rt2800pci.c 36.8 KB
Newer Older
1
/*
2
	Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9
	Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
	Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
	Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
	Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
	Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
	Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
	Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
	along with this program; if not, write to the
	Free Software Foundation, Inc.,
	59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

/*
	Module: rt2800pci
	Abstract: rt2800pci device specific routines.
	Supported chipsets: RT2800E & RT2800ED.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/eeprom_93cx6.h>

#include "rt2x00.h"
#include "rt2x00pci.h"
#include "rt2x00soc.h"
46
#include "rt2800lib.h"
47
#include "rt2800.h"
48 49 50 51 52
#include "rt2800pci.h"

/*
 * Allow hardware encryption to be disabled.
 */
53
static bool modparam_nohwcrypt = false;
54 55 56 57 58 59 60 61
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
{
	unsigned int i;
	u32 reg;

62 63 64 65 66 67
	/*
	 * SOC devices don't support MCU requests.
	 */
	if (rt2x00_is_soc(rt2x00dev))
		return;

68
	for (i = 0; i < 200; i++) {
69
		rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
70 71 72 73 74 75 76 77 78 79 80 81 82

		if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
		    (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
			break;

		udelay(REGISTER_BUSY_DELAY);
	}

	if (i == 200)
		ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");

83 84
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
85 86
}

87
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
88 89
static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
90
	void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE);
91 92

	memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
93 94

	iounmap(base_addr);
95 96 97 98 99
}
#else
static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
{
}
100
#endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
101

102
#ifdef CONFIG_PCI
103 104 105 106 107
static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg;

108
	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

	eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
	eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
	eeprom->reg_data_clock =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
	eeprom->reg_chip_select =
	    !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
}

static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
{
	struct rt2x00_dev *rt2x00dev = eeprom->data;
	u32 reg = 0;

	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
	rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
			   !!eeprom->reg_data_clock);
	rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
			   !!eeprom->reg_chip_select);

130
	rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg);
131 132 133 134 135 136 137
}

static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
	struct eeprom_93cx6 eeprom;
	u32 reg;

138
	rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, &reg);
139 140 141 142

	eeprom.data = rt2x00dev;
	eeprom.register_read = rt2800pci_eepromregister_read;
	eeprom.register_write = rt2800pci_eepromregister_write;
143 144 145 146 147 148 149 150 151 152 153 154
	switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
	{
	case 0:
		eeprom.width = PCI_EEPROM_WIDTH_93C46;
		break;
	case 1:
		eeprom.width = PCI_EEPROM_WIDTH_93C66;
		break;
	default:
		eeprom.width = PCI_EEPROM_WIDTH_93C86;
		break;
	}
155 156 157 158 159 160 161 162 163
	eeprom.reg_data_in = 0;
	eeprom.reg_data_out = 0;
	eeprom.reg_data_clock = 0;
	eeprom.reg_chip_select = 0;

	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
			       EEPROM_SIZE / sizeof(u16));
}

164 165
static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
166
	return rt2800_efuse_detect(rt2x00dev);
167 168
}

169
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
170
{
171
	rt2800_read_eeprom_efuse(rt2x00dev);
172 173 174 175 176 177
}
#else
static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
{
}

178 179 180 181 182
static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
{
	return 0;
}

183 184 185
static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
{
}
186
#endif /* CONFIG_PCI */
187

188 189 190 191 192 193 194 195 196 197
/*
 * Queue handlers.
 */
static void rt2800pci_start_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
198
		rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
199
		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
200
		rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
201 202
		break;
	case QID_BEACON:
203
		rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
204 205 206
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
207
		rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
208

209
		rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
210
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 1);
211
		rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
212 213 214
		break;
	default:
		break;
215
	}
216 217 218 219 220 221 222 223
}

static void rt2800pci_kick_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	struct queue_entry *entry;

	switch (queue->qid) {
I
Ivo van Doorn 已提交
224 225
	case QID_AC_VO:
	case QID_AC_VI:
226 227 228
	case QID_AC_BE:
	case QID_AC_BK:
		entry = rt2x00queue_get_entry(queue, Q_INDEX);
229 230
		rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid),
					 entry->entry_idx);
231 232 233
		break;
	case QID_MGMT:
		entry = rt2x00queue_get_entry(queue, Q_INDEX);
234 235
		rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5),
					 entry->entry_idx);
236 237 238 239 240 241 242 243 244 245 246 247 248
		break;
	default:
		break;
	}
}

static void rt2800pci_stop_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u32 reg;

	switch (queue->qid) {
	case QID_RX:
249
		rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
250
		rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
251
		rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
252 253
		break;
	case QID_BEACON:
254
		rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
255 256 257
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 0);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 0);
		rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
258
		rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
259

260
		rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, &reg);
261
		rt2x00_set_field32(&reg, INT_TIMER_EN_PRE_TBTT_TIMER, 0);
262
		rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg);
263 264

		/*
265 266 267
		 * Wait for current invocation to finish. The tasklet
		 * won't be scheduled anymore afterwards since we disabled
		 * the TBTT and PRE TBTT timer.
268
		 */
269 270 271
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
		tasklet_kill(&rt2x00dev->pretbtt_tasklet);

272 273 274 275 276 277
		break;
	default:
		break;
	}
}

278 279 280 281 282 283 284 285
/*
 * Firmware functions
 */
static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
{
	return FIRMWARE_RT2860;
}

286
static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
287 288 289 290 291 292 293 294 295
				    const u8 *data, const size_t len)
{
	u32 reg;

	/*
	 * enable Host program ram write selection
	 */
	reg = 0;
	rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
296
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
297 298 299 300

	/*
	 * Write firmware to device.
	 */
301 302
	rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
				      data, len);
303

304 305
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
306

307 308
	rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335

	return 0;
}

/*
 * Initialization functions.
 */
static bool rt2800pci_get_entry_state(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);

		return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
	}
}

static void rt2800pci_clear_entry(struct queue_entry *entry)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
336
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
337 338 339 340 341 342 343 344 345 346
	u32 word;

	if (entry->queue->qid == QID_RX) {
		rt2x00_desc_read(entry_priv->desc, 0, &word);
		rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
		rt2x00_desc_write(entry_priv->desc, 0, word);

		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
		rt2x00_desc_write(entry_priv->desc, 1, word);
347 348 349 350 351

		/*
		 * Set RX IDX in register to inform hardware that we have
		 * handled this entry and it is available for reuse again.
		 */
352
		rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
353
				      entry->entry_idx);
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
	} else {
		rt2x00_desc_read(entry_priv->desc, 1, &word);
		rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
		rt2x00_desc_write(entry_priv->desc, 1, word);
	}
}

static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
{
	struct queue_entry_priv_pci *entry_priv;
	u32 reg;

	/*
	 * Initialize registers.
	 */
	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
370 371 372 373 374
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0,
				 rt2x00dev->tx[0].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0);
375 376

	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
377 378 379 380 381
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1,
				 rt2x00dev->tx[1].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0);
382 383

	entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
384 385 386 387 388
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2,
				 rt2x00dev->tx[2].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0);
389 390

	entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
391 392 393 394 395
	rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3,
				 rt2x00dev->tx[3].limit);
	rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0);
	rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0);
396 397

	entry_priv = rt2x00dev->rx->entries[0].priv_data;
398 399 400 401 402 403
	rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
	rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT,
				 rt2x00dev->rx[0].limit);
	rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX,
				 rt2x00dev->rx[0].limit - 1);
	rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0);
404 405 406 407

	/*
	 * Enable global DMA configuration
	 */
408
	rt2x00pci_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
409 410 411
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
	rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
412
	rt2x00pci_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
413

414
	rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0);
415 416 417 418 419 420 421 422 423 424 425

	return 0;
}

/*
 * Device state switch handlers.
 */
static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
				 enum dev_state state)
{
	u32 reg;
426
	unsigned long flags;
427 428 429 430 431 432

	/*
	 * When interrupts are being enabled, the interrupt registers
	 * should clear the register to assure a clean state.
	 */
	if (state == STATE_RADIO_IRQ_ON) {
433 434
		rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
		rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
435
	}
436

437
	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
438 439 440 441 442 443 444 445
	reg = 0;
	if (state == STATE_RADIO_IRQ_ON) {
		rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
		rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, 1);
	}
446
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
447 448 449 450
	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);

	if (state == STATE_RADIO_IRQ_OFF) {
		/*
451
		 * Wait for possibly running tasklets to finish.
452
		 */
453 454 455 456 457
		tasklet_kill(&rt2x00dev->txstatus_tasklet);
		tasklet_kill(&rt2x00dev->rxdone_tasklet);
		tasklet_kill(&rt2x00dev->autowake_tasklet);
		tasklet_kill(&rt2x00dev->tbtt_tasklet);
		tasklet_kill(&rt2x00dev->pretbtt_tasklet);
458
	}
459 460
}

461 462 463 464 465 466 467
static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u32 reg;

	/*
	 * Reset DMA indexes
	 */
468
	rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
469 470 471 472 473 474 475
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
	rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
476
	rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
477

478 479
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
	rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
480

481 482
	if (rt2x00_is_pcie(rt2x00dev) &&
	    (rt2x00_rt(rt2x00dev, RT3572) ||
J
John Li 已提交
483 484
	     rt2x00_rt(rt2x00dev, RT5390) ||
	     rt2x00_rt(rt2x00dev, RT5392))) {
485
		rt2x00pci_register_read(rt2x00dev, AUX_CTRL, &reg);
486 487
		rt2x00_set_field32(&reg, AUX_CTRL_FORCE_PCIE_CLK, 1);
		rt2x00_set_field32(&reg, AUX_CTRL_WAKE_PCIE_EN, 1);
488
		rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg);
489
	}
490

491
	rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
492

493
	reg = 0;
494 495
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
	rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
496
	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
497

498
	rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
499 500 501 502

	return 0;
}

503 504
static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
{
505 506
	int retval;

507
	if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
508
		     rt2800pci_init_queues(rt2x00dev)))
509 510
		return -EIO;

511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
	retval = rt2800_enable_radio(rt2x00dev);
	if (retval)
		return retval;

	/* After resume MCU_BOOT_SIGNAL will trash these. */
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
	rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);

	rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02);
	rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF);

	rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0);
	rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);

	return retval;
526 527 528 529
}

static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
{
530 531
	if (rt2x00_is_soc(rt2x00dev)) {
		rt2800_disable_radio(rt2x00dev);
532 533
		rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0);
		rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0);
534
	}
535 536 537 538 539 540
}

static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	if (state == STATE_AWAKE) {
541 542 543
		rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP,
				   0, 0x02);
		rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP);
544
	} else if (state == STATE_SLEEP) {
545 546 547 548
		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS,
					 0xffffffff);
		rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID,
					 0xffffffff);
549 550
		rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP,
				   0xff, 0x01);
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
	}

	return 0;
}

static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt2800pci_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		/*
		 * After the radio has been disabled, the device should
		 * be put to sleep for powersaving.
		 */
		rt2800pci_disable_radio(rt2x00dev);
		rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
		break;
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		rt2800pci_toggle_irq(rt2x00dev, state);
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2800pci_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

	if (unlikely(retval))
		ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
		      state, retval);

	return retval;
}

/*
 * TX descriptor initialization
 */
598
static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
599
{
600
	return (__le32 *) entry->skb->data;
601 602
}

603
static void rt2800pci_write_tx_desc(struct queue_entry *entry,
604 605
				    struct txentry_desc *txdesc)
{
606 607
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
608
	__le32 *txd = entry_priv->desc;
609 610
	u32 word;

611 612 613 614 615 616 617 618 619 620 621
	/*
	 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
	 * must contains a TXWI structure + 802.11 header + padding + 802.11
	 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
	 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
	 * data. It means that LAST_SEC0 is always 0.
	 */

	/*
	 * Initialize TX descriptor
	 */
622
	word = 0;
623 624 625
	rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
	rt2x00_desc_write(txd, 0, word);

626
	word = 0;
627
	rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
628 629 630 631
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
			   !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W1_BURST,
			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
632
	rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
633 634 635 636
	rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
	rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
	rt2x00_desc_write(txd, 1, word);

637
	word = 0;
638
	rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
639
			   skbdesc->skb_dma + TXWI_DESC_SIZE);
640 641
	rt2x00_desc_write(txd, 2, word);

642
	word = 0;
643 644 645 646
	rt2x00_set_field32(&word, TXD_W3_WIV,
			   !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
	rt2x00_desc_write(txd, 3, word);
647 648 649 650 651 652

	/*
	 * Register descriptor details in skb frame descriptor.
	 */
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
653 654 655 656 657 658 659 660 661 662
}

/*
 * RX control handlers
 */
static void rt2800pci_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
{
	struct queue_entry_priv_pci *entry_priv = entry->priv_data;
	__le32 *rxd = entry_priv->desc;
663 664 665 666 667
	u32 word;

	rt2x00_desc_read(rxd, 3, &word);

	if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
668 669
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;

670 671 672 673 674
	/*
	 * Unfortunately we don't know the cipher type used during
	 * decryption. This prevents us from correct providing
	 * correct statistics through debugfs.
	 */
675
	rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
676

677
	if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
678 679 680 681 682 683 684 685
		/*
		 * Hardware has stripped IV/EIV data from 802.11 frame during
		 * decryption. Unfortunately the descriptor doesn't contain
		 * any fields with the EIV/IV data either, so they can't
		 * be restored by rt2x00lib.
		 */
		rxdesc->flags |= RX_FLAG_IV_STRIPPED;

686 687 688 689 690 691
		/*
		 * The hardware has already checked the Michael Mic and has
		 * stripped it from the frame. Signal this to mac80211.
		 */
		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;

692 693 694 695 696 697
		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

698
	if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
699 700
		rxdesc->dev_flags |= RXDONE_MY_BSS;

701
	if (rt2x00_get_field32(word, RXD_W3_L2PAD))
702 703 704
		rxdesc->dev_flags |= RXDONE_L2PAD;

	/*
705
	 * Process the RXWI structure that is at the start of the buffer.
706
	 */
707
	rt2800_process_rxwi(entry, rxdesc);
708 709 710 711 712
}

/*
 * Interrupt functions.
 */
713 714 715 716 717 718 719 720
static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
{
	struct ieee80211_conf conf = { .flags = 0 };
	struct rt2x00lib_conf libconf = { .conf = &conf };

	rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
}

721
static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
722 723 724 725 726
{
	struct data_queue *queue;
	struct queue_entry *entry;
	u32 status;
	u8 qid;
727
	int max_tx_done = 16;
728

729
	while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) {
730
		qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE);
731
		if (unlikely(qid >= QID_RX)) {
732 733 734 735 736
			/*
			 * Unknown queue, this shouldn't happen. Just drop
			 * this tx status.
			 */
			WARNING(rt2x00dev, "Got TX status report with "
737
					   "unexpected pid %u, dropping\n", qid);
738 739 740
			break;
		}

741
		queue = rt2x00queue_get_tx_queue(rt2x00dev, qid);
742 743 744 745 746 747
		if (unlikely(queue == NULL)) {
			/*
			 * The queue is NULL, this shouldn't happen. Stop
			 * processing here and drop the tx status
			 */
			WARNING(rt2x00dev, "Got TX status for an unavailable "
748
					   "queue %u, dropping\n", qid);
749 750 751
			break;
		}

752
		if (unlikely(rt2x00queue_empty(queue))) {
753 754 755 756 757
			/*
			 * The queue is empty. Stop processing here
			 * and drop the tx status.
			 */
			WARNING(rt2x00dev, "Got TX status for an empty "
758
					   "queue %u, dropping\n", qid);
759 760 761 762
			break;
		}

		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
763
		rt2800_txdone_entry(entry, status, rt2800pci_get_txwi(entry));
764 765 766

		if (--max_tx_done == 0)
			break;
767
	}
768 769

	return !max_tx_done;
770 771
}

772 773
static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
					      struct rt2x00_field32 irq_field)
774
{
775
	u32 reg;
776 777

	/*
778 779
	 * Enable a single interrupt. The interrupt mask register
	 * access needs locking.
780
	 */
781
	spin_lock_irq(&rt2x00dev->irqmask_lock);
782
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
783
	rt2x00_set_field32(&reg, irq_field, 1);
784
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
785
	spin_unlock_irq(&rt2x00dev->irqmask_lock);
786
}
787

788 789
static void rt2800pci_txstatus_tasklet(unsigned long data)
{
790 791 792
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	if (rt2800pci_txdone(rt2x00dev))
		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
793 794

	/*
795 796 797
	 * No need to enable the tx status interrupt here as we always
	 * leave it enabled to minimize the possibility of a tx status
	 * register overflow. See comment in interrupt handler.
798
	 */
799
}
800

801 802 803 804
static void rt2800pci_pretbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2x00lib_pretbtt(rt2x00dev);
805 806
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT);
807
}
808

809 810 811
static void rt2800pci_tbtt_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
812 813 814
	struct rt2800_drv_data *drv_data = rt2x00dev->drv_data;
	u32 reg;

815
	rt2x00lib_beacondone(rt2x00dev);
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838

	if (rt2x00dev->intf_ap_count) {
		/*
		 * The rt2800pci hardware tbtt timer is off by 1us per tbtt
		 * causing beacon skew and as a result causing problems with
		 * some powersaving clients over time. Shorten the beacon
		 * interval every 64 beacons by 64us to mitigate this effect.
		 */
		if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) {
			rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
					   (rt2x00dev->beacon_int * 16) - 1);
			rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
		} else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) {
			rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
			rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_INTERVAL,
					   (rt2x00dev->beacon_int * 16));
			rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg);
		}
		drv_data->tbtt_tick++;
		drv_data->tbtt_tick %= BCN_TBTT_OFFSET;
	}

839 840
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT);
841
}
842

843 844 845
static void rt2800pci_rxdone_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
846 847
	if (rt2x00pci_rxdone(rt2x00dev))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
848
	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
849
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE);
850 851 852 853 854 855
}

static void rt2800pci_autowake_tasklet(unsigned long data)
{
	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
	rt2800pci_wakeup(rt2x00dev);
856 857
	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP);
858 859
}

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
{
	u32 status;
	int i;

	/*
	 * The TX_FIFO_STATUS interrupt needs special care. We should
	 * read TX_STA_FIFO but we should do it immediately as otherwise
	 * the register can overflow and we would lose status reports.
	 *
	 * Hence, read the TX_STA_FIFO register and copy all tx status
	 * reports into a kernel FIFO which is handled in the txstatus
	 * tasklet. We use a tasklet to process the tx status reports
	 * because we can schedule the tasklet multiple times (when the
	 * interrupt fires again during tx status processing).
	 *
	 * Furthermore we don't disable the TX_FIFO_STATUS
	 * interrupt here but leave it enabled so that the TX_STA_FIFO
H
Helmut Schaa 已提交
878
	 * can also be read while the tx status tasklet gets executed.
879 880 881 882
	 *
	 * Since we have only one producer and one consumer we don't
	 * need to lock the kfifo.
	 */
883
	for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) {
884
		rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status);
885 886 887 888

		if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
			break;

889
		if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) {
890 891 892 893 894 895 896 897 898 899
			WARNING(rt2x00dev, "TX status FIFO overrun,"
				"drop tx status report.\n");
			break;
		}
	}

	/* Schedule the tasklet for processing the tx status. */
	tasklet_schedule(&rt2x00dev->txstatus_tasklet);
}

900 901 902
static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
{
	struct rt2x00_dev *rt2x00dev = dev_instance;
903
	u32 reg, mask;
904 905

	/* Read status and ACK all interrupts */
906 907
	rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
	rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
908 909 910 911 912 913 914

	if (!reg)
		return IRQ_NONE;

	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
		return IRQ_HANDLED;

915 916 917 918 919 920
	/*
	 * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits
	 * for interrupts and interrupt masks we can just use the value of
	 * INT_SOURCE_CSR to create the interrupt mask.
	 */
	mask = ~reg;
921

922 923
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) {
		rt2800pci_txstatus_interrupt(rt2x00dev);
924
		/*
925
		 * Never disable the TX_FIFO_STATUS interrupt.
926
		 */
927 928
		rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1);
	}
929

930 931
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
		tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet);
932

933 934
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
935

936 937
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
938

939 940 941 942 943 944 945
	if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
		tasklet_schedule(&rt2x00dev->autowake_tasklet);

	/*
	 * Disable all interrupts for which a tasklet was scheduled right now,
	 * the tasklet will reenable the appropriate interrupts.
	 */
946
	spin_lock(&rt2x00dev->irqmask_lock);
947
	rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, &reg);
948
	reg &= mask;
949
	rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg);
950
	spin_unlock(&rt2x00dev->irqmask_lock);
951 952

	return IRQ_HANDLED;
953 954
}

955 956 957
/*
 * Device probe functions.
 */
958 959 960 961 962
static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Read EEPROM into buffer
	 */
963
	if (rt2x00_is_soc(rt2x00dev))
964
		rt2800pci_read_eeprom_soc(rt2x00dev);
965 966 967 968
	else if (rt2800pci_efuse_detect(rt2x00dev))
		rt2800pci_read_eeprom_efuse(rt2x00dev);
	else
		rt2800pci_read_eeprom_pci(rt2x00dev);
969 970 971 972

	return rt2800_validate_eeprom(rt2x00dev);
}

973 974 975 976 977 978 979 980 981 982 983
static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2800pci_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

984
	retval = rt2800_init_eeprom(rt2x00dev);
985 986 987 988 989 990
	if (retval)
		return retval;

	/*
	 * Initialize hw specifications.
	 */
991
	retval = rt2800_probe_hw_mode(rt2x00dev);
992 993 994 995 996 997 998
	if (retval)
		return retval;

	/*
	 * This device has multiple filters for control frames
	 * and has a separate filter for PS Poll frames.
	 */
I
Ivo van Doorn 已提交
999 1000
	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
	__set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags);
1001

1002 1003 1004 1005
	/*
	 * This device has a pre tbtt interrupt and thus fetches
	 * a new beacon directly prior to transmission.
	 */
I
Ivo van Doorn 已提交
1006
	__set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags);
1007

1008 1009 1010
	/*
	 * This device requires firmware.
	 */
1011
	if (!rt2x00_is_soc(rt2x00dev))
I
Ivo van Doorn 已提交
1012 1013 1014 1015 1016
		__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags);
1017
	if (!modparam_nohwcrypt)
I
Ivo van Doorn 已提交
1018 1019 1020
		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags);
1021 1022 1023 1024 1025 1026 1027 1028 1029

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
static const struct ieee80211_ops rt2800pci_mac80211_ops = {
	.tx			= rt2x00mac_tx,
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
	.configure_filter	= rt2x00mac_configure_filter,
	.set_key		= rt2x00mac_set_key,
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
	.get_stats		= rt2x00mac_get_stats,
	.get_tkip_seq		= rt2800_get_tkip_seq,
	.set_rts_threshold	= rt2800_set_rts_threshold,
1044 1045
	.sta_add		= rt2x00mac_sta_add,
	.sta_remove		= rt2x00mac_sta_remove,
1046 1047 1048 1049 1050
	.bss_info_changed	= rt2x00mac_bss_info_changed,
	.conf_tx		= rt2800_conf_tx,
	.get_tsf		= rt2800_get_tsf,
	.rfkill_poll		= rt2x00mac_rfkill_poll,
	.ampdu_action		= rt2800_ampdu_action,
I
Ivo van Doorn 已提交
1051
	.flush			= rt2x00mac_flush,
1052
	.get_survey		= rt2800_get_survey,
1053
	.get_ringparam		= rt2x00mac_get_ringparam,
1054
	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1055 1056
};

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
static const struct rt2800_ops rt2800pci_rt2800_ops = {
	.register_read		= rt2x00pci_register_read,
	.register_read_lock	= rt2x00pci_register_read, /* same for PCI */
	.register_write		= rt2x00pci_register_write,
	.register_write_lock	= rt2x00pci_register_write, /* same for PCI */
	.register_multiread	= rt2x00pci_register_multiread,
	.register_multiwrite	= rt2x00pci_register_multiwrite,
	.regbusy_read		= rt2x00pci_regbusy_read,
	.drv_write_firmware	= rt2800pci_write_firmware,
	.drv_init_registers	= rt2800pci_init_registers,
1067
	.drv_get_txwi		= rt2800pci_get_txwi,
1068 1069
};

1070 1071
static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
	.irq_handler		= rt2800pci_interrupt,
1072 1073 1074 1075 1076
	.txstatus_tasklet	= rt2800pci_txstatus_tasklet,
	.pretbtt_tasklet	= rt2800pci_pretbtt_tasklet,
	.tbtt_tasklet		= rt2800pci_tbtt_tasklet,
	.rxdone_tasklet		= rt2800pci_rxdone_tasklet,
	.autowake_tasklet	= rt2800pci_autowake_tasklet,
1077 1078
	.probe_hw		= rt2800pci_probe_hw,
	.get_firmware_name	= rt2800pci_get_firmware_name,
1079 1080
	.check_firmware		= rt2800_check_firmware,
	.load_firmware		= rt2800_load_firmware,
1081 1082 1083 1084 1085
	.initialize		= rt2x00pci_initialize,
	.uninitialize		= rt2x00pci_uninitialize,
	.get_entry_state	= rt2800pci_get_entry_state,
	.clear_entry		= rt2800pci_clear_entry,
	.set_device_state	= rt2800pci_set_device_state,
1086 1087 1088 1089
	.rfkill_poll		= rt2800_rfkill_poll,
	.link_stats		= rt2800_link_stats,
	.reset_tuner		= rt2800_reset_tuner,
	.link_tuner		= rt2800_link_tuner,
1090
	.gain_calibration	= rt2800_gain_calibration,
J
John Li 已提交
1091
	.vco_calibration	= rt2800_vco_calibration,
1092 1093 1094
	.start_queue		= rt2800pci_start_queue,
	.kick_queue		= rt2800pci_kick_queue,
	.stop_queue		= rt2800pci_stop_queue,
1095
	.flush_queue		= rt2x00pci_flush_queue,
1096
	.write_tx_desc		= rt2800pci_write_tx_desc,
1097
	.write_tx_data		= rt2800_write_tx_data,
1098
	.write_beacon		= rt2800_write_beacon,
1099
	.clear_beacon		= rt2800_clear_beacon,
1100
	.fill_rxdone		= rt2800pci_fill_rxdone,
1101 1102 1103 1104 1105 1106 1107
	.config_shared_key	= rt2800_config_shared_key,
	.config_pairwise_key	= rt2800_config_pairwise_key,
	.config_filter		= rt2800_config_filter,
	.config_intf		= rt2800_config_intf,
	.config_erp		= rt2800_config_erp,
	.config_ant		= rt2800_config_ant,
	.config			= rt2800_config,
1108 1109
	.sta_add		= rt2800_sta_add,
	.sta_remove		= rt2800_sta_remove,
1110 1111 1112
};

static const struct data_queue_desc rt2800pci_queue_rx = {
1113
	.entry_num		= 128,
1114 1115 1116 1117 1118 1119
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= RXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_tx = {
1120
	.entry_num		= 64,
1121 1122 1123 1124 1125 1126
	.data_size		= AGGREGATION_SIZE,
	.desc_size		= TXD_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct data_queue_desc rt2800pci_queue_bcn = {
1127
	.entry_num		= 8,
1128 1129 1130 1131 1132 1133
	.data_size		= 0, /* No DMA required for beacons */
	.desc_size		= TXWI_DESC_SIZE,
	.priv_size		= sizeof(struct queue_entry_priv_pci),
};

static const struct rt2x00_ops rt2800pci_ops = {
G
Gertjan van Wingerde 已提交
1134
	.name			= KBUILD_MODNAME,
1135
	.drv_data_size		= sizeof(struct rt2800_drv_data),
G
Gertjan van Wingerde 已提交
1136 1137 1138 1139 1140
	.max_sta_intf		= 1,
	.max_ap_intf		= 8,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1141
	.extra_tx_headroom	= TXWI_DESC_SIZE,
G
Gertjan van Wingerde 已提交
1142 1143 1144 1145
	.rx			= &rt2800pci_queue_rx,
	.tx			= &rt2800pci_queue_tx,
	.bcn			= &rt2800pci_queue_bcn,
	.lib			= &rt2800pci_rt2x00_ops,
1146
	.drv			= &rt2800pci_rt2800_ops,
1147
	.hw			= &rt2800pci_mac80211_ops,
1148
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1149
	.debugfs		= &rt2800_rt2x00debug,
1150 1151 1152 1153 1154 1155
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * RT2800pci module information.
 */
1156
#ifdef CONFIG_PCI
1157
static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
	{ PCI_DEVICE(0x1814, 0x0601) },
	{ PCI_DEVICE(0x1814, 0x0681) },
	{ PCI_DEVICE(0x1814, 0x0701) },
	{ PCI_DEVICE(0x1814, 0x0781) },
	{ PCI_DEVICE(0x1814, 0x3090) },
	{ PCI_DEVICE(0x1814, 0x3091) },
	{ PCI_DEVICE(0x1814, 0x3092) },
	{ PCI_DEVICE(0x1432, 0x7708) },
	{ PCI_DEVICE(0x1432, 0x7727) },
	{ PCI_DEVICE(0x1432, 0x7728) },
	{ PCI_DEVICE(0x1432, 0x7738) },
	{ PCI_DEVICE(0x1432, 0x7748) },
	{ PCI_DEVICE(0x1432, 0x7758) },
	{ PCI_DEVICE(0x1432, 0x7768) },
	{ PCI_DEVICE(0x1462, 0x891a) },
	{ PCI_DEVICE(0x1a3b, 0x1059) },
1174
#ifdef CONFIG_RT2800PCI_RT33XX
1175
	{ PCI_DEVICE(0x1814, 0x3390) },
1176
#endif
1177
#ifdef CONFIG_RT2800PCI_RT35XX
1178 1179 1180 1181 1182 1183 1184
	{ PCI_DEVICE(0x1432, 0x7711) },
	{ PCI_DEVICE(0x1432, 0x7722) },
	{ PCI_DEVICE(0x1814, 0x3060) },
	{ PCI_DEVICE(0x1814, 0x3062) },
	{ PCI_DEVICE(0x1814, 0x3562) },
	{ PCI_DEVICE(0x1814, 0x3592) },
	{ PCI_DEVICE(0x1814, 0x3593) },
1185 1186
#endif
#ifdef CONFIG_RT2800PCI_RT53XX
1187
	{ PCI_DEVICE(0x1814, 0x5390) },
Z
zero.lin 已提交
1188
	{ PCI_DEVICE(0x1814, 0x539a) },
1189
	{ PCI_DEVICE(0x1814, 0x539f) },
1190
#endif
1191 1192
	{ 0, }
};
1193
#endif /* CONFIG_PCI */
1194 1195 1196 1197 1198

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1199
#ifdef CONFIG_PCI
1200 1201
MODULE_FIRMWARE(FIRMWARE_RT2860);
MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1202
#endif /* CONFIG_PCI */
1203 1204
MODULE_LICENSE("GPL");

1205
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1206 1207
static int rt2800soc_probe(struct platform_device *pdev)
{
1208
	return rt2x00soc_probe(pdev, &rt2800pci_ops);
1209
}
1210 1211 1212 1213 1214 1215 1216

static struct platform_driver rt2800soc_driver = {
	.driver		= {
		.name		= "rt2800_wmac",
		.owner		= THIS_MODULE,
		.mod_name	= KBUILD_MODNAME,
	},
1217
	.probe		= rt2800soc_probe,
1218 1219 1220 1221
	.remove		= __devexit_p(rt2x00soc_remove),
	.suspend	= rt2x00soc_suspend,
	.resume		= rt2x00soc_resume,
};
1222
#endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */
1223

1224
#ifdef CONFIG_PCI
1225 1226 1227 1228 1229 1230
static int rt2800pci_probe(struct pci_dev *pci_dev,
			   const struct pci_device_id *id)
{
	return rt2x00pci_probe(pci_dev, &rt2800pci_ops);
}

1231 1232 1233
static struct pci_driver rt2800pci_driver = {
	.name		= KBUILD_MODNAME,
	.id_table	= rt2800pci_device_table,
1234
	.probe		= rt2800pci_probe,
1235 1236 1237 1238
	.remove		= __devexit_p(rt2x00pci_remove),
	.suspend	= rt2x00pci_suspend,
	.resume		= rt2x00pci_resume,
};
1239
#endif /* CONFIG_PCI */
1240 1241 1242 1243 1244

static int __init rt2800pci_init(void)
{
	int ret = 0;

1245
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1246 1247 1248 1249
	ret = platform_driver_register(&rt2800soc_driver);
	if (ret)
		return ret;
#endif
1250
#ifdef CONFIG_PCI
1251 1252
	ret = pci_register_driver(&rt2800pci_driver);
	if (ret) {
1253
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		platform_driver_unregister(&rt2800soc_driver);
#endif
		return ret;
	}
#endif

	return ret;
}

static void __exit rt2800pci_exit(void)
{
1265
#ifdef CONFIG_PCI
1266 1267
	pci_unregister_driver(&rt2800pci_driver);
#endif
1268
#if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X)
1269 1270 1271 1272 1273 1274
	platform_driver_unregister(&rt2800soc_driver);
#endif
}

module_init(rt2800pci_init);
module_exit(rt2800pci_exit);