider
 * all speeds to be invalid.
 */
static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq)
{
	int *dclk_freq = _dclk_freq;
	u16 dmi_mem_clk_speed;

	if (*dclk_freq == -1)
		return;

	if (dh->type == DMI_ENTRY_MEM_DEVICE) {
		struct memdev_dmi_entry *memdev_dmi_entry =
			(struct memdev_dmi_entry *)dh;
		unsigned long conf_mem_clk_speed_offset =
			(unsigned long)&memdev_dmi_entry->conf_mem_clk_speed -
			(unsigned long)&memdev_dmi_entry->type;
		unsigned long speed_offset =
			(unsigned long)&memdev_dmi_entry->speed -
			(unsigned long)&memdev_dmi_entry->type;

		/* Check that a DIMM is present */
		if (memdev_dmi_entry->size == 0)
			return;

		/*
		 * Pick the configured speed if it's available, otherwise
		 * pick the DIMM speed, or we don't have a speed.
		 */
		if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) {
			dmi_mem_clk_speed =
				memdev_dmi_entry->conf_mem_clk_speed;
		} else if (memdev_dmi_entry->length > speed_offset) {
			dmi_mem_clk_speed = memdev_dmi_entry->speed;
		} else {
			*dclk_freq = -1;
			return;
		}

		if (*dclk_freq == 0) {
			/* First pass, speed was 0 */
			if (dmi_mem_clk_speed > 0) {
				/* Set speed if a valid speed is read */
				*dclk_freq = dmi_mem_clk_speed;
			} else {
				/* Otherwise we don't have a valid speed */
				*dclk_freq = -1;
			}
		} else if (*dclk_freq > 0 &&
			   *dclk_freq != dmi_mem_clk_speed) {
			/*
			 * If we have a speed, check that all DIMMS are the same
			 * speed, otherwise set the speed as invalid.
			 */
			*dclk_freq = -1;
		}
	}
}

/*
 * The default DCLK frequency is used as a fallback if we
 * fail to find anything reliable in the DMI. The value
 * is taken straight from the datasheet.
 */
#define DEFAULT_DCLK_FREQ 800

static int get_dclk_freq(void)
{
	int dclk_freq = 0;

	dmi_walk(decode_dclk, (void *)&dclk_freq);

	if (dclk_freq < 1)
		return DEFAULT_DCLK_FREQ;

	return dclk_freq;
}

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
/*
 * set_sdram_scrub_rate		This routine sets byte/sec bandwidth scrub rate
 *				to hardware according to SCRUBINTERVAL formula
 *				found in datasheet.
 */
static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	u32 dw_scrub;
	u32 dw_ssr;

	/* Get data from the MC register, function 2 */
	pdev = pvt->pci_mcr[2];
	if (!pdev)
		return -ENODEV;

	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub);

	if (new_bw == 0) {
		/* Prepare to disable petrol scrub */
		dw_scrub &= ~STARTSCRUB;
		/* Stop the patrol scrub engine */
N
Nils Carlson 已提交
2089 2090
		write_and_test(pdev, MC_SCRUB_CONTROL,
			       dw_scrub & ~SCRUBINTERVAL_MASK);
2091 2092 2093 2094 2095 2096

		/* Get current status of scrub rate and set bit to disable */
		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
		dw_ssr &= ~SSR_MODE_MASK;
		dw_ssr |= SSR_MODE_DISABLE;
	} else {
N
Nils Carlson 已提交
2097 2098 2099
		const int cache_line_size = 64;
		const u32 freq_dclk_mhz = pvt->dclk_freq;
		unsigned long long scrub_interval;
2100 2101
		/*
		 * Translate the desired scrub rate to a register value and
N
Nils Carlson 已提交
2102
		 * program the corresponding register value.
2103
		 */
N
Nils Carlson 已提交
2104 2105 2106 2107 2108 2109 2110
		scrub_interval = (unsigned long long)freq_dclk_mhz *
			cache_line_size * 1000000 / new_bw;

		if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK)
			return -EINVAL;

		dw_scrub = SCRUBINTERVAL_MASK & scrub_interval;
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136

		/* Start the patrol scrub engine */
		pci_write_config_dword(pdev, MC_SCRUB_CONTROL,
				       STARTSCRUB | dw_scrub);

		/* Get current status of scrub rate and set bit to enable */
		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
		dw_ssr &= ~SSR_MODE_MASK;
		dw_ssr |= SSR_MODE_ENABLE;
	}
	/* Disable or enable scrubbing */
	pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr);

	return new_bw;
}

/*
 * get_sdram_scrub_rate		This routine convert current scrub rate value
 *				into byte/sec bandwidth accourding to
 *				SCRUBINTERVAL formula found in datasheet.
 */
static int get_sdram_scrub_rate(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	const u32 cache_line_size = 64;
N
Nils Carlson 已提交
2137 2138
	const u32 freq_dclk_mhz = pvt->dclk_freq;
	unsigned long long scrub_rate;
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
	u32 scrubval;

	/* Get data from the MC register, function 2 */
	pdev = pvt->pci_mcr[2];
	if (!pdev)
		return -ENODEV;

	/* Get current scrub control data */
	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval);

	/* Mask highest 8-bits to 0 */
N
Nils Carlson 已提交
2150
	scrubval &=  SCRUBINTERVAL_MASK;
2151 2152 2153 2154
	if (!scrubval)
		return 0;

	/* Calculate scrub rate value into byte/sec bandwidth */
N
Nils Carlson 已提交
2155 2156 2157
	scrub_rate =  (unsigned long long)freq_dclk_mhz *
		1000000 * cache_line_size / scrubval;
	return (int)scrub_rate;
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
}

static void enable_sdram_scrub_setting(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 pci_lock;

	/* Unlock writes to pci registers */
	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
	pci_lock &= ~0x3;
	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
			       pci_lock | MC_CFG_UNLOCK);

	mci->set_sdram_scrub_rate = set_sdram_scrub_rate;
	mci->get_sdram_scrub_rate = get_sdram_scrub_rate;
}

static void disable_sdram_scrub_setting(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 pci_lock;

	/* Lock writes to pci registers */
	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
	pci_lock &= ~0x3;
	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
			       pci_lock | MC_CFG_LOCK);
}

2187 2188 2189 2190 2191 2192
static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
{
	pvt->i7core_pci = edac_pci_create_generic_ctl(
						&pvt->i7core_dev->pdev[0]->dev,
						EDAC_MOD_STR);
	if (unlikely(!pvt->i7core_pci))
2193 2194
		i7core_printk(KERN_WARNING,
			      "Unable to setup PCI error report via EDAC\n");
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
}

static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
{
	if (likely(pvt->i7core_pci))
		edac_pci_release_generic_ctl(pvt->i7core_pci);
	else
		i7core_printk(KERN_ERR,
				"Couldn't find mem_ctl_info for socket %d\n",
				pvt->i7core_dev->socket);
	pvt->i7core_pci = NULL;
}

2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
{
	struct mem_ctl_info *mci = i7core_dev->mci;
	struct i7core_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
		debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
			__func__, &i7core_dev->pdev[0]->dev);

		i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);

2226
	/* Disable scrubrate setting */
2227 2228
	if (pvt->enable_scrub)
		disable_sdram_scrub_setting(mci);
2229

2230
	atomic_notifier_chain_unregister(&x86_mce_decoder_chain, &i7_mce_dec);
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243

	/* Disable EDAC polling */
	i7core_pci_ctl_release(pvt);

	/* Remove MC sysfs nodes */
	edac_mc_del_mc(mci->dev);

	debugf1("%s: free mci struct\n", mci->ctl_name);
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	i7core_dev->mci = NULL;
}

2244
static int i7core_register_mci(struct i7core_dev *i7core_dev)
2245 2246 2247
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
2248 2249 2250 2251 2252 2253
	int rc, channels, csrows;

	/* Check the number of active and not disabled channels */
	rc = i7core_get_active_channels(i7core_dev->socket, &channels, &csrows);
	if (unlikely(rc < 0))
		return rc;
2254 2255

	/* allocate a new MC control structure */
2256
	mci = edac_mc_alloc(sizeof(*pvt), csrows, channels, i7core_dev->socket);
2257 2258
	if (unlikely(!mci))
		return -ENOMEM;
2259

2260 2261
	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);
2262 2263

	pvt = mci->pvt_info;
2264
	memset(pvt, 0, sizeof(*pvt));
2265

2266 2267 2268 2269
	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;

2270 2271 2272 2273 2274 2275
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
2276 2277 2278 2279
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
	mci->mod_ver = I7CORE_REVISION;
2280 2281 2282
	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
				  i7core_dev->socket);
	mci->dev_name = pci_name(i7core_dev->pdev[0]);
2283
	mci->ctl_page_to_phys = NULL;
2284

2285
	/* Store pci devices at mci for faster access */
2286
	rc = mci_bind_devs(mci, i7core_dev);
2287
	if (unlikely(rc < 0))
2288
		goto fail0;
2289

2290 2291 2292 2293 2294
	if (pvt->is_registered)
		mci->mc_driver_sysfs_attributes = i7core_sysfs_rdimm_attrs;
	else
		mci->mc_driver_sysfs_attributes = i7core_sysfs_udimm_attrs;

2295
	/* Get dimm basic config */
2296
	get_dimm_config(mci);
2297 2298 2299 2300
	/* record ptr to the generic device */
	mci->dev = &i7core_dev->pdev[0]->dev;
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7core_check_error;
2301

2302
	/* Enable scrubrate setting */
2303 2304
	if (pvt->enable_scrub)
		enable_sdram_scrub_setting(mci);
2305

2306
	/* add this new MC control structure to EDAC's list of MCs */
2307
	if (unlikely(edac_mc_add_mc(mci))) {
2308 2309 2310 2311 2312
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
2313 2314

		rc = -EINVAL;
2315
		goto fail0;
2316 2317
	}

2318
	/* Default error mask is any memory */
2319
	pvt->inject.channel = 0;
2320 2321 2322 2323 2324 2325
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

2326 2327 2328
	/* allocating generic PCI control info */
	i7core_pci_ctl_create(pvt);

N
Nils Carlson 已提交
2329 2330 2331
	/* DCLK for scrub rate setting */
	pvt->dclk_freq = get_dclk_freq();

2332
	atomic_notifier_chain_register(&x86_mce_decoder_chain, &i7_mce_dec);
2333

2334 2335 2336 2337 2338
	return 0;

fail0:
	kfree(mci->ctl_name);
	edac_mc_free(mci);
2339
	i7core_dev->mci = NULL;
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
2350

2351 2352 2353
static int __devinit i7core_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
2354
	int rc, count = 0;
2355 2356
	struct i7core_dev *i7core_dev;

2357 2358 2359
	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);

2360
	/*
2361
	 * All memory controllers are allocated at the first pass.
2362
	 */
2363 2364
	if (unlikely(probed >= 1)) {
		mutex_unlock(&i7core_edac_lock);
2365
		return -ENODEV;
2366 2367
	}
	probed++;
2368

2369
	rc = i7core_get_all_devices();
2370 2371 2372 2373
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2374
		count++;
2375
		rc = i7core_register_mci(i7core_dev);
2376 2377
		if (unlikely(rc < 0))
			goto fail1;
2378 2379
	}

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
	/*
	 * Nehalem-EX uses a different memory controller. However, as the
	 * memory controller is not visible on some Nehalem/Nehalem-EP, we
	 * need to indirectly probe via a X58 PCI device. The same devices
	 * are found on (some) Nehalem-EX. So, on those machines, the
	 * probe routine needs to return -ENODEV, as the actual Memory
	 * Controller registers won't be detected.
	 */
	if (!count) {
		rc = -ENODEV;
		goto fail1;
	}

	i7core_printk(KERN_INFO,
		      "Driver loaded, %d memory controller(s) found.\n",
		      count);
2396

2397
	mutex_unlock(&i7core_edac_lock);
2398 2399
	return 0;

2400
fail1:
2401 2402 2403
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);

2404
	i7core_put_all_devices();
2405 2406
fail0:
	mutex_unlock(&i7core_edac_lock);
2407
	return rc;
2408 2409 2410 2411 2412 2413 2414 2415
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void __devexit i7core_remove(struct pci_dev *pdev)
{
2416
	struct i7core_dev *i7core_dev;
2417 2418 2419

	debugf0(__FILE__ ": %s()\n", __func__);

2420 2421 2422 2423 2424 2425 2426
	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */
2427

2428
	mutex_lock(&i7core_edac_lock);
2429 2430 2431 2432 2433 2434

	if (unlikely(!probed)) {
		mutex_unlock(&i7core_edac_lock);
		return;
	}

2435 2436
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);
2437 2438 2439 2440

	/* Release PCI resources */
	i7core_put_all_devices();

2441 2442
	probed--;

2443
	mutex_unlock(&i7core_edac_lock);
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = __devexit_p(i7core_remove),
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

2472 2473
	if (use_pci_fixup)
		i7core_xeon_pci_fixup(pci_dev_table);
2474

2475 2476
	pci_rc = pci_register_driver(&i7core_driver);

2477 2478 2479 2480 2481 2482 2483
	if (pci_rc >= 0)
		return 0;

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i7core_driver);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");