rt2800pci.c 36.5 KB
Newer Older
1
/*
2
	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9
	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2800pci
	Abstract: rt2800pci device specific routines.
	Supported chipsets: RT2800E & RT2800ED.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2x00soc.h"
46
#include "rt2800lib.h"
47
#include "rt2800.h"
48 49 50 51 52
#include "rt2800pci.h"

/*
 * Allow hardware encryption to be disabled.
 */
53
static bool modparam_nohwcrypt = false;
54 55 56 57 58 59 60 61
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
{
	unsigned int i;
	u32 reg;

62 63 64 65 66 67
	/*
	 * SOC devices don't support MCU requests.
	 */
	if (rt2x00_is_soc(rt2x00dev))
		return;

68
	for (i = 0; i < 200; i++) {
69
		rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70 71 72 73 74 75 76 77 78 79 80 81 82

		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
			break;

		udelay(REGISTER_BUSY_DELAY);
	}

	if (i == 200)
		ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");

83 84
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 86
}

87
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 89
static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
90
	void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
91 92

	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93 94

	iounmap(base_addr);
95 96 97 98 99
}
#else
static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
}
100
#endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
101

102
#ifdef CONFIG_PCI
103 104 105 106 107
static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

108
	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

130
	rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
131 132 133 134 135 136 137
}

static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;

138
	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
139 140 141 142

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2800pci_eepromregister_read;
	eeprom.register_write = rt2800pci_eepromregister_write;
143 144 145 146 147 148 149 150 151 152 153 154
	switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
	{
	case 0:
		eeprom.width = PCI_EEPROM_WIDTH_93C46;
		break;
	case 1:
		eeprom.width = PCI_EEPROM_WIDTH_93C66;
		break;
	default:
		eeprom.width = PCI_EEPROM_WIDTH_93C86;
		break;
	}
155 156 157 158 159 160 161 162 163
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));
}

164 165
static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
166
	return rt2800_efuse_detect(rt2x00dev);
167 168
}

169
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
170
{
171
	rt2800_read_eeprom_efuse(rt2x00dev);
172 173 174 175 176 177
}
#else
static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
}

178 179 180 181 182
static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
	return 0;
}

183 184 185
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
}
186
#endif /* CONFIG_PCI */
187

188 189 190 191 192 193 194 195 196 197
/*
 * Queue handlers.
 */
static void rt2800pci_start_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
198
		rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
199
		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
200
		rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
201 202
		break;
	case QID_BEACON:
203
		rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
204 205 206
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
207
		rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
208

209
		rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
210
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
211
		rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
212 213 214
		break;
	default:
		break;
215
	}
216 217 218 219 220 221 222 223
}

static void rt2800pci_kick_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	struct queue_entry *entry;

	switch (queue->qid) {
I
Ivo van Doorn 已提交
224 225
	case QID_AC_VO:
	case QID_AC_VI:
226 227 228
	case QID_AC_BE:
	case QID_AC_BK:
		entry = rt2x00queue_get_entry(queue, Q_INDEX);
229 230
		rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
					 entry->entry_idx);
231 232 233
		break;
	case QID_MGMT:
		entry = rt2x00queue_get_entry(queue, Q_INDEX);
234 235
		rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
					 entry->entry_idx);
236 237 238 239 240 241 242 243 244 245 246 247 248
		break;
	default:
		break;
	}
}

static void rt2800pci_stop_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
249
		rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
250
		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
251
		rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
252 253
		break;
	case QID_BEACON:
254
		rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
255 256 257
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
258
		rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
259

260
		rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
261
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
262
		rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
263 264

		/*
265 266 267
		 * Wait for current invocation to finish. The tasklet
		 * won't be scheduled anymore afterwards since we disabled
		 * the TBTT and PRE TBTT timer.
268
		 */
269 270 271
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
		tasklet_kill(&rt2x00dev->pretbtt_tasklet);

272 273 274 275 276 277
		break;
	default:
		break;
	}
}

278 279 280 281 282 283 284 285
/*
 * Firmware functions
 */
static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
	return FIRMWARE_RT2860;
}

286
static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
287 288 289 290 291 292 293 294 295
				    const u8 *data, const size_t len)
{
	u32 reg;

	/*
	 * enable Host program ram write selection
	 */
	reg = 0;
	rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
296
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
297 298 299 300

	/*
	 * Write firmware to device.
	 */
301 302
	rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
				      data, len);
303

304 305
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
306

307 308
	rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

	return 0;
}

/*
 * Initialization functions.
 */
static bool rt2800pci_get_entry_state(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
	}
}

static void rt2800pci_clear_entry(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
336
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
337 338 339 340 341 342 343 344 345 346
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 0, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
		rt2x00_desc_write(entry_priv->desc, 1, word);
347 348 349 350 351

		/*
		 * Set RX IDX in register to inform hardware that we have
		 * handled this entry and it is available for reuse again.
		 */
352
		rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
353
				      entry->entry_idx);
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	}
}

static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
	struct queue_entry_priv_pci *entry_priv;

	/*
	 * Initialize registers.
	 */
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
369 370 371 372 373
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
				 rt2x00dev->tx[0].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
374 375

	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
376 377 378 379 380
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
				 rt2x00dev->tx[1].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
381 382

	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
383 384 385 386 387
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
				 rt2x00dev->tx[2].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
388 389

	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
390 391 392 393 394
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
				 rt2x00dev->tx[3].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
395 396

	entry_priv = rt2x00dev->rx->entries[0].priv_data;
397 398 399 400 401 402
	rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
				 rt2x00dev->rx[0].limit);
	rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
				 rt2x00dev->rx[0].limit - 1);
	rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
403

404
	rt2800_disable_wpdma(rt2x00dev);
405

406
	rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
407 408 409 410 411 412 413 414 415 416 417

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
	u32 reg;
418
	unsigned long flags;
419 420 421 422 423 424

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
425 426
		rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
427
	}
428

429
	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
430 431 432 433 434 435 436 437
	reg = 0;
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
	}
438
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
439 440 441 442
	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);

	if (state == STATE_RADIO_IRQ_OFF) {
		/*
443
		 * Wait for possibly running tasklets to finish.
444
		 */
445 446 447 448 449
		tasklet_kill(&rt2x00dev->txstatus_tasklet);
		tasklet_kill(&rt2x00dev->rxdone_tasklet);
		tasklet_kill(&rt2x00dev->autowake_tasklet);
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
450
	}
451 452
}

453 454 455 456 457 458 459
static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Reset DMA indexes
	 */
460
	rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
461 462 463 464 465 466 467
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
468
	rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
469

470 471
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
472

473 474
	if (rt2x00_is_pcie(rt2x00dev) &&
	    (rt2x00_rt(rt2x00dev, RT3572) ||
J
John Li 已提交
475 476
	     rt2x00_rt(rt2x00dev, RT5390) ||
	     rt2x00_rt(rt2x00dev, RT5392))) {
477
		rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
478 479
		rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
		rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
480
		rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
481
	}
482

483
	rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
484

485
	reg = 0;
486 487
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
488
	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
489

490
	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
491 492 493 494

	return 0;
}

495 496
static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
497 498
	int retval;

499
	if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
500
		     rt2800pci_init_queues(rt2x00dev)))
501 502
		return -EIO;

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
	retval = rt2800_enable_radio(rt2x00dev);
	if (retval)
		return retval;

	/* After resume MCU_BOOT_SIGNAL will trash these. */
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);

	rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
	rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);

	rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
	rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);

	return retval;
518 519 520 521
}

static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
522 523
	if (rt2x00_is_soc(rt2x00dev)) {
		rt2800_disable_radio(rt2x00dev);
524 525
		rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
		rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
526
	}
527 528 529 530 531 532
}

static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	if (state == STATE_AWAKE) {
533 534 535
		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
				   0, 0x02);
		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
536
	} else if (state == STATE_SLEEP) {
537 538 539 540
		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
					 0xffffffff);
		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
					 0xffffffff);
541 542
		rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
				   0xff, 0x01);
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
	}

	return 0;
}

static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt2800pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		/*
		 * After the radio has been disabled, the device should
		 * be put to sleep for powersaving.
		 */
		rt2800pci_disable_radio(rt2x00dev);
		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt2800pci_toggle_irq(rt2x00dev, state);
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2800pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

	return retval;
}

/*
 * TX descriptor initialization
 */
590
static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
591
{
592
	return (__le32 *) entry->skb->data;
593 594
}

595
static void rt2800pci_write_tx_desc(struct queue_entry *entry,
596 597
				    struct txentry_desc *txdesc)
{
598 599
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
600
	__le32 *txd = entry_priv->desc;
601 602
	u32 word;

603 604 605 606 607 608 609 610 611 612 613
	/*
	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
	 * must contains a TXWI structure + 802.11 header + padding + 802.11
	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
	 * data. It means that LAST_SEC0 is always 0.
	 */

	/*
	 * Initialize TX descriptor
	 */
614
	word = 0;
615 616 617
	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
	rt2x00_desc_write(txd, 0, word);

618
	word = 0;
619
	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
620 621 622 623
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_BURST,
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
624
	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
625 626 627 628
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
	rt2x00_desc_write(txd, 1, word);

629
	word = 0;
630
	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
631
			   skbdesc->skb_dma + TXWI_DESC_SIZE);
632 633
	rt2x00_desc_write(txd, 2, word);

634
	word = 0;
635 636 637 638
	rt2x00_set_field32(&word, TXD_W3_WIV,
			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
	rt2x00_desc_write(txd, 3, word);
639 640 641 642 643 644

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
645 646 647 648 649 650 651 652 653 654
}

/*
 * RX control handlers
 */
static void rt2800pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	__le32 *rxd = entry_priv->desc;
655 656 657 658 659
	u32 word;

	rt2x00_desc_read(rxd, 3, &word);

	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
660 661
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;

662 663 664 665 666
	/*
	 * Unfortunately we don't know the cipher type used during
	 * decryption. This prevents us from correct providing
	 * correct statistics through debugfs.
	 */
667
	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
668

669
	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
670 671 672 673 674 675 676 677
		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
		 * decryption. Unfortunately the descriptor doesn't contain
		 * any fields with the EIV/IV data either, so they can't
		 * be restored by rt2x00lib.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

678 679 680 681 682 683
		/*
		 * The hardware has already checked the Michael Mic and has
		 * stripped it from the frame. Signal this to mac80211.
		 */
		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;

684 685 686 687 688 689
		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

690
	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
691 692
		rxdesc->dev_flags |= RXDONE_MY_BSS;

693
	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
694 695 696
		rxdesc->dev_flags |= RXDONE_L2PAD;

	/*
697
	 * Process the RXWI structure that is at the start of the buffer.
698
	 */
699
	rt2800_process_rxwi(entry, rxdesc);
700 701 702 703 704
}

/*
 * Interrupt functions.
 */
705 706 707 708 709 710 711 712
static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
	struct ieee80211_conf conf = { .flags = 0 };
	struct rt2x00lib_conf libconf = { .conf = &conf };

	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}

713
static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
714 715 716 717 718
{
	struct data_queue *queue;
	struct queue_entry *entry;
	u32 status;
	u8 qid;
719
	int max_tx_done = 16;
720

721
	while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
722
		qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
723
		if (unlikely(qid >= QID_RX)) {
724 725 726 727 728
			/*
			 * Unknown queue, this shouldn't happen. Just drop
			 * this tx status.
			 */
			WARNING(rt2x00dev, "Got TX status report with "
729
					   "unexpected pid %u, dropping\n", qid);
730 731 732
			break;
		}

733
		queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
734 735 736 737 738 739
		if (unlikely(queue == NULL)) {
			/*
			 * The queue is NULL, this shouldn't happen. Stop
			 * processing here and drop the tx status
			 */
			WARNING(rt2x00dev, "Got TX status for an unavailable "
740
					   "queue %u, dropping\n", qid);
741 742 743
			break;
		}

744
		if (unlikely(rt2x00queue_empty(queue))) {
745 746 747 748 749
			/*
			 * The queue is empty. Stop processing here
			 * and drop the tx status.
			 */
			WARNING(rt2x00dev, "Got TX status for an empty "
750
					   "queue %u, dropping\n", qid);
751 752 753 754
			break;
		}

		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
755
		rt2800_txdone_entry(entry, status, rt2800pci_get_txwi(entry));
756 757 758

		if (--max_tx_done == 0)
			break;
759
	}
760 761

	return !max_tx_done;
762 763
}

764 765
static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
					      struct rt2x00_field32 irq_field)
766
{
767
	u32 reg;
768 769

	/*
770 771
	 * Enable a single interrupt. The interrupt mask register
	 * access needs locking.
772
	 */
773
	spin_lock_irq(&rt2x00dev->irqmask_lock);
774
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
775
	rt2x00_set_field32(&reg, irq_field, 1);
776
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
777
	spin_unlock_irq(&rt2x00dev->irqmask_lock);
778
}
779

780 781
static void rt2800pci_txstatus_tasklet(unsigned long data)
{
782 783 784
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	if (rt2800pci_txdone(rt2x00dev))
		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
785 786

	/*
787 788 789
	 * No need to enable the tx status interrupt here as we always
	 * leave it enabled to minimize the possibility of a tx status
	 * register overflow. See comment in interrupt handler.
790
	 */
791
}
792

793 794 795 796
static void rt2800pci_pretbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2x00lib_pretbtt(rt2x00dev);
797 798
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
799
}
800

801 802 803
static void rt2800pci_tbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
804 805 806
	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
	u32 reg;

807
	rt2x00lib_beacondone(rt2x00dev);
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830

	if (rt2x00dev->intf_ap_count) {
		/*
		 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
		 * causing beacon skew and as a result causing problems with
		 * some powersaving clients over time. Shorten the beacon
		 * interval every 64 beacons by 64us to mitigate this effect.
		 */
		if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
			rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
					   (rt2x00dev->beacon_int * 16) - 1);
			rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
		} else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
			rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
					   (rt2x00dev->beacon_int * 16));
			rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
		}
		drv_data->tbtt_tick++;
		drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
	}

831 832
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
833
}
834

835 836 837
static void rt2800pci_rxdone_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
838 839
	if (rt2x00pci_rxdone(rt2x00dev))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
840
	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
841
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
842 843 844 845 846 847
}

static void rt2800pci_autowake_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2800pci_wakeup(rt2x00dev);
848 849
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
850 851
}

852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
{
	u32 status;
	int i;

	/*
	 * The TX_FIFO_STATUS interrupt needs special care. We should
	 * read TX_STA_FIFO but we should do it immediately as otherwise
	 * the register can overflow and we would lose status reports.
	 *
	 * Hence, read the TX_STA_FIFO register and copy all tx status
	 * reports into a kernel FIFO which is handled in the txstatus
	 * tasklet. We use a tasklet to process the tx status reports
	 * because we can schedule the tasklet multiple times (when the
	 * interrupt fires again during tx status processing).
	 *
	 * Furthermore we don't disable the TX_FIFO_STATUS
	 * interrupt here but leave it enabled so that the TX_STA_FIFO
H
Helmut Schaa 已提交
870
	 * can also be read while the tx status tasklet gets executed.
871 872 873 874
	 *
	 * Since we have only one producer and one consumer we don't
	 * need to lock the kfifo.
	 */
875
	for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
876
		rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
877 878 879 880

		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
			break;

881
		if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
882 883 884 885 886 887 888 889 890 891
			WARNING(rt2x00dev, "TX status FIFO overrun,"
				"drop tx status report.\n");
			break;
		}
	}

	/* Schedule the tasklet for processing the tx status. */
	tasklet_schedule(&rt2x00dev->txstatus_tasklet);
}

892 893 894
static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
895
	u32 reg, mask;
896 897

	/* Read status and ACK all interrupts */
898 899
	rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
900 901 902 903 904 905 906

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

907 908 909 910 911 912
	/*
	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
	 * for interrupts and interrupt masks we can just use the value of
	 * INT_SOURCE_CSR to create the interrupt mask.
	 */
	mask = ~reg;
913

914 915
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
		rt2800pci_txstatus_interrupt(rt2x00dev);
916
		/*
917
		 * Never disable the TX_FIFO_STATUS interrupt.
918
		 */
919 920
		rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
	}
921

922 923
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
		tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
924

925 926
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
927

928 929
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
930

931 932 933 934 935 936 937
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
		tasklet_schedule(&rt2x00dev->autowake_tasklet);

	/*
	 * Disable all interrupts for which a tasklet was scheduled right now,
	 * the tasklet will reenable the appropriate interrupts.
	 */
938
	spin_lock(&rt2x00dev->irqmask_lock);
939
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
940
	reg &= mask;
941
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
942
	spin_unlock(&rt2x00dev->irqmask_lock);
943 944

	return IRQ_HANDLED;
945 946
}

947 948 949
/*
 * Device probe functions.
 */
950 951 952 953 954
static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Read EEPROM into buffer
	 */
955
	if (rt2x00_is_soc(rt2x00dev))
956
		rt2800pci_read_eeprom_soc(rt2x00dev);
957 958 959 960
	else if (rt2800pci_efuse_detect(rt2x00dev))
		rt2800pci_read_eeprom_efuse(rt2x00dev);
	else
		rt2800pci_read_eeprom_pci(rt2x00dev);
961 962 963 964

	return rt2800_validate_eeprom(rt2x00dev);
}

965 966 967 968 969 970 971 972 973 974 975
static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2800pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

976
	retval = rt2800_init_eeprom(rt2x00dev);
977 978 979 980 981 982
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
983
	retval = rt2800_probe_hw_mode(rt2x00dev);
984 985 986 987 988 989 990
	if (retval)
		return retval;

	/*
	 * This device has multiple filters for control frames
	 * and has a separate filter for PS Poll frames.
	 */
I
Ivo van Doorn 已提交
991 992
	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
	__set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
993

994 995 996 997
	/*
	 * This device has a pre tbtt interrupt and thus fetches
	 * a new beacon directly prior to transmission.
	 */
I
Ivo van Doorn 已提交
998
	__set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
999

1000 1001 1002
	/*
	 * This device requires firmware.
	 */
1003
	if (!rt2x00_is_soc(rt2x00dev))
I
Ivo van Doorn 已提交
1004 1005 1006 1007 1008
		__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
1009
	if (!modparam_nohwcrypt)
I
Ivo van Doorn 已提交
1010 1011 1012
		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
1013 1014 1015 1016 1017 1018 1019 1020 1021

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
static const struct ieee80211_ops rt2800pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
	.configure_filter	= rt2x00mac_configure_filter,
	.set_key		= rt2x00mac_set_key,
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
	.get_stats		= rt2x00mac_get_stats,
	.get_tkip_seq		= rt2800_get_tkip_seq,
	.set_rts_threshold	= rt2800_set_rts_threshold,
1036 1037
	.sta_add		= rt2x00mac_sta_add,
	.sta_remove		= rt2x00mac_sta_remove,
1038 1039 1040 1041 1042
	.bss_info_changed	= rt2x00mac_bss_info_changed,
	.conf_tx		= rt2800_conf_tx,
	.get_tsf		= rt2800_get_tsf,
	.rfkill_poll		= rt2x00mac_rfkill_poll,
	.ampdu_action		= rt2800_ampdu_action,
I
Ivo van Doorn 已提交
1043
	.flush			= rt2x00mac_flush,
1044
	.get_survey		= rt2800_get_survey,
1045
	.get_ringparam		= rt2x00mac_get_ringparam,
1046
	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1047 1048
};

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
static const struct rt2800_ops rt2800pci_rt2800_ops = {
	.register_read		= rt2x00pci_register_read,
	.register_read_lock	= rt2x00pci_register_read, /* same for PCI */
	.register_write		= rt2x00pci_register_write,
	.register_write_lock	= rt2x00pci_register_write, /* same for PCI */
	.register_multiread	= rt2x00pci_register_multiread,
	.register_multiwrite	= rt2x00pci_register_multiwrite,
	.regbusy_read		= rt2x00pci_regbusy_read,
	.drv_write_firmware	= rt2800pci_write_firmware,
	.drv_init_registers	= rt2800pci_init_registers,
1059
	.drv_get_txwi		= rt2800pci_get_txwi,
1060 1061
};

1062 1063
static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
	.irq_handler		= rt2800pci_interrupt,
1064 1065 1066 1067 1068
	.txstatus_tasklet	= rt2800pci_txstatus_tasklet,
	.pretbtt_tasklet	= rt2800pci_pretbtt_tasklet,
	.tbtt_tasklet		= rt2800pci_tbtt_tasklet,
	.rxdone_tasklet		= rt2800pci_rxdone_tasklet,
	.autowake_tasklet	= rt2800pci_autowake_tasklet,
1069 1070
	.probe_hw		= rt2800pci_probe_hw,
	.get_firmware_name	= rt2800pci_get_firmware_name,
1071 1072
	.check_firmware		= rt2800_check_firmware,
	.load_firmware		= rt2800_load_firmware,
1073 1074 1075 1076 1077
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
	.get_entry_state	= rt2800pci_get_entry_state,
	.clear_entry		= rt2800pci_clear_entry,
	.set_device_state	= rt2800pci_set_device_state,
1078 1079 1080 1081
	.rfkill_poll		= rt2800_rfkill_poll,
	.link_stats		= rt2800_link_stats,
	.reset_tuner		= rt2800_reset_tuner,
	.link_tuner		= rt2800_link_tuner,
1082
	.gain_calibration	= rt2800_gain_calibration,
J
John Li 已提交
1083
	.vco_calibration	= rt2800_vco_calibration,
1084 1085 1086
	.start_queue		= rt2800pci_start_queue,
	.kick_queue		= rt2800pci_kick_queue,
	.stop_queue		= rt2800pci_stop_queue,
1087
	.flush_queue		= rt2x00pci_flush_queue,
1088
	.write_tx_desc		= rt2800pci_write_tx_desc,
1089
	.write_tx_data		= rt2800_write_tx_data,
1090
	.write_beacon		= rt2800_write_beacon,
1091
	.clear_beacon		= rt2800_clear_beacon,
1092
	.fill_rxdone		= rt2800pci_fill_rxdone,
1093 1094 1095 1096 1097 1098 1099
	.config_shared_key	= rt2800_config_shared_key,
	.config_pairwise_key	= rt2800_config_pairwise_key,
	.config_filter		= rt2800_config_filter,
	.config_intf		= rt2800_config_intf,
	.config_erp		= rt2800_config_erp,
	.config_ant		= rt2800_config_ant,
	.config			= rt2800_config,
1100 1101
	.sta_add		= rt2800_sta_add,
	.sta_remove		= rt2800_sta_remove,
1102 1103 1104
};

static const struct data_queue_desc rt2800pci_queue_rx = {
1105
	.entry_num		= 128,
1106 1107 1108 1109 1110 1111
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= RXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_tx = {
1112
	.entry_num		= 64,
1113 1114 1115 1116 1117 1118
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= TXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_bcn = {
1119
	.entry_num		= 8,
1120 1121 1122 1123 1124 1125
	.data_size		= 0, /* No DMA required for beacons */
	.desc_size		= TXWI_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct rt2x00_ops rt2800pci_ops = {
G
Gertjan van Wingerde 已提交
1126
	.name			= KBUILD_MODNAME,
1127
	.drv_data_size		= sizeof(struct rt2800_drv_data),
G
Gertjan van Wingerde 已提交
1128 1129 1130 1131 1132
	.max_sta_intf		= 1,
	.max_ap_intf		= 8,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1133
	.extra_tx_headroom	= TXWI_DESC_SIZE,
G
Gertjan van Wingerde 已提交
1134 1135 1136 1137
	.rx			= &rt2800pci_queue_rx,
	.tx			= &rt2800pci_queue_tx,
	.bcn			= &rt2800pci_queue_bcn,
	.lib			= &rt2800pci_rt2x00_ops,
1138
	.drv			= &rt2800pci_rt2800_ops,
1139
	.hw			= &rt2800pci_mac80211_ops,
1140
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1141
	.debugfs		= &rt2800_rt2x00debug,
1142 1143 1144 1145 1146 1147
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2800pci module information.
 */
1148
#ifdef CONFIG_PCI
1149
static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	{ PCI_DEVICE(0x1814, 0x0601) },
	{ PCI_DEVICE(0x1814, 0x0681) },
	{ PCI_DEVICE(0x1814, 0x0701) },
	{ PCI_DEVICE(0x1814, 0x0781) },
	{ PCI_DEVICE(0x1814, 0x3090) },
	{ PCI_DEVICE(0x1814, 0x3091) },
	{ PCI_DEVICE(0x1814, 0x3092) },
	{ PCI_DEVICE(0x1432, 0x7708) },
	{ PCI_DEVICE(0x1432, 0x7727) },
	{ PCI_DEVICE(0x1432, 0x7728) },
	{ PCI_DEVICE(0x1432, 0x7738) },
	{ PCI_DEVICE(0x1432, 0x7748) },
	{ PCI_DEVICE(0x1432, 0x7758) },
	{ PCI_DEVICE(0x1432, 0x7768) },
	{ PCI_DEVICE(0x1462, 0x891a) },
	{ PCI_DEVICE(0x1a3b, 0x1059) },
1166
#ifdef CONFIG_RT2800PCI_RT33XX
1167
	{ PCI_DEVICE(0x1814, 0x3390) },
1168
#endif
1169
#ifdef CONFIG_RT2800PCI_RT35XX
1170 1171 1172 1173 1174 1175 1176
	{ PCI_DEVICE(0x1432, 0x7711) },
	{ PCI_DEVICE(0x1432, 0x7722) },
	{ PCI_DEVICE(0x1814, 0x3060) },
	{ PCI_DEVICE(0x1814, 0x3062) },
	{ PCI_DEVICE(0x1814, 0x3562) },
	{ PCI_DEVICE(0x1814, 0x3592) },
	{ PCI_DEVICE(0x1814, 0x3593) },
1177 1178
#endif
#ifdef CONFIG_RT2800PCI_RT53XX
1179
	{ PCI_DEVICE(0x1814, 0x5390) },
Z
zero.lin 已提交
1180
	{ PCI_DEVICE(0x1814, 0x539a) },
1181
	{ PCI_DEVICE(0x1814, 0x539f) },
1182
#endif
1183 1184
	{ 0, }
};
1185
#endif /* CONFIG_PCI */
1186 1187 1188 1189 1190

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1191
#ifdef CONFIG_PCI
1192 1193
MODULE_FIRMWARE(FIRMWARE_RT2860);
MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1194
#endif /* CONFIG_PCI */
1195 1196
MODULE_LICENSE("GPL");

1197
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1198 1199
static int rt2800soc_probe(struct platform_device *pdev)
{
1200
	return rt2x00soc_probe(pdev, &rt2800pci_ops);
1201
}
1202 1203 1204 1205 1206 1207 1208

static struct platform_driver rt2800soc_driver = {
	.driver		= {
		.name		= "rt2800_wmac",
		.owner		= THIS_MODULE,
		.mod_name	= KBUILD_MODNAME,
	},
1209
	.probe		= rt2800soc_probe,
1210 1211 1212 1213
	.remove		= __devexit_p(rt2x00soc_remove),
	.suspend	= rt2x00soc_suspend,
	.resume		= rt2x00soc_resume,
};
1214
#endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1215

1216
#ifdef CONFIG_PCI
1217 1218 1219 1220 1221 1222
static int rt2800pci_probe(struct pci_dev *pci_dev,
			   const struct pci_device_id *id)
{
	return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
}

1223 1224 1225
static struct pci_driver rt2800pci_driver = {
	.name		= KBUILD_MODNAME,
	.id_table	= rt2800pci_device_table,
1226
	.probe		= rt2800pci_probe,
1227 1228 1229 1230
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};
1231
#endif /* CONFIG_PCI */
1232 1233 1234 1235 1236

static int __init rt2800pci_init(void)
{
	int ret = 0;

1237
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1238 1239 1240 1241
	ret = platform_driver_register(&rt2800soc_driver);
	if (ret)
		return ret;
#endif
1242
#ifdef CONFIG_PCI
1243 1244
	ret = pci_register_driver(&rt2800pci_driver);
	if (ret) {
1245
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
		platform_driver_unregister(&rt2800soc_driver);
#endif
		return ret;
	}
#endif

	return ret;
}

static void __exit rt2800pci_exit(void)
{
1257
#ifdef CONFIG_PCI
1258 1259
	pci_unregister_driver(&rt2800pci_driver);
#endif
1260
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1261 1262 1263 1264 1265 1266
	platform_driver_unregister(&rt2800soc_driver);
#endif
}

module_init(rt2800pci_init);
module_exit(rt2800pci_exit);