rt2800pci.c 36.1 KB
Newer Older
1
/*
2
	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9
	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2800pci
	Abstract: rt2800pci device specific routines.
	Supported chipsets: RT2800E & RT2800ED.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2x00soc.h"
46
#include "rt2800lib.h"
47
#include "rt2800.h"
48 49 50 51 52
#include "rt2800pci.h"

/*
 * Allow hardware encryption to be disabled.
 */
53
static bool modparam_nohwcrypt = false;
54 55 56
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

57 58 59 60 61
static bool rt2800pci_hwcrypt_disabled(struct rt2x00_dev *rt2x00dev)
{
	return modparam_nohwcrypt;
}

62 63 64 65 66
static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
{
	unsigned int i;
	u32 reg;

67 68 69 70 71 72
	/*
	 * SOC devices don't support MCU requests.
	 */
	if (rt2x00_is_soc(rt2x00dev))
		return;

73
	for (i = 0; i < 200; i++) {
74
		rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
75 76 77 78 79 80 81 82 83 84 85 86 87

		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
			break;

		udelay(REGISTER_BUSY_DELAY);
	}

	if (i == 200)
		ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");

88 89
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
90 91
}

92
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
93
static int rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
94
{
95
	void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
96

97 98 99
	if (!base_addr)
		return -ENOMEM;

100
	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
101 102

	iounmap(base_addr);
103
	return 0;
104 105
}
#else
106
static inline int rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
107
{
108
	return -ENOMEM;
109
}
110
#endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
111

112
#ifdef CONFIG_PCI
113 114 115 116 117
static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

118
	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

140
	rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
141 142
}

143
static int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
144 145 146 147
{
	struct eeprom_93cx6 eeprom;
	u32 reg;

148
	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
149 150 151 152

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2800pci_eepromregister_read;
	eeprom.register_write = rt2800pci_eepromregister_write;
153 154 155 156 157 158 159 160 161 162 163 164
	switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
	{
	case 0:
		eeprom.width = PCI_EEPROM_WIDTH_93C46;
		break;
	case 1:
		eeprom.width = PCI_EEPROM_WIDTH_93C66;
		break;
	default:
		eeprom.width = PCI_EEPROM_WIDTH_93C86;
		break;
	}
165 166 167 168 169 170 171
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));
172 173

	return 0;
174 175
}

176 177
static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
178
	return rt2800_efuse_detect(rt2x00dev);
179 180
}

181
static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
182
{
183
	return rt2800_read_eeprom_efuse(rt2x00dev);
184 185
}
#else
186
static inline int rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
187
{
188
	return -EOPNOTSUPP;
189 190
}

191 192 193 194 195
static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
	return 0;
}

196
static inline int rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
197
{
198
	return -EOPNOTSUPP;
199
}
200
#endif /* CONFIG_PCI */
201

202 203 204 205 206 207 208 209 210 211
/*
 * Queue handlers.
 */
static void rt2800pci_start_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
212
		rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
213
		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
214
		rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
215 216
		break;
	case QID_BEACON:
217
		rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
218 219 220
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
221
		rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
222

223
		rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
224
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
225
		rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
226 227 228
		break;
	default:
		break;
229
	}
230 231 232 233 234 235 236 237
}

static void rt2800pci_kick_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	struct queue_entry *entry;

	switch (queue->qid) {
I
Ivo van Doorn 已提交
238 239
	case QID_AC_VO:
	case QID_AC_VI:
240 241 242
	case QID_AC_BE:
	case QID_AC_BK:
		entry = rt2x00queue_get_entry(queue, Q_INDEX);
243 244
		rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
					 entry->entry_idx);
245 246 247
		break;
	case QID_MGMT:
		entry = rt2x00queue_get_entry(queue, Q_INDEX);
248 249
		rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
					 entry->entry_idx);
250 251 252 253 254 255 256 257 258 259 260 261 262
		break;
	default:
		break;
	}
}

static void rt2800pci_stop_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
263
		rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
264
		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
265
		rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
266 267
		break;
	case QID_BEACON:
268
		rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
269 270 271
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
272
		rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
273

274
		rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
275
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
276
		rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
277 278

		/*
279 280 281
		 * Wait for current invocation to finish. The tasklet
		 * won't be scheduled anymore afterwards since we disabled
		 * the TBTT and PRE TBTT timer.
282
		 */
283 284 285
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
		tasklet_kill(&rt2x00dev->pretbtt_tasklet);

286 287 288 289 290 291
		break;
	default:
		break;
	}
}

292 293 294 295 296
/*
 * Firmware functions
 */
static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
W
Woody Hung 已提交
297 298 299 300 301 302 303
	/*
	 * Chip rt3290 use specific 4KB firmware named rt3290.bin.
	 */
	if (rt2x00_rt(rt2x00dev, RT3290))
		return FIRMWARE_RT3290;
	else
		return FIRMWARE_RT2860;
304 305
}

306
static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
307 308 309 310 311 312 313 314 315
				    const u8 *data, const size_t len)
{
	u32 reg;

	/*
	 * enable Host program ram write selection
	 */
	reg = 0;
	rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
316
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
317 318 319 320

	/*
	 * Write firmware to device.
	 */
321 322
	rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
				      data, len);
323

324 325
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
326

327 328
	rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

	return 0;
}

/*
 * Initialization functions.
 */
static bool rt2800pci_get_entry_state(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
	}
}

static void rt2800pci_clear_entry(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
356
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
357 358 359 360 361 362 363 364 365 366
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 0, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
		rt2x00_desc_write(entry_priv->desc, 1, word);
367 368 369 370 371

		/*
		 * Set RX IDX in register to inform hardware that we have
		 * handled this entry and it is available for reuse again.
		 */
372
		rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
373
				      entry->entry_idx);
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	}
}

static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
	struct queue_entry_priv_pci *entry_priv;

	/*
	 * Initialize registers.
	 */
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
389 390 391 392 393
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
				 rt2x00dev->tx[0].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
394 395

	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
396 397 398 399 400
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
				 rt2x00dev->tx[1].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
401 402

	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
403 404 405 406 407
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
				 rt2x00dev->tx[2].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
408 409

	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
410 411 412 413 414
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
				 rt2x00dev->tx[3].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
415

416 417 418 419 420 421 422 423 424 425
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR4, 0);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT4, 0);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX4, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX4, 0);

	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR5, 0);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT5, 0);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX5, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX5, 0);

426
	entry_priv = rt2x00dev->rx->entries[0].priv_data;
427 428 429 430 431 432
	rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
				 rt2x00dev->rx[0].limit);
	rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
				 rt2x00dev->rx[0].limit - 1);
	rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
433

434
	rt2800_disable_wpdma(rt2x00dev);
435

436
	rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
437 438 439 440 441 442 443 444 445 446 447

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
	u32 reg;
448
	unsigned long flags;
449 450 451 452 453 454

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
455 456
		rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
457
	}
458

459
	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
460 461 462 463 464 465 466 467
	reg = 0;
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
	}
468
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
469 470 471 472
	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);

	if (state == STATE_RADIO_IRQ_OFF) {
		/*
473
		 * Wait for possibly running tasklets to finish.
474
		 */
475 476 477 478 479
		tasklet_kill(&rt2x00dev->txstatus_tasklet);
		tasklet_kill(&rt2x00dev->rxdone_tasklet);
		tasklet_kill(&rt2x00dev->autowake_tasklet);
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
480
	}
481 482
}

483 484 485 486 487 488 489
static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Reset DMA indexes
	 */
490
	rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
491 492 493 494 495 496 497
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
498
	rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
499

500 501
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
502

503 504
	if (rt2x00_is_pcie(rt2x00dev) &&
	    (rt2x00_rt(rt2x00dev, RT3572) ||
J
John Li 已提交
505 506
	     rt2x00_rt(rt2x00dev, RT5390) ||
	     rt2x00_rt(rt2x00dev, RT5392))) {
507
		rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
508 509
		rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
		rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
510
		rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
511
	}
512

513
	rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
514

515
	reg = 0;
516 517
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
518
	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
519

520
	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
521 522 523 524

	return 0;
}

525 526
static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
527 528
	int retval;

529 530 531 532
	/* Wait for DMA, ignore error until we initialize queues. */
	rt2800_wait_wpdma_ready(rt2x00dev);

	if (unlikely(rt2800pci_init_queues(rt2x00dev)))
533 534
		return -EIO;

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
	retval = rt2800_enable_radio(rt2x00dev);
	if (retval)
		return retval;

	/* After resume MCU_BOOT_SIGNAL will trash these. */
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);

	rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
	rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);

	rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
	rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);

	return retval;
550 551 552 553
}

static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
554 555
	if (rt2x00_is_soc(rt2x00dev)) {
		rt2800_disable_radio(rt2x00dev);
556 557
		rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
		rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
558
	}
559 560 561 562 563 564
}

static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	if (state == STATE_AWAKE) {
565 566 567
		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
				   0, 0x02);
		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
568
	} else if (state == STATE_SLEEP) {
569 570 571 572
		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
					 0xffffffff);
		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
					 0xffffffff);
573 574
		rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
				   0xff, 0x01);
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
	}

	return 0;
}

static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt2800pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		/*
		 * After the radio has been disabled, the device should
		 * be put to sleep for powersaving.
		 */
		rt2800pci_disable_radio(rt2x00dev);
		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt2800pci_toggle_irq(rt2x00dev, state);
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2800pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

	return retval;
}

/*
 * TX descriptor initialization
 */
622
static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
623
{
624
	return (__le32 *) entry->skb->data;
625 626
}

627
static void rt2800pci_write_tx_desc(struct queue_entry *entry,
628 629
				    struct txentry_desc *txdesc)
{
630 631
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
632
	__le32 *txd = entry_priv->desc;
633 634
	u32 word;

635 636 637 638 639 640 641 642 643 644 645
	/*
	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
	 * must contains a TXWI structure + 802.11 header + padding + 802.11
	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
	 * data. It means that LAST_SEC0 is always 0.
	 */

	/*
	 * Initialize TX descriptor
	 */
646
	word = 0;
647 648 649
	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
	rt2x00_desc_write(txd, 0, word);

650
	word = 0;
651
	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
652 653 654 655
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_BURST,
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
656
	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
657 658 659 660
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
	rt2x00_desc_write(txd, 1, word);

661
	word = 0;
662
	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
663
			   skbdesc->skb_dma + TXWI_DESC_SIZE);
664 665
	rt2x00_desc_write(txd, 2, word);

666
	word = 0;
667 668 669 670
	rt2x00_set_field32(&word, TXD_W3_WIV,
			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
	rt2x00_desc_write(txd, 3, word);
671 672 673 674 675 676

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
677 678 679 680 681 682 683 684 685 686
}

/*
 * RX control handlers
 */
static void rt2800pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	__le32 *rxd = entry_priv->desc;
687 688 689 690 691
	u32 word;

	rt2x00_desc_read(rxd, 3, &word);

	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
692 693
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;

694 695 696 697 698
	/*
	 * Unfortunately we don't know the cipher type used during
	 * decryption. This prevents us from correct providing
	 * correct statistics through debugfs.
	 */
699
	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
700

701
	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
702 703 704 705 706 707 708 709
		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
		 * decryption. Unfortunately the descriptor doesn't contain
		 * any fields with the EIV/IV data either, so they can't
		 * be restored by rt2x00lib.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

710 711 712 713 714 715
		/*
		 * The hardware has already checked the Michael Mic and has
		 * stripped it from the frame. Signal this to mac80211.
		 */
		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;

716 717 718 719 720 721
		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

722
	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
723 724
		rxdesc->dev_flags |= RXDONE_MY_BSS;

725
	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
726 727 728
		rxdesc->dev_flags |= RXDONE_L2PAD;

	/*
729
	 * Process the RXWI structure that is at the start of the buffer.
730
	 */
731
	rt2800_process_rxwi(entry, rxdesc);
732 733 734 735 736
}

/*
 * Interrupt functions.
 */
737 738 739 740 741 742 743 744
static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
	struct ieee80211_conf conf = { .flags = 0 };
	struct rt2x00lib_conf libconf = { .conf = &conf };

	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}

745
static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
746 747 748 749 750
{
	struct data_queue *queue;
	struct queue_entry *entry;
	u32 status;
	u8 qid;
751
	int max_tx_done = 16;
752

753
	while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
754
		qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
755
		if (unlikely(qid >= QID_RX)) {
756 757 758 759 760
			/*
			 * Unknown queue, this shouldn't happen. Just drop
			 * this tx status.
			 */
			WARNING(rt2x00dev, "Got TX status report with "
761
					   "unexpected pid %u, dropping\n", qid);
762 763 764
			break;
		}

765
		queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
766 767 768 769 770 771
		if (unlikely(queue == NULL)) {
			/*
			 * The queue is NULL, this shouldn't happen. Stop
			 * processing here and drop the tx status
			 */
			WARNING(rt2x00dev, "Got TX status for an unavailable "
772
					   "queue %u, dropping\n", qid);
773 774 775
			break;
		}

776
		if (unlikely(rt2x00queue_empty(queue))) {
777 778 779 780 781
			/*
			 * The queue is empty. Stop processing here
			 * and drop the tx status.
			 */
			WARNING(rt2x00dev, "Got TX status for an empty "
782
					   "queue %u, dropping\n", qid);
783 784 785 786
			break;
		}

		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
787
		rt2800_txdone_entry(entry, status, rt2800pci_get_txwi(entry));
788 789 790

		if (--max_tx_done == 0)
			break;
791
	}
792 793

	return !max_tx_done;
794 795
}

796 797
static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
					      struct rt2x00_field32 irq_field)
798
{
799
	u32 reg;
800 801

	/*
802 803
	 * Enable a single interrupt. The interrupt mask register
	 * access needs locking.
804
	 */
805
	spin_lock_irq(&rt2x00dev->irqmask_lock);
806
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
807
	rt2x00_set_field32(&reg, irq_field, 1);
808
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
809
	spin_unlock_irq(&rt2x00dev->irqmask_lock);
810
}
811

812 813
static void rt2800pci_txstatus_tasklet(unsigned long data)
{
814 815 816
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	if (rt2800pci_txdone(rt2x00dev))
		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
817 818

	/*
819 820 821
	 * No need to enable the tx status interrupt here as we always
	 * leave it enabled to minimize the possibility of a tx status
	 * register overflow. See comment in interrupt handler.
822
	 */
823
}
824

825 826 827 828
static void rt2800pci_pretbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2x00lib_pretbtt(rt2x00dev);
829 830
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
831
}
832

833 834 835
static void rt2800pci_tbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
836 837 838
	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
	u32 reg;

839
	rt2x00lib_beacondone(rt2x00dev);
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

	if (rt2x00dev->intf_ap_count) {
		/*
		 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
		 * causing beacon skew and as a result causing problems with
		 * some powersaving clients over time. Shorten the beacon
		 * interval every 64 beacons by 64us to mitigate this effect.
		 */
		if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
			rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
					   (rt2x00dev->beacon_int * 16) - 1);
			rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
		} else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
			rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
					   (rt2x00dev->beacon_int * 16));
			rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
		}
		drv_data->tbtt_tick++;
		drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
	}

863 864
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
865
}
866

867 868 869
static void rt2800pci_rxdone_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
870 871
	if (rt2x00pci_rxdone(rt2x00dev))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
872
	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
873
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
874 875 876 877 878 879
}

static void rt2800pci_autowake_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2800pci_wakeup(rt2x00dev);
880 881
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
882 883
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
{
	u32 status;
	int i;

	/*
	 * The TX_FIFO_STATUS interrupt needs special care. We should
	 * read TX_STA_FIFO but we should do it immediately as otherwise
	 * the register can overflow and we would lose status reports.
	 *
	 * Hence, read the TX_STA_FIFO register and copy all tx status
	 * reports into a kernel FIFO which is handled in the txstatus
	 * tasklet. We use a tasklet to process the tx status reports
	 * because we can schedule the tasklet multiple times (when the
	 * interrupt fires again during tx status processing).
	 *
	 * Furthermore we don't disable the TX_FIFO_STATUS
	 * interrupt here but leave it enabled so that the TX_STA_FIFO
H
Helmut Schaa 已提交
902
	 * can also be read while the tx status tasklet gets executed.
903 904 905 906
	 *
	 * Since we have only one producer and one consumer we don't
	 * need to lock the kfifo.
	 */
907
	for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
908
		rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
909 910 911 912

		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
			break;

913
		if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
914 915 916 917 918 919 920 921 922 923
			WARNING(rt2x00dev, "TX status FIFO overrun,"
				"drop tx status report.\n");
			break;
		}
	}

	/* Schedule the tasklet for processing the tx status. */
	tasklet_schedule(&rt2x00dev->txstatus_tasklet);
}

924 925 926
static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
927
	u32 reg, mask;
928 929

	/* Read status and ACK all interrupts */
930 931
	rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
932 933 934 935 936 937 938

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

939 940 941 942 943 944
	/*
	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
	 * for interrupts and interrupt masks we can just use the value of
	 * INT_SOURCE_CSR to create the interrupt mask.
	 */
	mask = ~reg;
945

946 947
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
		rt2800pci_txstatus_interrupt(rt2x00dev);
948
		/*
949
		 * Never disable the TX_FIFO_STATUS interrupt.
950
		 */
951 952
		rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
	}
953

954 955
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
		tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
956

957 958
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
959

960 961
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
962

963 964 965 966 967 968 969
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
		tasklet_schedule(&rt2x00dev->autowake_tasklet);

	/*
	 * Disable all interrupts for which a tasklet was scheduled right now,
	 * the tasklet will reenable the appropriate interrupts.
	 */
970
	spin_lock(&rt2x00dev->irqmask_lock);
971
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
972
	reg &= mask;
973
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
974
	spin_unlock(&rt2x00dev->irqmask_lock);
975 976

	return IRQ_HANDLED;
977 978
}

979 980 981
/*
 * Device probe functions.
 */
982
static int rt2800pci_read_eeprom(struct rt2x00_dev *rt2x00dev)
983
{
984 985
	int retval;

986
	if (rt2x00_is_soc(rt2x00dev))
987
		retval = rt2800pci_read_eeprom_soc(rt2x00dev);
988
	else if (rt2800pci_efuse_detect(rt2x00dev))
989
		retval = rt2800pci_read_eeprom_efuse(rt2x00dev);
990
	else
991 992 993
		retval = rt2800pci_read_eeprom_pci(rt2x00dev);

	return retval;
994 995
}

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
static const struct ieee80211_ops rt2800pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
	.configure_filter	= rt2x00mac_configure_filter,
	.set_key		= rt2x00mac_set_key,
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
	.get_stats		= rt2x00mac_get_stats,
	.get_tkip_seq		= rt2800_get_tkip_seq,
	.set_rts_threshold	= rt2800_set_rts_threshold,
1010 1011
	.sta_add		= rt2x00mac_sta_add,
	.sta_remove		= rt2x00mac_sta_remove,
1012 1013 1014 1015 1016
	.bss_info_changed	= rt2x00mac_bss_info_changed,
	.conf_tx		= rt2800_conf_tx,
	.get_tsf		= rt2800_get_tsf,
	.rfkill_poll		= rt2x00mac_rfkill_poll,
	.ampdu_action		= rt2800_ampdu_action,
I
Ivo van Doorn 已提交
1017
	.flush			= rt2x00mac_flush,
1018
	.get_survey		= rt2800_get_survey,
1019
	.get_ringparam		= rt2x00mac_get_ringparam,
1020
	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1021 1022
};

1023 1024 1025 1026 1027 1028 1029 1030
static const struct rt2800_ops rt2800pci_rt2800_ops = {
	.register_read		= rt2x00pci_register_read,
	.register_read_lock	= rt2x00pci_register_read, /* same for PCI */
	.register_write		= rt2x00pci_register_write,
	.register_write_lock	= rt2x00pci_register_write, /* same for PCI */
	.register_multiread	= rt2x00pci_register_multiread,
	.register_multiwrite	= rt2x00pci_register_multiwrite,
	.regbusy_read		= rt2x00pci_regbusy_read,
1031 1032
	.read_eeprom		= rt2800pci_read_eeprom,
	.hwcrypt_disabled	= rt2800pci_hwcrypt_disabled,
1033 1034
	.drv_write_firmware	= rt2800pci_write_firmware,
	.drv_init_registers	= rt2800pci_init_registers,
1035
	.drv_get_txwi		= rt2800pci_get_txwi,
1036 1037
};

1038 1039
static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
	.irq_handler		= rt2800pci_interrupt,
1040 1041 1042 1043 1044
	.txstatus_tasklet	= rt2800pci_txstatus_tasklet,
	.pretbtt_tasklet	= rt2800pci_pretbtt_tasklet,
	.tbtt_tasklet		= rt2800pci_tbtt_tasklet,
	.rxdone_tasklet		= rt2800pci_rxdone_tasklet,
	.autowake_tasklet	= rt2800pci_autowake_tasklet,
1045
	.probe_hw		= rt2800_probe_hw,
1046
	.get_firmware_name	= rt2800pci_get_firmware_name,
1047 1048
	.check_firmware		= rt2800_check_firmware,
	.load_firmware		= rt2800_load_firmware,
1049 1050 1051 1052 1053
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
	.get_entry_state	= rt2800pci_get_entry_state,
	.clear_entry		= rt2800pci_clear_entry,
	.set_device_state	= rt2800pci_set_device_state,
1054 1055 1056 1057
	.rfkill_poll		= rt2800_rfkill_poll,
	.link_stats		= rt2800_link_stats,
	.reset_tuner		= rt2800_reset_tuner,
	.link_tuner		= rt2800_link_tuner,
1058
	.gain_calibration	= rt2800_gain_calibration,
J
John Li 已提交
1059
	.vco_calibration	= rt2800_vco_calibration,
1060 1061 1062
	.start_queue		= rt2800pci_start_queue,
	.kick_queue		= rt2800pci_kick_queue,
	.stop_queue		= rt2800pci_stop_queue,
1063
	.flush_queue		= rt2x00pci_flush_queue,
1064
	.write_tx_desc		= rt2800pci_write_tx_desc,
1065
	.write_tx_data		= rt2800_write_tx_data,
1066
	.write_beacon		= rt2800_write_beacon,
1067
	.clear_beacon		= rt2800_clear_beacon,
1068
	.fill_rxdone		= rt2800pci_fill_rxdone,
1069 1070 1071 1072 1073 1074 1075
	.config_shared_key	= rt2800_config_shared_key,
	.config_pairwise_key	= rt2800_config_pairwise_key,
	.config_filter		= rt2800_config_filter,
	.config_intf		= rt2800_config_intf,
	.config_erp		= rt2800_config_erp,
	.config_ant		= rt2800_config_ant,
	.config			= rt2800_config,
1076 1077
	.sta_add		= rt2800_sta_add,
	.sta_remove		= rt2800_sta_remove,
1078 1079 1080
};

static const struct data_queue_desc rt2800pci_queue_rx = {
1081
	.entry_num		= 128,
1082 1083 1084 1085 1086 1087
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= RXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_tx = {
1088
	.entry_num		= 64,
1089 1090 1091 1092 1093 1094
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= TXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_bcn = {
1095
	.entry_num		= 8,
1096 1097 1098 1099 1100 1101
	.data_size		= 0, /* No DMA required for beacons */
	.desc_size		= TXWI_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct rt2x00_ops rt2800pci_ops = {
G
Gertjan van Wingerde 已提交
1102
	.name			= KBUILD_MODNAME,
1103
	.drv_data_size		= sizeof(struct rt2800_drv_data),
G
Gertjan van Wingerde 已提交
1104 1105 1106 1107
	.max_ap_intf		= 8,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1108
	.extra_tx_headroom	= TXWI_DESC_SIZE,
G
Gertjan van Wingerde 已提交
1109 1110 1111 1112
	.rx			= &rt2800pci_queue_rx,
	.tx			= &rt2800pci_queue_tx,
	.bcn			= &rt2800pci_queue_bcn,
	.lib			= &rt2800pci_rt2x00_ops,
1113
	.drv			= &rt2800pci_rt2800_ops,
1114
	.hw			= &rt2800pci_mac80211_ops,
1115
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1116
	.debugfs		= &rt2800_rt2x00debug,
1117 1118 1119 1120 1121 1122
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2800pci module information.
 */
1123
#ifdef CONFIG_PCI
1124
static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	{ PCI_DEVICE(0x1814, 0x0601) },
	{ PCI_DEVICE(0x1814, 0x0681) },
	{ PCI_DEVICE(0x1814, 0x0701) },
	{ PCI_DEVICE(0x1814, 0x0781) },
	{ PCI_DEVICE(0x1814, 0x3090) },
	{ PCI_DEVICE(0x1814, 0x3091) },
	{ PCI_DEVICE(0x1814, 0x3092) },
	{ PCI_DEVICE(0x1432, 0x7708) },
	{ PCI_DEVICE(0x1432, 0x7727) },
	{ PCI_DEVICE(0x1432, 0x7728) },
	{ PCI_DEVICE(0x1432, 0x7738) },
	{ PCI_DEVICE(0x1432, 0x7748) },
	{ PCI_DEVICE(0x1432, 0x7758) },
	{ PCI_DEVICE(0x1432, 0x7768) },
	{ PCI_DEVICE(0x1462, 0x891a) },
	{ PCI_DEVICE(0x1a3b, 0x1059) },
W
Woody Hung 已提交
1141 1142 1143
#ifdef CONFIG_RT2800PCI_RT3290
	{ PCI_DEVICE(0x1814, 0x3290) },
#endif
1144
#ifdef CONFIG_RT2800PCI_RT33XX
1145
	{ PCI_DEVICE(0x1814, 0x3390) },
1146
#endif
1147
#ifdef CONFIG_RT2800PCI_RT35XX
1148 1149 1150 1151 1152 1153 1154
	{ PCI_DEVICE(0x1432, 0x7711) },
	{ PCI_DEVICE(0x1432, 0x7722) },
	{ PCI_DEVICE(0x1814, 0x3060) },
	{ PCI_DEVICE(0x1814, 0x3062) },
	{ PCI_DEVICE(0x1814, 0x3562) },
	{ PCI_DEVICE(0x1814, 0x3592) },
	{ PCI_DEVICE(0x1814, 0x3593) },
1155 1156
#endif
#ifdef CONFIG_RT2800PCI_RT53XX
1157
	{ PCI_DEVICE(0x1814, 0x5360) },
1158
	{ PCI_DEVICE(0x1814, 0x5362) },
1159
	{ PCI_DEVICE(0x1814, 0x5390) },
1160
	{ PCI_DEVICE(0x1814, 0x5392) },
Z
zero.lin 已提交
1161
	{ PCI_DEVICE(0x1814, 0x539a) },
Z
Zero.Lin 已提交
1162
	{ PCI_DEVICE(0x1814, 0x539b) },
1163
	{ PCI_DEVICE(0x1814, 0x539f) },
1164
#endif
1165 1166
	{ 0, }
};
1167
#endif /* CONFIG_PCI */
1168 1169 1170 1171 1172

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1173
#ifdef CONFIG_PCI
1174 1175
MODULE_FIRMWARE(FIRMWARE_RT2860);
MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1176
#endif /* CONFIG_PCI */
1177 1178
MODULE_LICENSE("GPL");

1179
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1180 1181
static int rt2800soc_probe(struct platform_device *pdev)
{
1182
	return rt2x00soc_probe(pdev, &rt2800pci_ops);
1183
}
1184 1185 1186 1187 1188 1189 1190

static struct platform_driver rt2800soc_driver = {
	.driver		= {
		.name		= "rt2800_wmac",
		.owner		= THIS_MODULE,
		.mod_name	= KBUILD_MODNAME,
	},
1191
	.probe		= rt2800soc_probe,
B
Bill Pemberton 已提交
1192
	.remove		= rt2x00soc_remove,
1193 1194 1195
	.suspend	= rt2x00soc_suspend,
	.resume		= rt2x00soc_resume,
};
1196
#endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1197

1198
#ifdef CONFIG_PCI
1199 1200 1201 1202 1203 1204
static int rt2800pci_probe(struct pci_dev *pci_dev,
			   const struct pci_device_id *id)
{
	return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
}

1205 1206 1207
static struct pci_driver rt2800pci_driver = {
	.name		= KBUILD_MODNAME,
	.id_table	= rt2800pci_device_table,
1208
	.probe		= rt2800pci_probe,
B
Bill Pemberton 已提交
1209
	.remove		= rt2x00pci_remove,
1210 1211 1212
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};
1213
#endif /* CONFIG_PCI */
1214 1215 1216 1217 1218

static int __init rt2800pci_init(void)
{
	int ret = 0;

1219
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1220 1221 1222 1223
	ret = platform_driver_register(&rt2800soc_driver);
	if (ret)
		return ret;
#endif
1224
#ifdef CONFIG_PCI
1225 1226
	ret = pci_register_driver(&rt2800pci_driver);
	if (ret) {
1227
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
		platform_driver_unregister(&rt2800soc_driver);
#endif
		return ret;
	}
#endif

	return ret;
}

static void __exit rt2800pci_exit(void)
{
1239
#ifdef CONFIG_PCI
1240 1241
	pci_unregister_driver(&rt2800pci_driver);
#endif
1242
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1243 1244 1245 1246 1247 1248
	platform_driver_unregister(&rt2800soc_driver);
#endif
}

module_init(rt2800pci_init);
module_exit(rt2800pci_exit);