i7core_edac.c 60.5 KB
Newer Older
1 2
/* Intel i7 core/Nehalem Memory Controller kernel module
 *
D
David Sterba 已提交
3
 * This driver supports the memory controllers found on the Intel
4 5 6
 * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
 * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
 * and Westmere-EP.
7 8 9 10
 *
 * This file may be distributed under the terms of the
 * GNU General Public License version 2 only.
 *
11
 * Copyright (c) 2009-2010 by:
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
 *	 Mauro Carvalho Chehab <mchehab@redhat.com>
 *
 * Red Hat Inc. http://www.redhat.com
 *
 * Forked and adapted from the i5400_edac driver
 *
 * Based on the following public Intel datasheets:
 * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
 * Datasheet, Volume 2:
 *	http://download.intel.com/design/processor/datashts/320835.pdf
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/slab.h>
R
Randy Dunlap 已提交
33
#include <linux/delay.h>
34 35
#include <linux/edac.h>
#include <linux/mmzone.h>
36
#include <linux/edac_mce.h>
37
#include <linux/smp.h>
38
#include <asm/processor.h>
39 40 41

#include "edac_core.h"

42 43 44 45 46
/* Static vars */
static LIST_HEAD(i7core_edac_list);
static DEFINE_MUTEX(i7core_edac_lock);
static int probed;

47 48 49
static int use_pci_fixup;
module_param(use_pci_fixup, int, 0444);
MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
50 51 52 53 54 55 56 57 58
/*
 * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
 * registers start at bus 255, and are not reported by BIOS.
 * We currently find devices with only 2 sockets. In order to support more QPI
 * Quick Path Interconnect, just increment this number.
 */
#define MAX_SOCKET_BUSES	2


59 60 61
/*
 * Alter this version for the module when modifications are made
 */
M
Michal Marek 已提交
62
#define I7CORE_REVISION    " Ver: 1.0.0"
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
#define EDAC_MOD_STR      "i7core_edac"

/*
 * Debug macros
 */
#define i7core_printk(level, fmt, arg...)			\
	edac_printk(level, "i7core", fmt, ##arg)

#define i7core_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)

/*
 * i7core Memory Controller Registers
 */

78 79 80
	/* OFFSETS for Device 0 Function 0 */

#define MC_CFG_CONTROL	0x90
81 82
  #define MC_CFG_UNLOCK		0x02
  #define MC_CFG_LOCK		0x00
83

84 85 86 87 88 89
	/* OFFSETS for Device 3 Function 0 */

#define MC_CONTROL	0x48
#define MC_STATUS	0x4c
#define MC_MAX_DOD	0x64

90 91 92 93 94 95 96 97 98 99 100 101
/*
 * OFFSETS for Device 3 Function 4, as inicated on Xeon 5500 datasheet:
 * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */

#define MC_TEST_ERR_RCV1	0x60
  #define DIMM2_COR_ERR(r)			((r) & 0x7fff)

#define MC_TEST_ERR_RCV0	0x64
  #define DIMM1_COR_ERR(r)			(((r) >> 16) & 0x7fff)
  #define DIMM0_COR_ERR(r)			((r) & 0x7fff)

102
/* OFFSETS for Device 3 Function 2, as inicated on Xeon 5500 datasheet */
103 104 105 106 107 108 109 110
#define MC_SSRCONTROL		0x48
  #define SSR_MODE_DISABLE	0x00
  #define SSR_MODE_ENABLE	0x01
  #define SSR_MODE_MASK		0x03

#define MC_SCRUB_CONTROL	0x4c
  #define STARTSCRUB		(1 << 24)

111 112 113 114 115 116 117 118 119 120 121
#define MC_COR_ECC_CNT_0	0x80
#define MC_COR_ECC_CNT_1	0x84
#define MC_COR_ECC_CNT_2	0x88
#define MC_COR_ECC_CNT_3	0x8c
#define MC_COR_ECC_CNT_4	0x90
#define MC_COR_ECC_CNT_5	0x94

#define DIMM_TOP_COR_ERR(r)			(((r) >> 16) & 0x7fff)
#define DIMM_BOT_COR_ERR(r)			((r) & 0x7fff)


122 123
	/* OFFSETS for Devices 4,5 and 6 Function 0 */

124 125 126 127 128 129
#define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
  #define THREE_DIMMS_PRESENT		(1 << 24)
  #define SINGLE_QUAD_RANK_PRESENT	(1 << 23)
  #define QUAD_RANK_PRESENT		(1 << 22)
  #define REGISTERED_DIMM		(1 << 15)

130 131 132 133
#define MC_CHANNEL_MAPPER	0x60
  #define RDLCH(r, ch)		((((r) >> (3 + (ch * 6))) & 0x07) - 1)
  #define WRLCH(r, ch)		((((r) >> (ch * 6)) & 0x07) - 1)

134 135 136
#define MC_CHANNEL_RANK_PRESENT 0x7c
  #define RANK_PRESENT_MASK		0xffff

137
#define MC_CHANNEL_ADDR_MATCH	0xf0
138 139 140 141 142 143 144 145 146 147
#define MC_CHANNEL_ERROR_MASK	0xf8
#define MC_CHANNEL_ERROR_INJECT	0xfc
  #define INJECT_ADDR_PARITY	0x10
  #define INJECT_ECC		0x08
  #define MASK_CACHELINE	0x06
  #define MASK_FULL_CACHELINE	0x06
  #define MASK_MSB32_CACHELINE	0x04
  #define MASK_LSB32_CACHELINE	0x02
  #define NO_MASK_CACHELINE	0x00
  #define REPEAT_EN		0x01
148

149
	/* OFFSETS for Devices 4,5 and 6 Function 1 */
150

151 152 153 154 155 156 157
#define MC_DOD_CH_DIMM0		0x48
#define MC_DOD_CH_DIMM1		0x4c
#define MC_DOD_CH_DIMM2		0x50
  #define RANKOFFSET_MASK	((1 << 12) | (1 << 11) | (1 << 10))
  #define RANKOFFSET(x)		((x & RANKOFFSET_MASK) >> 10)
  #define DIMM_PRESENT_MASK	(1 << 9)
  #define DIMM_PRESENT(x)	(((x) & DIMM_PRESENT_MASK) >> 9)
158 159 160 161
  #define MC_DOD_NUMBANK_MASK		((1 << 8) | (1 << 7))
  #define MC_DOD_NUMBANK(x)		(((x) & MC_DOD_NUMBANK_MASK) >> 7)
  #define MC_DOD_NUMRANK_MASK		((1 << 6) | (1 << 5))
  #define MC_DOD_NUMRANK(x)		(((x) & MC_DOD_NUMRANK_MASK) >> 5)
162
  #define MC_DOD_NUMROW_MASK		((1 << 4) | (1 << 3) | (1 << 2))
163
  #define MC_DOD_NUMROW(x)		(((x) & MC_DOD_NUMROW_MASK) >> 2)
164 165
  #define MC_DOD_NUMCOL_MASK		3
  #define MC_DOD_NUMCOL(x)		((x) & MC_DOD_NUMCOL_MASK)
166

167 168
#define MC_RANK_PRESENT		0x7c

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
#define MC_SAG_CH_0	0x80
#define MC_SAG_CH_1	0x84
#define MC_SAG_CH_2	0x88
#define MC_SAG_CH_3	0x8c
#define MC_SAG_CH_4	0x90
#define MC_SAG_CH_5	0x94
#define MC_SAG_CH_6	0x98
#define MC_SAG_CH_7	0x9c

#define MC_RIR_LIMIT_CH_0	0x40
#define MC_RIR_LIMIT_CH_1	0x44
#define MC_RIR_LIMIT_CH_2	0x48
#define MC_RIR_LIMIT_CH_3	0x4C
#define MC_RIR_LIMIT_CH_4	0x50
#define MC_RIR_LIMIT_CH_5	0x54
#define MC_RIR_LIMIT_CH_6	0x58
#define MC_RIR_LIMIT_CH_7	0x5C
#define MC_RIR_LIMIT_MASK	((1 << 10) - 1)

#define MC_RIR_WAY_CH		0x80
  #define MC_RIR_WAY_OFFSET_MASK	(((1 << 14) - 1) & ~0x7)
  #define MC_RIR_WAY_RANK_MASK		0x7

192 193 194 195 196
/*
 * i7core structs
 */

#define NUM_CHANS 3
197 198 199
#define MAX_DIMMS 3		/* Max DIMMS per channel */
#define MAX_MCR_FUNC  4
#define MAX_CHAN_FUNC 3
200 201 202 203 204

struct i7core_info {
	u32	mc_control;
	u32	mc_status;
	u32	max_dod;
205
	u32	ch_map;
206 207
};

208 209 210 211 212 213 214 215 216 217 218 219

struct i7core_inject {
	int	enable;

	u32	section;
	u32	type;
	u32	eccmask;

	/* Error address mask */
	int channel, dimm, rank, bank, page, col;
};

220
struct i7core_channel {
221 222
	u32		ranks;
	u32		dimms;
223 224
};

225
struct pci_id_descr {
226 227 228
	int			dev;
	int			func;
	int 			dev_id;
229
	int			optional;
230 231
};

232
struct pci_id_table {
233 234
	const struct pci_id_descr	*descr;
	int				n_devs;
235 236
};

237 238 239 240
struct i7core_dev {
	struct list_head	list;
	u8			socket;
	struct pci_dev		**pdev;
241
	int			n_devs;
242 243 244
	struct mem_ctl_info	*mci;
};

245
struct i7core_pvt {
246 247 248 249 250
	struct pci_dev	*pci_noncore;
	struct pci_dev	*pci_mcr[MAX_MCR_FUNC + 1];
	struct pci_dev	*pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];

	struct i7core_dev *i7core_dev;
251

252
	struct i7core_info	info;
253
	struct i7core_inject	inject;
254
	struct i7core_channel	channel[NUM_CHANS];
255

256 257
	int		ce_count_available;
	int 		csrow_map[NUM_CHANS][MAX_DIMMS];
258 259

			/* ECC corrected errors counts per udimm */
260 261
	unsigned long	udimm_ce_count[MAX_DIMMS];
	int		udimm_last_ce_count[MAX_DIMMS];
262
			/* ECC corrected errors counts per rdimm */
263 264
	unsigned long	rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
	int		rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
265

266
	bool		is_registered, enable_scrub;
267

268 269
	/* mcelog glue */
	struct edac_mce		edac_mce;
270 271

	/* Fifo double buffers */
272
	struct mce		mce_entry[MCE_LOG_LEN];
273 274 275 276 277 278 279
	struct mce		mce_outentry[MCE_LOG_LEN];

	/* Fifo in/out counters */
	unsigned		mce_in, mce_out;

	/* Count indicator to show errors not got */
	unsigned		mce_overrun;
280 281 282

	/* Struct to control EDAC polling */
	struct edac_pci_ctl_info *i7core_pci;
283 284
};

285 286 287 288 289
#define PCI_DESCR(device, function, device_id)	\
	.dev = (device),			\
	.func = (function),			\
	.dev_id = (device_id)

290
static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
291 292 293
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
294
			/* Exists only for RDIMM */
295
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
315 316 317 318 319 320 321 322 323 324

		/* Generic Non-core registers */
	/*
	 * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
	 * On Xeon 55xx, however, it has a different id (8086:2c40). So,
	 * the probing code needs to test for the other address in case of
	 * failure of this one
	 */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },

325
};
326

327
static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
328 329 330 331 332 333 334 335 336
	{ PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
	{ PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
	{ PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },

	{ PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
	{ PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
	{ PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
	{ PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },

337 338 339 340
	{ PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
	{ PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
	{ PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
	{ PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
341 342 343 344 345 346

	/*
	 * This is the PCI device has an alternate address on some
	 * processors like Core i7 860
	 */
	{ PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
347 348
};

349
static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
		/* Memory controller */
	{ PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
	{ PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
			/* Exists only for RDIMM */
	{ PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
	{ PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },

		/* Channel 0 */
	{ PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
	{ PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
	{ PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
	{ PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },

		/* Channel 1 */
	{ PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
	{ PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
	{ PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
	{ PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },

		/* Channel 2 */
	{ PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
	{ PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
	{ PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
	{ PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },
374 375 376 377

		/* Generic Non-core registers */
	{ PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },

378 379
};

380 381
#define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
static const struct pci_id_table pci_dev_table[] = {
382 383 384
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
	PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
385
	{0,}			/* 0 terminated list. */
386 387
};

388 389 390 391
/*
 *	pci_device_id	table for which devices we are looking for
 */
static const struct pci_device_id i7core_pci_tbl[] __devinitdata = {
392
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
393
	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
394 395 396
	{0,}			/* 0 terminated list. */
};

397 398 399 400 401
/****************************************************************************
			Anciliary status routines
 ****************************************************************************/

	/* MC_CONTROL bits */
402 403
#define CH_ACTIVE(pvt, ch)	((pvt)->info.mc_control & (1 << (8 + ch)))
#define ECCx8(pvt)		((pvt)->info.mc_control & (1 << 1))
404 405

	/* MC_STATUS bits */
406
#define ECC_ENABLED(pvt)	((pvt)->info.mc_status & (1 << 4))
407
#define CH_DISABLED(pvt, ch)	((pvt)->info.mc_status & (1 << ch))
408 409

	/* MC_MAX_DOD read functions */
410
static inline int numdimms(u32 dimms)
411
{
412
	return (dimms & 0x3) + 1;
413 414
}

415
static inline int numrank(u32 rank)
416 417 418
{
	static int ranks[4] = { 1, 2, 4, -EINVAL };

419
	return ranks[rank & 0x3];
420 421
}

422
static inline int numbank(u32 bank)
423 424 425
{
	static int banks[4] = { 4, 8, 16, -EINVAL };

426
	return banks[bank & 0x3];
427 428
}

429
static inline int numrow(u32 row)
430 431 432 433 434 435
{
	static int rows[8] = {
		1 << 12, 1 << 13, 1 << 14, 1 << 15,
		1 << 16, -EINVAL, -EINVAL, -EINVAL,
	};

436
	return rows[row & 0x7];
437 438
}

439
static inline int numcol(u32 col)
440 441 442 443
{
	static int cols[8] = {
		1 << 10, 1 << 11, 1 << 12, -EINVAL,
	};
444
	return cols[col & 0x3];
445 446
}

447
static struct i7core_dev *get_i7core_dev(u8 socket)
448 449 450 451 452 453 454 455 456 457 458
{
	struct i7core_dev *i7core_dev;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
		if (i7core_dev->socket == socket)
			return i7core_dev;
	}

	return NULL;
}

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
static struct i7core_dev *alloc_i7core_dev(u8 socket,
					   const struct pci_id_table *table)
{
	struct i7core_dev *i7core_dev;

	i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
	if (!i7core_dev)
		return NULL;

	i7core_dev->pdev = kzalloc(sizeof(*i7core_dev->pdev) * table->n_devs,
				   GFP_KERNEL);
	if (!i7core_dev->pdev) {
		kfree(i7core_dev);
		return NULL;
	}

	i7core_dev->socket = socket;
	i7core_dev->n_devs = table->n_devs;
	list_add_tail(&i7core_dev->list, &i7core_edac_list);

	return i7core_dev;
}

482 483 484 485 486 487 488
static void free_i7core_dev(struct i7core_dev *i7core_dev)
{
	list_del(&i7core_dev->list);
	kfree(i7core_dev->pdev);
	kfree(i7core_dev);
}

489 490 491
/****************************************************************************
			Memory check routines
 ****************************************************************************/
492 493
static struct pci_dev *get_pdev_slot_func(u8 socket, unsigned slot,
					  unsigned func)
494
{
495
	struct i7core_dev *i7core_dev = get_i7core_dev(socket);
496 497
	int i;

498 499 500
	if (!i7core_dev)
		return NULL;

501
	for (i = 0; i < i7core_dev->n_devs; i++) {
502
		if (!i7core_dev->pdev[i])
503 504
			continue;

505 506 507
		if (PCI_SLOT(i7core_dev->pdev[i]->devfn) == slot &&
		    PCI_FUNC(i7core_dev->pdev[i]->devfn) == func) {
			return i7core_dev->pdev[i];
508 509 510
		}
	}

511 512 513
	return NULL;
}

514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
/**
 * i7core_get_active_channels() - gets the number of channels and csrows
 * @socket:	Quick Path Interconnect socket
 * @channels:	Number of channels that will be returned
 * @csrows:	Number of csrows found
 *
 * Since EDAC core needs to know in advance the number of available channels
 * and csrows, in order to allocate memory for csrows/channels, it is needed
 * to run two similar steps. At the first step, implemented on this function,
 * it checks the number of csrows/channels present at one socket.
 * this is used in order to properly allocate the size of mci components.
 *
 * It should be noticed that none of the current available datasheets explain
 * or even mention how csrows are seen by the memory controller. So, we need
 * to add a fake description for csrows.
 * So, this driver is attributing one DIMM memory for one csrow.
 */
531
static int i7core_get_active_channels(const u8 socket, unsigned *channels,
532
				      unsigned *csrows)
533 534 535 536 537 538 539 540
{
	struct pci_dev *pdev = NULL;
	int i, j;
	u32 status, control;

	*channels = 0;
	*csrows = 0;

541
	pdev = get_pdev_slot_func(socket, 3, 0);
542
	if (!pdev) {
543 544
		i7core_printk(KERN_ERR, "Couldn't find socket %d fn 3.0!!!\n",
			      socket);
545
		return -ENODEV;
546
	}
547 548 549 550 551 552

	/* Device 3 function 0 reads */
	pci_read_config_dword(pdev, MC_STATUS, &status);
	pci_read_config_dword(pdev, MC_CONTROL, &control);

	for (i = 0; i < NUM_CHANS; i++) {
553
		u32 dimm_dod[3];
554 555 556 557 558
		/* Check if the channel is active */
		if (!(control & (1 << (8 + i))))
			continue;

		/* Check if the channel is disabled */
559
		if (status & (1 << i))
560 561
			continue;

562
		pdev = get_pdev_slot_func(socket, i + 4, 1);
563
		if (!pdev) {
564 565 566
			i7core_printk(KERN_ERR, "Couldn't find socket %d "
						"fn %d.%d!!!\n",
						socket, i + 4, 1);
567 568 569 570 571 572 573 574 575 576
			return -ENODEV;
		}
		/* Devices 4-6 function 1 */
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
		pci_read_config_dword(pdev,
				MC_DOD_CH_DIMM2, &dimm_dod[2]);

577
		(*channels)++;
578 579 580 581 582 583

		for (j = 0; j < 3; j++) {
			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;
			(*csrows)++;
		}
584 585
	}

586
	debugf0("Number of active channels on socket %d: %d\n",
587
		socket, *channels);
588

589 590 591
	return 0;
}

592
static int get_dimm_config(const struct mem_ctl_info *mci)
593 594
{
	struct i7core_pvt *pvt = mci->pvt_info;
595
	struct csrow_info *csr;
596
	struct pci_dev *pdev;
597
	int i, j;
598
	int csrow = 0;
599
	unsigned long last_page = 0;
600
	enum edac_type mode;
601
	enum mem_type mtype;
602

603
	/* Get data from the MC register, function 0 */
604
	pdev = pvt->pci_mcr[0];
605
	if (!pdev)
606 607
		return -ENODEV;

608
	/* Device 3 function 0 reads */
609 610 611 612
	pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
	pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
	pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
	pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
613

614
	debugf0("QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
615
		pvt->i7core_dev->socket, pvt->info.mc_control, pvt->info.mc_status,
616
		pvt->info.max_dod, pvt->info.ch_map);
617

618
	if (ECC_ENABLED(pvt)) {
619
		debugf0("ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
620 621 622 623 624
		if (ECCx8(pvt))
			mode = EDAC_S8ECD8ED;
		else
			mode = EDAC_S4ECD4ED;
	} else {
625
		debugf0("ECC disabled\n");
626 627
		mode = EDAC_NONE;
	}
628 629

	/* FIXME: need to handle the error codes */
630 631
	debugf0("DOD Max limits: DIMMS: %d, %d-ranked, %d-banked "
		"x%x x 0x%x\n",
632 633
		numdimms(pvt->info.max_dod),
		numrank(pvt->info.max_dod >> 2),
634
		numbank(pvt->info.max_dod >> 4),
635 636
		numrow(pvt->info.max_dod >> 6),
		numcol(pvt->info.max_dod >> 9));
637

638
	for (i = 0; i < NUM_CHANS; i++) {
639
		u32 data, dimm_dod[3], value[8];
640

641 642 643
		if (!pvt->pci_ch[i][0])
			continue;

644 645 646 647 648 649 650 651 652
		if (!CH_ACTIVE(pvt, i)) {
			debugf0("Channel %i is not active\n", i);
			continue;
		}
		if (CH_DISABLED(pvt, i)) {
			debugf0("Channel %i is disabled\n", i);
			continue;
		}

653
		/* Devices 4-6 function 0 */
654
		pci_read_config_dword(pvt->pci_ch[i][0],
655 656
				MC_CHANNEL_DIMM_INIT_PARAMS, &data);

657
		pvt->channel[i].ranks = (data & QUAD_RANK_PRESENT) ?
658
						4 : 2;
659

660 661
		if (data & REGISTERED_DIMM)
			mtype = MEM_RDDR3;
662
		else
663 664
			mtype = MEM_DDR3;
#if 0
665 666 667 668 669 670
		if (data & THREE_DIMMS_PRESENT)
			pvt->channel[i].dimms = 3;
		else if (data & SINGLE_QUAD_RANK_PRESENT)
			pvt->channel[i].dimms = 1;
		else
			pvt->channel[i].dimms = 2;
671 672 673
#endif

		/* Devices 4-6 function 1 */
674
		pci_read_config_dword(pvt->pci_ch[i][1],
675
				MC_DOD_CH_DIMM0, &dimm_dod[0]);
676
		pci_read_config_dword(pvt->pci_ch[i][1],
677
				MC_DOD_CH_DIMM1, &dimm_dod[1]);
678
		pci_read_config_dword(pvt->pci_ch[i][1],
679
				MC_DOD_CH_DIMM2, &dimm_dod[2]);
680

681
		debugf0("Ch%d phy rd%d, wr%d (0x%08x): "
682
			"%d ranks, %cDIMMs\n",
683 684 685
			i,
			RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
			data,
686
			pvt->channel[i].ranks,
687
			(data & REGISTERED_DIMM) ? 'R' : 'U');
688 689 690

		for (j = 0; j < 3; j++) {
			u32 banks, ranks, rows, cols;
691
			u32 size, npages;
692 693 694 695 696 697 698 699 700

			if (!DIMM_PRESENT(dimm_dod[j]))
				continue;

			banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
			ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
			rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
			cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));

701 702 703
			/* DDR3 has 8 I/O banks */
			size = (rows * cols * banks * ranks) >> (20 - 3);

704
			pvt->channel[i].dimms++;
705

706 707 708
			debugf0("\tdimm %d %d Mb offset: %x, "
				"bank: %d, rank: %d, row: %#x, col: %#x\n",
				j, size,
709 710 711
				RANKOFFSET(dimm_dod[j]),
				banks, ranks, rows, cols);

712
			npages = MiB_TO_PAGES(size);
713

714
			csr = &mci->csrows[csrow];
715 716 717 718 719
			csr->first_page = last_page + 1;
			last_page += npages;
			csr->last_page = last_page;
			csr->nr_pages = npages;

720
			csr->page_mask = 0;
721
			csr->grain = 8;
722
			csr->csrow_idx = csrow;
723 724 725 726
			csr->nr_channels = 1;

			csr->channels[0].chan_idx = i;
			csr->channels[0].ce_count = 0;
727

728
			pvt->csrow_map[i][j] = csrow;
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
			switch (banks) {
			case 4:
				csr->dtype = DEV_X4;
				break;
			case 8:
				csr->dtype = DEV_X8;
				break;
			case 16:
				csr->dtype = DEV_X16;
				break;
			default:
				csr->dtype = DEV_UNKNOWN;
			}

			csr->edac_mode = mode;
			csr->mtype = mtype;

747
			csrow++;
748
		}
749

750 751 752 753 754 755 756 757
		pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
		pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
		pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
		pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
		pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
		pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
		pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
		pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
758
		debugf1("\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
759
		for (j = 0; j < 8; j++)
760
			debugf1("\t\t%#x\t%#x\t%#x\n",
761 762
				(value[j] >> 27) & 0x1,
				(value[j] >> 24) & 0x7,
763
				(value[j] & ((1 << 24) - 1)));
764 765
	}

766 767 768
	return 0;
}

769 770 771 772 773 774 775 776 777 778 779
/****************************************************************************
			Error insertion routines
 ****************************************************************************/

/* The i7core has independent error injection features per channel.
   However, to have a simpler code, we don't allow enabling error injection
   on more than one channel.
   Also, since a change at an inject parameter will be applied only at enable,
   we're disabling error injection on all write calls to the sysfs nodes that
   controls the error code injection.
 */
780
static int disable_inject(const struct mem_ctl_info *mci)
781 782 783 784 785
{
	struct i7core_pvt *pvt = mci->pvt_info;

	pvt->inject.enable = 0;

786
	if (!pvt->pci_ch[pvt->inject.channel][0])
787 788
		return -ENODEV;

789
	pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
790
				MC_CHANNEL_ERROR_INJECT, 0);
791 792

	return 0;
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
}

/*
 * i7core inject inject.section
 *
 *	accept and store error injection inject.section value
 *	bit 0 - refers to the lower 32-byte half cacheline
 *	bit 1 - refers to the upper 32-byte half cacheline
 */
static ssize_t i7core_inject_section_store(struct mem_ctl_info *mci,
					   const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
810
		disable_inject(mci);
811 812 813

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 3))
814
		return -EIO;
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842

	pvt->inject.section = (u32) value;
	return count;
}

static ssize_t i7core_inject_section_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.section);
}

/*
 * i7core inject.type
 *
 *	accept and store error injection inject.section value
 *	bit 0 - repeat enable - Enable error repetition
 *	bit 1 - inject ECC error
 *	bit 2 - inject parity error
 */
static ssize_t i7core_inject_type_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
843
		disable_inject(mci);
844 845 846

	rc = strict_strtoul(data, 10, &value);
	if ((rc < 0) || (value > 7))
847
		return -EIO;
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877

	pvt->inject.type = (u32) value;
	return count;
}

static ssize_t i7core_inject_type_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.type);
}

/*
 * i7core_inject_inject.eccmask_store
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */
static ssize_t i7core_inject_eccmask_store(struct mem_ctl_info *mci,
					const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int rc;

	if (pvt->inject.enable)
878
		disable_inject(mci);
879 880 881

	rc = strict_strtoul(data, 10, &value);
	if (rc < 0)
882
		return -EIO;
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905

	pvt->inject.eccmask = (u32) value;
	return count;
}

static ssize_t i7core_inject_eccmask_show(struct mem_ctl_info *mci,
					      char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
}

/*
 * i7core_addrmatch
 *
 * The type of error (UE/CE) will depend on the inject.eccmask value:
 *   Any bits set to a 1 will flip the corresponding ECC bit
 *   Correctable errors can be injected by flipping 1 bit or the bits within
 *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
 *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
 *   uncorrectable error to be injected.
 */

906 907 908 909 910
#define DECLARE_ADDR_MATCH(param, limit)			\
static ssize_t i7core_inject_store_##param(			\
		struct mem_ctl_info *mci,			\
		const char *data, size_t count)			\
{								\
911
	struct i7core_pvt *pvt;					\
912 913 914
	long value;						\
	int rc;							\
								\
915 916 917
	debugf1("%s()\n", __func__);				\
	pvt = mci->pvt_info;					\
								\
918 919 920
	if (pvt->inject.enable)					\
		disable_inject(mci);				\
								\
921
	if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
		value = -1;					\
	else {							\
		rc = strict_strtoul(data, 10, &value);		\
		if ((rc < 0) || (value >= limit))		\
			return -EIO;				\
	}							\
								\
	pvt->inject.param = value;				\
								\
	return count;						\
}								\
								\
static ssize_t i7core_inject_show_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
938 939 940 941
	struct i7core_pvt *pvt;					\
								\
	pvt = mci->pvt_info;					\
	debugf1("%s() pvt=%p\n", __func__, pvt);		\
942 943 944 945
	if (pvt->inject.param < 0)				\
		return sprintf(data, "any\n");			\
	else							\
		return sprintf(data, "%d\n", pvt->inject.param);\
946 947
}

948 949 950 951 952 953 954 955 956
#define ATTR_ADDR_MATCH(param)					\
	{							\
		.attr = {					\
			.name = #param,				\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_inject_show_##param,		\
		.store = i7core_inject_store_##param,		\
	}
957

958 959 960 961 962 963
DECLARE_ADDR_MATCH(channel, 3);
DECLARE_ADDR_MATCH(dimm, 3);
DECLARE_ADDR_MATCH(rank, 4);
DECLARE_ADDR_MATCH(bank, 32);
DECLARE_ADDR_MATCH(page, 0x10000);
DECLARE_ADDR_MATCH(col, 0x4000);
964

965
static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
966 967 968 969
{
	u32 read;
	int count;

970 971 972 973
	debugf0("setting pci %02x:%02x.%x reg=%02x value=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val);

974 975
	for (count = 0; count < 10; count++) {
		if (count)
976
			msleep(100);
977 978 979 980 981 982 983
		pci_write_config_dword(dev, where, val);
		pci_read_config_dword(dev, where, &read);

		if (read == val)
			return 0;
	}

984 985 986 987
	i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
		"write=%08x. Read=%08x\n",
		dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
		where, val, read);
988 989 990 991

	return -EINVAL;
}

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
/*
 * This routine prepares the Memory Controller for error injection.
 * The error will be injected when some process tries to write to the
 * memory that matches the given criteria.
 * The criteria can be set in terms of a mask where dimm, rank, bank, page
 * and col can be specified.
 * A -1 value for any of the mask items will make the MCU to ignore
 * that matching criteria for error injection.
 *
 * It should be noticed that the error will only happen after a write operation
 * on a memory that matches the condition. if REPEAT_EN is not enabled at
 * inject mask, then it will produce just one error. Otherwise, it will repeat
 * until the injectmask would be cleaned.
 *
 * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
 *    is reliable enough to check if the MC is using the
 *    three channels. However, this is not clear at the datasheet.
 */
static ssize_t i7core_inject_enable_store(struct mem_ctl_info *mci,
				       const char *data, size_t count)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 injectmask;
	u64 mask = 0;
	int  rc;
	long enable;

1019
	if (!pvt->pci_ch[pvt->inject.channel][0])
1020 1021
		return 0;

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
	rc = strict_strtoul(data, 10, &enable);
	if ((rc < 0))
		return 0;

	if (enable) {
		pvt->inject.enable = 1;
	} else {
		disable_inject(mci);
		return count;
	}

	/* Sets pvt->inject.dimm mask */
	if (pvt->inject.dimm < 0)
1035
		mask |= 1LL << 41;
1036
	else {
1037
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1038
			mask |= (pvt->inject.dimm & 0x3LL) << 35;
1039
		else
1040
			mask |= (pvt->inject.dimm & 0x1LL) << 36;
1041 1042 1043 1044
	}

	/* Sets pvt->inject.rank mask */
	if (pvt->inject.rank < 0)
1045
		mask |= 1LL << 40;
1046
	else {
1047
		if (pvt->channel[pvt->inject.channel].dimms > 2)
1048
			mask |= (pvt->inject.rank & 0x1LL) << 34;
1049
		else
1050
			mask |= (pvt->inject.rank & 0x3LL) << 34;
1051 1052 1053 1054
	}

	/* Sets pvt->inject.bank mask */
	if (pvt->inject.bank < 0)
1055
		mask |= 1LL << 39;
1056
	else
1057
		mask |= (pvt->inject.bank & 0x15LL) << 30;
1058 1059 1060

	/* Sets pvt->inject.page mask */
	if (pvt->inject.page < 0)
1061
		mask |= 1LL << 38;
1062
	else
1063
		mask |= (pvt->inject.page & 0xffff) << 14;
1064 1065 1066

	/* Sets pvt->inject.column mask */
	if (pvt->inject.col < 0)
1067
		mask |= 1LL << 37;
1068
	else
1069
		mask |= (pvt->inject.col & 0x3fff);
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	/*
	 * bit    0: REPEAT_EN
	 * bits 1-2: MASK_HALF_CACHELINE
	 * bit    3: INJECT_ECC
	 * bit    4: INJECT_ADDR_PARITY
	 */

	injectmask = (pvt->inject.type & 1) |
		     (pvt->inject.section & 0x3) << 1 |
		     (pvt->inject.type & 0x6) << (3 - 1);

	/* Unlock writes to registers - this register is write only */
1083
	pci_write_config_dword(pvt->pci_noncore,
1084
			       MC_CFG_CONTROL, 0x2);
1085

1086
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1087
			       MC_CHANNEL_ADDR_MATCH, mask);
1088
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1089 1090
			       MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);

1091
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1092 1093
			       MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);

1094
	write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1095
			       MC_CHANNEL_ERROR_INJECT, injectmask);
1096

1097
	/*
1098 1099 1100
	 * This is something undocumented, based on my tests
	 * Without writing 8 to this register, errors aren't injected. Not sure
	 * why.
1101
	 */
1102
	pci_write_config_dword(pvt->pci_noncore,
1103
			       MC_CFG_CONTROL, 8);
1104

1105 1106
	debugf0("Error inject addr match 0x%016llx, ecc 0x%08x,"
		" inject 0x%08x\n",
1107 1108
		mask, pvt->inject.eccmask, injectmask);

1109

1110 1111 1112 1113 1114 1115 1116
	return count;
}

static ssize_t i7core_inject_enable_show(struct mem_ctl_info *mci,
					char *data)
{
	struct i7core_pvt *pvt = mci->pvt_info;
1117 1118
	u32 injectmask;

1119 1120 1121
	if (!pvt->pci_ch[pvt->inject.channel][0])
		return 0;

1122
	pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1123
			       MC_CHANNEL_ERROR_INJECT, &injectmask);
1124 1125 1126 1127 1128 1129

	debugf0("Inject error read: 0x%018x\n", injectmask);

	if (injectmask & 0x0c)
		pvt->inject.enable = 1;

1130 1131 1132
	return sprintf(data, "%d\n", pvt->inject.enable);
}

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
#define DECLARE_COUNTER(param)					\
static ssize_t i7core_show_counter_##param(			\
		struct mem_ctl_info *mci,			\
		char *data)					\
{								\
	struct i7core_pvt *pvt = mci->pvt_info;			\
								\
	debugf1("%s() \n", __func__);				\
	if (!pvt->ce_count_available || (pvt->is_registered))	\
		return sprintf(data, "data unavailable\n");	\
	return sprintf(data, "%lu\n",				\
			pvt->udimm_ce_count[param]);		\
}
1146

1147 1148 1149 1150 1151 1152 1153
#define ATTR_COUNTER(param)					\
	{							\
		.attr = {					\
			.name = __stringify(udimm##param),	\
			.mode = (S_IRUGO | S_IWUSR)		\
		},						\
		.show  = i7core_show_counter_##param		\
1154
	}
1155

1156 1157 1158
DECLARE_COUNTER(0);
DECLARE_COUNTER(1);
DECLARE_COUNTER(2);
1159

1160 1161 1162
/*
 * Sysfs struct
 */
1163

1164
static const struct mcidev_sysfs_attribute i7core_addrmatch_attrs[] = {
1165 1166 1167 1168 1169 1170
	ATTR_ADDR_MATCH(channel),
	ATTR_ADDR_MATCH(dimm),
	ATTR_ADDR_MATCH(rank),
	ATTR_ADDR_MATCH(bank),
	ATTR_ADDR_MATCH(page),
	ATTR_ADDR_MATCH(col),
1171
	{ } /* End of list */
1172 1173
};

1174
static const struct mcidev_sysfs_group i7core_inject_addrmatch = {
1175 1176 1177 1178
	.name  = "inject_addrmatch",
	.mcidev_attr = i7core_addrmatch_attrs,
};

1179
static const struct mcidev_sysfs_attribute i7core_udimm_counters_attrs[] = {
1180 1181 1182
	ATTR_COUNTER(0),
	ATTR_COUNTER(1),
	ATTR_COUNTER(2),
1183
	{ .attr = { .name = NULL } }
1184 1185
};

1186
static const struct mcidev_sysfs_group i7core_udimm_counters = {
1187 1188 1189 1190
	.name  = "all_channel_counts",
	.mcidev_attr = i7core_udimm_counters_attrs,
};

1191
static const struct mcidev_sysfs_attribute i7core_sysfs_rdimm_attrs[] = {
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
1214
		.grp = &i7core_inject_addrmatch,
1215 1216 1217 1218 1219 1220 1221 1222
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	},
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	{ }	/* End of list */
};

static const struct mcidev_sysfs_attribute i7core_sysfs_udimm_attrs[] = {
	{
		.attr = {
			.name = "inject_section",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_section_show,
		.store = i7core_inject_section_store,
	}, {
		.attr = {
			.name = "inject_type",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_type_show,
		.store = i7core_inject_type_store,
	}, {
		.attr = {
			.name = "inject_eccmask",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_eccmask_show,
		.store = i7core_inject_eccmask_store,
	}, {
		.grp = &i7core_inject_addrmatch,
	}, {
		.attr = {
			.name = "inject_enable",
			.mode = (S_IRUGO | S_IWUSR)
		},
		.show  = i7core_inject_enable_show,
		.store = i7core_inject_enable_store,
	}, {
		.grp = &i7core_udimm_counters,
	},
	{ }	/* End of list */
1261 1262
};

1263 1264 1265 1266 1267
/****************************************************************************
	Device initialization routines: put/get, init/exit
 ****************************************************************************/

/*
1268
 *	i7core_put_all_devices	'put' all the devices that we have
1269 1270
 *				reserved via 'get'
 */
1271
static void i7core_put_devices(struct i7core_dev *i7core_dev)
1272
{
1273
	int i;
1274

1275
	debugf0(__FILE__ ": %s()\n", __func__);
1276
	for (i = 0; i < i7core_dev->n_devs; i++) {
1277 1278 1279 1280 1281 1282 1283 1284
		struct pci_dev *pdev = i7core_dev->pdev[i];
		if (!pdev)
			continue;
		debugf0("Removing dev %02x:%02x.%d\n",
			pdev->bus->number,
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
		pci_dev_put(pdev);
	}
1285
}
1286

1287 1288
static void i7core_put_all_devices(void)
{
1289
	struct i7core_dev *i7core_dev, *tmp;
1290

1291
	list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1292
		i7core_put_devices(i7core_dev);
1293
		free_i7core_dev(i7core_dev);
1294
	}
1295 1296
}

1297
static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1298 1299 1300
{
	struct pci_dev *pdev = NULL;
	int i;
1301

1302
	/*
D
David Sterba 已提交
1303
	 * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
1304 1305 1306
	 * aren't announced by acpi. So, we need to use a legacy scan probing
	 * to detect them
	 */
1307 1308 1309 1310 1311 1312
	while (table && table->descr) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
		if (unlikely(!pdev)) {
			for (i = 0; i < MAX_SOCKET_BUSES; i++)
				pcibios_scan_specific_bus(255-i);
		}
1313
		pci_dev_put(pdev);
1314
		table++;
1315 1316 1317
	}
}

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
static unsigned i7core_pci_lastbus(void)
{
	int last_bus = 0, bus;
	struct pci_bus *b = NULL;

	while ((b = pci_find_next_bus(b)) != NULL) {
		bus = b->number;
		debugf0("Found bus %d\n", bus);
		if (bus > last_bus)
			last_bus = bus;
	}

	debugf0("Last bus %d\n", last_bus);

	return last_bus;
}

1335
/*
1336
 *	i7core_get_all_devices	Find and perform 'get' operation on the MCH's
1337 1338 1339 1340
 *			device/functions we want to reference for this driver
 *
 *			Need to 'get' device 16 func 1 and func 2
 */
1341 1342 1343 1344
static int i7core_get_onedevice(struct pci_dev **prev,
				const struct pci_id_table *table,
				const unsigned devno,
				const unsigned last_bus)
1345
{
1346
	struct i7core_dev *i7core_dev;
1347
	const struct pci_id_descr *dev_descr = &table->descr[devno];
1348

1349
	struct pci_dev *pdev = NULL;
1350 1351
	u8 bus = 0;
	u8 socket = 0;
1352

1353
	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1354
			      dev_descr->dev_id, *prev);
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
	/*
	 * On Xeon 55xx, the Intel Quckpath Arch Generic Non-core regs
	 * is at addr 8086:2c40, instead of 8086:2c41. So, we need
	 * to probe for the alternate address in case of failure
	 */
	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev)
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);

	if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE && !pdev)
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
				      PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
				      *prev);

1370 1371 1372 1373
	if (!pdev) {
		if (*prev) {
			*prev = pdev;
			return 0;
1374 1375
		}

1376
		if (dev_descr->optional)
1377
			return 0;
1378

1379 1380 1381
		if (devno == 0)
			return -ENODEV;

1382
		i7core_printk(KERN_INFO,
1383
			"Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1384 1385
			dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1386

1387 1388 1389 1390
		/* End of list, leave */
		return -ENODEV;
	}
	bus = pdev->bus->number;
1391

1392
	socket = last_bus - bus;
1393

1394 1395
	i7core_dev = get_i7core_dev(socket);
	if (!i7core_dev) {
1396
		i7core_dev = alloc_i7core_dev(socket, table);
1397 1398
		if (!i7core_dev) {
			pci_dev_put(pdev);
1399
			return -ENOMEM;
1400
		}
1401
	}
1402

1403
	if (i7core_dev->pdev[devno]) {
1404 1405 1406
		i7core_printk(KERN_ERR,
			"Duplicated device for "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1407 1408
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1409 1410 1411
		pci_dev_put(pdev);
		return -ENODEV;
	}
1412

1413
	i7core_dev->pdev[devno] = pdev;
1414 1415

	/* Sanity check */
1416 1417
	if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
			PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1418 1419 1420
		i7core_printk(KERN_ERR,
			"Device PCI ID %04x:%04x "
			"has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1421
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1422
			bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1423
			bus, dev_descr->dev, dev_descr->func);
1424 1425
		return -ENODEV;
	}
1426

1427 1428 1429 1430 1431
	/* Be sure that the device is enabled */
	if (unlikely(pci_enable_device(pdev) < 0)) {
		i7core_printk(KERN_ERR,
			"Couldn't enable "
			"dev %02x:%02x.%d PCI ID %04x:%04x\n",
1432 1433
			bus, dev_descr->dev, dev_descr->func,
			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1434 1435
		return -ENODEV;
	}
1436

1437
	debugf0("Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1438 1439 1440
		socket, bus, dev_descr->dev,
		dev_descr->func,
		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1441

1442 1443 1444 1445 1446 1447 1448
	/*
	 * As stated on drivers/pci/search.c, the reference count for
	 * @from is always decremented if it is not %NULL. So, as we need
	 * to get all devices up to null, we need to do a get for the device
	 */
	pci_dev_get(pdev);

1449
	*prev = pdev;
1450

1451 1452
	return 0;
}
1453

1454
static int i7core_get_all_devices(void)
1455
{
1456
	int i, rc, last_bus;
1457
	struct pci_dev *pdev = NULL;
1458
	const struct pci_id_table *table = pci_dev_table;
1459

1460 1461
	last_bus = i7core_pci_lastbus();

1462
	while (table && table->descr) {
1463 1464 1465
		for (i = 0; i < table->n_devs; i++) {
			pdev = NULL;
			do {
1466
				rc = i7core_get_onedevice(&pdev, table, i,
1467
							  last_bus);
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
				if (rc < 0) {
					if (i == 0) {
						i = table->n_devs;
						break;
					}
					i7core_put_all_devices();
					return -ENODEV;
				}
			} while (pdev);
		}
1478
		table++;
1479
	}
1480

1481 1482 1483
	return 0;
}

1484 1485
static int mci_bind_devs(struct mem_ctl_info *mci,
			 struct i7core_dev *i7core_dev)
1486 1487 1488
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
1489
	int i, func, slot;
1490
	char *family;
1491

1492 1493
	pvt->is_registered = false;
	pvt->enable_scrub  = false;
1494
	for (i = 0; i < i7core_dev->n_devs; i++) {
1495 1496
		pdev = i7core_dev->pdev[i];
		if (!pdev)
1497 1498
			continue;

1499 1500 1501 1502 1503 1504 1505 1506
		func = PCI_FUNC(pdev->devfn);
		slot = PCI_SLOT(pdev->devfn);
		if (slot == 3) {
			if (unlikely(func > MAX_MCR_FUNC))
				goto error;
			pvt->pci_mcr[func] = pdev;
		} else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
			if (unlikely(func > MAX_CHAN_FUNC))
1507
				goto error;
1508
			pvt->pci_ch[slot - 4][func] = pdev;
1509
		} else if (!slot && !func) {
1510
			pvt->pci_noncore = pdev;
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539

			/* Detect the processor family */
			switch (pdev->device) {
			case PCI_DEVICE_ID_INTEL_I7_NONCORE:
				family = "Xeon 35xx/ i7core";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT:
				family = "i7-800/i5-700";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE:
				family = "Xeon 34xx";
				pvt->enable_scrub = false;
				break;
			case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT:
				family = "Xeon 55xx";
				pvt->enable_scrub = true;
				break;
			case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2:
				family = "Xeon 56xx / i7-900";
				pvt->enable_scrub = true;
				break;
			default:
				family = "unknown";
				pvt->enable_scrub = false;
			}
			debugf0("Detected a processor type %s\n", family);
		} else
1540
			goto error;
1541

1542 1543 1544
		debugf0("Associated fn %d.%d, dev = %p, socket %d\n",
			PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
			pdev, i7core_dev->socket);
1545

1546 1547
		if (PCI_SLOT(pdev->devfn) == 3 &&
			PCI_FUNC(pdev->devfn) == 2)
1548
			pvt->is_registered = true;
1549
	}
1550

1551
	return 0;
1552 1553 1554 1555 1556 1557

error:
	i7core_printk(KERN_ERR, "Device %d, function %d "
		      "is out of the expected range\n",
		      slot, func);
	return -EINVAL;
1558 1559
}

1560 1561 1562
/****************************************************************************
			Error check routines
 ****************************************************************************/
1563
static void i7core_rdimm_update_csrow(struct mem_ctl_info *mci,
1564 1565 1566
				      const int chan,
				      const int dimm,
				      const int add)
1567 1568 1569
{
	char *msg;
	struct i7core_pvt *pvt = mci->pvt_info;
1570
	int row = pvt->csrow_map[chan][dimm], i;
1571 1572 1573

	for (i = 0; i < add; i++) {
		msg = kasprintf(GFP_KERNEL, "Corrected error "
1574 1575
				"(Socket=%d channel=%d dimm=%d)",
				pvt->i7core_dev->socket, chan, dimm);
1576 1577 1578 1579 1580 1581 1582

		edac_mc_handle_fbd_ce(mci, row, 0, msg);
		kfree (msg);
	}
}

static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1583 1584 1585 1586
					 const int chan,
					 const int new0,
					 const int new1,
					 const int new2)
1587 1588 1589 1590
{
	struct i7core_pvt *pvt = mci->pvt_info;
	int add0 = 0, add1 = 0, add2 = 0;
	/* Updates CE counters if it is not the first time here */
1591
	if (pvt->ce_count_available) {
1592 1593
		/* Updates CE counters */

1594 1595 1596
		add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
		add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
		add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1597 1598 1599

		if (add2 < 0)
			add2 += 0x7fff;
1600
		pvt->rdimm_ce_count[chan][2] += add2;
1601 1602 1603

		if (add1 < 0)
			add1 += 0x7fff;
1604
		pvt->rdimm_ce_count[chan][1] += add1;
1605 1606 1607

		if (add0 < 0)
			add0 += 0x7fff;
1608
		pvt->rdimm_ce_count[chan][0] += add0;
1609
	} else
1610
		pvt->ce_count_available = 1;
1611 1612

	/* Store the new values */
1613 1614 1615
	pvt->rdimm_last_ce_count[chan][2] = new2;
	pvt->rdimm_last_ce_count[chan][1] = new1;
	pvt->rdimm_last_ce_count[chan][0] = new0;
1616 1617 1618

	/*updated the edac core */
	if (add0 != 0)
1619
		i7core_rdimm_update_csrow(mci, chan, 0, add0);
1620
	if (add1 != 0)
1621
		i7core_rdimm_update_csrow(mci, chan, 1, add1);
1622
	if (add2 != 0)
1623
		i7core_rdimm_update_csrow(mci, chan, 2, add2);
1624 1625 1626

}

1627
static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1628 1629 1630 1631 1632 1633
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv[3][2];
	int i, new0, new1, new2;

	/*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1634
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1635
								&rcv[0][0]);
1636
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1637
								&rcv[0][1]);
1638
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1639
								&rcv[1][0]);
1640
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1641
								&rcv[1][1]);
1642
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1643
								&rcv[2][0]);
1644
	pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1645 1646 1647 1648 1649
								&rcv[2][1]);
	for (i = 0 ; i < 3; i++) {
		debugf3("MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
			(i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
		/*if the channel has 3 dimms*/
1650
		if (pvt->channel[i].dimms > 2) {
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
			new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
			new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
		} else {
			new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
					DIMM_BOT_COR_ERR(rcv[i][0]);
			new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
					DIMM_BOT_COR_ERR(rcv[i][1]);
			new2 = 0;
		}

1662
		i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1663 1664
	}
}
1665 1666 1667 1668 1669 1670 1671

/* This function is based on the device 3 function 4 registers as described on:
 * Intel Xeon Processor 5500 Series Datasheet Volume 2
 *	http://www.intel.com/Assets/PDF/datasheet/321322.pdf
 * also available at:
 * 	http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
 */
1672
static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1673 1674 1675 1676 1677
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 rcv1, rcv0;
	int new0, new1, new2;

1678
	if (!pvt->pci_mcr[4]) {
1679
		debugf0("%s MCR registers not found\n", __func__);
1680 1681 1682
		return;
	}

1683
	/* Corrected test errors */
1684 1685
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
	pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1686 1687 1688 1689 1690 1691 1692

	/* Store the new values */
	new2 = DIMM2_COR_ERR(rcv1);
	new1 = DIMM1_COR_ERR(rcv0);
	new0 = DIMM0_COR_ERR(rcv0);

	/* Updates CE counters if it is not the first time here */
1693
	if (pvt->ce_count_available) {
1694 1695 1696
		/* Updates CE counters */
		int add0, add1, add2;

1697 1698 1699
		add2 = new2 - pvt->udimm_last_ce_count[2];
		add1 = new1 - pvt->udimm_last_ce_count[1];
		add0 = new0 - pvt->udimm_last_ce_count[0];
1700 1701 1702

		if (add2 < 0)
			add2 += 0x7fff;
1703
		pvt->udimm_ce_count[2] += add2;
1704 1705 1706

		if (add1 < 0)
			add1 += 0x7fff;
1707
		pvt->udimm_ce_count[1] += add1;
1708 1709 1710

		if (add0 < 0)
			add0 += 0x7fff;
1711
		pvt->udimm_ce_count[0] += add0;
1712 1713 1714 1715 1716

		if (add0 | add1 | add2)
			i7core_printk(KERN_ERR, "New Corrected error(s): "
				      "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
				      add0, add1, add2);
1717
	} else
1718
		pvt->ce_count_available = 1;
1719 1720

	/* Store the new values */
1721 1722 1723
	pvt->udimm_last_ce_count[2] = new2;
	pvt->udimm_last_ce_count[1] = new1;
	pvt->udimm_last_ce_count[0] = new0;
1724 1725
}

1726 1727 1728
/*
 * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
 * Architectures Software Developer’s Manual Volume 3B.
1729 1730 1731
 * Nehalem are defined as family 0x06, model 0x1a
 *
 * The MCA registers used here are the following ones:
1732
 *     struct mce field	MCA Register
1733 1734 1735
 *     m->status	MSR_IA32_MC8_STATUS
 *     m->addr		MSR_IA32_MC8_ADDR
 *     m->misc		MSR_IA32_MC8_MISC
1736 1737 1738
 * In the case of Nehalem, the error information is masked at .status and .misc
 * fields
 */
1739
static void i7core_mce_output_error(struct mem_ctl_info *mci,
1740
				    const struct mce *m)
1741
{
1742
	struct i7core_pvt *pvt = mci->pvt_info;
1743
	char *type, *optype, *err, *msg;
1744
	unsigned long error = m->status & 0x1ff0000l;
1745
	u32 optypenum = (m->status >> 4) & 0x07;
1746
	u32 core_err_cnt = (m->status >> 38) & 0x7fff;
1747 1748 1749 1750
	u32 dimm = (m->misc >> 16) & 0x3;
	u32 channel = (m->misc >> 18) & 0x3;
	u32 syndrome = m->misc >> 32;
	u32 errnum = find_first_bit(&error, 32);
1751
	int csrow;
1752

1753 1754 1755 1756 1757
	if (m->mcgstatus & 1)
		type = "FATAL";
	else
		type = "NON_FATAL";

1758
	switch (optypenum) {
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	case 0:
		optype = "generic undef request";
		break;
	case 1:
		optype = "read error";
		break;
	case 2:
		optype = "write error";
		break;
	case 3:
		optype = "addr/cmd error";
		break;
	case 4:
		optype = "scrubbing error";
		break;
	default:
		optype = "reserved";
		break;
1777 1778
	}

1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
	switch (errnum) {
	case 16:
		err = "read ECC error";
		break;
	case 17:
		err = "RAS ECC error";
		break;
	case 18:
		err = "write parity error";
		break;
	case 19:
		err = "redundacy loss";
		break;
	case 20:
		err = "reserved";
		break;
	case 21:
		err = "memory range error";
		break;
	case 22:
		err = "RTID out of range";
		break;
	case 23:
		err = "address parity error";
		break;
	case 24:
		err = "byte enable parity error";
		break;
	default:
		err = "unknown";
1809 1810
	}

1811
	/* FIXME: should convert addr into bank and rank information */
1812
	msg = kasprintf(GFP_ATOMIC,
1813
		"%s (addr = 0x%08llx, cpu=%d, Dimm=%d, Channel=%d, "
1814
		"syndrome=0x%08x, count=%d, Err=%08llx:%08llx (%s: %s))\n",
1815
		type, (long long) m->addr, m->cpu, dimm, channel,
1816 1817
		syndrome, core_err_cnt, (long long)m->status,
		(long long)m->misc, optype, err);
1818 1819

	debugf0("%s", msg);
1820

1821
	csrow = pvt->csrow_map[channel][dimm];
1822

1823
	/* Call the helper to output message */
1824 1825 1826
	if (m->mcgstatus & 1)
		edac_mc_handle_fbd_ue(mci, csrow, 0,
				0 /* FIXME: should be channel here */, msg);
1827
	else if (!pvt->is_registered)
1828 1829
		edac_mc_handle_fbd_ce(mci, csrow,
				0 /* FIXME: should be channel here */, msg);
1830 1831

	kfree(msg);
1832 1833
}

1834 1835 1836 1837 1838 1839
/*
 *	i7core_check_error	Retrieve and process errors reported by the
 *				hardware. Called by the Core module.
 */
static void i7core_check_error(struct mem_ctl_info *mci)
{
1840 1841 1842
	struct i7core_pvt *pvt = mci->pvt_info;
	int i;
	unsigned count = 0;
1843
	struct mce *m;
1844

1845 1846 1847
	/*
	 * MCE first step: Copy all mce errors into a temporary buffer
	 * We use a double buffering here, to reduce the risk of
L
Lucas De Marchi 已提交
1848
	 * losing an error.
1849 1850
	 */
	smp_rmb();
1851 1852
	count = (pvt->mce_out + MCE_LOG_LEN - pvt->mce_in)
		% MCE_LOG_LEN;
1853
	if (!count)
1854
		goto check_ce_error;
1855

1856
	m = pvt->mce_outentry;
1857 1858
	if (pvt->mce_in + count > MCE_LOG_LEN) {
		unsigned l = MCE_LOG_LEN - pvt->mce_in;
1859

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
		memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * l);
		smp_wmb();
		pvt->mce_in = 0;
		count -= l;
		m += l;
	}
	memcpy(m, &pvt->mce_entry[pvt->mce_in], sizeof(*m) * count);
	smp_wmb();
	pvt->mce_in += count;

	smp_rmb();
	if (pvt->mce_overrun) {
		i7core_printk(KERN_ERR, "Lost %d memory errors\n",
			      pvt->mce_overrun);
		smp_wmb();
		pvt->mce_overrun = 0;
	}
1877

1878 1879 1880
	/*
	 * MCE second step: parse errors and display
	 */
1881
	for (i = 0; i < count; i++)
1882
		i7core_mce_output_error(mci, &pvt->mce_outentry[i]);
1883

1884 1885 1886
	/*
	 * Now, let's increment CE error counts
	 */
1887
check_ce_error:
1888 1889 1890 1891
	if (!pvt->is_registered)
		i7core_udimm_check_mc_ecc_err(mci);
	else
		i7core_rdimm_check_mc_ecc_err(mci);
1892 1893
}

1894 1895 1896 1897 1898
/*
 * i7core_mce_check_error	Replicates mcelog routine to get errors
 *				This routine simply queues mcelog errors, and
 *				return. The error itself should be handled later
 *				by i7core_check_error.
1899 1900
 * WARNING: As this routine should be called at NMI time, extra care should
 * be taken to avoid deadlocks, and to be as fast as possible.
1901 1902 1903
 */
static int i7core_mce_check_error(void *priv, struct mce *mce)
{
1904 1905
	struct mem_ctl_info *mci = priv;
	struct i7core_pvt *pvt = mci->pvt_info;
1906

1907 1908 1909 1910 1911 1912 1913
	/*
	 * Just let mcelog handle it if the error is
	 * outside the memory controller
	 */
	if (((mce->status & 0xffff) >> 7) != 1)
		return 0;

1914 1915 1916 1917
	/* Bank 8 registers are the only ones that we know how to handle */
	if (mce->bank != 8)
		return 0;

R
Randy Dunlap 已提交
1918
#ifdef CONFIG_SMP
1919
	/* Only handle if it is the right mc controller */
1920
	if (mce->socketid != pvt->i7core_dev->socket)
1921
		return 0;
R
Randy Dunlap 已提交
1922
#endif
1923

1924
	smp_rmb();
1925
	if ((pvt->mce_out + 1) % MCE_LOG_LEN == pvt->mce_in) {
1926 1927 1928
		smp_wmb();
		pvt->mce_overrun++;
		return 0;
1929
	}
1930 1931 1932

	/* Copy memory error at the ringbuffer */
	memcpy(&pvt->mce_entry[pvt->mce_out], mce, sizeof(*mce));
1933
	smp_wmb();
1934
	pvt->mce_out = (pvt->mce_out + 1) % MCE_LOG_LEN;
1935

1936 1937 1938 1939
	/* Handle fatal errors immediately */
	if (mce->mcgstatus & 1)
		i7core_check_error(mci);

D
David Sterba 已提交
1940
	/* Advise mcelog that the errors were handled */
1941
	return 1;
1942 1943
}

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
/*
 * set_sdram_scrub_rate		This routine sets byte/sec bandwidth scrub rate
 *				to hardware according to SCRUBINTERVAL formula
 *				found in datasheet.
 */
static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	const u32 cache_line_size = 64;
	const u32 freq_dclk = 800*1000000;
	u32 dw_scrub;
	u32 dw_ssr;

	/* Get data from the MC register, function 2 */
	pdev = pvt->pci_mcr[2];
	if (!pdev)
		return -ENODEV;

	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub);

	if (new_bw == 0) {
		/* Prepare to disable petrol scrub */
		dw_scrub &= ~STARTSCRUB;
		/* Stop the patrol scrub engine */
		write_and_test(pdev, MC_SCRUB_CONTROL, dw_scrub & ~0x00ffffff);

		/* Get current status of scrub rate and set bit to disable */
		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
		dw_ssr &= ~SSR_MODE_MASK;
		dw_ssr |= SSR_MODE_DISABLE;
	} else {
		/*
		 * Translate the desired scrub rate to a register value and
		 * program the cooresponding register value.
		 */
		dw_scrub = 0x00ffffff & (cache_line_size * freq_dclk / new_bw);

		/* Start the patrol scrub engine */
		pci_write_config_dword(pdev, MC_SCRUB_CONTROL,
				       STARTSCRUB | dw_scrub);

		/* Get current status of scrub rate and set bit to enable */
		pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
		dw_ssr &= ~SSR_MODE_MASK;
		dw_ssr |= SSR_MODE_ENABLE;
	}
	/* Disable or enable scrubbing */
	pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr);

	return new_bw;
}

/*
 * get_sdram_scrub_rate		This routine convert current scrub rate value
 *				into byte/sec bandwidth accourding to
 *				SCRUBINTERVAL formula found in datasheet.
 */
static int get_sdram_scrub_rate(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	struct pci_dev *pdev;
	const u32 cache_line_size = 64;
	const u32 freq_dclk = 800*1000000;
	u32 scrubval;

	/* Get data from the MC register, function 2 */
	pdev = pvt->pci_mcr[2];
	if (!pdev)
		return -ENODEV;

	/* Get current scrub control data */
	pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval);

	/* Mask highest 8-bits to 0 */
	scrubval &=  0x00ffffff;
	if (!scrubval)
		return 0;

	/* Calculate scrub rate value into byte/sec bandwidth */
	return 0xffffffff & (cache_line_size * freq_dclk / (u64) scrubval);
}

static void enable_sdram_scrub_setting(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 pci_lock;

	/* Unlock writes to pci registers */
	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
	pci_lock &= ~0x3;
	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
			       pci_lock | MC_CFG_UNLOCK);

	mci->set_sdram_scrub_rate = set_sdram_scrub_rate;
	mci->get_sdram_scrub_rate = get_sdram_scrub_rate;
}

static void disable_sdram_scrub_setting(struct mem_ctl_info *mci)
{
	struct i7core_pvt *pvt = mci->pvt_info;
	u32 pci_lock;

	/* Lock writes to pci registers */
	pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
	pci_lock &= ~0x3;
	pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
			       pci_lock | MC_CFG_LOCK);
}

2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
{
	pvt->i7core_pci = edac_pci_create_generic_ctl(
						&pvt->i7core_dev->pdev[0]->dev,
						EDAC_MOD_STR);
	if (unlikely(!pvt->i7core_pci))
		pr_warn("Unable to setup PCI error report via EDAC\n");
}

static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
{
	if (likely(pvt->i7core_pci))
		edac_pci_release_generic_ctl(pvt->i7core_pci);
	else
		i7core_printk(KERN_ERR,
				"Couldn't find mem_ctl_info for socket %d\n",
				pvt->i7core_dev->socket);
	pvt->i7core_pci = NULL;
}

2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
{
	struct mem_ctl_info *mci = i7core_dev->mci;
	struct i7core_pvt *pvt;

	if (unlikely(!mci || !mci->pvt_info)) {
		debugf0("MC: " __FILE__ ": %s(): dev = %p\n",
			__func__, &i7core_dev->pdev[0]->dev);

		i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
		return;
	}

	pvt = mci->pvt_info;

	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);

2092
	/* Disable scrubrate setting */
2093 2094
	if (pvt->enable_scrub)
		disable_sdram_scrub_setting(mci);
2095

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	/* Disable MCE NMI handler */
	edac_mce_unregister(&pvt->edac_mce);

	/* Disable EDAC polling */
	i7core_pci_ctl_release(pvt);

	/* Remove MC sysfs nodes */
	edac_mc_del_mc(mci->dev);

	debugf1("%s: free mci struct\n", mci->ctl_name);
	kfree(mci->ctl_name);
	edac_mc_free(mci);
	i7core_dev->mci = NULL;
}

2111
static int i7core_register_mci(struct i7core_dev *i7core_dev)
2112 2113 2114
{
	struct mem_ctl_info *mci;
	struct i7core_pvt *pvt;
2115 2116 2117 2118 2119 2120
	int rc, channels, csrows;

	/* Check the number of active and not disabled channels */
	rc = i7core_get_active_channels(i7core_dev->socket, &channels, &csrows);
	if (unlikely(rc < 0))
		return rc;
2121 2122

	/* allocate a new MC control structure */
2123
	mci = edac_mc_alloc(sizeof(*pvt), csrows, channels, i7core_dev->socket);
2124 2125
	if (unlikely(!mci))
		return -ENOMEM;
2126

2127 2128
	debugf0("MC: " __FILE__ ": %s(): mci = %p, dev = %p\n",
		__func__, mci, &i7core_dev->pdev[0]->dev);
2129 2130

	pvt = mci->pvt_info;
2131
	memset(pvt, 0, sizeof(*pvt));
2132

2133 2134 2135 2136
	/* Associates i7core_dev and mci for future usage */
	pvt->i7core_dev = i7core_dev;
	i7core_dev->mci = mci;

2137 2138 2139 2140 2141 2142
	/*
	 * FIXME: how to handle RDDR3 at MCI level? It is possible to have
	 * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
	 * memory channels
	 */
	mci->mtype_cap = MEM_FLAG_DDR3;
2143 2144 2145 2146
	mci->edac_ctl_cap = EDAC_FLAG_NONE;
	mci->edac_cap = EDAC_FLAG_NONE;
	mci->mod_name = "i7core_edac.c";
	mci->mod_ver = I7CORE_REVISION;
2147 2148 2149
	mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d",
				  i7core_dev->socket);
	mci->dev_name = pci_name(i7core_dev->pdev[0]);
2150
	mci->ctl_page_to_phys = NULL;
2151

2152
	/* Store pci devices at mci for faster access */
2153
	rc = mci_bind_devs(mci, i7core_dev);
2154
	if (unlikely(rc < 0))
2155
		goto fail0;
2156

2157 2158 2159 2160 2161
	if (pvt->is_registered)
		mci->mc_driver_sysfs_attributes = i7core_sysfs_rdimm_attrs;
	else
		mci->mc_driver_sysfs_attributes = i7core_sysfs_udimm_attrs;

2162
	/* Get dimm basic config */
2163
	get_dimm_config(mci);
2164 2165 2166 2167
	/* record ptr to the generic device */
	mci->dev = &i7core_dev->pdev[0]->dev;
	/* Set the function pointer to an actual operation function */
	mci->edac_check = i7core_check_error;
2168

2169
	/* Enable scrubrate setting */
2170 2171
	if (pvt->enable_scrub)
		enable_sdram_scrub_setting(mci);
2172

2173
	/* add this new MC control structure to EDAC's list of MCs */
2174
	if (unlikely(edac_mc_add_mc(mci))) {
2175 2176 2177 2178 2179
		debugf0("MC: " __FILE__
			": %s(): failed edac_mc_add_mc()\n", __func__);
		/* FIXME: perhaps some code should go here that disables error
		 * reporting if we just enabled it
		 */
2180 2181

		rc = -EINVAL;
2182
		goto fail0;
2183 2184
	}

2185
	/* Default error mask is any memory */
2186
	pvt->inject.channel = 0;
2187 2188 2189 2190 2191 2192
	pvt->inject.dimm = -1;
	pvt->inject.rank = -1;
	pvt->inject.bank = -1;
	pvt->inject.page = -1;
	pvt->inject.col = -1;

2193 2194 2195
	/* allocating generic PCI control info */
	i7core_pci_ctl_create(pvt);

2196
	/* Registers on edac_mce in order to receive memory errors */
2197
	pvt->edac_mce.priv = mci;
2198 2199
	pvt->edac_mce.check_error = i7core_mce_check_error;
	rc = edac_mce_register(&pvt->edac_mce);
2200
	if (unlikely(rc < 0)) {
2201 2202
		debugf0("MC: " __FILE__
			": %s(): failed edac_mce_register()\n", __func__);
2203
		goto fail1;
2204 2205
	}

2206 2207 2208 2209 2210 2211 2212 2213
	return 0;

fail1:
	i7core_pci_ctl_release(pvt);
	edac_mc_del_mc(mci->dev);
fail0:
	kfree(mci->ctl_name);
	edac_mc_free(mci);
2214
	i7core_dev->mci = NULL;
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224
	return rc;
}

/*
 *	i7core_probe	Probe for ONE instance of device to see if it is
 *			present.
 *	return:
 *		0 for FOUND a device
 *		< 0 for error code
 */
2225

2226 2227 2228 2229 2230 2231
static int __devinit i7core_probe(struct pci_dev *pdev,
				  const struct pci_device_id *id)
{
	int rc;
	struct i7core_dev *i7core_dev;

2232 2233 2234
	/* get the pci devices we want to reserve for our use */
	mutex_lock(&i7core_edac_lock);

2235
	/*
2236
	 * All memory controllers are allocated at the first pass.
2237
	 */
2238 2239
	if (unlikely(probed >= 1)) {
		mutex_unlock(&i7core_edac_lock);
2240
		return -ENODEV;
2241 2242
	}
	probed++;
2243

2244
	rc = i7core_get_all_devices();
2245 2246 2247 2248
	if (unlikely(rc < 0))
		goto fail0;

	list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2249
		rc = i7core_register_mci(i7core_dev);
2250 2251
		if (unlikely(rc < 0))
			goto fail1;
2252 2253
	}

2254
	i7core_printk(KERN_INFO, "Driver loaded.\n");
2255

2256
	mutex_unlock(&i7core_edac_lock);
2257 2258
	return 0;

2259
fail1:
2260 2261 2262
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);

2263
	i7core_put_all_devices();
2264 2265
fail0:
	mutex_unlock(&i7core_edac_lock);
2266
	return rc;
2267 2268 2269 2270 2271 2272 2273 2274
}

/*
 *	i7core_remove	destructor for one instance of device
 *
 */
static void __devexit i7core_remove(struct pci_dev *pdev)
{
2275
	struct i7core_dev *i7core_dev;
2276 2277 2278

	debugf0(__FILE__ ": %s()\n", __func__);

2279 2280 2281 2282 2283 2284 2285
	/*
	 * we have a trouble here: pdev value for removal will be wrong, since
	 * it will point to the X58 register used to detect that the machine
	 * is a Nehalem or upper design. However, due to the way several PCI
	 * devices are grouped together to provide MC functionality, we need
	 * to use a different method for releasing the devices
	 */
2286

2287
	mutex_lock(&i7core_edac_lock);
2288 2289 2290 2291 2292 2293

	if (unlikely(!probed)) {
		mutex_unlock(&i7core_edac_lock);
		return;
	}

2294 2295
	list_for_each_entry(i7core_dev, &i7core_edac_list, list)
		i7core_unregister_mci(i7core_dev);
2296 2297 2298 2299

	/* Release PCI resources */
	i7core_put_all_devices();

2300 2301
	probed--;

2302
	mutex_unlock(&i7core_edac_lock);
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
}

MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);

/*
 *	i7core_driver	pci_driver structure for this module
 *
 */
static struct pci_driver i7core_driver = {
	.name     = "i7core_edac",
	.probe    = i7core_probe,
	.remove   = __devexit_p(i7core_remove),
	.id_table = i7core_pci_tbl,
};

/*
 *	i7core_init		Module entry function
 *			Try to initialize this module for its devices
 */
static int __init i7core_init(void)
{
	int pci_rc;

	debugf2("MC: " __FILE__ ": %s()\n", __func__);

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

2331 2332
	if (use_pci_fixup)
		i7core_xeon_pci_fixup(pci_dev_table);
2333

2334 2335
	pci_rc = pci_register_driver(&i7core_driver);

2336 2337 2338 2339 2340 2341 2342
	if (pci_rc >= 0)
		return 0;

	i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
		      pci_rc);

	return pci_rc;
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365
}

/*
 *	i7core_exit()	Module exit function
 *			Unregister the driver
 */
static void __exit i7core_exit(void)
{
	debugf2("MC: " __FILE__ ": %s()\n", __func__);
	pci_unregister_driver(&i7core_driver);
}

module_init(i7core_init);
module_exit(i7core_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
		   I7CORE_REVISION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");