gadget.c 104.4 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/of_platform.h>
29 30 31

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
32
#include <linux/usb/phy.h>
33

34
#include "core.h"
35
#include "hw.h"
36 37

/* conversion functions */
38
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39
{
40
	return container_of(req, struct dwc2_hsotg_req, req);
41 42
}

43
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44
{
45
	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 47
}

48
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49
{
50
	return container_of(gadget, struct dwc2_hsotg, gadget);
51 52 53 54
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
55
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 57 58 59
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
60
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 62
}

63
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 65 66 67 68 69 70 71
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

72
/* forward declaration of functions */
73
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
92
 * g_using_dma is set depending on dts flag.
93
 */
94
static inline bool using_dma(struct dwc2_hsotg *hsotg)
95
{
96
	return hsotg->params.g_dma;
97 98
}

99 100 101 102 103 104 105 106 107 108 109
/*
 * using_desc_dma - return the descriptor DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using descriptor DMA.
 */
static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
{
	return hsotg->params.g_dma_desc;
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 * @increment: The value to increment by
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
		hs_ep->frame_overrun = 1;
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
		hs_ep->frame_overrun = 0;
	}
}

129
/**
130
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
131 132 133
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
134
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
135
{
136
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
137 138 139 140 141 142
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
143
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
144 145 146 147
	}
}

/**
148
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
149 150 151
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
152
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
153
{
154
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
155 156 157 158 159
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
160
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
161 162 163
}

/**
164
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
165 166 167 168 169 170 171 172
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
173
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
174 175 176 177 178 179 180 181 182 183 184
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
185
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
186 187 188 189
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
190
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
191 192 193 194
	local_irq_restore(flags);
}

/**
195
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
196 197
 * @hsotg: The device instance.
 */
198
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
199
{
200
	unsigned int ep;
201
	unsigned int addr;
202
	int timeout;
203
	u32 val;
204
	u32 *txfsz = hsotg->params.g_tx_fifo_size;
205

206 207 208 209
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

210
	/* set RX/NPTX FIFO sizes */
211 212 213 214
	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
		    hsotg->regs + GNPTXFSIZ);
215

216 217
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
218 219
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
220 221
	 * known values.
	 */
222 223

	/* start at the end of the GNPTXFSIZ, rounded up */
224
	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
225

226
	/*
227
	 * Configure fifos sizes from provided configuration and assign
228 229
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
230
	 */
231
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
232
		if (!txfsz[ep])
233 234
			continue;
		val = addr;
235 236
		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
237
			  "insufficient fifo memory");
238
		addr += txfsz[ep];
239

240
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
241
		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
242
	}
243

244 245 246 247
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
248

249
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
250
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
251 252 253 254

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
255
		val = dwc2_readl(hsotg->regs + GRSTCTL);
256

257
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
258 259 260 261 262 263
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
264
			break;
265 266 267 268 269 270
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
271 272 273 274 275 276 277 278
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
279
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
280
						      gfp_t flags)
281
{
282
	struct dwc2_hsotg_req *req;
283

284
	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
300
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
301 302 303 304 305
{
	return hs_ep->periodic;
}

/**
306
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
307 308 309 310
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
311
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
312
 * of a request to ensure the buffer is ready for access by the caller.
313
 */
314 315 316
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
317 318 319 320 321 322 323
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

324
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
325 326 327
}

/**
328
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
329 330 331 332 333 334 335 336 337 338 339 340 341
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
342
 */
343 344 345
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
346 347
{
	bool periodic = is_ep_periodic(hs_ep);
348
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
349 350 351 352 353
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
354
	int max_transfer;
355 356 357 358 359 360 361

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

362
	if (periodic && !hsotg->dedicated_fifos) {
363
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
364 365 366
		int size_left;
		int size_done;

367 368 369 370
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
371

372
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
373

374 375
		/*
		 * if shared fifo, we cannot write anything until the
376 377 378
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
379
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
380 381 382
			return -ENOSPC;
		}

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
400
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
401 402
			return -ENOSPC;
		}
403
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
404 405
		can_write = dwc2_readl(hsotg->regs +
				DTXFSTS(hs_ep->fifo_index));
406 407 408

		can_write &= 0xffff;
		can_write *= 4;
409
	} else {
410
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
411 412 413 414
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

415
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
416 417 418
			return -ENOSPC;
		}

419
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
420
		can_write *= 4;	/* fifo size is in 32bit quantities. */
421 422
	}

423 424 425 426
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
427

428 429
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
430 431 432
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
433
	if (can_write > 512 && !periodic)
434 435
		can_write = 512;

436 437
	/*
	 * limit the write to one max-packet size worth of data, but allow
438
	 * the transfer to return that it did not run out of fifo space
439 440
	 * doing it.
	 */
441 442
	if (to_write > max_transfer) {
		to_write = max_transfer;
443

444 445
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
446
			dwc2_hsotg_en_gsint(hsotg,
447 448
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
449 450
	}

451 452 453 454
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
455
		pkt_round = to_write % max_transfer;
456

457 458
		/*
		 * Round the write down to an
459 460 461 462 463 464 465 466 467
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

468 469 470 471
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
472

473 474
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
475
			dwc2_hsotg_en_gsint(hsotg,
476 477
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

495
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
496 497 498 499 500 501 502 503 504 505 506

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
507
static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
508 509 510 511 512 513
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
514 515
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
516
	} else {
517
		maxsize = 64+64;
518
		if (hs_ep->dir_in)
519
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
520
		else
521 522 523 524 525 526 527
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

528 529 530 531
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
532 533 534 535 536 537 538

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
/**
* dwc2_hsotg_read_frameno - read current frame number
* @hsotg: The device instance
*
* Return the current frame number
*/
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
{
	u32 dsts;

	dsts = dwc2_readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;

	return dsts;
}

556
/**
557
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
558 559 560 561 562 563 564 565
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
566 567 568
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req,
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

595 596
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
597 598

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
599
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
600 601
		hs_ep->dir_in ? "in" : "out");

602
	/* If endpoint is stalled, we will restart request later */
603
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
604

605
	if (index && ctrl & DXEPCTL_STALL) {
606 607 608 609
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

610
	length = ureq->length - ureq->actual;
611 612
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

633 634 635 636 637
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

638
	if (dir_in && index != 0)
639
		if (hs_ep->isochronous)
640
			epsize = DXEPTSIZ_MC(packets);
641
		else
642
			epsize = DXEPTSIZ_MC(1);
643 644 645
	else
		epsize = 0;

646 647 648 649 650 651 652 653
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
654
			hs_ep->send_zlp = 1;
655 656
	}

657 658
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
659 660 661 662 663 664 665 666

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
667
	dwc2_writel(epsize, hsotg->regs + epsize_reg);
668

669
	if (using_dma(hsotg) && !continuing) {
670 671
		unsigned int dma_reg;

672 673
		/*
		 * write DMA address to control register, buffer already
674
		 * synced by dwc2_hsotg_ep_queue().
675
		 */
676

677
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
678
		dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
679

680
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
681
			__func__, &ureq->dma, dma_reg);
682 683
	}

684 685 686 687 688 689 690 691 692 693
	if (hs_ep->isochronous && hs_ep->interval == 1) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(hs_ep);

		if (hs_ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;
	}

694
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
695

696
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
697 698

	/* For Setup request do not clear NAK */
699
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
700
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
701

702
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
703
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
704

705 706
	/*
	 * set these, it seems that DMA support increments past the end
707
	 * of the packet buffer so we need to calculate the length from
708 709
	 * this information.
	 */
710 711 712 713 714 715 716
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

717
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
718 719
	}

720 721 722 723
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
724 725

	/* check ep is enabled */
726
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
727
		dev_dbg(hsotg->dev,
728
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
729
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
730

731
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
732
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
733 734

	/* enable ep interrupts */
735
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
736 737 738
}

/**
739
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
740 741 742 743 744 745 746 747 748
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
749
 */
750 751
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
			     struct dwc2_hsotg_ep *hs_ep,
752 753
			     struct usb_request *req)
{
754
	struct dwc2_hsotg_req *hs_req = our_req(req);
755
	int ret;
756 757 758 759 760

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

761 762 763
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
764 765 766 767 768 769 770 771 772 773

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

774 775
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
			hs_ep->ep.name, req_buf, hs_req->req.length);

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

805 806
static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
							hs_req->req.actual);

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
/**
 * dwc2_gadget_target_frame_elapsed - Checks target frame
 * @hs_ep: The driver endpoint to check
 *
 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
 * corresponding transfer.
 */
static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 target_frame = hs_ep->target_frame;
	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
	bool frame_overrun = hs_ep->frame_overrun;

	if (!frame_overrun && current_frame >= target_frame)
		return true;

	if (frame_overrun && current_frame >= target_frame &&
	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
		return true;

	return false;
}

851
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
852 853
			      gfp_t gfp_flags)
{
854 855
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
856
	struct dwc2_hsotg *hs = hs_ep->parent;
857
	bool first;
858
	int ret;
859 860 861 862 863

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

864 865 866 867 868 869 870
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
				__func__);
		return -EAGAIN;
	}

871 872 873 874 875
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

876
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
877 878 879
	if (ret)
		return ret;

880 881
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
882
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
883 884 885 886 887 888 889
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

890 891 892 893 894 895 896 897
	if (first) {
		if (!hs_ep->isochronous) {
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
			return 0;
		}

		while (dwc2_gadget_target_frame_elapsed(hs_ep))
			dwc2_gadget_incr_frame_num(hs_ep);
898

899 900 901
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
	}
902 903 904
	return 0;
}

905
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
906 907
			      gfp_t gfp_flags)
{
908
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
909
	struct dwc2_hsotg *hs = hs_ep->parent;
910 911 912 913
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
914
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
915 916 917 918 919
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

920
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
921 922
				      struct usb_request *req)
{
923
	struct dwc2_hsotg_req *hs_req = our_req(req);
924 925 926 927 928

	kfree(hs_req);
}

/**
929
 * dwc2_hsotg_complete_oursetup - setup completion callback
930 931 932 933 934 935
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
936
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
937 938
					struct usb_request *req)
{
939
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
940
	struct dwc2_hsotg *hsotg = hs_ep->parent;
941 942 943

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

944
	dwc2_hsotg_ep_free_request(ep, req);
945 946 947 948 949 950 951 952 953
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
954
 */
955
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
956 957
					   u32 windex)
{
958
	struct dwc2_hsotg_ep *ep;
959 960 961 962 963 964
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

965
	if (idx > hsotg->num_of_eps)
966 967
		return NULL;

968 969
	ep = index_to_ep(hsotg, idx, dir);

970 971 972 973 974 975
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

976
/**
977
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
978 979 980 981
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
982
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
983
{
984
	int dctl = dwc2_readl(hsotg->regs + DCTL);
985 986 987 988 989 990 991 992 993 994 995 996 997

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
998
	dwc2_writel(dctl, hsotg->regs + DCTL);
999 1000 1001
	return 0;
}

1002
/**
1003
 * dwc2_hsotg_send_reply - send reply to control request
1004 1005 1006 1007 1008 1009 1010 1011
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
1012 1013
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *ep,
1014 1015 1016 1017 1018 1019 1020 1021
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

1022
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1023 1024 1025 1026 1027 1028 1029 1030
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
1031 1032 1033 1034 1035
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
1036
	req->complete = dwc2_hsotg_complete_oursetup;
1037 1038 1039 1040

	if (length)
		memcpy(req->buf, buff, length);

1041
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1042 1043 1044 1045 1046 1047 1048 1049 1050
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
1051
 * dwc2_hsotg_process_req_status - process request GET_STATUS
1052 1053 1054
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1055
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1056 1057
					struct usb_ctrlrequest *ctrl)
{
1058 1059
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1096
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1097 1098 1099 1100 1101 1102 1103 1104
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1105
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1106

1107 1108 1109 1110 1111 1112
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1113
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1114
{
1115 1116
	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
					queue);
1117 1118
}

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
		mask = dwc2_readl(hsotg->regs + epmsk_reg);
		mask |= DOEPMSK_OUTTKNEPDISMSK;
		dwc2_writel(mask, hsotg->regs + epmsk_reg);
	}
}

1155
/**
1156
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1157 1158 1159
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1160
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1161 1162
					 struct usb_ctrlrequest *ctrl)
{
1163 1164
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1165
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1166
	struct dwc2_hsotg_ep *ep;
1167
	int ret;
1168
	bool halted;
1169 1170 1171
	u32 recip;
	u32 wValue;
	u32 wIndex;
1172 1173 1174 1175

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1190
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1204 1205
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1206
				__func__, wIndex);
1207 1208 1209
			return -ENOENT;
		}

1210
		switch (wValue) {
1211
		case USB_ENDPOINT_HALT:
1212 1213
			halted = ep->halted;

1214
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1215

1216
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1217 1218 1219 1220 1221
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1222

1223 1224 1225 1226 1227 1228
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1229 1230 1231 1232 1233 1234 1235 1236
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1237 1238 1239 1240 1241 1242
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1243 1244 1245
				}

				/* If we have pending request, then start it */
1246
				if (!ep->req) {
1247
					dwc2_gadget_start_next_request(ep);
1248 1249 1250
				}
			}

1251 1252 1253 1254 1255
			break;

		default:
			return -ENOENT;
		}
1256 1257 1258 1259
		break;
	default:
		return -ENOENT;
	}
1260 1261 1262
	return 1;
}

1263
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1264

1265
/**
1266
 * dwc2_hsotg_stall_ep0 - stall ep0
1267 1268 1269 1270
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1271
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1272
{
1273
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1285
	ctrl = dwc2_readl(hsotg->regs + reg);
1286 1287
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1288
	dwc2_writel(ctrl, hsotg->regs + reg);
1289 1290

	dev_dbg(hsotg->dev,
1291
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1292
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1293 1294 1295 1296 1297

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1298
	 dwc2_hsotg_enqueue_setup(hsotg);
1299 1300
}

1301
/**
1302
 * dwc2_hsotg_process_control - process a control request
1303 1304 1305 1306 1307 1308 1309
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1310
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1311 1312
				      struct usb_ctrlrequest *ctrl)
{
1313
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1314 1315 1316
	int ret = 0;
	u32 dcfg;

1317 1318 1319 1320
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1321

1322 1323 1324 1325
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1326
		ep0->dir_in = 1;
1327 1328 1329 1330 1331
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1332 1333 1334 1335

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1336
			hsotg->connected = 1;
1337
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1338
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1339 1340
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1341
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1342 1343 1344

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1345
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1346 1347 1348
			return;

		case USB_REQ_GET_STATUS:
1349
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1350 1351 1352 1353
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1354
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1355 1356 1357 1358 1359 1360 1361
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1362
		spin_unlock(&hsotg->lock);
1363
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1364
		spin_lock(&hsotg->lock);
1365 1366 1367 1368
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1369 1370
	/*
	 * the request is either unhandlable, or is not formatted correctly
1371 1372 1373
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1374
	if (ret < 0)
1375
		dwc2_hsotg_stall_ep0(hsotg);
1376 1377 1378
}

/**
1379
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1380 1381 1382 1383 1384 1385
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1386
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1387 1388
				     struct usb_request *req)
{
1389
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1390
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1391 1392 1393 1394 1395 1396

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1397
	spin_lock(&hsotg->lock);
1398
	if (req->actual == 0)
1399
		dwc2_hsotg_enqueue_setup(hsotg);
1400
	else
1401
		dwc2_hsotg_process_control(hsotg, req->buf);
1402
	spin_unlock(&hsotg->lock);
1403 1404 1405
}

/**
1406
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1407 1408 1409 1410 1411
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1412
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1413 1414
{
	struct usb_request *req = hsotg->ctrl_req;
1415
	struct dwc2_hsotg_req *hs_req = our_req(req);
1416 1417 1418 1419 1420 1421 1422
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1423
	req->complete = dwc2_hsotg_complete_setup;
1424 1425 1426 1427 1428 1429

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1430
	hsotg->eps_out[0]->dir_in = 0;
1431
	hsotg->eps_out[0]->send_zlp = 0;
1432
	hsotg->ep0_state = DWC2_EP0_SETUP;
1433

1434
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1435 1436
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1437 1438 1439 1440
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1441 1442 1443
	}
}

1444 1445
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct dwc2_hsotg_ep *hs_ep)
1446 1447 1448 1449 1450 1451
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1452 1453 1454 1455 1456 1457
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
									index);
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
									index);
1458

1459 1460 1461
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
		    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
		    epsiz_reg);
1462

1463
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1464 1465 1466
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1467
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1468 1469
}

1470
/**
1471
 * dwc2_hsotg_complete_request - complete a request given to us
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1482
 */
1483 1484 1485
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
				       struct dwc2_hsotg_req *hs_req,
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
				       int result)
{

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1497 1498 1499 1500
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1501 1502 1503 1504

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1505 1506 1507
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1508
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1509

1510 1511 1512
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1513 1514 1515 1516
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1517 1518

	if (hs_req->req.complete) {
1519
		spin_unlock(&hsotg->lock);
1520
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1521
		spin_lock(&hsotg->lock);
1522 1523
	}

1524 1525
	/*
	 * Look to see if there is anything else to do. Note, the completion
1526
	 * of the previous request may have caused a new request to be started
1527 1528
	 * so be careful when doing this.
	 */
1529 1530

	if (!hs_ep->req && result >= 0) {
1531
		dwc2_gadget_start_next_request(hs_ep);
1532 1533 1534 1535
	}
}

/**
1536
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1537 1538 1539 1540 1541 1542 1543 1544
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1545
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1546
{
1547 1548
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1549
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1550 1551 1552 1553
	int to_read;
	int max_req;
	int read_ptr;

1554

1555
	if (!hs_req) {
1556
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1557 1558
		int ptr;

1559
		dev_dbg(hsotg->dev,
1560
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1561 1562 1563 1564
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
1565
			(void)dwc2_readl(fifo);
1566 1567 1568 1569 1570 1571 1572 1573

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1574 1575 1576
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1577
	if (to_read > max_req) {
1578 1579
		/*
		 * more data appeared than we where willing
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1591 1592 1593 1594
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1595
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1596 1597 1598
}

/**
1599
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1600
 * @hsotg: The device instance
1601
 * @dir_in: If IN zlp
1602 1603 1604 1605 1606
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1607
 * currently believed that we do not need to wait for any space in
1608 1609
 * the TxFIFO.
 */
1610
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1611
{
1612
	/* eps_out[0] is used in both directions */
1613 1614
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1615

1616
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1617 1618
}

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
			u32 epctl_reg)
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

1632
/**
1633
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1634 1635 1636 1637 1638 1639
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1640
 */
1641
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1642
{
1643
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1644 1645
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1646
	struct usb_request *req = &hs_req->req;
1647
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1648 1649 1650 1651 1652 1653 1654
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1655 1656
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1657 1658
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
1659 1660 1661
		return;
	}

1662 1663 1664
	if (using_dma(hsotg)) {
		unsigned size_done;

1665 1666
		/*
		 * Calculate the size of the transfer by checking how much
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1680 1681
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
1682
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1683 1684 1685
		return;
	}

1686 1687 1688 1689
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1690 1691 1692 1693
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1694 1695
	}

1696 1697
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
1698
		dwc2_hsotg_ep0_zlp(hsotg, true);
1699
		return;
1700 1701
	}

1702 1703 1704 1705 1706 1707 1708
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
1709 1710
		else if (hs_ep->isochronous && hs_ep->interval > 1)
			dwc2_gadget_incr_frame_num(hs_ep);
1711 1712
	}

1713
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1714 1715 1716
}

/**
1717
 * dwc2_hsotg_handle_rx - RX FIFO has data
1718 1719 1720 1721 1722 1723
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1724
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1725 1726 1727 1728 1729 1730 1731
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1732
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1733
{
1734
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1735 1736 1737 1738
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1739 1740
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1741

1742 1743
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1744

1745
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1746 1747
			__func__, grxstsr, size, epnum);

1748 1749 1750
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1751 1752
		break;

1753
	case GRXSTS_PKTSTS_OUTDONE:
1754
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1755
			dwc2_hsotg_read_frameno(hsotg));
1756 1757

		if (!using_dma(hsotg))
1758
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1759 1760
		break;

1761
	case GRXSTS_PKTSTS_SETUPDONE:
1762 1763
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1764
			dwc2_hsotg_read_frameno(hsotg),
1765
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1766
		/*
1767
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
1768 1769 1770 1771
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
1772
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1773 1774
		break;

1775
	case GRXSTS_PKTSTS_OUTRX:
1776
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1777 1778
		break;

1779
	case GRXSTS_PKTSTS_SETUPRX:
1780 1781
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1782
			dwc2_hsotg_read_frameno(hsotg),
1783
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1784

1785 1786
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

1787
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1788 1789 1790 1791 1792 1793
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

1794
		dwc2_hsotg_dump(hsotg);
1795 1796 1797 1798 1799
		break;
	}
}

/**
1800
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1801
 * @mps: The maximum packet size in bytes.
1802
 */
1803
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1804 1805 1806
{
	switch (mps) {
	case 64:
1807
		return D0EPCTL_MPS_64;
1808
	case 32:
1809
		return D0EPCTL_MPS_32;
1810
	case 16:
1811
		return D0EPCTL_MPS_16;
1812
	case 8:
1813
		return D0EPCTL_MPS_8;
1814 1815 1816 1817 1818 1819 1820 1821
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
1822
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1823 1824 1825
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
1826
 * @mc: The multicount value
1827 1828 1829 1830
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1831
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1832 1833
					unsigned int ep, unsigned int mps,
					unsigned int mc, unsigned int dir_in)
1834
{
1835
	struct dwc2_hsotg_ep *hs_ep;
1836 1837 1838
	void __iomem *regs = hsotg->regs;
	u32 reg;

1839 1840 1841 1842
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1843
	if (ep == 0) {
1844 1845
		u32 mps_bytes = mps;

1846
		/* EP0 is a special case */
1847 1848
		mps = dwc2_hsotg_ep0_mps(mps_bytes);
		if (mps > 3)
1849
			goto bad_mps;
1850
		hs_ep->ep.maxpacket = mps_bytes;
1851
		hs_ep->mc = 1;
1852
	} else {
1853
		if (mps > 1024)
1854
			goto bad_mps;
1855 1856
		hs_ep->mc = mc;
		if (mc > 3)
1857
			goto bad_mps;
1858
		hs_ep->ep.maxpacket = mps;
1859 1860
	}

1861
	if (dir_in) {
1862
		reg = dwc2_readl(regs + DIEPCTL(ep));
1863
		reg &= ~DXEPCTL_MPS_MASK;
1864
		reg |= mps;
1865
		dwc2_writel(reg, regs + DIEPCTL(ep));
1866
	} else {
1867
		reg = dwc2_readl(regs + DOEPCTL(ep));
1868
		reg &= ~DXEPCTL_MPS_MASK;
1869
		reg |= mps;
1870
		dwc2_writel(reg, regs + DOEPCTL(ep));
1871
	}
1872 1873 1874 1875 1876 1877 1878

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1879
/**
1880
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1881 1882 1883
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1884
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1885 1886 1887 1888
{
	int timeout;
	int val;

1889 1890
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
1891 1892 1893 1894 1895

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1896
		val = dwc2_readl(hsotg->regs + GRSTCTL);
1897

1898
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1899 1900 1901 1902 1903 1904
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1905
			break;
1906 1907 1908 1909 1910
		}

		udelay(1);
	}
}
1911 1912

/**
1913
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
1914 1915 1916 1917 1918 1919
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1920 1921
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
			   struct dwc2_hsotg_ep *hs_ep)
1922
{
1923
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1924

1925 1926 1927 1928 1929 1930
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
1931
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1932
					     hs_ep->dir_in, 0);
1933
		return 0;
1934
	}
1935 1936 1937 1938

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
1939
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1940 1941 1942 1943 1944 1945
	}

	return 0;
}

/**
1946
 * dwc2_hsotg_complete_in - complete IN transfer
1947 1948 1949 1950 1951 1952
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1953 1954
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
				  struct dwc2_hsotg_ep *hs_ep)
1955
{
1956
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1957
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1958 1959 1960 1961 1962 1963 1964
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1965
	/* Finish ZLP handling for IN EP0 transactions */
1966 1967
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
1968
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1969 1970 1971
		if (hsotg->test_mode) {
			int ret;

1972
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1973 1974 1975
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
						hsotg->test_mode);
1976
				dwc2_hsotg_stall_ep0(hsotg);
1977 1978 1979
				return;
			}
		}
1980
		dwc2_hsotg_enqueue_setup(hsotg);
1981 1982 1983
		return;
	}

1984 1985
	/*
	 * Calculate the size of the transfer by checking how much is left
1986 1987 1988 1989 1990 1991 1992 1993
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1994
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1995 1996 1997 1998 1999 2000 2001 2002 2003

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
2004 2005 2006
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

2007 2008
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2009
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2010 2011 2012
		return;
	}

2013
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2014
	if (hs_ep->send_zlp) {
2015
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2016
		hs_ep->send_zlp = 0;
2017 2018 2019 2020
		/* transfer will be completed on next complete interrupt */
		return;
	}

2021 2022
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
2023
		dwc2_hsotg_ep0_zlp(hsotg, false);
2024 2025 2026
		return;
	}

2027
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2028 2029
}

2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

	mask = dwc2_readl(hsotg->regs + epmsk_reg);
	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

	ints = dwc2_readl(hsotg->regs + epint_reg);
	ints &= mask;
	return ints;
}

2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
/**
 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This interrupt indicates that the endpoint has been disabled per the
 * application's request.
 *
 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
 * in case of ISOC completes current request.
 *
 * For ISOC-OUT endpoints completes expired requests. If there is remaining
 * request starts it.
 */
static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	unsigned char idx = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	int dctl = dwc2_readl(hsotg->regs + DCTL);

	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

	if (dir_in) {
		int epctl = dwc2_readl(hsotg->regs + epctl_reg);

		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);

		if (hs_ep->isochronous) {
			dwc2_hsotg_complete_in(hsotg, hs_ep);
			return;
		}

		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
			int dctl = dwc2_readl(hsotg->regs + DCTL);

			dctl |= DCTL_CGNPINNAK;
			dwc2_writel(dctl, hsotg->regs + DCTL);
		}
		return;
	}

	if (dctl & DCTL_GOUTNAKSTS) {
		dctl |= DCTL_CGOUTNAK;
		dwc2_writel(dctl, hsotg->regs + DCTL);
	}

	if (!hs_ep->isochronous)
		return;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
			__func__, hs_ep);
		return;
	}

	do {
		hs_req = get_ep_head(hs_ep);
		if (hs_req)
			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
						    -ENODATA);
		dwc2_gadget_incr_frame_num(hs_ep);
	} while (dwc2_gadget_target_frame_elapsed(hs_ep));

	dwc2_gadget_start_next_request(hs_ep);
}

2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
/**
 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-OUT transfer, synchronization done with
 * first out token received from host while corresponding EP is disabled.
 *
 * Device does not know initial frame in which out token will come. For this
 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
 * getting this interrupt SW starts calculation for next transfer frame.
 */
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
{
	struct dwc2_hsotg *hsotg = ep->parent;
	int dir_in = ep->dir_in;
	u32 doepmsk;

	if (dir_in || !ep->isochronous)
		return;

	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);

	if (ep->interval > 1 &&
	    ep->target_frame == TARGET_FRAME_INITIAL) {
		u32 dsts;
		u32 ctrl;

		dsts = dwc2_readl(hsotg->regs + DSTS);
		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(ep);

		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
		if (ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;

		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
	}

	dwc2_gadget_start_next_request(ep);
	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
}

/**
* dwc2_gadget_handle_nak - handle NAK interrupt
* @hs_ep: The endpoint on which interrupt is asserted.
*
* This is starting point for ISOC-IN transfer, synchronization done with
* first IN token received from host while corresponding EP is disabled.
*
* Device does not know when first one token will arrive from host. On first
* token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
* and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
* sent in response to that as there was no data in FIFO. SW is basing on this
* interrupt to obtain frame in which token has come and then based on the
* interval calculates next frame for transfer.
*/
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;

	if (!dir_in || !hs_ep->isochronous)
		return;

	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		if (hs_ep->interval > 1) {
			u32 ctrl = dwc2_readl(hsotg->regs +
					      DIEPCTL(hs_ep->index));
			if (hs_ep->target_frame & 0x1)
				ctrl |= DXEPCTL_SETODDFR;
			else
				ctrl |= DXEPCTL_SETEVENFR;

			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
		}

		dwc2_hsotg_complete_request(hsotg, hs_ep,
					    get_ep_head(hs_ep), 0);
	}

	dwc2_gadget_incr_frame_num(hs_ep);
}

2214
/**
2215
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2216 2217 2218 2219 2220
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2221
 */
2222
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2223 2224
			    int dir_in)
{
2225
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2226 2227 2228
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2229
	u32 ints;
2230
	u32 ctrl;
2231

2232
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2233
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2234

2235
	/* Clear endpoint interrupts */
2236
	dwc2_writel(ints, hsotg->regs + epint_reg);
2237

2238 2239 2240 2241 2242 2243
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

2244 2245 2246
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2247 2248 2249 2250
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2251 2252
	if (ints & DXEPINT_STSPHSERCVD)
		dev_dbg(hsotg->dev, "%s: StsPhseRcvd asserted\n", __func__);
2253

2254
	if (ints & DXEPINT_XFERCOMPL) {
2255
		dev_dbg(hsotg->dev,
2256
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2257 2258
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
2259

2260 2261 2262 2263
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
2264
		if (dir_in) {
2265 2266 2267
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);

2268
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2269 2270
			if (ints & DXEPINT_NAKINTRPT)
				ints &= ~DXEPINT_NAKINTRPT;
2271

2272
			if (idx == 0 && !hs_ep->req)
2273
				dwc2_hsotg_enqueue_setup(hsotg);
2274
		} else if (using_dma(hsotg)) {
2275 2276 2277 2278
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2279 2280
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);
2281

2282
			dwc2_hsotg_handle_outdone(hsotg, idx);
2283 2284 2285
		}
	}

2286 2287
	if (ints & DXEPINT_EPDISBLD)
		dwc2_gadget_handle_ep_disabled(hs_ep);
2288

2289 2290 2291 2292 2293 2294
	if (ints & DXEPINT_OUTTKNEPDIS)
		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);

	if (ints & DXEPINT_NAKINTRPT)
		dwc2_gadget_handle_nak(hs_ep);

2295
	if (ints & DXEPINT_AHBERR)
2296 2297
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2298
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2299 2300 2301
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2302 2303
			/*
			 * this is the notification we've received a
2304 2305
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2306 2307
			 * the setup here.
			 */
2308 2309 2310 2311

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2312
				dwc2_hsotg_handle_outdone(hsotg, 0);
2313 2314 2315
		}
	}

2316
	if (ints & DXEPINT_BACK2BACKSETUP)
2317 2318
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2319
	if (dir_in && !hs_ep->isochronous) {
2320
		/* not sure if this is important, but we'll clear it anyway */
2321
		if (ints & DXEPINT_INTKNTXFEMP) {
2322 2323 2324 2325 2326
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2327
		if (ints & DXEPINT_INTKNEPMIS) {
2328 2329 2330
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2331 2332 2333

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2334
		    ints & DXEPINT_TXFEMP) {
2335 2336
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2337
			if (!using_dma(hsotg))
2338
				dwc2_hsotg_trytx(hsotg, hs_ep);
2339
		}
2340 2341 2342 2343
	}
}

/**
2344
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2345 2346 2347 2348
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2349
 */
2350
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2351
{
2352
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2353
	int ep0_mps = 0, ep_mps = 8;
2354

2355 2356
	/*
	 * This should signal the finish of the enumeration phase
2357
	 * of the USB handshaking, so we should now know what rate
2358 2359
	 * we connected at.
	 */
2360 2361 2362

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2363 2364
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2365
	 * it seems IN transfers must be a even number of packets we do
2366 2367
	 * not advertise a 64byte MPS on EP0.
	 */
2368 2369

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2370
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2371 2372
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2373 2374
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2375
		ep_mps = 1023;
2376 2377
		break;

2378
	case DSTS_ENUMSPD_HS:
2379 2380
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
2381
		ep_mps = 1024;
2382 2383
		break;

2384
	case DSTS_ENUMSPD_LS:
2385
		hsotg->gadget.speed = USB_SPEED_LOW;
2386 2387
		/*
		 * note, we don't actually support LS in this driver at the
2388 2389 2390 2391 2392
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2393 2394
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2395

2396 2397 2398 2399
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2400 2401 2402

	if (ep0_mps) {
		int i;
2403
		/* Initialize ep0 for both in and out directions */
2404 2405
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
2406 2407
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
2408 2409
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 1);
2410
			if (hsotg->eps_out[i])
2411 2412
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 0);
2413
		}
2414 2415 2416 2417
	}

	/* ensure after enumeration our EP0 is active */

2418
	dwc2_hsotg_enqueue_setup(hsotg);
2419 2420

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2421 2422
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2434
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2435
			      struct dwc2_hsotg_ep *ep,
2436
			      int result)
2437
{
2438
	struct dwc2_hsotg_req *req, *treq;
2439
	unsigned size;
2440

2441
	ep->req = NULL;
2442

2443
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2444
		dwc2_hsotg_complete_request(hsotg, ep, req,
2445
					   result);
2446

2447 2448
	if (!hsotg->dedicated_fifos)
		return;
2449
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
2450
	if (size < ep->fifo_size)
2451
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2452 2453 2454
}

/**
2455
 * dwc2_hsotg_disconnect - disconnect service
2456 2457
 * @hsotg: The device state.
 *
2458 2459 2460
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2461
 */
2462
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2463 2464 2465
{
	unsigned ep;

2466 2467 2468 2469
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2470
	hsotg->test_mode = 0;
2471 2472 2473 2474 2475 2476 2477 2478 2479

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2480 2481

	call_gadget(hsotg, disconnect);
2482
	hsotg->lx_state = DWC2_L3;
2483 2484 2485
}

/**
2486
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2487 2488 2489
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2490
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2491
{
2492
	struct dwc2_hsotg_ep *ep;
2493 2494 2495
	int epno, ret;

	/* look through for any more data to transmit */
2496
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2497 2498 2499 2500
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2501 2502 2503 2504 2505 2506 2507 2508

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

2509
		ret = dwc2_hsotg_trytx(hsotg, ep);
2510 2511 2512 2513 2514 2515
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2516 2517 2518
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2519

2520
/**
2521
 * dwc2_hsotg_core_init - issue softreset to the core
2522 2523 2524 2525
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2526
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2527
						bool is_usb_reset)
2528
{
2529
	u32 intmsk;
2530
	u32 val;
2531
	u32 usbcfg;
2532

2533 2534 2535
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

2536
	if (!is_usb_reset)
2537
		if (dwc2_core_reset(hsotg))
2538
			return;
2539 2540 2541 2542 2543 2544

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

2545 2546 2547 2548 2549
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

2550
	/* set the PLL on, remove the HNP/SRP and set the PHY */
2551
	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2552 2553 2554
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(val << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2555

2556
	dwc2_hsotg_init_fifo(hsotg);
2557

2558 2559
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2560

2561
	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2562 2563

	/* Clear any pending OTG interrupts */
2564
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2565 2566

	/* Clear any pending interrupts */
2567
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2568
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2569
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2570 2571
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2572 2573
		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
		GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
2574

2575
	if (hsotg->params.external_id_pin_ctl <= 0)
2576 2577 2578
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2579 2580

	if (using_dma(hsotg))
2581 2582 2583
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
2584
	else
2585 2586 2587 2588
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
2589 2590

	/*
2591 2592 2593
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2594 2595
	 */

2596
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2597
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2598
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2599
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
2600
		hsotg->regs + DIEPMSK);
2601 2602 2603 2604 2605

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2606
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK) : 0) |
2607
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2608
		DOEPMSK_SETUPMSK | DOEPMSK_STSPHSERCVDMSK,
2609
		hsotg->regs + DOEPMSK);
2610

2611
	dwc2_writel(0, hsotg->regs + DAINTMSK);
2612 2613

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2614 2615
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2616 2617

	/* enable in and out endpoint interrupts */
2618
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2619 2620 2621 2622 2623 2624 2625

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2626
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2627 2628

	/* Enable interrupts for EP0 in and out */
2629 2630
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2631

2632 2633 2634 2635 2636
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
2637

2638
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2639 2640

	/*
2641
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2642 2643 2644 2645
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2646
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2647
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2648

2649
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2650 2651
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2652
	       hsotg->regs + DOEPCTL0);
2653 2654

	/* enable, but don't activate EP0in */
2655
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2656
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2657

2658
	dwc2_hsotg_enqueue_setup(hsotg);
2659 2660

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2661 2662
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2663 2664

	/* clear global NAKs */
2665 2666 2667 2668
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
2669 2670 2671 2672

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2673
	hsotg->lx_state = DWC2_L0;
2674 2675
}

2676
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2677 2678 2679 2680
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2681

2682
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2683
{
2684
	/* remove the soft-disconnect and let's go */
2685
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2686 2687
}

2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
/**
 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted IN Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
 */
static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hsotg_ep *hs_ep;
	u32 epctrl;
	u32 idx;

	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_in[idx];
		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			epctrl |= DXEPCTL_SNAK;
			epctrl |= DXEPCTL_EPDIS;
			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
}

/**
 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted OUT Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
 */
static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
{
	u32 gintsts;
	u32 gintmsk;
	u32 epctrl;
	struct dwc2_hsotg_ep *hs_ep;
	int idx;

	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_out[idx];
		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			/* Unmask GOUTNAKEFF interrupt */
			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
			gintmsk |= GINTSTS_GOUTNAKEFF;
			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
			if (!(gintsts & GINTSTS_GOUTNAKEFF))
				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
}

2767
/**
2768
 * dwc2_hsotg_irq - handle device interrupt
2769 2770 2771
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
2772
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2773
{
2774
	struct dwc2_hsotg *hsotg = pw;
2775 2776 2777 2778
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2779 2780 2781
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

2782
	spin_lock(&hsotg->lock);
2783
irq_retry:
2784 2785
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2786 2787 2788 2789 2790 2791

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {

		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

2822
	if (gintsts & GINTSTS_ENUMDONE) {
2823
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2824

2825
		dwc2_hsotg_irq_enumdone(hsotg);
2826 2827
	}

2828
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2829 2830
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2831
		u32 daint_out, daint_in;
2832 2833
		int ep;

2834
		daint &= daintmsk;
2835 2836
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2837

2838 2839
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2840 2841
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2842
			if (daint_out & 1)
2843
				dwc2_hsotg_epint(hsotg, ep, 0);
2844 2845
		}

2846 2847
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2848
			if (daint_in & 1)
2849
				dwc2_hsotg_epint(hsotg, ep, 1);
2850 2851 2852 2853 2854
		}
	}

	/* check both FIFOs */

2855
	if (gintsts & GINTSTS_NPTXFEMP) {
2856 2857
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2858 2859
		/*
		 * Disable the interrupt to stop it happening again
2860
		 * unless one of these endpoint routines decides that
2861 2862
		 * it needs re-enabling
		 */
2863

2864 2865
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
2866 2867
	}

2868
	if (gintsts & GINTSTS_PTXFEMP) {
2869 2870
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2871
		/* See note in GINTSTS_NPTxFEmp */
2872

2873 2874
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
2875 2876
	}

2877
	if (gintsts & GINTSTS_RXFLVL) {
2878 2879
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2880
		 * we need to retry dwc2_hsotg_handle_rx if this is still
2881 2882
		 * set.
		 */
2883

2884
		dwc2_hsotg_handle_rx(hsotg);
2885 2886
	}

2887
	if (gintsts & GINTSTS_ERLYSUSP) {
2888
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2889
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2890 2891
	}

2892 2893
	/*
	 * these next two seem to crop-up occasionally causing the core
2894
	 * to shutdown the USB transfer, so try clearing them and logging
2895 2896
	 * the occurrence.
	 */
2897

2898
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
		u8 idx;
		u32 epctrl;
		u32 gintmsk;
		struct dwc2_hsotg_ep *hs_ep;

		/* Mask this interrupt */
		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
		gintmsk &= ~GINTSTS_GOUTNAKEFF;
		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];
			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));

			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
				epctrl |= DXEPCTL_SNAK;
				epctrl |= DXEPCTL_EPDIS;
				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
			}
		}
2920

2921
		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
2922 2923
	}

2924
	if (gintsts & GINTSTS_GINNAKEFF) {
2925 2926
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2927
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
2928

2929
		dwc2_hsotg_dump(hsotg);
2930 2931
	}

2932 2933
	if (gintsts & GINTSTS_INCOMPL_SOIN)
		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
2934

2935 2936
	if (gintsts & GINTSTS_INCOMPL_SOOUT)
		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
2937

2938 2939 2940 2941
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2942 2943 2944 2945

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2946 2947
	spin_unlock(&hsotg->lock);

2948 2949 2950 2951
	return IRQ_HANDLED;
}

/**
2952
 * dwc2_hsotg_ep_enable - enable the given endpoint
2953 2954 2955 2956
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2957
 */
2958
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2959 2960
			       const struct usb_endpoint_descriptor *desc)
{
2961
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2962
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2963
	unsigned long flags;
2964
	unsigned int index = hs_ep->index;
2965 2966 2967
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
2968
	u32 mc;
2969
	u32 mask;
2970 2971
	unsigned int dir_in;
	unsigned int i, val, size;
2972
	int ret = 0;
2973 2974 2975 2976 2977 2978 2979

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
2980 2981 2982 2983
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
2984 2985 2986 2987 2988 2989 2990

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2991
	mps = usb_endpoint_maxp(desc);
2992
	mc = usb_endpoint_maxp_mult(desc);
2993

2994
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2995

2996
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2997
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2998 2999 3000 3001

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

3002
	spin_lock_irqsave(&hsotg->lock, flags);
3003

3004 3005
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
3006

3007 3008 3009 3010
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
3011
	epctrl |= DXEPCTL_USBACTEP;
3012 3013

	/* update the endpoint state */
3014
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3015 3016

	/* default, set to non-periodic */
3017
	hs_ep->isochronous = 0;
3018
	hs_ep->periodic = 0;
3019
	hs_ep->halted = 0;
3020
	hs_ep->interval = desc->bInterval;
3021

3022 3023
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
3024 3025
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
3026
		hs_ep->isochronous = 1;
3027
		hs_ep->interval = 1 << (desc->bInterval - 1);
3028 3029
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
		if (dir_in) {
3030
			hs_ep->periodic = 1;
3031 3032 3033 3034 3035 3036 3037 3038
			mask = dwc2_readl(hsotg->regs + DIEPMSK);
			mask |= DIEPMSK_NAKMSK;
			dwc2_writel(mask, hsotg->regs + DIEPMSK);
		} else {
			mask = dwc2_readl(hsotg->regs + DOEPMSK);
			mask |= DOEPMSK_OUTTKNEPDISMSK;
			dwc2_writel(mask, hsotg->regs + DOEPMSK);
		}
3039
		break;
3040 3041

	case USB_ENDPOINT_XFER_BULK:
3042
		epctrl |= DXEPCTL_EPTYPE_BULK;
3043 3044 3045
		break;

	case USB_ENDPOINT_XFER_INT:
3046
		if (dir_in)
3047 3048
			hs_ep->periodic = 1;

3049 3050 3051
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

3052
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3053 3054 3055
		break;

	case USB_ENDPOINT_XFER_CONTROL:
3056
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3057 3058 3059
		break;
	}

3060 3061
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
3062 3063
	 * a unique tx-fifo even if it is non-periodic.
	 */
3064
	if (dir_in && hsotg->dedicated_fifos) {
3065 3066
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
3067
		size = hs_ep->ep.maxpacket*hs_ep->mc;
3068
		for (i = 1; i < hsotg->num_of_eps; ++i) {
3069 3070
			if (hsotg->fifo_map & (1<<i))
				continue;
3071
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3072 3073 3074
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
3075 3076 3077 3078 3079
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
3080
		}
3081
		if (!fifo_index) {
3082 3083
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
3084 3085 3086
			ret = -ENOMEM;
			goto error;
		}
3087 3088 3089 3090
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
3091
	}
3092

3093
	/* for non control endpoints, set PID to D0 */
3094
	if (index && !hs_ep->isochronous)
3095
		epctrl |= DXEPCTL_SETD0PID;
3096 3097 3098 3099

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

3100
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3101
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3102
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3103 3104

	/* enable the endpoint interrupt */
3105
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3106

3107
error:
3108
	spin_unlock_irqrestore(&hsotg->lock, flags);
3109
	return ret;
3110 3111
}

3112
/**
3113
 * dwc2_hsotg_ep_disable - disable given endpoint
3114 3115
 * @ep: The endpoint to disable.
 */
3116
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3117
{
3118
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3119
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3120 3121 3122 3123 3124 3125
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

3126
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3127

3128
	if (ep == &hsotg->eps_out[0]->ep) {
3129 3130 3131 3132
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

3133
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3134

3135
	spin_lock_irqsave(&hsotg->lock, flags);
3136

3137
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3138 3139 3140
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
3141 3142

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3143
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3144 3145

	/* disable endpoint interrupts */
3146
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3147

3148 3149 3150
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

3151 3152 3153 3154
	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;

3155
	spin_unlock_irqrestore(&hsotg->lock, flags);
3156 3157 3158 3159 3160 3161 3162
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
3163
 */
3164
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
3165
{
3166
	struct dwc2_hsotg_req *req, *treq;
3167 3168 3169 3170 3171 3172 3173 3174 3175

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
							u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
						struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
			hs_ep->name);
	if (hs_ep->dir_in) {
		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
		/* Wait for Nak effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						DXEPINT_INEPNAKEFF, 100))
			dev_warn(hsotg->dev,
				"%s: timeout DIEPINT.NAKEFF\n", __func__);
	} else {
3211 3212
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3213 3214 3215

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3216
						GINTSTS_GOUTNAKEFF, 100))
3217
			dev_warn(hsotg->dev,
3218
				"%s: timeout GINTSTS.GOUTNAKEFF\n", __func__);
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			"%s: timeout DOEPCTL.EPDisable\n", __func__);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos) {
			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
			/* Wait for fifo flush */
			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
							GRSTCTL_TXFFLSH, 100))
				dev_warn(hsotg->dev,
					"%s: timeout flushing fifos\n",
					__func__);
		}
		/* TODO: Flush shared tx fifo */
	} else {
		/* Remove global NAKs */
3243
		__bic32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3244 3245 3246
	}
}

3247
/**
3248
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
3249 3250 3251
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
3252
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
3253
{
3254 3255
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3256
	struct dwc2_hsotg *hs = hs_ep->parent;
3257 3258
	unsigned long flags;

3259
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
3260

3261
	spin_lock_irqsave(&hs->lock, flags);
3262 3263

	if (!on_list(hs_ep, hs_req)) {
3264
		spin_unlock_irqrestore(&hs->lock, flags);
3265 3266 3267
		return -EINVAL;
	}

3268 3269 3270 3271
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

3272
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
3273
	spin_unlock_irqrestore(&hs->lock, flags);
3274 3275 3276 3277

	return 0;
}

3278
/**
3279
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
3280 3281
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
3282 3283 3284 3285 3286
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
3287
 */
3288
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
3289
{
3290
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3291
	struct dwc2_hsotg *hs = hs_ep->parent;
3292 3293 3294
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
3295
	u32 xfertype;
3296 3297 3298

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

3299 3300
	if (index == 0) {
		if (value)
3301
			dwc2_hsotg_stall_ep0(hs);
3302 3303 3304 3305 3306 3307
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

3308 3309 3310 3311 3312
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

3313 3314 3315 3316 3317 3318
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

3319 3320
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
3321
		epctl = dwc2_readl(hs->regs + epreg);
3322 3323

		if (value) {
3324
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
3325 3326 3327 3328 3329 3330 3331 3332 3333
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3334
		dwc2_writel(epctl, hs->regs + epreg);
3335
	} else {
3336

3337
		epreg = DOEPCTL(index);
3338
		epctl = dwc2_readl(hs->regs + epreg);
3339

3340 3341 3342 3343 3344 3345 3346 3347 3348
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3349
		dwc2_writel(epctl, hs->regs + epreg);
3350
	}
3351

3352 3353
	hs_ep->halted = value;

3354 3355 3356
	return 0;
}

3357
/**
3358
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3359 3360 3361
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
3362
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3363
{
3364
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3365
	struct dwc2_hsotg *hs = hs_ep->parent;
3366 3367 3368 3369
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
3370
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
3371 3372 3373 3374 3375
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

3376 3377 3378 3379 3380 3381 3382 3383
static struct usb_ep_ops dwc2_hsotg_ep_ops = {
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
3384
	/* note, don't believe we have any call for the fifo routines */
3385 3386
};

3387
/**
3388
 * dwc2_hsotg_init - initalize the usb core
3389 3390
 * @hsotg: The driver state
 */
3391
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3392
{
3393
	u32 trdtim;
3394
	u32 usbcfg;
3395 3396
	/* unmask subset of endpoint interrupts */

3397 3398 3399
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
3400

3401 3402 3403
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
3404

3405
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3406 3407

	/* Be in disconnected state until gadget is registered */
3408
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3409 3410 3411 3412

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3413 3414
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
3415

3416
	dwc2_hsotg_init_fifo(hsotg);
3417

3418 3419 3420 3421 3422
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

3423
	/* set the PLL on, remove the HNP/SRP and set the PHY */
3424
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3425 3426 3427
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3428

3429 3430
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3431 3432
}

3433
/**
3434
 * dwc2_hsotg_udc_start - prepare the udc for work
3435 3436 3437 3438 3439 3440
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
3441
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3442
			   struct usb_gadget_driver *driver)
3443
{
3444
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3445
	unsigned long flags;
3446 3447 3448
	int ret;

	if (!hsotg) {
3449
		pr_err("%s: called with no device\n", __func__);
3450 3451 3452 3453 3454 3455 3456 3457
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

3458
	if (driver->max_speed < USB_SPEED_FULL)
3459 3460
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

3461
	if (!driver->setup) {
3462 3463 3464 3465 3466 3467 3468 3469
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
3470
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3471 3472
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

3473 3474 3475 3476
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
3477 3478
	}

3479 3480
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3481

3482
	spin_lock_irqsave(&hsotg->lock, flags);
3483 3484 3485 3486 3487
	if (dwc2_hw_is_device(hsotg)) {
		dwc2_hsotg_init(hsotg);
		dwc2_hsotg_core_init_disconnected(hsotg, false);
	}

3488
	hsotg->enabled = 0;
3489 3490
	spin_unlock_irqrestore(&hsotg->lock, flags);

3491
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3492

3493 3494 3495 3496 3497 3498 3499
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

3500
/**
3501
 * dwc2_hsotg_udc_stop - stop the udc
3502 3503 3504 3505 3506
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
3507
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3508
{
3509
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3510
	unsigned long flags = 0;
3511 3512 3513 3514 3515 3516
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
3517 3518
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
3519
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3520
		if (hsotg->eps_out[ep])
3521
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3522
	}
3523

3524 3525
	spin_lock_irqsave(&hsotg->lock, flags);

3526
	hsotg->driver = NULL;
3527
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3528
	hsotg->enabled = 0;
3529

3530 3531
	spin_unlock_irqrestore(&hsotg->lock, flags);

3532 3533
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
3534

3535 3536
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
3537 3538 3539 3540

	return 0;
}

3541
/**
3542
 * dwc2_hsotg_gadget_getframe - read the frame number
3543 3544 3545 3546
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3547
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3548
{
3549
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3550 3551
}

3552
/**
3553
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3554 3555 3556 3557 3558
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
3559
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3560
{
3561
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3562 3563
	unsigned long flags = 0;

3564 3565 3566 3567 3568 3569 3570 3571
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
			hsotg->op_state);

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
3572 3573 3574

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3575
		hsotg->enabled = 1;
3576 3577
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
3578
	} else {
3579 3580
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3581
		hsotg->enabled = 0;
3582 3583 3584 3585 3586 3587 3588 3589
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

3590
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3591 3592 3593 3594 3595 3596 3597
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

3598 3599 3600 3601 3602 3603 3604
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

3605
	if (is_active) {
3606
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3607

3608
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3609
		if (hsotg->enabled)
3610
			dwc2_hsotg_core_connect(hsotg);
3611
	} else {
3612 3613
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3614 3615 3616 3617 3618 3619
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

3620
/**
3621
 * dwc2_hsotg_vbus_draw - report bMaxPower field
3622 3623 3624 3625 3626
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
3627
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3628 3629 3630 3631 3632 3633 3634 3635
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

3636 3637 3638 3639 3640 3641 3642
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
3643 3644 3645
};

/**
3646
 * dwc2_hsotg_initep - initialise a single endpoint
3647 3648 3649 3650 3651 3652 3653 3654
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3655 3656
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
3657 3658
				       int epnum,
				       bool dir_in)
3659 3660 3661 3662 3663
{
	char *dir;

	if (epnum == 0)
		dir = "";
3664
	else if (dir_in)
3665
		dir = "in";
3666 3667
	else
		dir = "out";
3668

3669
	hs_ep->dir_in = dir_in;
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3683
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3684
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3685

3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
		hs_ep->ep.caps.type_iso = true;
		hs_ep->ep.caps.type_bulk = true;
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

3699 3700
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3701 3702 3703 3704
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3705
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3706
		if (dir_in)
3707
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3708
		else
3709
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3710 3711 3712
	}
}

3713
/**
3714
 * dwc2_hsotg_hw_cfg - read HW configuration registers
3715 3716 3717 3718
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3719
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3720
{
3721 3722 3723 3724
	u32 cfg;
	u32 ep_type;
	u32 i;

3725
	/* check hardware configuration */
3726

3727 3728
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

3729 3730
	/* Add ep0 */
	hsotg->num_of_eps++;
3731

3732
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3733 3734 3735
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
3736
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
3737 3738
	hsotg->eps_out[0] = hsotg->eps_in[0];

3739
	cfg = hsotg->hw_params.dev_ep_dirs;
3740
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3741 3742 3743 3744
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3745
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3746 3747 3748 3749 3750 3751
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3752
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3753 3754 3755 3756 3757
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

3758 3759
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
3760

3761 3762 3763 3764
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3765
	return 0;
3766 3767
}

3768
/**
3769
 * dwc2_hsotg_dump - dump state of the udc
3770 3771
 * @param: The device state
 */
3772
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3773
{
M
Mark Brown 已提交
3774
#ifdef DEBUG
3775 3776 3777 3778 3779 3780
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3781 3782
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
3783

3784
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3785
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3786 3787

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3788
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3789 3790 3791

	/* show periodic fifo settings */

3792
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3793
		val = dwc2_readl(regs + DPTXFSIZN(idx));
3794
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3795 3796
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3797 3798
	}

3799
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3800 3801
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3802 3803 3804
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
3805

3806
		val = dwc2_readl(regs + DOEPCTL(idx));
3807 3808
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3809 3810 3811
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
3812 3813 3814 3815

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3816
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3817
#endif
3818 3819
}

3820
/**
3821 3822 3823
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3824
 */
3825
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3826
{
3827
	struct device *dev = hsotg->dev;
3828 3829
	int epnum;
	int ret;
3830

3831 3832
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
3833 3834
		hsotg->params.g_np_tx_fifo_size);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
3835

3836
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3837
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3838
	hsotg->gadget.name = dev_name(dev);
3839 3840
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
3841 3842
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3843

3844
	ret = dwc2_hsotg_hw_cfg(hsotg);
3845 3846
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3847
		return ret;
3848 3849
	}

3850 3851
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3852
	if (!hsotg->ctrl_buff)
3853
		return -ENOMEM;
3854 3855 3856

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3857
	if (!hsotg->ep0_buff)
3858
		return -ENOMEM;
3859

3860
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3861
				dev_name(hsotg->dev), hsotg);
3862
	if (ret < 0) {
3863
		dev_err(dev, "cannot claim IRQ for gadget\n");
3864
		return ret;
3865 3866
	}

3867 3868 3869 3870
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3871
		return -EINVAL;
3872 3873 3874 3875 3876
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3877
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3878 3879 3880

	/* allocate EP0 request */

3881
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3882 3883 3884
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3885
		return -ENOMEM;
3886
	}
3887 3888

	/* initialise the endpoints now the core has been initialised */
3889 3890
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
3891
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3892 3893
								epnum, 1);
		if (hsotg->eps_out[epnum])
3894
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3895 3896
								epnum, 0);
	}
3897

3898
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3899
	if (ret)
3900
		return ret;
3901

3902
	dwc2_hsotg_dump(hsotg);
3903 3904 3905 3906

	return 0;
}

3907
/**
3908
 * dwc2_hsotg_remove - remove function for hsotg driver
3909 3910
 * @pdev: The platform information for the driver
 */
3911
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3912
{
3913
	usb_del_gadget_udc(&hsotg->gadget);
3914

3915 3916 3917
	return 0;
}

3918
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3919 3920 3921
{
	unsigned long flags;

3922
	if (hsotg->lx_state != DWC2_L0)
3923
		return 0;
3924

3925 3926 3927
	if (hsotg->driver) {
		int ep;

3928 3929 3930
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3931 3932
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
3933 3934
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3935 3936
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3937

3938 3939
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
3940
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3941
			if (hsotg->eps_out[ep])
3942
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3943
		}
3944 3945
	}

3946
	return 0;
3947 3948
}

3949
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
3950 3951 3952
{
	unsigned long flags;

3953
	if (hsotg->lx_state == DWC2_L2)
3954
		return 0;
3955

3956 3957 3958
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3959

3960
		spin_lock_irqsave(&hsotg->lock, flags);
3961
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3962
		if (hsotg->enabled)
3963
			dwc2_hsotg_core_connect(hsotg);
3964 3965
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
3966

3967
	return 0;
3968
}
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}