rt2800pci.c 38.6 KB
Newer Older
1
/*
2 3 4 5 6 7 8 9
	Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2800pci
	Abstract: rt2800pci device specific routines.
	Supported chipsets: RT2800E & RT2800ED.
 */

#include <linux/crc-ccitt.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2x00soc.h"
47
#include "rt2800lib.h"
48
#include "rt2800.h"
49 50 51 52 53 54 55 56 57 58 59 60 61 62
#include "rt2800pci.h"

/*
 * Allow hardware encryption to be disabled.
 */
static int modparam_nohwcrypt = 1;
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
{
	unsigned int i;
	u32 reg;

63 64 65 66 67 68
	/*
	 * SOC devices don't support MCU requests.
	 */
	if (rt2x00_is_soc(rt2x00dev))
		return;

69
	for (i = 0; i < 200; i++) {
70
		rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
71 72 73 74 75 76 77 78 79 80 81 82 83

		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
			break;

		udelay(REGISTER_BUSY_DELAY);
	}

	if (i == 200)
		ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");

84 85
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
86 87
}

88
#ifdef CONFIG_RT2800PCI_SOC
89 90 91 92 93 94 95 96 97 98
static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
	u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */

	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
}
#else
static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
}
99
#endif /* CONFIG_RT2800PCI_SOC */
100 101 102 103 104 105 106

#ifdef CONFIG_RT2800PCI_PCI
static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

107
	rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

129
	rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
130 131 132 133 134 135 136
}

static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;

137
	rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2800pci_eepromregister_read;
	eeprom.register_write = rt2800pci_eepromregister_write;
	eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));
}

153 154
static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
155
	return rt2800_efuse_detect(rt2x00dev);
156 157
}

158
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
159
{
160
	rt2800_read_eeprom_efuse(rt2x00dev);
161 162 163 164 165 166
}
#else
static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
}

167 168 169 170 171
static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
	return 0;
}

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
}
#endif /* CONFIG_RT2800PCI_PCI */

/*
 * Firmware functions
 */
static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
	return FIRMWARE_RT2860;
}

static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
				    const u8 *data, const size_t len)
{
	u16 fw_crc;
	u16 crc;

	/*
	 * Only support 8kb firmware files.
	 */
	if (len != 8192)
		return FW_BAD_LENGTH;

	/*
	 * The last 2 bytes in the firmware array are the crc checksum itself,
	 * this means that we should never pass those 2 bytes to the crc
	 * algorithm.
	 */
	fw_crc = (data[len - 2] << 8 | data[len - 1]);

	/*
	 * Use the crc ccitt algorithm.
	 * This will return the same value as the legacy driver which
	 * used bit ordering reversion on the both the firmware bytes
	 * before input input as well as on the final output.
	 * Obviously using crc ccitt directly is much more efficient.
	 */
	crc = crc_ccitt(~0, data, len - 2);

	/*
	 * There is a small difference between the crc-itu-t + bitrev and
	 * the crc-ccitt crc calculation. In the latter method the 2 bytes
	 * will be swapped, use swab16 to convert the crc to the correct
	 * value.
	 */
	crc = swab16(crc);

	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
}

static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
				   const u8 *data, const size_t len)
{
	unsigned int i;
	u32 reg;

	/*
	 * Wait for stable hardware.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
234
		rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
235 236 237 238 239 240 241 242 243 244
		if (reg && reg != ~0)
			break;
		msleep(1);
	}

	if (i == REGISTER_BUSY_COUNT) {
		ERROR(rt2x00dev, "Unstable hardware.\n");
		return -EBUSY;
	}

245 246
	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
	rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
247 248 249 250 251

	/*
	 * Disable DMA, will be reenabled later when enabling
	 * the radio.
	 */
252
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
253 254 255 256 257
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
258
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
259 260 261 262 263 264

	/*
	 * enable Host program ram write selection
	 */
	reg = 0;
	rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
265
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
266 267 268 269

	/*
	 * Write firmware to device.
	 */
270
	rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
271 272
				      data, len);

273 274
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
275 276 277 278 279

	/*
	 * Wait for device to stabilize.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
280
		rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
		if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
			break;
		msleep(1);
	}

	if (i == REGISTER_BUSY_COUNT) {
		ERROR(rt2x00dev, "PBF system register not ready.\n");
		return -EBUSY;
	}

	/*
	 * Disable interrupts
	 */
	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);

	/*
	 * Initialize BBP R/W access agent
	 */
299 300
	rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

	return 0;
}

/*
 * Initialization functions.
 */
static bool rt2800pci_get_entry_state(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
	}
}

static void rt2800pci_clear_entry(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 0, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	}
}

static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
	struct queue_entry_priv_pci *entry_priv;
	u32 reg;

350
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
351 352 353 354 355 356 357
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
358
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
359

360 361
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
362 363 364 365 366

	/*
	 * Initialize registers.
	 */
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
367 368 369 370
	rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
371 372

	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
373 374 375 376
	rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
377 378

	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
379 380 381 382
	rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
383 384

	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
385 386 387 388
	rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
389 390

	entry_priv = rt2x00dev->rx->entries[0].priv_data;
391 392 393 394
	rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
	rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
	rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
395 396 397 398

	/*
	 * Enable global DMA configuration
	 */
399
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
400 401 402
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
403
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
404

405
	rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
406 407 408 409 410 411 412 413 414 415 416 417

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
				enum dev_state state)
{
	u32 reg;

418
	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
419 420 421
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
			   (state == STATE_RADIO_RX_ON) ||
			   (state == STATE_RADIO_RX_ON_LINK));
422
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
423 424 425 426 427 428 429 430 431 432 433 434 435
}

static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
	int mask = (state == STATE_RADIO_IRQ_ON);
	u32 reg;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
436 437
		rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
438 439
	}

440
	rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
459
	rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
460 461 462 463 464 465 466 467 468 469
}

static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 word;

	/*
	 * Initialize all registers.
	 */
470
	if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
471
		     rt2800pci_init_queues(rt2x00dev) ||
472
		     rt2800_init_registers(rt2x00dev) ||
473
		     rt2800_wait_wpdma_ready(rt2x00dev) ||
474 475
		     rt2800_init_bbp(rt2x00dev) ||
		     rt2800_init_rfcsr(rt2x00dev)))
476 477 478 479 480
		return -EIO;

	/*
	 * Send signal to firmware during boot time.
	 */
481
	rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0xff, 0, 0);
482 483 484 485

	/*
	 * Enable RX.
	 */
486
	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
487 488
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
489
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
490

491
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
492 493 494 495
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
496
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
497

498
	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
499 500
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
501
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
502 503 504 505 506

	/*
	 * Initialize LED control
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
507
	rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
508 509 510
			      word & 0xff, (word >> 8) & 0xff);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
511
	rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
512 513 514
			      word & 0xff, (word >> 8) & 0xff);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
515
	rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
516 517 518 519 520 521 522 523 524
			      word & 0xff, (word >> 8) & 0xff);

	return 0;
}

static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

525
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
526 527 528 529 530
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
531
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
532

533 534 535
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
	rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
536

537
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
538

539
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
540 541 542 543 544 545 546
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
547
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
548

549 550
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
551 552

	/* Wait for DMA, ignore error */
553
	rt2800_wait_wpdma_ready(rt2x00dev);
554 555 556 557 558 559 560 561 562 563
}

static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	/*
	 * Always put the device to sleep (even when we intend to wakeup!)
	 * if the device is booting and wasn't asleep it will return
	 * failure when attempting to wakeup.
	 */
564
	rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
565 566

	if (state == STATE_AWAKE) {
567
		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
	}

	return 0;
}

static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		/*
		 * Before the radio can be enabled, the device first has
		 * to be woken up. After that it needs a bit of time
		 * to be fully awake and then the radio can be enabled.
		 */
		rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
		msleep(1);
		retval = rt2800pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		/*
		 * After the radio has been disabled, the device should
		 * be put to sleep for powersaving.
		 */
		rt2800pci_disable_radio(rt2x00dev);
		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
		break;
	case STATE_RADIO_RX_ON:
	case STATE_RADIO_RX_ON_LINK:
	case STATE_RADIO_RX_OFF:
	case STATE_RADIO_RX_OFF_LINK:
		rt2800pci_toggle_rx(rt2x00dev, state);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt2800pci_toggle_irq(rt2x00dev, state);
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2800pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

	return retval;
}

/*
 * TX descriptor initialization
 */
static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
				    struct sk_buff *skb,
				    struct txentry_desc *txdesc)
{
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
	__le32 *txd = skbdesc->desc;
635
	__le32 *txwi = (__le32 *)(skb->data - rt2x00dev->ops->extra_tx_headroom);
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
	u32 word;

	/*
	 * Initialize TX Info descriptor
	 */
	rt2x00_desc_read(txwi, 0, &word);
	rt2x00_set_field32(&word, TXWI_W0_FRAG,
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, 0);
	rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0);
	rt2x00_set_field32(&word, TXWI_W0_TS,
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W0_AMPDU,
			   test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, txdesc->mpdu_density);
	rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->ifs);
	rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->mcs);
	rt2x00_set_field32(&word, TXWI_W0_BW,
			   test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W0_SHORT_GI,
			   test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->stbc);
	rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode);
	rt2x00_desc_write(txwi, 0, word);

	rt2x00_desc_read(txwi, 1, &word);
	rt2x00_set_field32(&word, TXWI_W1_ACK,
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W1_NSEQ,
			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
	rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->ba_size);
	rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID,
			   test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ?
669
			   txdesc->key_idx : 0xff);
670 671 672 673 674 675 676 677
	rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT,
			   skb->len - txdesc->l2pad);
	rt2x00_set_field32(&word, TXWI_W1_PACKETID,
			   skbdesc->entry->queue->qid + 1);
	rt2x00_desc_write(txwi, 1, word);

	/*
	 * Always write 0 to IV/EIV fields, hardware will insert the IV
678 679
	 * from the IVEIV register when TXD_W3_WIV is set to 0.
	 * When TXD_W3_WIV is set to 1 it will use the IV data
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	 * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which
	 * crypto entry in the registers should be used to encrypt the frame.
	 */
	_rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */);
	_rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */);

	/*
	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
	 * must contains a TXWI structure + 802.11 header + padding + 802.11
	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
	 * data. It means that LAST_SEC0 is always 0.
	 */

	/*
	 * Initialize TX descriptor
	 */
	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
	rt2x00_desc_write(txd, 0, word);

	rt2x00_desc_read(txd, 1, &word);
	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_BURST,
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_SD_LEN0,
708
			   rt2x00dev->ops->extra_tx_headroom);
709 710 711 712 713 714
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
	rt2x00_desc_write(txd, 1, word);

	rt2x00_desc_read(txd, 2, &word);
	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
715
			   skbdesc->skb_dma + rt2x00dev->ops->extra_tx_headroom);
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
	rt2x00_desc_write(txd, 2, word);

	rt2x00_desc_read(txd, 3, &word);
	rt2x00_set_field32(&word, TXD_W3_WIV,
			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
	rt2x00_desc_write(txd, 3, word);
}

/*
 * TX data initialization
 */
static void rt2800pci_write_beacon(struct queue_entry *entry)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	unsigned int beacon_base;
	u32 reg;

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
739
	rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
740
	rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
741
	rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
742 743 744 745 746

	/*
	 * Write entire beacon with descriptor to register.
	 */
	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
747
	rt2800_register_multiwrite(rt2x00dev,
748 749
				      beacon_base,
				      skbdesc->desc, skbdesc->desc_len);
750
	rt2800_register_multiwrite(rt2x00dev,
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
				      beacon_base + skbdesc->desc_len,
				      entry->skb->data, entry->skb->len);

	/*
	 * Clean up beacon skb.
	 */
	dev_kfree_skb_any(entry->skb);
	entry->skb = NULL;
}

static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
				    const enum data_queue_qid queue_idx)
{
	struct data_queue *queue;
	unsigned int idx, qidx = 0;
	u32 reg;

	if (queue_idx == QID_BEACON) {
769
		rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
770 771 772 773
		if (!rt2x00_get_field32(reg, BCN_TIME_CFG_BEACON_GEN)) {
			rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
			rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
774
			rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
		}
		return;
	}

	if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
		return;

	queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
	idx = queue->index[Q_INDEX];

	if (queue_idx == QID_MGMT)
		qidx = 5;
	else
		qidx = queue_idx;

790
	rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
791 792 793 794 795 796 797 798
}

static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
				    const enum data_queue_qid qid)
{
	u32 reg;

	if (qid == QID_BEACON) {
799
		rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
800 801 802
		return;
	}

803
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
804 805 806 807
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
808
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
}

/*
 * RX control handlers
 */
static void rt2800pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	__le32 *rxd = entry_priv->desc;
	__le32 *rxwi = (__le32 *)entry->skb->data;
	u32 rxd3;
	u32 rxwi0;
	u32 rxwi1;
	u32 rxwi2;
	u32 rxwi3;

	rt2x00_desc_read(rxd, 3, &rxd3);
	rt2x00_desc_read(rxwi, 0, &rxwi0);
	rt2x00_desc_read(rxwi, 1, &rxwi1);
	rt2x00_desc_read(rxwi, 2, &rxwi2);
	rt2x00_desc_read(rxwi, 3, &rxwi3);

	if (rt2x00_get_field32(rxd3, RXD_W3_CRC_ERROR))
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;

	if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
		/*
		 * Unfortunately we don't know the cipher type used during
		 * decryption. This prevents us from correct providing
		 * correct statistics through debugfs.
		 */
		rxdesc->cipher = rt2x00_get_field32(rxwi0, RXWI_W0_UDF);
		rxdesc->cipher_status =
		    rt2x00_get_field32(rxd3, RXD_W3_CIPHER_ERROR);
	}

	if (rt2x00_get_field32(rxd3, RXD_W3_DECRYPTED)) {
		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
		 * decryption. Unfortunately the descriptor doesn't contain
		 * any fields with the EIV/IV data either, so they can't
		 * be restored by rt2x00lib.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

	if (rt2x00_get_field32(rxd3, RXD_W3_MY_BSS))
		rxdesc->dev_flags |= RXDONE_MY_BSS;

865
	if (rt2x00_get_field32(rxd3, RXD_W3_L2PAD))
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
		rxdesc->dev_flags |= RXDONE_L2PAD;

	if (rt2x00_get_field32(rxwi1, RXWI_W1_SHORT_GI))
		rxdesc->flags |= RX_FLAG_SHORT_GI;

	if (rt2x00_get_field32(rxwi1, RXWI_W1_BW))
		rxdesc->flags |= RX_FLAG_40MHZ;

	/*
	 * Detect RX rate, always use MCS as signal type.
	 */
	rxdesc->dev_flags |= RXDONE_SIGNAL_MCS;
	rxdesc->rate_mode = rt2x00_get_field32(rxwi1, RXWI_W1_PHYMODE);
	rxdesc->signal = rt2x00_get_field32(rxwi1, RXWI_W1_MCS);

	/*
	 * Mask of 0x8 bit to remove the short preamble flag.
	 */
	if (rxdesc->rate_mode == RATE_MODE_CCK)
		rxdesc->signal &= ~0x8;

	rxdesc->rssi =
	    (rt2x00_get_field32(rxwi2, RXWI_W2_RSSI0) +
	     rt2x00_get_field32(rxwi2, RXWI_W2_RSSI1)) / 2;

	rxdesc->noise =
	    (rt2x00_get_field32(rxwi3, RXWI_W3_SNR0) +
	     rt2x00_get_field32(rxwi3, RXWI_W3_SNR1)) / 2;

	rxdesc->size = rt2x00_get_field32(rxwi0, RXWI_W0_MPDU_TOTAL_BYTE_COUNT);

	/*
	 * Set RX IDX in register to inform hardware that we have handled
	 * this entry and it is available for reuse again.
	 */
901
	rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
902 903 904 905 906 907 908 909 910 911 912 913 914 915

	/*
	 * Remove TXWI descriptor from start of buffer.
	 */
	skb_pull(entry->skb, RXWI_DESC_SIZE);
}

/*
 * Interrupt functions.
 */
static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
{
	struct data_queue *queue;
	struct queue_entry *entry;
916
	__le32 *txwi;
917 918 919 920
	struct txdone_entry_desc txdesc;
	u32 word;
	u32 reg;
	u32 old_reg;
921
	int wcid, ack, pid, tx_wcid, tx_ack, tx_pid;
922 923 924 925 926 927 928 929 930 931 932 933 934
	u16 mcs, real_mcs;

	/*
	 * During each loop we will compare the freshly read
	 * TX_STA_FIFO register value with the value read from
	 * the previous loop. If the 2 values are equal then
	 * we should stop processing because the chance it
	 * quite big that the device has been unplugged and
	 * we risk going into an endless loop.
	 */
	old_reg = 0;

	while (1) {
935
		rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
936 937 938 939 940 941 942
		if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
			break;

		if (old_reg == reg)
			break;
		old_reg = reg;

943 944 945 946
		wcid    = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
		ack     = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
		pid     = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);

947 948 949 950
		/*
		 * Skip this entry when it contains an invalid
		 * queue identication number.
		 */
951
		if (pid <= 0 || pid > QID_RX)
952 953
			continue;

954
		queue = rt2x00queue_get_queue(rt2x00dev, pid - 1);
955 956 957 958
		if (unlikely(!queue))
			continue;

		/*
959 960
		 * Inside each queue, we process each entry in a chronological
		 * order. We first check that the queue is not empty.
961
		 */
962
		if (rt2x00queue_empty(queue))
963
			continue;
964
		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
965

966 967 968 969 970 971 972 973 974 975 976 977
		/* Check if we got a match by looking at WCID/ACK/PID
		 * fields */
		txwi = (__le32 *)(entry->skb->data -
				  rt2x00dev->ops->extra_tx_headroom);

		rt2x00_desc_read(txwi, 1, &word);
		tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
		tx_ack  = rt2x00_get_field32(word, TXWI_W1_ACK);
		tx_pid  = rt2x00_get_field32(word, TXWI_W1_PACKETID);

		if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid))
			WARNING(rt2x00dev, "invalid TX_STA_FIFO content\n");
978 979 980 981 982

		/*
		 * Obtain the status about this packet.
		 */
		txdesc.flags = 0;
983 984 985
		rt2x00_desc_read(txwi, 0, &word);
		mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
		real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
986 987 988

		/*
		 * Ralink has a retry mechanism using a global fallback
989 990 991 992
		 * table. We setup this fallback table to try the immediate
		 * lower rate for all rates. In the TX_STA_FIFO, the MCS field
		 * always contains the MCS used for the last transmission, be
		 * it successful or not.
993
		 */
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS)) {
			/*
			 * Transmission succeeded. The number of retries is
			 * mcs - real_mcs
			 */
			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
			txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
		} else {
			/*
			 * Transmission failed. The number of retries is
			 * always 7 in this case (for a total number of 8
			 * frames sent).
			 */
			__set_bit(TXDONE_FAILURE, &txdesc.flags);
			txdesc.retry = 7;
		}

1011
		__set_bit(TXDONE_FALLBACK, &txdesc.flags);
1012

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

		rt2x00lib_txdone(entry, &txdesc);
	}
}

static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg;

	/* Read status and ACK all interrupts */
1024 1025
	rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

	/*
	 * 1 - Rx ring done interrupt.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
		rt2x00pci_rxdone(rt2x00dev);

	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
		rt2800pci_txdone(rt2x00dev);

	return IRQ_HANDLED;
}

/*
 * Device probe functions.
 */
1048 1049 1050 1051 1052
static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Read EEPROM into buffer
	 */
1053
	if (rt2x00_is_soc(rt2x00dev))
1054
		rt2800pci_read_eeprom_soc(rt2x00dev);
1055 1056 1057 1058
	else if (rt2800pci_efuse_detect(rt2x00dev))
		rt2800pci_read_eeprom_efuse(rt2x00dev);
	else
		rt2800pci_read_eeprom_pci(rt2x00dev);
1059 1060 1061 1062

	return rt2800_validate_eeprom(rt2x00dev);
}

1063 1064
static const struct rt2800_ops rt2800pci_rt2800_ops = {
	.register_read		= rt2x00pci_register_read,
1065
	.register_read_lock	= rt2x00pci_register_read, /* same for PCI */
1066 1067 1068 1069 1070 1071 1072 1073 1074
	.register_write		= rt2x00pci_register_write,
	.register_write_lock	= rt2x00pci_register_write, /* same for PCI */

	.register_multiread	= rt2x00pci_register_multiread,
	.register_multiwrite	= rt2x00pci_register_multiwrite,

	.regbusy_read		= rt2x00pci_regbusy_read,
};

1075 1076 1077 1078
static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

1079 1080
	rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;

1081 1082 1083 1084 1085 1086 1087
	/*
	 * Allocate eeprom data.
	 */
	retval = rt2800pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

1088
	retval = rt2800_init_eeprom(rt2x00dev);
1089 1090 1091 1092 1093 1094
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
1095
	retval = rt2800_probe_hw_mode(rt2x00dev);
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
	if (retval)
		return retval;

	/*
	 * This device has multiple filters for control frames
	 * and has a separate filter for PS Poll frames.
	 */
	__set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
	__set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);

	/*
	 * This device requires firmware.
	 */
1109
	if (!rt2x00_is_soc(rt2x00dev))
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
		__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
	__set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
	if (!modparam_nohwcrypt)
		__set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
	.irq_handler		= rt2800pci_interrupt,
	.probe_hw		= rt2800pci_probe_hw,
	.get_firmware_name	= rt2800pci_get_firmware_name,
	.check_firmware		= rt2800pci_check_firmware,
	.load_firmware		= rt2800pci_load_firmware,
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
	.get_entry_state	= rt2800pci_get_entry_state,
	.clear_entry		= rt2800pci_clear_entry,
	.set_device_state	= rt2800pci_set_device_state,
1135 1136 1137 1138
	.rfkill_poll		= rt2800_rfkill_poll,
	.link_stats		= rt2800_link_stats,
	.reset_tuner		= rt2800_reset_tuner,
	.link_tuner		= rt2800_link_tuner,
1139 1140 1141 1142 1143 1144
	.write_tx_desc		= rt2800pci_write_tx_desc,
	.write_tx_data		= rt2x00pci_write_tx_data,
	.write_beacon		= rt2800pci_write_beacon,
	.kick_tx_queue		= rt2800pci_kick_tx_queue,
	.kill_tx_queue		= rt2800pci_kill_tx_queue,
	.fill_rxdone		= rt2800pci_fill_rxdone,
1145 1146 1147 1148 1149 1150 1151
	.config_shared_key	= rt2800_config_shared_key,
	.config_pairwise_key	= rt2800_config_pairwise_key,
	.config_filter		= rt2800_config_filter,
	.config_intf		= rt2800_config_intf,
	.config_erp		= rt2800_config_erp,
	.config_ant		= rt2800_config_ant,
	.config			= rt2800_config,
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
};

static const struct data_queue_desc rt2800pci_queue_rx = {
	.entry_num		= RX_ENTRIES,
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= RXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_tx = {
	.entry_num		= TX_ENTRIES,
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= TXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_bcn = {
	.entry_num		= 8 * BEACON_ENTRIES,
	.data_size		= 0, /* No DMA required for beacons */
	.desc_size		= TXWI_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct rt2x00_ops rt2800pci_ops = {
G
Gertjan van Wingerde 已提交
1176 1177 1178 1179 1180 1181
	.name			= KBUILD_MODNAME,
	.max_sta_intf		= 1,
	.max_ap_intf		= 8,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1182
	.extra_tx_headroom	= TXWI_DESC_SIZE,
G
Gertjan van Wingerde 已提交
1183 1184 1185 1186 1187
	.rx			= &rt2800pci_queue_rx,
	.tx			= &rt2800pci_queue_tx,
	.bcn			= &rt2800pci_queue_bcn,
	.lib			= &rt2800pci_rt2x00_ops,
	.hw			= &rt2800_mac80211_ops,
1188
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1189
	.debugfs		= &rt2800_rt2x00debug,
1190 1191 1192 1193 1194 1195
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2800pci module information.
 */
1196
#ifdef CONFIG_RT2800PCI_PCI
1197
static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1198 1199 1200 1201
	{ PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
1202 1203 1204 1205 1206 1207 1208
	{ PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
1209 1210
	{ PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
#ifdef CONFIG_RT2800PCI_RT30XX
1211 1212 1213
	{ PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
1214 1215 1216 1217 1218
	{ PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
#endif
#ifdef CONFIG_RT2800PCI_RT35XX
	{ PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
1219 1220
	{ PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
1221
	{ PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
1222
#endif
1223 1224
	{ 0, }
};
1225
#endif /* CONFIG_RT2800PCI_PCI */
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
#ifdef CONFIG_RT2800PCI_PCI
MODULE_FIRMWARE(FIRMWARE_RT2860);
MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
#endif /* CONFIG_RT2800PCI_PCI */
MODULE_LICENSE("GPL");

1237
#ifdef CONFIG_RT2800PCI_SOC
1238 1239
static int rt2800soc_probe(struct platform_device *pdev)
{
1240
	return rt2x00soc_probe(pdev, &rt2800pci_ops);
1241
}
1242 1243 1244 1245 1246 1247 1248

static struct platform_driver rt2800soc_driver = {
	.driver		= {
		.name		= "rt2800_wmac",
		.owner		= THIS_MODULE,
		.mod_name	= KBUILD_MODNAME,
	},
1249
	.probe		= rt2800soc_probe,
1250 1251 1252 1253
	.remove		= __devexit_p(rt2x00soc_remove),
	.suspend	= rt2x00soc_suspend,
	.resume		= rt2x00soc_resume,
};
1254
#endif /* CONFIG_RT2800PCI_SOC */
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270

#ifdef CONFIG_RT2800PCI_PCI
static struct pci_driver rt2800pci_driver = {
	.name		= KBUILD_MODNAME,
	.id_table	= rt2800pci_device_table,
	.probe		= rt2x00pci_probe,
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};
#endif /* CONFIG_RT2800PCI_PCI */

static int __init rt2800pci_init(void)
{
	int ret = 0;

1271
#ifdef CONFIG_RT2800PCI_SOC
1272 1273 1274 1275 1276 1277 1278
	ret = platform_driver_register(&rt2800soc_driver);
	if (ret)
		return ret;
#endif
#ifdef CONFIG_RT2800PCI_PCI
	ret = pci_register_driver(&rt2800pci_driver);
	if (ret) {
1279
#ifdef CONFIG_RT2800PCI_SOC
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
		platform_driver_unregister(&rt2800soc_driver);
#endif
		return ret;
	}
#endif

	return ret;
}

static void __exit rt2800pci_exit(void)
{
#ifdef CONFIG_RT2800PCI_PCI
	pci_unregister_driver(&rt2800pci_driver);
#endif
1294
#ifdef CONFIG_RT2800PCI_SOC
1295 1296 1297 1298 1299 1300
	platform_driver_unregister(&rt2800soc_driver);
#endif
}

module_init(rt2800pci_init);
module_exit(rt2800pci_exit);