rt2800pci.c 36.6 KB
Newer Older
1
/*
2 3 4 5 6 7 8 9
	Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2800pci
	Abstract: rt2800pci device specific routines.
	Supported chipsets: RT2800E & RT2800ED.
 */

#include <linux/crc-ccitt.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2x00soc.h"
47
#include "rt2800lib.h"
48
#include "rt2800.h"
49 50 51 52 53
#include "rt2800pci.h"

/*
 * Allow hardware encryption to be disabled.
 */
54
static int modparam_nohwcrypt = 0;
55 56 57 58 59 60 61 62
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
{
	unsigned int i;
	u32 reg;

63 64 65 66 67 68
	/*
	 * SOC devices don't support MCU requests.
	 */
	if (rt2x00_is_soc(rt2x00dev))
		return;

69
	for (i = 0; i < 200; i++) {
70
		rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
71 72 73 74 75 76 77 78 79 80 81 82 83

		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
			break;

		udelay(REGISTER_BUSY_DELAY);
	}

	if (i == 200)
		ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");

84 85
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
86 87
}

88
#ifdef CONFIG_RT2800PCI_SOC
89 90 91 92 93 94 95 96 97 98
static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
	u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */

	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
}
#else
static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
}
99
#endif /* CONFIG_RT2800PCI_SOC */
100 101 102 103 104 105 106

#ifdef CONFIG_RT2800PCI_PCI
static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

107
	rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

129
	rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
130 131 132 133 134 135 136
}

static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;

137
	rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
138 139 140 141

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2800pci_eepromregister_read;
	eeprom.register_write = rt2800pci_eepromregister_write;
142 143 144 145 146 147 148 149 150 151 152 153
	switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
	{
	case 0:
		eeprom.width = PCI_EEPROM_WIDTH_93C46;
		break;
	case 1:
		eeprom.width = PCI_EEPROM_WIDTH_93C66;
		break;
	default:
		eeprom.width = PCI_EEPROM_WIDTH_93C86;
		break;
	}
154 155 156 157 158 159 160 161 162
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));
}

163 164
static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
165
	return rt2800_efuse_detect(rt2x00dev);
166 167
}

168
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
169
{
170
	rt2800_read_eeprom_efuse(rt2x00dev);
171 172 173 174 175 176
}
#else
static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
}

177 178 179 180 181
static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
	return 0;
}

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
}
#endif /* CONFIG_RT2800PCI_PCI */

/*
 * Firmware functions
 */
static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
	return FIRMWARE_RT2860;
}

static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
				    const u8 *data, const size_t len)
{
	u16 fw_crc;
	u16 crc;

	/*
	 * Only support 8kb firmware files.
	 */
	if (len != 8192)
		return FW_BAD_LENGTH;

	/*
	 * The last 2 bytes in the firmware array are the crc checksum itself,
	 * this means that we should never pass those 2 bytes to the crc
	 * algorithm.
	 */
	fw_crc = (data[len - 2] << 8 | data[len - 1]);

	/*
	 * Use the crc ccitt algorithm.
	 * This will return the same value as the legacy driver which
	 * used bit ordering reversion on the both the firmware bytes
	 * before input input as well as on the final output.
	 * Obviously using crc ccitt directly is much more efficient.
	 */
	crc = crc_ccitt(~0, data, len - 2);

	/*
	 * There is a small difference between the crc-itu-t + bitrev and
	 * the crc-ccitt crc calculation. In the latter method the 2 bytes
	 * will be swapped, use swab16 to convert the crc to the correct
	 * value.
	 */
	crc = swab16(crc);

	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
}

static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
				   const u8 *data, const size_t len)
{
	unsigned int i;
	u32 reg;

	/*
	 * Wait for stable hardware.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
244
		rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
245 246 247 248 249 250 251 252 253 254
		if (reg && reg != ~0)
			break;
		msleep(1);
	}

	if (i == REGISTER_BUSY_COUNT) {
		ERROR(rt2x00dev, "Unstable hardware.\n");
		return -EBUSY;
	}

255 256
	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
	rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
257 258 259 260 261

	/*
	 * Disable DMA, will be reenabled later when enabling
	 * the radio.
	 */
262
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
263 264 265 266 267
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
268
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
269 270 271 272 273 274

	/*
	 * enable Host program ram write selection
	 */
	reg = 0;
	rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
275
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
276 277 278 279

	/*
	 * Write firmware to device.
	 */
280
	rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
281 282
				      data, len);

283 284
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
285 286 287 288 289

	/*
	 * Wait for device to stabilize.
	 */
	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
290
		rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
		if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
			break;
		msleep(1);
	}

	if (i == REGISTER_BUSY_COUNT) {
		ERROR(rt2x00dev, "PBF system register not ready.\n");
		return -EBUSY;
	}

	/*
	 * Disable interrupts
	 */
	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);

	/*
	 * Initialize BBP R/W access agent
	 */
309 310
	rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363

	return 0;
}

/*
 * Initialization functions.
 */
static bool rt2800pci_get_entry_state(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
	}
}

static void rt2800pci_clear_entry(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 0, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	}
}

static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
	struct queue_entry_priv_pci *entry_priv;
	u32 reg;

	/*
	 * Initialize registers.
	 */
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
364 365 366 367
	rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
368 369

	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
370 371 372 373
	rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
374 375

	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
376 377 378 379
	rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
380 381

	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
382 383 384 385
	rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
	rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
	rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
386 387

	entry_priv = rt2x00dev->rx->entries[0].priv_data;
388 389 390 391
	rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
	rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
	rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
	rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
392 393 394 395

	/*
	 * Enable global DMA configuration
	 */
396
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
397 398 399
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
400
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
401

402
	rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
403 404 405 406 407 408 409 410 411 412 413 414

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
				enum dev_state state)
{
	u32 reg;

415
	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
416 417 418
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
			   (state == STATE_RADIO_RX_ON) ||
			   (state == STATE_RADIO_RX_ON_LINK));
419
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
420 421 422 423 424
}

static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
425 426
	int mask = (state == STATE_RADIO_IRQ_ON) ||
		   (state == STATE_RADIO_IRQ_ON_ISR);
427 428 429 430 431 432 433
	u32 reg;

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
434 435
		rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
436 437
	}

438
	rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
	rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
457
	rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
458 459
}

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Reset DMA indexes
	 */
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);

	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);

	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);

	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);

	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);

	return 0;
}

492 493 494 495 496 497 498 499
static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;
	u16 word;

	/*
	 * Initialize all registers.
	 */
500
	if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
501
		     rt2800pci_init_queues(rt2x00dev) ||
502
		     rt2800_init_registers(rt2x00dev) ||
503
		     rt2800_wait_wpdma_ready(rt2x00dev) ||
504 505
		     rt2800_init_bbp(rt2x00dev) ||
		     rt2800_init_rfcsr(rt2x00dev)))
506 507 508 509 510
		return -EIO;

	/*
	 * Send signal to firmware during boot time.
	 */
511
	rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0);
512 513 514 515

	/*
	 * Enable RX.
	 */
516
	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
517 518
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
519
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
520

521
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
522 523 524 525
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
526
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
527

528
	rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
529 530
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
531
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
532 533 534 535 536

	/*
	 * Initialize LED control
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
537
	rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
538 539 540
			      word & 0xff, (word >> 8) & 0xff);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
541
	rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
542 543 544
			      word & 0xff, (word >> 8) & 0xff);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
545
	rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
546 547 548 549 550 551 552 553 554
			      word & 0xff, (word >> 8) & 0xff);

	return 0;
}

static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

555
	rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
556 557 558 559 560
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
561
	rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
562

563 564 565
	rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
	rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
	rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
566

567
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
568

569
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
570 571 572 573 574 575 576
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
577
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
578

579 580
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
581 582

	/* Wait for DMA, ignore error */
583
	rt2800_wait_wpdma_ready(rt2x00dev);
584 585 586 587 588 589 590 591 592 593
}

static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	/*
	 * Always put the device to sleep (even when we intend to wakeup!)
	 * if the device is booting and wasn't asleep it will return
	 * failure when attempting to wakeup.
	 */
594
	rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
595 596

	if (state == STATE_AWAKE) {
597
		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
	}

	return 0;
}

static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		/*
		 * Before the radio can be enabled, the device first has
		 * to be woken up. After that it needs a bit of time
		 * to be fully awake and then the radio can be enabled.
		 */
		rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
		msleep(1);
		retval = rt2800pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		/*
		 * After the radio has been disabled, the device should
		 * be put to sleep for powersaving.
		 */
		rt2800pci_disable_radio(rt2x00dev);
		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
		break;
	case STATE_RADIO_RX_ON:
	case STATE_RADIO_RX_ON_LINK:
	case STATE_RADIO_RX_OFF:
	case STATE_RADIO_RX_OFF_LINK:
		rt2800pci_toggle_rx(rt2x00dev, state);
		break;
	case STATE_RADIO_IRQ_ON:
635
	case STATE_RADIO_IRQ_ON_ISR:
636
	case STATE_RADIO_IRQ_OFF:
637
	case STATE_RADIO_IRQ_OFF_ISR:
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
		rt2800pci_toggle_irq(rt2x00dev, state);
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2800pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

	return retval;
}

/*
 * TX descriptor initialization
 */
661 662
static void rt2800pci_write_tx_data(struct queue_entry* entry,
				    struct txentry_desc *txdesc)
663
{
664 665 666
	__le32 *txwi = (__le32 *) entry->skb->data;

	rt2800_write_txwi(txwi, txdesc);
667 668 669 670 671 672 673 674
}


static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
				    struct sk_buff *skb,
				    struct txentry_desc *txdesc)
{
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
675 676
	struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
	__le32 *txd = entry_priv->desc;
677 678
	u32 word;

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
	/*
	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
	 * must contains a TXWI structure + 802.11 header + padding + 802.11
	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
	 * data. It means that LAST_SEC0 is always 0.
	 */

	/*
	 * Initialize TX descriptor
	 */
	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
	rt2x00_desc_write(txd, 0, word);

	rt2x00_desc_read(txd, 1, &word);
	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_BURST,
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
700
	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
701 702 703 704 705 706
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
	rt2x00_desc_write(txd, 1, word);

	rt2x00_desc_read(txd, 2, &word);
	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
707
			   skbdesc->skb_dma + TXWI_DESC_SIZE);
708 709 710 711 712 713 714
	rt2x00_desc_write(txd, 2, word);

	rt2x00_desc_read(txd, 3, &word);
	rt2x00_set_field32(&word, TXD_W3_WIV,
			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
	rt2x00_desc_write(txd, 3, word);
715 716 717 718 719 720

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
}

/*
 * TX data initialization
 */
static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
				    const enum data_queue_qid queue_idx)
{
	struct data_queue *queue;
	unsigned int idx, qidx = 0;

	if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
		return;

	queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
	idx = queue->index[Q_INDEX];

	if (queue_idx == QID_MGMT)
		qidx = 5;
	else
		qidx = queue_idx;

743
	rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
744 745 746 747 748 749 750 751
}

static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
				    const enum data_queue_qid qid)
{
	u32 reg;

	if (qid == QID_BEACON) {
752
		rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
753 754 755
		return;
	}

756
	rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
757 758 759 760
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
761
	rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
762 763 764 765 766 767 768 769 770 771 772
}

/*
 * RX control handlers
 */
static void rt2800pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	__le32 *rxd = entry_priv->desc;
773 774 775 776 777
	u32 word;

	rt2x00_desc_read(rxd, 3, &word);

	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
778 779
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;

780 781 782 783 784
	/*
	 * Unfortunately we don't know the cipher type used during
	 * decryption. This prevents us from correct providing
	 * correct statistics through debugfs.
	 */
785
	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
786

787
	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
788 789 790 791 792 793 794 795 796 797 798 799 800 801
		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
		 * decryption. Unfortunately the descriptor doesn't contain
		 * any fields with the EIV/IV data either, so they can't
		 * be restored by rt2x00lib.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

802
	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
803 804
		rxdesc->dev_flags |= RXDONE_MY_BSS;

805
	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
806 807 808
		rxdesc->dev_flags |= RXDONE_L2PAD;

	/*
809
	 * Process the RXWI structure that is at the start of the buffer.
810
	 */
811
	rt2800_process_rxwi(entry, rxdesc);
812 813 814 815 816

	/*
	 * Set RX IDX in register to inform hardware that we have handled
	 * this entry and it is available for reuse again.
	 */
817
	rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
818 819 820 821 822 823 824 825 826
}

/*
 * Interrupt functions.
 */
static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
{
	struct data_queue *queue;
	struct queue_entry *entry;
827
	__le32 *txwi;
828 829 830
	struct txdone_entry_desc txdesc;
	u32 word;
	u32 reg;
831
	int wcid, ack, pid, tx_wcid, tx_ack, tx_pid;
832
	u16 mcs, real_mcs;
H
Helmut Schaa 已提交
833
	int i;
834 835

	/*
H
Helmut Schaa 已提交
836 837 838 839 840 841 842
	 * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO
	 * at most X times and also stop processing once the TX_STA_FIFO_VALID
	 * flag is not set anymore.
	 *
	 * The legacy drivers use X=TX_RING_SIZE but state in a comment
	 * that the TX_STA_FIFO stack has a size of 16. We stick to our
	 * tx ring size for now.
843
	 */
H
Helmut Schaa 已提交
844
	for (i = 0; i < TX_ENTRIES; i++) {
845
		rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
846 847 848
		if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
			break;

849 850 851 852
		wcid    = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
		ack     = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
		pid     = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);

853 854 855 856
		/*
		 * Skip this entry when it contains an invalid
		 * queue identication number.
		 */
857
		if (pid <= 0 || pid > QID_RX)
858 859
			continue;

860
		queue = rt2x00queue_get_queue(rt2x00dev, pid - 1);
861 862 863 864
		if (unlikely(!queue))
			continue;

		/*
865 866
		 * Inside each queue, we process each entry in a chronological
		 * order. We first check that the queue is not empty.
867
		 */
868
		if (rt2x00queue_empty(queue))
869
			continue;
870
		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
871

872 873
		/* Check if we got a match by looking at WCID/ACK/PID
		 * fields */
874
		txwi = (__le32 *) entry->skb->data;
875 876 877 878 879 880 881 882

		rt2x00_desc_read(txwi, 1, &word);
		tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
		tx_ack  = rt2x00_get_field32(word, TXWI_W1_ACK);
		tx_pid  = rt2x00_get_field32(word, TXWI_W1_PACKETID);

		if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid))
			WARNING(rt2x00dev, "invalid TX_STA_FIFO content\n");
883 884 885 886 887

		/*
		 * Obtain the status about this packet.
		 */
		txdesc.flags = 0;
888 889 890
		rt2x00_desc_read(txwi, 0, &word);
		mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
		real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
891 892 893

		/*
		 * Ralink has a retry mechanism using a global fallback
894 895 896 897
		 * table. We setup this fallback table to try the immediate
		 * lower rate for all rates. In the TX_STA_FIFO, the MCS field
		 * always contains the MCS used for the last transmission, be
		 * it successful or not.
898
		 */
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
		if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS)) {
			/*
			 * Transmission succeeded. The number of retries is
			 * mcs - real_mcs
			 */
			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
			txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
		} else {
			/*
			 * Transmission failed. The number of retries is
			 * always 7 in this case (for a total number of 8
			 * frames sent).
			 */
			__set_bit(TXDONE_FAILURE, &txdesc.flags);
			txdesc.retry = 7;
		}

916 917 918 919 920 921
		/*
		 * the frame was retried at least once
		 * -> hw used fallback rates
		 */
		if (txdesc.retry)
			__set_bit(TXDONE_FALLBACK, &txdesc.flags);
922

923
		rt2x00lib_txdone(entry, &txdesc);
924 925 926
	}
}

927 928 929 930 931 932 933 934
static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
	struct ieee80211_conf conf = { .flags = 0 };
	struct rt2x00lib_conf libconf = { .conf = &conf };

	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}

935
static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance)
936 937
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
938
	u32 reg = rt2x00dev->irqvalue[0];
939 940

	/*
941 942 943 944 945 946 947 948 949 950 951 952 953
	 * 1 - Pre TBTT interrupt.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
		rt2x00lib_pretbtt(rt2x00dev);

	/*
	 * 2 - Beacondone interrupt.
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
		rt2x00lib_beacondone(rt2x00dev);

	/*
	 * 3 - Rx ring done interrupt.
954 955 956 957
	 */
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
		rt2x00pci_rxdone(rt2x00dev);

958 959 960
	/*
	 * 4 - Tx done interrupt.
	 */
961 962 963
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
		rt2800pci_txdone(rt2x00dev);

964
	/*
965
	 * 5 - Auto wakeup interrupt.
966
	 */
967 968 969
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
		rt2800pci_wakeup(rt2x00dev);

970 971 972 973
	/* Enable interrupts again. */
	rt2x00dev->ops->lib->set_device_state(rt2x00dev,
					      STATE_RADIO_IRQ_ON_ISR);

974 975 976
	return IRQ_HANDLED;
}

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
	u32 reg;

	/* Read status and ACK all interrupts */
	rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

	/* Store irqvalue for use in the interrupt thread. */
	rt2x00dev->irqvalue[0] = reg;

	/* Disable interrupts, will be enabled again in the interrupt thread. */
	rt2x00dev->ops->lib->set_device_state(rt2x00dev,
					      STATE_RADIO_IRQ_OFF_ISR);


	return IRQ_WAKE_THREAD;
}

1003 1004 1005
/*
 * Device probe functions.
 */
1006 1007 1008 1009 1010
static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Read EEPROM into buffer
	 */
1011
	if (rt2x00_is_soc(rt2x00dev))
1012
		rt2800pci_read_eeprom_soc(rt2x00dev);
1013 1014 1015 1016
	else if (rt2800pci_efuse_detect(rt2x00dev))
		rt2800pci_read_eeprom_efuse(rt2x00dev);
	else
		rt2800pci_read_eeprom_pci(rt2x00dev);
1017 1018 1019 1020

	return rt2800_validate_eeprom(rt2x00dev);
}

1021 1022
static const struct rt2800_ops rt2800pci_rt2800_ops = {
	.register_read		= rt2x00pci_register_read,
1023
	.register_read_lock	= rt2x00pci_register_read, /* same for PCI */
1024 1025 1026 1027 1028 1029 1030
	.register_write		= rt2x00pci_register_write,
	.register_write_lock	= rt2x00pci_register_write, /* same for PCI */

	.register_multiread	= rt2x00pci_register_multiread,
	.register_multiwrite	= rt2x00pci_register_multiwrite,

	.regbusy_read		= rt2x00pci_regbusy_read,
1031 1032

	.drv_init_registers	= rt2800pci_init_registers,
1033 1034
};

1035 1036 1037 1038
static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

1039 1040
	rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;

1041 1042 1043 1044 1045 1046 1047
	/*
	 * Allocate eeprom data.
	 */
	retval = rt2800pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

1048
	retval = rt2800_init_eeprom(rt2x00dev);
1049 1050 1051 1052 1053 1054
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
1055
	retval = rt2800_probe_hw_mode(rt2x00dev);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
	if (retval)
		return retval;

	/*
	 * This device has multiple filters for control frames
	 * and has a separate filter for PS Poll frames.
	 */
	__set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
	__set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);

1066 1067 1068 1069 1070 1071
	/*
	 * This device has a pre tbtt interrupt and thus fetches
	 * a new beacon directly prior to transmission.
	 */
	__set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);

1072 1073 1074
	/*
	 * This device requires firmware.
	 */
1075
	if (!rt2x00_is_soc(rt2x00dev))
1076 1077 1078 1079 1080
		__set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
	__set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
	__set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
	if (!modparam_nohwcrypt)
		__set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1081
	__set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
	.irq_handler		= rt2800pci_interrupt,
1093
	.irq_handler_thread	= rt2800pci_interrupt_thread,
1094 1095 1096 1097 1098 1099 1100 1101 1102
	.probe_hw		= rt2800pci_probe_hw,
	.get_firmware_name	= rt2800pci_get_firmware_name,
	.check_firmware		= rt2800pci_check_firmware,
	.load_firmware		= rt2800pci_load_firmware,
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
	.get_entry_state	= rt2800pci_get_entry_state,
	.clear_entry		= rt2800pci_clear_entry,
	.set_device_state	= rt2800pci_set_device_state,
1103 1104 1105 1106
	.rfkill_poll		= rt2800_rfkill_poll,
	.link_stats		= rt2800_link_stats,
	.reset_tuner		= rt2800_reset_tuner,
	.link_tuner		= rt2800_link_tuner,
1107
	.write_tx_desc		= rt2800pci_write_tx_desc,
1108
	.write_tx_data		= rt2800pci_write_tx_data,
1109
	.write_beacon		= rt2800_write_beacon,
1110 1111 1112
	.kick_tx_queue		= rt2800pci_kick_tx_queue,
	.kill_tx_queue		= rt2800pci_kill_tx_queue,
	.fill_rxdone		= rt2800pci_fill_rxdone,
1113 1114 1115 1116 1117 1118 1119
	.config_shared_key	= rt2800_config_shared_key,
	.config_pairwise_key	= rt2800_config_pairwise_key,
	.config_filter		= rt2800_config_filter,
	.config_intf		= rt2800_config_intf,
	.config_erp		= rt2800_config_erp,
	.config_ant		= rt2800_config_ant,
	.config			= rt2800_config,
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
};

static const struct data_queue_desc rt2800pci_queue_rx = {
	.entry_num		= RX_ENTRIES,
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= RXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_tx = {
	.entry_num		= TX_ENTRIES,
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= TXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_bcn = {
	.entry_num		= 8 * BEACON_ENTRIES,
	.data_size		= 0, /* No DMA required for beacons */
	.desc_size		= TXWI_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct rt2x00_ops rt2800pci_ops = {
G
Gertjan van Wingerde 已提交
1144 1145 1146 1147 1148 1149
	.name			= KBUILD_MODNAME,
	.max_sta_intf		= 1,
	.max_ap_intf		= 8,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1150
	.extra_tx_headroom	= TXWI_DESC_SIZE,
G
Gertjan van Wingerde 已提交
1151 1152 1153 1154 1155
	.rx			= &rt2800pci_queue_rx,
	.tx			= &rt2800pci_queue_tx,
	.bcn			= &rt2800pci_queue_bcn,
	.lib			= &rt2800pci_rt2x00_ops,
	.hw			= &rt2800_mac80211_ops,
1156
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1157
	.debugfs		= &rt2800_rt2x00debug,
1158 1159 1160 1161 1162 1163
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2800pci module information.
 */
1164
#ifdef CONFIG_RT2800PCI_PCI
1165
static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1166 1167 1168 1169
	{ PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
1170 1171 1172 1173 1174 1175 1176
	{ PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
1177 1178
	{ PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
#ifdef CONFIG_RT2800PCI_RT30XX
1179 1180 1181
	{ PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
1182 1183 1184 1185 1186
	{ PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
#endif
#ifdef CONFIG_RT2800PCI_RT35XX
	{ PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
1187 1188
	{ PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
	{ PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
1189
	{ PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
1190
#endif
1191 1192
	{ 0, }
};
1193
#endif /* CONFIG_RT2800PCI_PCI */
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
#ifdef CONFIG_RT2800PCI_PCI
MODULE_FIRMWARE(FIRMWARE_RT2860);
MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
#endif /* CONFIG_RT2800PCI_PCI */
MODULE_LICENSE("GPL");

1205
#ifdef CONFIG_RT2800PCI_SOC
1206 1207
static int rt2800soc_probe(struct platform_device *pdev)
{
1208
	return rt2x00soc_probe(pdev, &rt2800pci_ops);
1209
}
1210 1211 1212 1213 1214 1215 1216

static struct platform_driver rt2800soc_driver = {
	.driver		= {
		.name		= "rt2800_wmac",
		.owner		= THIS_MODULE,
		.mod_name	= KBUILD_MODNAME,
	},
1217
	.probe		= rt2800soc_probe,
1218 1219 1220 1221
	.remove		= __devexit_p(rt2x00soc_remove),
	.suspend	= rt2x00soc_suspend,
	.resume		= rt2x00soc_resume,
};
1222
#endif /* CONFIG_RT2800PCI_SOC */
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238

#ifdef CONFIG_RT2800PCI_PCI
static struct pci_driver rt2800pci_driver = {
	.name		= KBUILD_MODNAME,
	.id_table	= rt2800pci_device_table,
	.probe		= rt2x00pci_probe,
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};
#endif /* CONFIG_RT2800PCI_PCI */

static int __init rt2800pci_init(void)
{
	int ret = 0;

1239
#ifdef CONFIG_RT2800PCI_SOC
1240 1241 1242 1243 1244 1245 1246
	ret = platform_driver_register(&rt2800soc_driver);
	if (ret)
		return ret;
#endif
#ifdef CONFIG_RT2800PCI_PCI
	ret = pci_register_driver(&rt2800pci_driver);
	if (ret) {
1247
#ifdef CONFIG_RT2800PCI_SOC
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
		platform_driver_unregister(&rt2800soc_driver);
#endif
		return ret;
	}
#endif

	return ret;
}

static void __exit rt2800pci_exit(void)
{
#ifdef CONFIG_RT2800PCI_PCI
	pci_unregister_driver(&rt2800pci_driver);
#endif
1262
#ifdef CONFIG_RT2800PCI_SOC
1263 1264 1265 1266 1267 1268
	platform_driver_unregister(&rt2800soc_driver);
#endif
}

module_init(rt2800pci_init);
module_exit(rt2800pci_exit);