rt2800pci.c 36.2 KB
Newer Older
1
/*
2
	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9
	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2800pci
	Abstract: rt2800pci device specific routines.
	Supported chipsets: RT2800E & RT2800ED.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2x00soc.h"
46
#include "rt2800lib.h"
47
#include "rt2800.h"
48 49 50 51 52
#include "rt2800pci.h"

/*
 * Allow hardware encryption to be disabled.
 */
53
static int modparam_nohwcrypt = 0;
54 55 56 57 58 59 60 61
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
{
	unsigned int i;
	u32 reg;

62 63 64 65 66 67
	/*
	 * SOC devices don't support MCU requests.
	 */
	if (rt2x00_is_soc(rt2x00dev))
		return;

68
	for (i = 0; i < 200; i++) {
69
		rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70 71 72 73 74 75 76 77 78 79 80 81 82

		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
			break;

		udelay(REGISTER_BUSY_DELAY);
	}

	if (i == 200)
		ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");

83 84
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 86
}

87
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 89
static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
90
	void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
91 92

	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93 94

	iounmap(base_addr);
95 96 97 98 99
}
#else
static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
}
100
#endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
101

102
#ifdef CONFIG_PCI
103 104 105 106 107
static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

108
	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

130
	rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
131 132 133 134 135 136 137
}

static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;

138
	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
139 140 141 142

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2800pci_eepromregister_read;
	eeprom.register_write = rt2800pci_eepromregister_write;
143 144 145 146 147 148 149 150 151 152 153 154
	switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
	{
	case 0:
		eeprom.width = PCI_EEPROM_WIDTH_93C46;
		break;
	case 1:
		eeprom.width = PCI_EEPROM_WIDTH_93C66;
		break;
	default:
		eeprom.width = PCI_EEPROM_WIDTH_93C86;
		break;
	}
155 156 157 158 159 160 161 162 163
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));
}

164 165
static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
166
	return rt2800_efuse_detect(rt2x00dev);
167 168
}

169
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
170
{
171
	rt2800_read_eeprom_efuse(rt2x00dev);
172 173 174 175 176 177
}
#else
static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
}

178 179 180 181 182
static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
	return 0;
}

183 184 185
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
}
186
#endif /* CONFIG_PCI */
187

188 189 190 191 192 193 194 195 196 197
/*
 * Queue handlers.
 */
static void rt2800pci_start_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
198
		rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
199
		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
200
		rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
201 202
		break;
	case QID_BEACON:
203 204 205 206 207 208 209
		/*
		 * Allow beacon tasklets to be scheduled for periodic
		 * beacon updates.
		 */
		tasklet_enable(&rt2x00dev->tbtt_tasklet);
		tasklet_enable(&rt2x00dev->pretbtt_tasklet);

210
		rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
211 212 213
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
214
		rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
215

216
		rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
217
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
218
		rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
219 220 221
		break;
	default:
		break;
222
	}
223 224 225 226 227 228 229 230
}

static void rt2800pci_kick_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	struct queue_entry *entry;

	switch (queue->qid) {
I
Ivo van Doorn 已提交
231 232
	case QID_AC_VO:
	case QID_AC_VI:
233 234 235
	case QID_AC_BE:
	case QID_AC_BK:
		entry = rt2x00queue_get_entry(queue, Q_INDEX);
236 237
		rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
					 entry->entry_idx);
238 239 240
		break;
	case QID_MGMT:
		entry = rt2x00queue_get_entry(queue, Q_INDEX);
241 242
		rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
					 entry->entry_idx);
243 244 245 246 247 248 249 250 251 252 253 254 255
		break;
	default:
		break;
	}
}

static void rt2800pci_stop_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
256
		rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
257
		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
258
		rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
259 260
		break;
	case QID_BEACON:
261
		rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
262 263 264
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
265
		rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
266

267
		rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
268
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
269
		rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
270 271 272 273 274 275

		/*
		 * Wait for tbtt tasklets to finish.
		 */
		tasklet_disable(&rt2x00dev->tbtt_tasklet);
		tasklet_disable(&rt2x00dev->pretbtt_tasklet);
276 277 278 279 280 281
		break;
	default:
		break;
	}
}

282 283 284 285 286 287 288 289
/*
 * Firmware functions
 */
static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
	return FIRMWARE_RT2860;
}

290
static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
291 292 293 294 295 296 297 298 299
				    const u8 *data, const size_t len)
{
	u32 reg;

	/*
	 * enable Host program ram write selection
	 */
	reg = 0;
	rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
300
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
301 302 303 304

	/*
	 * Write firmware to device.
	 */
305 306
	rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
				      data, len);
307

308 309
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
310

311 312
	rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

	return 0;
}

/*
 * Initialization functions.
 */
static bool rt2800pci_get_entry_state(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
	}
}

static void rt2800pci_clear_entry(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
340
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
341 342 343 344 345 346 347 348 349 350
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 0, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
		rt2x00_desc_write(entry_priv->desc, 1, word);
351 352 353 354 355

		/*
		 * Set RX IDX in register to inform hardware that we have
		 * handled this entry and it is available for reuse again.
		 */
356
		rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
357
				      entry->entry_idx);
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	}
}

static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
	struct queue_entry_priv_pci *entry_priv;
	u32 reg;

	/*
	 * Initialize registers.
	 */
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
374 375 376 377 378
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
				 rt2x00dev->tx[0].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
379 380

	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
381 382 383 384 385
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
				 rt2x00dev->tx[1].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
386 387

	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
388 389 390 391 392
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
				 rt2x00dev->tx[2].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
393 394

	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
395 396 397 398 399
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
				 rt2x00dev->tx[3].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
400 401

	entry_priv = rt2x00dev->rx->entries[0].priv_data;
402 403 404 405 406 407
	rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
				 rt2x00dev->rx[0].limit);
	rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
				 rt2x00dev->rx[0].limit - 1);
	rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
408 409 410 411

	/*
	 * Enable global DMA configuration
	 */
412
	rt2x00pci_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
413 414 415
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
416
	rt2x00pci_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
417

418
	rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
419 420 421 422 423 424 425 426 427 428

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
429
	int mask = (state == STATE_RADIO_IRQ_ON);
430
	u32 reg;
431
	unsigned long flags;
432 433 434 435 436 437

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
438 439
		rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
440

441 442 443 444
		/*
		 * Enable tasklets. The beacon related tasklets are
		 * enabled when the beacon queue is started.
		 */
445
		tasklet_enable(&rt2x00dev->txstatus_tasklet);
446 447 448
		tasklet_enable(&rt2x00dev->rxdone_tasklet);
		tasklet_enable(&rt2x00dev->autowake_tasklet);
	}
449

450
	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
451
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
452 453
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, 0);
454
	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
455 456 457 458 459 460 461 462
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, 0);
463 464 465 466
	rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
467 468 469
	rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, 0);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, 0);
470
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
471 472 473 474 475 476 477 478 479 480 481
	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);

	if (state == STATE_RADIO_IRQ_OFF) {
		/*
		 * Ensure that all tasklets are finished before
		 * disabling the interrupts.
		 */
		tasklet_disable(&rt2x00dev->txstatus_tasklet);
		tasklet_disable(&rt2x00dev->rxdone_tasklet);
		tasklet_disable(&rt2x00dev->autowake_tasklet);
	}
482 483
}

484 485 486 487 488 489 490
static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Reset DMA indexes
	 */
491
	rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
492 493 494 495 496 497 498
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
499
	rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
500

501 502
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
503

504 505 506
	if (rt2x00_is_pcie(rt2x00dev) &&
	    (rt2x00_rt(rt2x00dev, RT3572) ||
	     rt2x00_rt(rt2x00dev, RT5390))) {
507
		rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
508 509
		rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
		rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
510
		rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
511
	}
512

513
	rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
514

515
	rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
516 517
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
518
	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
519

520
	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
521 522 523 524

	return 0;
}

525 526
static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
527
	if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
528
		     rt2800pci_init_queues(rt2x00dev)))
529 530
		return -EIO;

531
	return rt2800_enable_radio(rt2x00dev);
532 533 534 535
}

static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
536 537
	if (rt2x00_is_soc(rt2x00dev)) {
		rt2800_disable_radio(rt2x00dev);
538 539
		rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
		rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
540
	}
541 542 543 544 545 546
}

static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	if (state == STATE_AWAKE) {
547
		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0x02);
548
		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
549
	} else if (state == STATE_SLEEP) {
550 551 552 553
		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
					 0xffffffff);
		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
					 0xffffffff);
554
		rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0x01, 0xff, 0x01);
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
	}

	return 0;
}

static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		/*
		 * Before the radio can be enabled, the device first has
		 * to be woken up. After that it needs a bit of time
		 * to be fully awake and then the radio can be enabled.
		 */
		rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
		msleep(1);
		retval = rt2800pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		/*
		 * After the radio has been disabled, the device should
		 * be put to sleep for powersaving.
		 */
		rt2800pci_disable_radio(rt2x00dev);
		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt2800pci_toggle_irq(rt2x00dev, state);
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2800pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

	return retval;
}

/*
 * TX descriptor initialization
 */
609
static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
610
{
611
	return (__le32 *) entry->skb->data;
612 613
}

614
static void rt2800pci_write_tx_desc(struct queue_entry *entry,
615 616
				    struct txentry_desc *txdesc)
{
617 618
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
619
	__le32 *txd = entry_priv->desc;
620 621
	u32 word;

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
	/*
	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
	 * must contains a TXWI structure + 802.11 header + padding + 802.11
	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
	 * data. It means that LAST_SEC0 is always 0.
	 */

	/*
	 * Initialize TX descriptor
	 */
	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
	rt2x00_desc_write(txd, 0, word);

	rt2x00_desc_read(txd, 1, &word);
638
	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
639 640 641 642
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_BURST,
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
643
	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
644 645 646 647 648 649
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
	rt2x00_desc_write(txd, 1, word);

	rt2x00_desc_read(txd, 2, &word);
	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
650
			   skbdesc->skb_dma + TXWI_DESC_SIZE);
651 652 653 654 655 656 657
	rt2x00_desc_write(txd, 2, word);

	rt2x00_desc_read(txd, 3, &word);
	rt2x00_set_field32(&word, TXD_W3_WIV,
			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
	rt2x00_desc_write(txd, 3, word);
658 659 660 661 662 663

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
664 665 666 667 668 669 670 671 672 673
}

/*
 * RX control handlers
 */
static void rt2800pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	__le32 *rxd = entry_priv->desc;
674 675 676 677 678
	u32 word;

	rt2x00_desc_read(rxd, 3, &word);

	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
679 680
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;

681 682 683 684 685
	/*
	 * Unfortunately we don't know the cipher type used during
	 * decryption. This prevents us from correct providing
	 * correct statistics through debugfs.
	 */
686
	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
687

688
	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
689 690 691 692 693 694 695 696
		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
		 * decryption. Unfortunately the descriptor doesn't contain
		 * any fields with the EIV/IV data either, so they can't
		 * be restored by rt2x00lib.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

697 698 699 700 701 702
		/*
		 * The hardware has already checked the Michael Mic and has
		 * stripped it from the frame. Signal this to mac80211.
		 */
		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;

703 704 705 706 707 708
		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

709
	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
710 711
		rxdesc->dev_flags |= RXDONE_MY_BSS;

712
	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
713 714 715
		rxdesc->dev_flags |= RXDONE_L2PAD;

	/*
716
	 * Process the RXWI structure that is at the start of the buffer.
717
	 */
718
	rt2800_process_rxwi(entry, rxdesc);
719 720 721 722 723
}

/*
 * Interrupt functions.
 */
724 725 726 727 728 729 730 731
static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
	struct ieee80211_conf conf = { .flags = 0 };
	struct rt2x00lib_conf libconf = { .conf = &conf };

	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}

732
static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
733 734 735 736 737
{
	struct data_queue *queue;
	struct queue_entry *entry;
	u32 status;
	u8 qid;
738
	int max_tx_done = 16;
739

740
	while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
741
		qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
742
		if (unlikely(qid >= QID_RX)) {
743 744 745 746 747
			/*
			 * Unknown queue, this shouldn't happen. Just drop
			 * this tx status.
			 */
			WARNING(rt2x00dev, "Got TX status report with "
748
					   "unexpected pid %u, dropping\n", qid);
749 750 751
			break;
		}

752
		queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
753 754 755 756 757 758
		if (unlikely(queue == NULL)) {
			/*
			 * The queue is NULL, this shouldn't happen. Stop
			 * processing here and drop the tx status
			 */
			WARNING(rt2x00dev, "Got TX status for an unavailable "
759
					   "queue %u, dropping\n", qid);
760 761 762
			break;
		}

763
		if (unlikely(rt2x00queue_empty(queue))) {
764 765 766 767 768
			/*
			 * The queue is empty. Stop processing here
			 * and drop the tx status.
			 */
			WARNING(rt2x00dev, "Got TX status for an empty "
769
					   "queue %u, dropping\n", qid);
770 771 772 773 774
			break;
		}

		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
		rt2800_txdone_entry(entry, status);
775 776 777

		if (--max_tx_done == 0)
			break;
778
	}
779 780

	return !max_tx_done;
781 782
}

783 784
static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
					      struct rt2x00_field32 irq_field)
785
{
786
	u32 reg;
787 788

	/*
789 790
	 * Enable a single interrupt. The interrupt mask register
	 * access needs locking.
791
	 */
792
	spin_lock_irq(&rt2x00dev->irqmask_lock);
793
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
794
	rt2x00_set_field32(&reg, irq_field, 1);
795
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
796
	spin_unlock_irq(&rt2x00dev->irqmask_lock);
797
}
798

799 800
static void rt2800pci_txstatus_tasklet(unsigned long data)
{
801 802 803
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	if (rt2800pci_txdone(rt2x00dev))
		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
804 805

	/*
806 807 808
	 * No need to enable the tx status interrupt here as we always
	 * leave it enabled to minimize the possibility of a tx status
	 * register overflow. See comment in interrupt handler.
809
	 */
810
}
811

812 813 814 815 816 817
static void rt2800pci_pretbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2x00lib_pretbtt(rt2x00dev);
	rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
}
818

819 820 821 822 823 824
static void rt2800pci_tbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2x00lib_beacondone(rt2x00dev);
	rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
}
825

826 827 828
static void rt2800pci_rxdone_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
829 830 831 832
	if (rt2x00pci_rxdone(rt2x00dev))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
	else
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
833 834 835 836 837 838 839
}

static void rt2800pci_autowake_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2800pci_wakeup(rt2x00dev);
	rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
840 841
}

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
{
	u32 status;
	int i;

	/*
	 * The TX_FIFO_STATUS interrupt needs special care. We should
	 * read TX_STA_FIFO but we should do it immediately as otherwise
	 * the register can overflow and we would lose status reports.
	 *
	 * Hence, read the TX_STA_FIFO register and copy all tx status
	 * reports into a kernel FIFO which is handled in the txstatus
	 * tasklet. We use a tasklet to process the tx status reports
	 * because we can schedule the tasklet multiple times (when the
	 * interrupt fires again during tx status processing).
	 *
	 * Furthermore we don't disable the TX_FIFO_STATUS
	 * interrupt here but leave it enabled so that the TX_STA_FIFO
H
Helmut Schaa 已提交
860
	 * can also be read while the tx status tasklet gets executed.
861 862 863 864
	 *
	 * Since we have only one producer and one consumer we don't
	 * need to lock the kfifo.
	 */
865
	for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
866
		rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
867 868 869 870

		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
			break;

871
		if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
872 873 874 875 876 877 878 879 880 881
			WARNING(rt2x00dev, "TX status FIFO overrun,"
				"drop tx status report.\n");
			break;
		}
	}

	/* Schedule the tasklet for processing the tx status. */
	tasklet_schedule(&rt2x00dev->txstatus_tasklet);
}

882 883 884
static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
885
	u32 reg, mask;
886 887

	/* Read status and ACK all interrupts */
888 889
	rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
890 891 892 893 894 895 896

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

897 898 899 900 901 902
	/*
	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
	 * for interrupts and interrupt masks we can just use the value of
	 * INT_SOURCE_CSR to create the interrupt mask.
	 */
	mask = ~reg;
903

904 905
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
		rt2800pci_txstatus_interrupt(rt2x00dev);
906
		/*
907
		 * Never disable the TX_FIFO_STATUS interrupt.
908
		 */
909 910
		rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
	}
911

912 913
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
		tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
914

915 916
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
917

918 919
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
920

921 922 923 924 925 926 927
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
		tasklet_schedule(&rt2x00dev->autowake_tasklet);

	/*
	 * Disable all interrupts for which a tasklet was scheduled right now,
	 * the tasklet will reenable the appropriate interrupts.
	 */
928
	spin_lock(&rt2x00dev->irqmask_lock);
929
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
930
	reg &= mask;
931
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
932
	spin_unlock(&rt2x00dev->irqmask_lock);
933 934

	return IRQ_HANDLED;
935 936
}

937 938 939
/*
 * Device probe functions.
 */
940 941 942 943 944
static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Read EEPROM into buffer
	 */
945
	if (rt2x00_is_soc(rt2x00dev))
946
		rt2800pci_read_eeprom_soc(rt2x00dev);
947 948 949 950
	else if (rt2800pci_efuse_detect(rt2x00dev))
		rt2800pci_read_eeprom_efuse(rt2x00dev);
	else
		rt2800pci_read_eeprom_pci(rt2x00dev);
951 952 953 954

	return rt2800_validate_eeprom(rt2x00dev);
}

955 956 957 958 959 960 961 962 963 964 965
static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2800pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

966
	retval = rt2800_init_eeprom(rt2x00dev);
967 968 969 970 971 972
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
973
	retval = rt2800_probe_hw_mode(rt2x00dev);
974 975 976 977 978 979 980
	if (retval)
		return retval;

	/*
	 * This device has multiple filters for control frames
	 * and has a separate filter for PS Poll frames.
	 */
I
Ivo van Doorn 已提交
981 982
	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
	__set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
983

984 985 986 987
	/*
	 * This device has a pre tbtt interrupt and thus fetches
	 * a new beacon directly prior to transmission.
	 */
I
Ivo van Doorn 已提交
988
	__set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
989

990 991 992
	/*
	 * This device requires firmware.
	 */
993
	if (!rt2x00_is_soc(rt2x00dev))
I
Ivo van Doorn 已提交
994 995 996 997 998
		__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
999
	if (!modparam_nohwcrypt)
I
Ivo van Doorn 已提交
1000 1001 1002
		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
1003 1004 1005 1006 1007 1008 1009 1010 1011

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
static const struct ieee80211_ops rt2800pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
	.configure_filter	= rt2x00mac_configure_filter,
	.set_key		= rt2x00mac_set_key,
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
	.get_stats		= rt2x00mac_get_stats,
	.get_tkip_seq		= rt2800_get_tkip_seq,
	.set_rts_threshold	= rt2800_set_rts_threshold,
	.bss_info_changed	= rt2x00mac_bss_info_changed,
	.conf_tx		= rt2800_conf_tx,
	.get_tsf		= rt2800_get_tsf,
	.rfkill_poll		= rt2x00mac_rfkill_poll,
	.ampdu_action		= rt2800_ampdu_action,
I
Ivo van Doorn 已提交
1031
	.flush			= rt2x00mac_flush,
1032
	.get_survey		= rt2800_get_survey,
1033
	.get_ringparam		= rt2x00mac_get_ringparam,
1034
	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1035 1036
};

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
static const struct rt2800_ops rt2800pci_rt2800_ops = {
	.register_read		= rt2x00pci_register_read,
	.register_read_lock	= rt2x00pci_register_read, /* same for PCI */
	.register_write		= rt2x00pci_register_write,
	.register_write_lock	= rt2x00pci_register_write, /* same for PCI */
	.register_multiread	= rt2x00pci_register_multiread,
	.register_multiwrite	= rt2x00pci_register_multiwrite,
	.regbusy_read		= rt2x00pci_regbusy_read,
	.drv_write_firmware	= rt2800pci_write_firmware,
	.drv_init_registers	= rt2800pci_init_registers,
1047
	.drv_get_txwi		= rt2800pci_get_txwi,
1048 1049
};

1050 1051
static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
	.irq_handler		= rt2800pci_interrupt,
1052 1053 1054 1055 1056
	.txstatus_tasklet	= rt2800pci_txstatus_tasklet,
	.pretbtt_tasklet	= rt2800pci_pretbtt_tasklet,
	.tbtt_tasklet		= rt2800pci_tbtt_tasklet,
	.rxdone_tasklet		= rt2800pci_rxdone_tasklet,
	.autowake_tasklet	= rt2800pci_autowake_tasklet,
1057 1058
	.probe_hw		= rt2800pci_probe_hw,
	.get_firmware_name	= rt2800pci_get_firmware_name,
1059 1060
	.check_firmware		= rt2800_check_firmware,
	.load_firmware		= rt2800_load_firmware,
1061 1062 1063 1064 1065
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
	.get_entry_state	= rt2800pci_get_entry_state,
	.clear_entry		= rt2800pci_clear_entry,
	.set_device_state	= rt2800pci_set_device_state,
1066 1067 1068 1069
	.rfkill_poll		= rt2800_rfkill_poll,
	.link_stats		= rt2800_link_stats,
	.reset_tuner		= rt2800_reset_tuner,
	.link_tuner		= rt2800_link_tuner,
1070
	.gain_calibration	= rt2800_gain_calibration,
1071 1072 1073
	.start_queue		= rt2800pci_start_queue,
	.kick_queue		= rt2800pci_kick_queue,
	.stop_queue		= rt2800pci_stop_queue,
1074
	.flush_queue		= rt2x00pci_flush_queue,
1075
	.write_tx_desc		= rt2800pci_write_tx_desc,
1076
	.write_tx_data		= rt2800_write_tx_data,
1077
	.write_beacon		= rt2800_write_beacon,
1078
	.clear_beacon		= rt2800_clear_beacon,
1079
	.fill_rxdone		= rt2800pci_fill_rxdone,
1080 1081 1082 1083 1084 1085 1086
	.config_shared_key	= rt2800_config_shared_key,
	.config_pairwise_key	= rt2800_config_pairwise_key,
	.config_filter		= rt2800_config_filter,
	.config_intf		= rt2800_config_intf,
	.config_erp		= rt2800_config_erp,
	.config_ant		= rt2800_config_ant,
	.config			= rt2800_config,
1087 1088 1089
};

static const struct data_queue_desc rt2800pci_queue_rx = {
1090
	.entry_num		= 128,
1091 1092 1093 1094 1095 1096
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= RXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_tx = {
1097
	.entry_num		= 64,
1098 1099 1100 1101 1102 1103
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= TXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_bcn = {
1104
	.entry_num		= 8,
1105 1106 1107 1108 1109 1110
	.data_size		= 0, /* No DMA required for beacons */
	.desc_size		= TXWI_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct rt2x00_ops rt2800pci_ops = {
G
Gertjan van Wingerde 已提交
1111 1112 1113 1114 1115 1116
	.name			= KBUILD_MODNAME,
	.max_sta_intf		= 1,
	.max_ap_intf		= 8,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1117
	.extra_tx_headroom	= TXWI_DESC_SIZE,
G
Gertjan van Wingerde 已提交
1118 1119 1120 1121
	.rx			= &rt2800pci_queue_rx,
	.tx			= &rt2800pci_queue_tx,
	.bcn			= &rt2800pci_queue_bcn,
	.lib			= &rt2800pci_rt2x00_ops,
1122
	.drv			= &rt2800pci_rt2800_ops,
1123
	.hw			= &rt2800pci_mac80211_ops,
1124
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1125
	.debugfs		= &rt2800_rt2x00debug,
1126 1127 1128 1129 1130 1131
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2800pci module information.
 */
1132
#ifdef CONFIG_PCI
1133
static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
	{ PCI_DEVICE(0x1814, 0x0601) },
	{ PCI_DEVICE(0x1814, 0x0681) },
	{ PCI_DEVICE(0x1814, 0x0701) },
	{ PCI_DEVICE(0x1814, 0x0781) },
	{ PCI_DEVICE(0x1814, 0x3090) },
	{ PCI_DEVICE(0x1814, 0x3091) },
	{ PCI_DEVICE(0x1814, 0x3092) },
	{ PCI_DEVICE(0x1432, 0x7708) },
	{ PCI_DEVICE(0x1432, 0x7727) },
	{ PCI_DEVICE(0x1432, 0x7728) },
	{ PCI_DEVICE(0x1432, 0x7738) },
	{ PCI_DEVICE(0x1432, 0x7748) },
	{ PCI_DEVICE(0x1432, 0x7758) },
	{ PCI_DEVICE(0x1432, 0x7768) },
	{ PCI_DEVICE(0x1462, 0x891a) },
	{ PCI_DEVICE(0x1a3b, 0x1059) },
1150
#ifdef CONFIG_RT2800PCI_RT33XX
1151
	{ PCI_DEVICE(0x1814, 0x3390) },
1152
#endif
1153
#ifdef CONFIG_RT2800PCI_RT35XX
1154 1155 1156 1157 1158 1159 1160
	{ PCI_DEVICE(0x1432, 0x7711) },
	{ PCI_DEVICE(0x1432, 0x7722) },
	{ PCI_DEVICE(0x1814, 0x3060) },
	{ PCI_DEVICE(0x1814, 0x3062) },
	{ PCI_DEVICE(0x1814, 0x3562) },
	{ PCI_DEVICE(0x1814, 0x3592) },
	{ PCI_DEVICE(0x1814, 0x3593) },
1161 1162
#endif
#ifdef CONFIG_RT2800PCI_RT53XX
1163
	{ PCI_DEVICE(0x1814, 0x5390) },
1164
	{ PCI_DEVICE(0x1814, 0x539f) },
1165
#endif
1166 1167
	{ 0, }
};
1168
#endif /* CONFIG_PCI */
1169 1170 1171 1172 1173

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1174
#ifdef CONFIG_PCI
1175 1176
MODULE_FIRMWARE(FIRMWARE_RT2860);
MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1177
#endif /* CONFIG_PCI */
1178 1179
MODULE_LICENSE("GPL");

1180
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1181 1182
static int rt2800soc_probe(struct platform_device *pdev)
{
1183
	return rt2x00soc_probe(pdev, &rt2800pci_ops);
1184
}
1185 1186 1187 1188 1189 1190 1191

static struct platform_driver rt2800soc_driver = {
	.driver		= {
		.name		= "rt2800_wmac",
		.owner		= THIS_MODULE,
		.mod_name	= KBUILD_MODNAME,
	},
1192
	.probe		= rt2800soc_probe,
1193 1194 1195 1196
	.remove		= __devexit_p(rt2x00soc_remove),
	.suspend	= rt2x00soc_suspend,
	.resume		= rt2x00soc_resume,
};
1197
#endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1198

1199
#ifdef CONFIG_PCI
1200 1201 1202 1203 1204 1205
static int rt2800pci_probe(struct pci_dev *pci_dev,
			   const struct pci_device_id *id)
{
	return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
}

1206 1207 1208
static struct pci_driver rt2800pci_driver = {
	.name		= KBUILD_MODNAME,
	.id_table	= rt2800pci_device_table,
1209
	.probe		= rt2800pci_probe,
1210 1211 1212 1213
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};
1214
#endif /* CONFIG_PCI */
1215 1216 1217 1218 1219

static int __init rt2800pci_init(void)
{
	int ret = 0;

1220
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1221 1222 1223 1224
	ret = platform_driver_register(&rt2800soc_driver);
	if (ret)
		return ret;
#endif
1225
#ifdef CONFIG_PCI
1226 1227
	ret = pci_register_driver(&rt2800pci_driver);
	if (ret) {
1228
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		platform_driver_unregister(&rt2800soc_driver);
#endif
		return ret;
	}
#endif

	return ret;
}

static void __exit rt2800pci_exit(void)
{
1240
#ifdef CONFIG_PCI
1241 1242
	pci_unregister_driver(&rt2800pci_driver);
#endif
1243
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1244 1245 1246 1247 1248 1249
	platform_driver_unregister(&rt2800soc_driver);
#endif
}

module_init(rt2800pci_init);
module_exit(rt2800pci_exit);