rt2800pci.c 38.9 KB
Newer Older
1
/*
2
	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9
	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2800pci
	Abstract: rt2800pci device specific routines.
	Supported chipsets: RT2800E & RT2800ED.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
44
#include "rt2x00mmio.h"
45 46
#include "rt2x00pci.h"
#include "rt2x00soc.h"
47
#include "rt2800lib.h"
48
#include "rt2800.h"
49 50 51 52 53
#include "rt2800pci.h"

/*
 * Allow hardware encryption to be disabled.
 */
54
static bool modparam_nohwcrypt = false;
55 56 57
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

58 59 60 61 62
static bool rt2800pci_hwcrypt_disabled(struct rt2x00_dev *rt2x00dev)
{
	return modparam_nohwcrypt;
}

63 64 65 66 67
static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
{
	unsigned int i;
	u32 reg;

68 69 70 71 72 73
	/*
	 * SOC devices don't support MCU requests.
	 */
	if (rt2x00_is_soc(rt2x00dev))
		return;

74
	for (i = 0; i < 200; i++) {
75
		rt2x00mmio_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
76 77 78 79 80 81 82 83 84 85 86

		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
			break;

		udelay(REGISTER_BUSY_DELAY);
	}

	if (i == 200)
87
		rt2x00_err(rt2x00dev, "MCU request failed, no response from hardware\n");
88

89 90
	rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
91 92
}

93
#if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
94
static int rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
95
{
96
	void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
97

98 99 100
	if (!base_addr)
		return -ENOMEM;

101
	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
102 103

	iounmap(base_addr);
104
	return 0;
105 106
}
#else
107
static inline int rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
108
{
109
	return -ENOMEM;
110
}
111
#endif /* CONFIG_SOC_RT288X || CONFIG_SOC_RT305X */
112

113
#ifdef CONFIG_PCI
114 115 116 117 118
static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

119
	rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

141
	rt2x00mmio_register_write(rt2x00dev, E2PROM_CSR, reg);
142 143
}

144
static int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
145 146 147 148
{
	struct eeprom_93cx6 eeprom;
	u32 reg;

149
	rt2x00mmio_register_read(rt2x00dev, E2PROM_CSR, &reg);
150 151 152 153

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2800pci_eepromregister_read;
	eeprom.register_write = rt2800pci_eepromregister_write;
154 155 156 157 158 159 160 161 162 163 164 165
	switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
	{
	case 0:
		eeprom.width = PCI_EEPROM_WIDTH_93C46;
		break;
	case 1:
		eeprom.width = PCI_EEPROM_WIDTH_93C66;
		break;
	default:
		eeprom.width = PCI_EEPROM_WIDTH_93C86;
		break;
	}
166 167 168 169 170 171 172
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));
173 174

	return 0;
175 176
}

177 178
static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
179
	return rt2800_efuse_detect(rt2x00dev);
180 181
}

182
static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
183
{
184
	return rt2800_read_eeprom_efuse(rt2x00dev);
185 186
}
#else
187
static inline int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
188
{
189
	return -EOPNOTSUPP;
190 191
}

192 193 194 195 196
static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
	return 0;
}

197
static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
198
{
199
	return -EOPNOTSUPP;
200
}
201
#endif /* CONFIG_PCI */
202

203 204 205 206 207 208 209 210 211 212
/*
 * Queue handlers.
 */
static void rt2800pci_start_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
213
		rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
214
		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
215
		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
216 217
		break;
	case QID_BEACON:
218
		rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
219 220 221
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
222
		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
223

224
		rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, &reg);
225
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
226
		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
227 228 229
		break;
	default:
		break;
230
	}
231 232 233 234 235 236 237 238
}

static void rt2800pci_kick_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	struct queue_entry *entry;

	switch (queue->qid) {
I
Ivo van Doorn 已提交
239 240
	case QID_AC_VO:
	case QID_AC_VI:
241 242 243
	case QID_AC_BE:
	case QID_AC_BK:
		entry = rt2x00queue_get_entry(queue, Q_INDEX);
244 245
		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
					  entry->entry_idx);
246 247 248
		break;
	case QID_MGMT:
		entry = rt2x00queue_get_entry(queue, Q_INDEX);
249 250
		rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX(5),
					  entry->entry_idx);
251 252 253 254 255 256 257 258 259 260 261 262 263
		break;
	default:
		break;
	}
}

static void rt2800pci_stop_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
264
		rt2x00mmio_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
265
		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
266
		rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
267 268
		break;
	case QID_BEACON:
269
		rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
270 271 272
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
273
		rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
274

275
		rt2x00mmio_register_read(rt2x00dev, INT_TIMER_EN, &reg);
276
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
277
		rt2x00mmio_register_write(rt2x00dev, INT_TIMER_EN, reg);
278 279

		/*
280 281 282
		 * Wait for current invocation to finish. The tasklet
		 * won't be scheduled anymore afterwards since we disabled
		 * the TBTT and PRE TBTT timer.
283
		 */
284 285 286
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
		tasklet_kill(&rt2x00dev->pretbtt_tasklet);

287 288 289 290 291 292
		break;
	default:
		break;
	}
}

293 294 295 296 297
/*
 * Firmware functions
 */
static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
W
Woody Hung 已提交
298 299 300 301 302 303 304
	/*
	 * Chip rt3290 use specific 4KB firmware named rt3290.bin.
	 */
	if (rt2x00_rt(rt2x00dev, RT3290))
		return FIRMWARE_RT3290;
	else
		return FIRMWARE_RT2860;
305 306
}

307
static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
308 309 310 311 312 313 314 315 316
				    const u8 *data, const size_t len)
{
	u32 reg;

	/*
	 * enable Host program ram write selection
	 */
	reg = 0;
	rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
317
	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
318 319 320 321

	/*
	 * Write firmware to device.
	 */
322 323
	rt2x00mmio_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
				       data, len);
324

325 326
	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
327

328 329
	rt2x00mmio_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
330 331 332 333 334 335 336 337 338

	return 0;
}

/*
 * Initialization functions.
 */
static bool rt2800pci_get_entry_state(struct queue_entry *entry)
{
339
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
	}
}

static void rt2800pci_clear_entry(struct queue_entry *entry)
{
355
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
356
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
357
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
358 359 360 361 362 363 364 365 366 367
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 0, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
		rt2x00_desc_write(entry_priv->desc, 1, word);
368 369 370 371 372

		/*
		 * Set RX IDX in register to inform hardware that we have
		 * handled this entry and it is available for reuse again.
		 */
373 374
		rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
					  entry->entry_idx);
375 376 377 378 379 380 381 382 383
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	}
}

static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
384
	struct queue_entry_priv_mmio *entry_priv;
385 386 387 388 389

	/*
	 * Initialize registers.
	 */
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
390 391 392 393 394 395
	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR0,
				  entry_priv->desc_dma);
	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT0,
				  rt2x00dev->tx[0].limit);
	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX0, 0);
	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX0, 0);
396 397

	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
398 399 400 401 402 403
	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR1,
				  entry_priv->desc_dma);
	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT1,
				  rt2x00dev->tx[1].limit);
	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX1, 0);
	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX1, 0);
404 405

	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
406 407 408 409 410 411
	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR2,
				  entry_priv->desc_dma);
	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT2,
				  rt2x00dev->tx[2].limit);
	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX2, 0);
	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX2, 0);
412 413

	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR3,
				  entry_priv->desc_dma);
	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT3,
				  rt2x00dev->tx[3].limit);
	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX3, 0);
	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX3, 0);

	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR4, 0);
	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT4, 0);
	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX4, 0);
	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX4, 0);

	rt2x00mmio_register_write(rt2x00dev, TX_BASE_PTR5, 0);
	rt2x00mmio_register_write(rt2x00dev, TX_MAX_CNT5, 0);
	rt2x00mmio_register_write(rt2x00dev, TX_CTX_IDX5, 0);
	rt2x00mmio_register_write(rt2x00dev, TX_DTX_IDX5, 0);
430

431
	entry_priv = rt2x00dev->rx->entries[0].priv_data;
432 433 434 435 436 437 438
	rt2x00mmio_register_write(rt2x00dev, RX_BASE_PTR,
				  entry_priv->desc_dma);
	rt2x00mmio_register_write(rt2x00dev, RX_MAX_CNT,
				  rt2x00dev->rx[0].limit);
	rt2x00mmio_register_write(rt2x00dev, RX_CRX_IDX,
				  rt2x00dev->rx[0].limit - 1);
	rt2x00mmio_register_write(rt2x00dev, RX_DRX_IDX, 0);
439

440
	rt2800_disable_wpdma(rt2x00dev);
441

442
	rt2x00mmio_register_write(rt2x00dev, DELAY_INT_CFG, 0);
443 444 445 446 447 448 449 450 451 452 453

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
	u32 reg;
454
	unsigned long flags;
455 456 457 458 459 460

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
461 462
		rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
463
	}
464

465
	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
466 467 468 469 470 471 472 473
	reg = 0;
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
	}
474
	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
475 476 477 478
	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);

	if (state == STATE_RADIO_IRQ_OFF) {
		/*
479
		 * Wait for possibly running tasklets to finish.
480
		 */
481 482 483 484 485
		tasklet_kill(&rt2x00dev->txstatus_tasklet);
		tasklet_kill(&rt2x00dev->rxdone_tasklet);
		tasklet_kill(&rt2x00dev->autowake_tasklet);
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
486
	}
487 488
}

489 490 491 492 493 494 495
static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Reset DMA indexes
	 */
496
	rt2x00mmio_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
497 498 499 500 501 502 503
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
504
	rt2x00mmio_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
505

506 507
	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2x00mmio_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
508

509 510
	if (rt2x00_is_pcie(rt2x00dev) &&
	    (rt2x00_rt(rt2x00dev, RT3572) ||
J
John Li 已提交
511 512
	     rt2x00_rt(rt2x00dev, RT5390) ||
	     rt2x00_rt(rt2x00dev, RT5392))) {
513
		rt2x00mmio_register_read(rt2x00dev, AUX_CTRL, &reg);
514 515
		rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
		rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
516
		rt2x00mmio_register_write(rt2x00dev, AUX_CTRL, reg);
517
	}
518

519
	rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
520

521
	reg = 0;
522 523
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
524
	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
525

526
	rt2x00mmio_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
527 528 529 530

	return 0;
}

531 532
static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
533 534
	int retval;

535 536 537 538
	/* Wait for DMA, ignore error until we initialize queues. */
	rt2800_wait_wpdma_ready(rt2x00dev);

	if (unlikely(rt2800pci_init_queues(rt2x00dev)))
539 540
		return -EIO;

541 542 543 544 545
	retval = rt2800_enable_radio(rt2x00dev);
	if (retval)
		return retval;

	/* After resume MCU_BOOT_SIGNAL will trash these. */
546 547
	rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
548 549 550 551 552 553 554 555

	rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
	rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);

	rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
	rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);

	return retval;
556 557 558 559
}

static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
560 561
	if (rt2x00_is_soc(rt2x00dev)) {
		rt2800_disable_radio(rt2x00dev);
562 563
		rt2x00mmio_register_write(rt2x00dev, PWR_PIN_CFG, 0);
		rt2x00mmio_register_write(rt2x00dev, TX_PIN_CFG, 0);
564
	}
565 566 567 568 569 570
}

static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	if (state == STATE_AWAKE) {
571 572 573
		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
				   0, 0x02);
		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
574
	} else if (state == STATE_SLEEP) {
575 576 577 578
		rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
					  0xffffffff);
		rt2x00mmio_register_write(rt2x00dev, H2M_MAILBOX_CID,
					  0xffffffff);
579 580
		rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
				   0xff, 0x01);
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
	}

	return 0;
}

static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt2800pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		/*
		 * After the radio has been disabled, the device should
		 * be put to sleep for powersaving.
		 */
		rt2800pci_disable_radio(rt2x00dev);
		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt2800pci_toggle_irq(rt2x00dev, state);
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2800pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

	if (unlikely(retval))
619 620
		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
			   state, retval);
621 622 623 624 625 626 627

	return retval;
}

/*
 * TX descriptor initialization
 */
628
static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
629
{
630
	return (__le32 *) entry->skb->data;
631 632
}

633
static void rt2800pci_write_tx_desc(struct queue_entry *entry,
634 635
				    struct txentry_desc *txdesc)
{
636
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
637
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
638
	__le32 *txd = entry_priv->desc;
639 640
	u32 word;

641 642 643 644 645 646 647 648 649 650 651
	/*
	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
	 * must contains a TXWI structure + 802.11 header + padding + 802.11
	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
	 * data. It means that LAST_SEC0 is always 0.
	 */

	/*
	 * Initialize TX descriptor
	 */
652
	word = 0;
653 654 655
	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
	rt2x00_desc_write(txd, 0, word);

656
	word = 0;
657
	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
658 659 660 661
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_BURST,
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
662
	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
663 664 665 666
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
	rt2x00_desc_write(txd, 1, word);

667
	word = 0;
668
	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
669
			   skbdesc->skb_dma + TXWI_DESC_SIZE);
670 671
	rt2x00_desc_write(txd, 2, word);

672
	word = 0;
673 674 675 676
	rt2x00_set_field32(&word, TXD_W3_WIV,
			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
	rt2x00_desc_write(txd, 3, word);
677 678 679 680 681 682

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
683 684 685 686 687 688 689 690
}

/*
 * RX control handlers
 */
static void rt2800pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
{
691
	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
692
	__le32 *rxd = entry_priv->desc;
693 694 695 696 697
	u32 word;

	rt2x00_desc_read(rxd, 3, &word);

	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
698 699
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;

700 701 702 703 704
	/*
	 * Unfortunately we don't know the cipher type used during
	 * decryption. This prevents us from correct providing
	 * correct statistics through debugfs.
	 */
705
	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
706

707
	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
708 709 710 711 712 713 714 715
		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
		 * decryption. Unfortunately the descriptor doesn't contain
		 * any fields with the EIV/IV data either, so they can't
		 * be restored by rt2x00lib.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

716 717 718 719 720 721
		/*
		 * The hardware has already checked the Michael Mic and has
		 * stripped it from the frame. Signal this to mac80211.
		 */
		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;

722 723 724 725 726 727
		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

728
	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
729 730
		rxdesc->dev_flags |= RXDONE_MY_BSS;

731
	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
732 733 734
		rxdesc->dev_flags |= RXDONE_L2PAD;

	/*
735
	 * Process the RXWI structure that is at the start of the buffer.
736
	 */
737
	rt2800_process_rxwi(entry, rxdesc);
738 739 740 741 742
}

/*
 * Interrupt functions.
 */
743 744 745 746 747 748 749 750
static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
	struct ieee80211_conf conf = { .flags = 0 };
	struct rt2x00lib_conf libconf = { .conf = &conf };

	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}

751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
static bool rt2800pci_txdone_entry_check(struct queue_entry *entry, u32 status)
{
	__le32 *txwi;
	u32 word;
	int wcid, tx_wcid;

	wcid = rt2x00_get_field32(status, TX_STA_FIFO_WCID);

	txwi = rt2800_drv_get_txwi(entry);
	rt2x00_desc_read(txwi, 1, &word);
	tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);

	return (tx_wcid == wcid);
}

static bool rt2800pci_txdone_find_entry(struct queue_entry *entry, void *data)
{
	u32 status = *(u32 *)data;

	/*
	 * rt2800pci hardware might reorder frames when exchanging traffic
	 * with multiple BA enabled STAs.
	 *
	 * For example, a tx queue
	 *    [ STA1 | STA2 | STA1 | STA2 ]
	 * can result in tx status reports
	 *    [ STA1 | STA1 | STA2 | STA2 ]
	 * when the hw decides to aggregate the frames for STA1 into one AMPDU.
	 *
	 * To mitigate this effect, associate the tx status to the first frame
	 * in the tx queue with a matching wcid.
	 */
	if (rt2800pci_txdone_entry_check(entry, status) &&
	    !test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
		/*
		 * Got a matching frame, associate the tx status with
		 * the frame
		 */
		entry->status = status;
		set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
		return true;
	}

	/* Check the next frame */
	return false;
}

static bool rt2800pci_txdone_match_first(struct queue_entry *entry, void *data)
{
	u32 status = *(u32 *)data;

	/*
	 * Find the first frame without tx status and assign this status to it
	 * regardless if it matches or not.
	 */
	if (!test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
		/*
		 * Got a matching frame, associate the tx status with
		 * the frame
		 */
		entry->status = status;
		set_bit(ENTRY_DATA_STATUS_SET, &entry->flags);
		return true;
	}

	/* Check the next frame */
	return false;
}
static bool rt2800pci_txdone_release_entries(struct queue_entry *entry,
					     void *data)
{
	if (test_bit(ENTRY_DATA_STATUS_SET, &entry->flags)) {
		rt2800_txdone_entry(entry, entry->status,
				    rt2800pci_get_txwi(entry));
		return false;
	}

	/* No more frames to release */
	return true;
}

832
static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
833 834 835 836
{
	struct data_queue *queue;
	u32 status;
	u8 qid;
837
	int max_tx_done = 16;
838

839
	while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
840
		qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
841
		if (unlikely(qid >= QID_RX)) {
842 843 844 845
			/*
			 * Unknown queue, this shouldn't happen. Just drop
			 * this tx status.
			 */
846 847
			rt2x00_warn(rt2x00dev, "Got TX status report with unexpected pid %u, dropping\n",
				    qid);
848 849 850
			break;
		}

851
		queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
852 853 854 855 856
		if (unlikely(queue == NULL)) {
			/*
			 * The queue is NULL, this shouldn't happen. Stop
			 * processing here and drop the tx status
			 */
857 858
			rt2x00_warn(rt2x00dev, "Got TX status for an unavailable queue %u, dropping\n",
				    qid);
859 860 861
			break;
		}

862
		if (unlikely(rt2x00queue_empty(queue))) {
863 864 865 866
			/*
			 * The queue is empty. Stop processing here
			 * and drop the tx status.
			 */
867 868
			rt2x00_warn(rt2x00dev, "Got TX status for an empty queue %u, dropping\n",
				    qid);
869 870 871
			break;
		}

872 873 874 875 876 877 878 879 880 881 882 883 884 885
		/*
		 * Let's associate this tx status with the first
		 * matching frame.
		 */
		if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
						Q_INDEX, &status,
						rt2800pci_txdone_find_entry)) {
			/*
			 * We cannot match the tx status to any frame, so just
			 * use the first one.
			 */
			if (!rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
							Q_INDEX, &status,
							rt2800pci_txdone_match_first)) {
886 887
				rt2x00_warn(rt2x00dev, "No frame found for TX status on queue %u, dropping\n",
					    qid);
888 889 890 891 892 893 894 895 896 897
				break;
			}
		}

		/*
		 * Release all frames with a valid tx status.
		 */
		rt2x00queue_for_each_entry(queue, Q_INDEX_DONE,
					   Q_INDEX, NULL,
					   rt2800pci_txdone_release_entries);
898 899 900

		if (--max_tx_done == 0)
			break;
901
	}
902 903

	return !max_tx_done;
904 905
}

906 907
static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
					      struct rt2x00_field32 irq_field)
908
{
909
	u32 reg;
910 911

	/*
912 913
	 * Enable a single interrupt. The interrupt mask register
	 * access needs locking.
914
	 */
915
	spin_lock_irq(&rt2x00dev->irqmask_lock);
916
	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
917
	rt2x00_set_field32(&reg, irq_field, 1);
918
	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
919
	spin_unlock_irq(&rt2x00dev->irqmask_lock);
920
}
921

922 923
static void rt2800pci_txstatus_tasklet(unsigned long data)
{
924 925 926
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	if (rt2800pci_txdone(rt2x00dev))
		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
927 928

	/*
929 930 931
	 * No need to enable the tx status interrupt here as we always
	 * leave it enabled to minimize the possibility of a tx status
	 * register overflow. See comment in interrupt handler.
932
	 */
933
}
934

935 936 937 938
static void rt2800pci_pretbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2x00lib_pretbtt(rt2x00dev);
939 940
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
941
}
942

943 944 945
static void rt2800pci_tbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
946 947 948
	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
	u32 reg;

949
	rt2x00lib_beacondone(rt2x00dev);
950 951 952 953 954 955 956 957 958

	if (rt2x00dev->intf_ap_count) {
		/*
		 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
		 * causing beacon skew and as a result causing problems with
		 * some powersaving clients over time. Shorten the beacon
		 * interval every 64 beacons by 64us to mitigate this effect.
		 */
		if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
959
			rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
960 961
			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
					   (rt2x00dev->beacon_int * 16) - 1);
962
			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
963
		} else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
964
			rt2x00mmio_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
965 966
			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
					   (rt2x00dev->beacon_int * 16));
967
			rt2x00mmio_register_write(rt2x00dev, BCN_TIME_CFG, reg);
968 969 970 971 972
		}
		drv_data->tbtt_tick++;
		drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
	}

973 974
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
975
}
976

977 978 979
static void rt2800pci_rxdone_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
980
	if (rt2x00mmio_rxdone(rt2x00dev))
981
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
982
	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
983
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
984 985 986 987 988 989
}

static void rt2800pci_autowake_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2800pci_wakeup(rt2x00dev);
990 991
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
992 993
}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
{
	u32 status;
	int i;

	/*
	 * The TX_FIFO_STATUS interrupt needs special care. We should
	 * read TX_STA_FIFO but we should do it immediately as otherwise
	 * the register can overflow and we would lose status reports.
	 *
	 * Hence, read the TX_STA_FIFO register and copy all tx status
	 * reports into a kernel FIFO which is handled in the txstatus
	 * tasklet. We use a tasklet to process the tx status reports
	 * because we can schedule the tasklet multiple times (when the
	 * interrupt fires again during tx status processing).
	 *
	 * Furthermore we don't disable the TX_FIFO_STATUS
	 * interrupt here but leave it enabled so that the TX_STA_FIFO
H
Helmut Schaa 已提交
1012
	 * can also be read while the tx status tasklet gets executed.
1013 1014 1015 1016
	 *
	 * Since we have only one producer and one consumer we don't
	 * need to lock the kfifo.
	 */
1017
	for (i = 0; i < rt2x00dev->tx->limit; i++) {
1018
		rt2x00mmio_register_read(rt2x00dev, TX_STA_FIFO, &status);
1019 1020 1021 1022

		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
			break;

1023
		if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
1024
			rt2x00_warn(rt2x00dev, "TX status FIFO overrun, drop tx status report\n");
1025 1026 1027 1028 1029 1030 1031 1032
			break;
		}
	}

	/* Schedule the tasklet for processing the tx status. */
	tasklet_schedule(&rt2x00dev->txstatus_tasklet);
}

1033 1034 1035
static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
1036
	u32 reg, mask;
1037 1038

	/* Read status and ACK all interrupts */
1039 1040
	rt2x00mmio_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2x00mmio_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1041 1042 1043 1044 1045 1046 1047

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

1048 1049 1050 1051 1052 1053
	/*
	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
	 * for interrupts and interrupt masks we can just use the value of
	 * INT_SOURCE_CSR to create the interrupt mask.
	 */
	mask = ~reg;
1054

1055 1056
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
		rt2800pci_txstatus_interrupt(rt2x00dev);
1057
		/*
1058
		 * Never disable the TX_FIFO_STATUS interrupt.
1059
		 */
1060 1061
		rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
	}
1062

1063 1064
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
		tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
1065

1066 1067
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1068

1069 1070
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1071

1072 1073 1074 1075 1076 1077 1078
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
		tasklet_schedule(&rt2x00dev->autowake_tasklet);

	/*
	 * Disable all interrupts for which a tasklet was scheduled right now,
	 * the tasklet will reenable the appropriate interrupts.
	 */
1079
	spin_lock(&rt2x00dev->irqmask_lock);
1080
	rt2x00mmio_register_read(rt2x00dev, INT_MASK_CSR, &reg);
1081
	reg &= mask;
1082
	rt2x00mmio_register_write(rt2x00dev, INT_MASK_CSR, reg);
1083
	spin_unlock(&rt2x00dev->irqmask_lock);
1084 1085

	return IRQ_HANDLED;
1086 1087
}

1088 1089 1090
/*
 * Device probe functions.
 */
1091
static int rt2800pci_read_eeprom(struct rt2x00_dev *rt2x00dev)
1092
{
1093 1094
	int retval;

1095
	if (rt2x00_is_soc(rt2x00dev))
1096
		retval = rt2800pci_read_eeprom_soc(rt2x00dev);
1097
	else if (rt2800pci_efuse_detect(rt2x00dev))
1098
		retval = rt2800pci_read_eeprom_efuse(rt2x00dev);
1099
	else
1100 1101 1102
		retval = rt2800pci_read_eeprom_pci(rt2x00dev);

	return retval;
1103 1104
}

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
static const struct ieee80211_ops rt2800pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
	.configure_filter	= rt2x00mac_configure_filter,
	.set_key		= rt2x00mac_set_key,
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
	.get_stats		= rt2x00mac_get_stats,
	.get_tkip_seq		= rt2800_get_tkip_seq,
	.set_rts_threshold	= rt2800_set_rts_threshold,
1119 1120
	.sta_add		= rt2x00mac_sta_add,
	.sta_remove		= rt2x00mac_sta_remove,
1121 1122 1123 1124 1125
	.bss_info_changed	= rt2x00mac_bss_info_changed,
	.conf_tx		= rt2800_conf_tx,
	.get_tsf		= rt2800_get_tsf,
	.rfkill_poll		= rt2x00mac_rfkill_poll,
	.ampdu_action		= rt2800_ampdu_action,
I
Ivo van Doorn 已提交
1126
	.flush			= rt2x00mac_flush,
1127
	.get_survey		= rt2800_get_survey,
1128
	.get_ringparam		= rt2x00mac_get_ringparam,
1129
	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1130 1131
};

1132
static const struct rt2800_ops rt2800pci_rt2800_ops = {
1133 1134 1135 1136 1137 1138 1139
	.register_read		= rt2x00mmio_register_read,
	.register_read_lock	= rt2x00mmio_register_read, /* same for PCI */
	.register_write		= rt2x00mmio_register_write,
	.register_write_lock	= rt2x00mmio_register_write, /* same for PCI */
	.register_multiread	= rt2x00mmio_register_multiread,
	.register_multiwrite	= rt2x00mmio_register_multiwrite,
	.regbusy_read		= rt2x00mmio_regbusy_read,
1140 1141
	.read_eeprom		= rt2800pci_read_eeprom,
	.hwcrypt_disabled	= rt2800pci_hwcrypt_disabled,
1142 1143
	.drv_write_firmware	= rt2800pci_write_firmware,
	.drv_init_registers	= rt2800pci_init_registers,
1144
	.drv_get_txwi		= rt2800pci_get_txwi,
1145 1146
};

1147 1148
static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
	.irq_handler		= rt2800pci_interrupt,
1149 1150 1151 1152 1153
	.txstatus_tasklet	= rt2800pci_txstatus_tasklet,
	.pretbtt_tasklet	= rt2800pci_pretbtt_tasklet,
	.tbtt_tasklet		= rt2800pci_tbtt_tasklet,
	.rxdone_tasklet		= rt2800pci_rxdone_tasklet,
	.autowake_tasklet	= rt2800pci_autowake_tasklet,
1154
	.probe_hw		= rt2800_probe_hw,
1155
	.get_firmware_name	= rt2800pci_get_firmware_name,
1156 1157
	.check_firmware		= rt2800_check_firmware,
	.load_firmware		= rt2800_load_firmware,
1158 1159
	.initialize		= rt2x00mmio_initialize,
	.uninitialize		= rt2x00mmio_uninitialize,
1160 1161 1162
	.get_entry_state	= rt2800pci_get_entry_state,
	.clear_entry		= rt2800pci_clear_entry,
	.set_device_state	= rt2800pci_set_device_state,
1163 1164 1165 1166
	.rfkill_poll		= rt2800_rfkill_poll,
	.link_stats		= rt2800_link_stats,
	.reset_tuner		= rt2800_reset_tuner,
	.link_tuner		= rt2800_link_tuner,
1167
	.gain_calibration	= rt2800_gain_calibration,
J
John Li 已提交
1168
	.vco_calibration	= rt2800_vco_calibration,
1169 1170 1171
	.start_queue		= rt2800pci_start_queue,
	.kick_queue		= rt2800pci_kick_queue,
	.stop_queue		= rt2800pci_stop_queue,
1172
	.flush_queue		= rt2x00mmio_flush_queue,
1173
	.write_tx_desc		= rt2800pci_write_tx_desc,
1174
	.write_tx_data		= rt2800_write_tx_data,
1175
	.write_beacon		= rt2800_write_beacon,
1176
	.clear_beacon		= rt2800_clear_beacon,
1177
	.fill_rxdone		= rt2800pci_fill_rxdone,
1178 1179 1180 1181 1182 1183 1184
	.config_shared_key	= rt2800_config_shared_key,
	.config_pairwise_key	= rt2800_config_pairwise_key,
	.config_filter		= rt2800_config_filter,
	.config_intf		= rt2800_config_intf,
	.config_erp		= rt2800_config_erp,
	.config_ant		= rt2800_config_ant,
	.config			= rt2800_config,
1185 1186
	.sta_add		= rt2800_sta_add,
	.sta_remove		= rt2800_sta_remove,
1187 1188 1189
};

static const struct data_queue_desc rt2800pci_queue_rx = {
1190
	.entry_num		= 128,
1191 1192
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= RXD_DESC_SIZE,
1193
	.winfo_size		= RXWI_DESC_SIZE,
1194
	.priv_size		= sizeof(struct queue_entry_priv_mmio),
1195 1196 1197
};

static const struct data_queue_desc rt2800pci_queue_tx = {
1198
	.entry_num		= 64,
1199 1200
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= TXD_DESC_SIZE,
1201
	.winfo_size		= TXWI_DESC_SIZE,
1202
	.priv_size		= sizeof(struct queue_entry_priv_mmio),
1203 1204 1205
};

static const struct data_queue_desc rt2800pci_queue_bcn = {
1206
	.entry_num		= 8,
1207
	.data_size		= 0, /* No DMA required for beacons */
1208 1209
	.desc_size		= TXD_DESC_SIZE,
	.winfo_size		= TXWI_DESC_SIZE,
1210
	.priv_size		= sizeof(struct queue_entry_priv_mmio),
1211 1212 1213
};

static const struct rt2x00_ops rt2800pci_ops = {
G
Gertjan van Wingerde 已提交
1214
	.name			= KBUILD_MODNAME,
1215
	.drv_data_size		= sizeof(struct rt2800_drv_data),
G
Gertjan van Wingerde 已提交
1216 1217 1218 1219
	.max_ap_intf		= 8,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1220
	.extra_tx_headroom	= TXWI_DESC_SIZE,
G
Gertjan van Wingerde 已提交
1221 1222 1223 1224
	.rx			= &rt2800pci_queue_rx,
	.tx			= &rt2800pci_queue_tx,
	.bcn			= &rt2800pci_queue_bcn,
	.lib			= &rt2800pci_rt2x00_ops,
1225
	.drv			= &rt2800pci_rt2800_ops,
1226
	.hw			= &rt2800pci_mac80211_ops,
1227
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1228
	.debugfs		= &rt2800_rt2x00debug,
1229 1230 1231 1232 1233 1234
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2800pci module information.
 */
1235
#ifdef CONFIG_PCI
1236
static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
	{ PCI_DEVICE(0x1814, 0x0601) },
	{ PCI_DEVICE(0x1814, 0x0681) },
	{ PCI_DEVICE(0x1814, 0x0701) },
	{ PCI_DEVICE(0x1814, 0x0781) },
	{ PCI_DEVICE(0x1814, 0x3090) },
	{ PCI_DEVICE(0x1814, 0x3091) },
	{ PCI_DEVICE(0x1814, 0x3092) },
	{ PCI_DEVICE(0x1432, 0x7708) },
	{ PCI_DEVICE(0x1432, 0x7727) },
	{ PCI_DEVICE(0x1432, 0x7728) },
	{ PCI_DEVICE(0x1432, 0x7738) },
	{ PCI_DEVICE(0x1432, 0x7748) },
	{ PCI_DEVICE(0x1432, 0x7758) },
	{ PCI_DEVICE(0x1432, 0x7768) },
	{ PCI_DEVICE(0x1462, 0x891a) },
	{ PCI_DEVICE(0x1a3b, 0x1059) },
W
Woody Hung 已提交
1253 1254 1255
#ifdef CONFIG_RT2800PCI_RT3290
	{ PCI_DEVICE(0x1814, 0x3290) },
#endif
1256
#ifdef CONFIG_RT2800PCI_RT33XX
1257
	{ PCI_DEVICE(0x1814, 0x3390) },
1258
#endif
1259
#ifdef CONFIG_RT2800PCI_RT35XX
1260 1261 1262 1263 1264 1265 1266
	{ PCI_DEVICE(0x1432, 0x7711) },
	{ PCI_DEVICE(0x1432, 0x7722) },
	{ PCI_DEVICE(0x1814, 0x3060) },
	{ PCI_DEVICE(0x1814, 0x3062) },
	{ PCI_DEVICE(0x1814, 0x3562) },
	{ PCI_DEVICE(0x1814, 0x3592) },
	{ PCI_DEVICE(0x1814, 0x3593) },
1267
	{ PCI_DEVICE(0x1814, 0x359f) },
1268 1269
#endif
#ifdef CONFIG_RT2800PCI_RT53XX
1270
	{ PCI_DEVICE(0x1814, 0x5360) },
1271
	{ PCI_DEVICE(0x1814, 0x5362) },
1272
	{ PCI_DEVICE(0x1814, 0x5390) },
1273
	{ PCI_DEVICE(0x1814, 0x5392) },
Z
zero.lin 已提交
1274
	{ PCI_DEVICE(0x1814, 0x539a) },
Z
Zero.Lin 已提交
1275
	{ PCI_DEVICE(0x1814, 0x539b) },
1276
	{ PCI_DEVICE(0x1814, 0x539f) },
1277
#endif
1278 1279
	{ 0, }
};
1280
#endif /* CONFIG_PCI */
1281 1282 1283 1284 1285

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1286
#ifdef CONFIG_PCI
1287 1288
MODULE_FIRMWARE(FIRMWARE_RT2860);
MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1289
#endif /* CONFIG_PCI */
1290 1291
MODULE_LICENSE("GPL");

1292
#if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1293 1294
static int rt2800soc_probe(struct platform_device *pdev)
{
1295
	return rt2x00soc_probe(pdev, &rt2800pci_ops);
1296
}
1297 1298 1299 1300 1301 1302 1303

static struct platform_driver rt2800soc_driver = {
	.driver		= {
		.name		= "rt2800_wmac",
		.owner		= THIS_MODULE,
		.mod_name	= KBUILD_MODNAME,
	},
1304
	.probe		= rt2800soc_probe,
B
Bill Pemberton 已提交
1305
	.remove		= rt2x00soc_remove,
1306 1307 1308
	.suspend	= rt2x00soc_suspend,
	.resume		= rt2x00soc_resume,
};
1309
#endif /* CONFIG_SOC_RT288X || CONFIG_SOC_RT305X */
1310

1311
#ifdef CONFIG_PCI
1312 1313 1314 1315 1316 1317
static int rt2800pci_probe(struct pci_dev *pci_dev,
			   const struct pci_device_id *id)
{
	return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
}

1318 1319 1320
static struct pci_driver rt2800pci_driver = {
	.name		= KBUILD_MODNAME,
	.id_table	= rt2800pci_device_table,
1321
	.probe		= rt2800pci_probe,
B
Bill Pemberton 已提交
1322
	.remove		= rt2x00pci_remove,
1323 1324 1325
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};
1326
#endif /* CONFIG_PCI */
1327 1328 1329 1330 1331

static int __init rt2800pci_init(void)
{
	int ret = 0;

1332
#if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1333 1334 1335 1336
	ret = platform_driver_register(&rt2800soc_driver);
	if (ret)
		return ret;
#endif
1337
#ifdef CONFIG_PCI
1338 1339
	ret = pci_register_driver(&rt2800pci_driver);
	if (ret) {
1340
#if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
		platform_driver_unregister(&rt2800soc_driver);
#endif
		return ret;
	}
#endif

	return ret;
}

static void __exit rt2800pci_exit(void)
{
1352
#ifdef CONFIG_PCI
1353 1354
	pci_unregister_driver(&rt2800pci_driver);
#endif
1355
#if defined(CONFIG_SOC_RT288X) || defined(CONFIG_SOC_RT305X)
1356 1357 1358 1359 1360 1361
	platform_driver_unregister(&rt2800soc_driver);
#endif
}

module_init(rt2800pci_init);
module_exit(rt2800pci_exit);