target_core_transport.c 93.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6
/*******************************************************************************
 * Filename:  target_core_transport.c
 *
 * This file contains the Generic Target Engine Core.
 *
7
 * (c) Copyright 2002-2013 Datera, Inc.
8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Nicholas A. Bellinger <nab@kernel.org>
 *
 ******************************************************************************/

#include <linux/net.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/in.h>
#include <linux/cdrom.h>
22
#include <linux/module.h>
23
#include <linux/ratelimit.h>
24
#include <linux/vmalloc.h>
25 26 27
#include <asm/unaligned.h>
#include <net/sock.h>
#include <net/tcp.h>
28
#include <scsi/scsi_proto.h>
29
#include <scsi/scsi_common.h>
30 31

#include <target/target_core_base.h>
32 33
#include <target/target_core_backend.h>
#include <target/target_core_fabric.h>
34

C
Christoph Hellwig 已提交
35
#include "target_core_internal.h"
36 37 38 39
#include "target_core_alua.h"
#include "target_core_pr.h"
#include "target_core_ua.h"

40 41 42
#define CREATE_TRACE_POINTS
#include <trace/events/target.h>

43
static struct workqueue_struct *target_completion_wq;
44 45 46 47 48 49
static struct kmem_cache *se_sess_cache;
struct kmem_cache *se_ua_cache;
struct kmem_cache *t10_pr_reg_cache;
struct kmem_cache *t10_alua_lu_gp_cache;
struct kmem_cache *t10_alua_lu_gp_mem_cache;
struct kmem_cache *t10_alua_tg_pt_gp_cache;
50 51
struct kmem_cache *t10_alua_lba_map_cache;
struct kmem_cache *t10_alua_lba_map_mem_cache;
52 53

static void transport_complete_task_attr(struct se_cmd *cmd);
54
static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
55
static void transport_handle_queue_full(struct se_cmd *cmd,
56
		struct se_device *dev, int err, bool write_pending);
57
static void target_complete_ok_work(struct work_struct *work);
58

59
int init_se_kmem_caches(void)
60 61 62 63
{
	se_sess_cache = kmem_cache_create("se_sess_cache",
			sizeof(struct se_session), __alignof__(struct se_session),
			0, NULL);
64 65
	if (!se_sess_cache) {
		pr_err("kmem_cache_create() for struct se_session"
66
				" failed\n");
67
		goto out;
68 69 70 71
	}
	se_ua_cache = kmem_cache_create("se_ua_cache",
			sizeof(struct se_ua), __alignof__(struct se_ua),
			0, NULL);
72 73
	if (!se_ua_cache) {
		pr_err("kmem_cache_create() for struct se_ua failed\n");
74
		goto out_free_sess_cache;
75 76 77 78
	}
	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
			sizeof(struct t10_pr_registration),
			__alignof__(struct t10_pr_registration), 0, NULL);
79 80
	if (!t10_pr_reg_cache) {
		pr_err("kmem_cache_create() for struct t10_pr_registration"
81
				" failed\n");
82
		goto out_free_ua_cache;
83 84 85 86
	}
	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
			0, NULL);
87 88
	if (!t10_alua_lu_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
89
				" failed\n");
90
		goto out_free_pr_reg_cache;
91 92 93 94
	}
	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
			sizeof(struct t10_alua_lu_gp_member),
			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
95 96
	if (!t10_alua_lu_gp_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
97
				"cache failed\n");
98
		goto out_free_lu_gp_cache;
99 100 101 102
	}
	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
			sizeof(struct t10_alua_tg_pt_gp),
			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
103 104
	if (!t10_alua_tg_pt_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
105
				"cache failed\n");
106
		goto out_free_lu_gp_mem_cache;
107
	}
108 109 110 111 112 113 114
	t10_alua_lba_map_cache = kmem_cache_create(
			"t10_alua_lba_map_cache",
			sizeof(struct t10_alua_lba_map),
			__alignof__(struct t10_alua_lba_map), 0, NULL);
	if (!t10_alua_lba_map_cache) {
		pr_err("kmem_cache_create() for t10_alua_lba_map_"
				"cache failed\n");
115
		goto out_free_tg_pt_gp_cache;
116 117 118 119 120 121 122 123 124 125
	}
	t10_alua_lba_map_mem_cache = kmem_cache_create(
			"t10_alua_lba_map_mem_cache",
			sizeof(struct t10_alua_lba_map_member),
			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
	if (!t10_alua_lba_map_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
				"cache failed\n");
		goto out_free_lba_map_cache;
	}
126

127 128 129
	target_completion_wq = alloc_workqueue("target_completion",
					       WQ_MEM_RECLAIM, 0);
	if (!target_completion_wq)
130
		goto out_free_lba_map_mem_cache;
131

132
	return 0;
133

134 135 136 137
out_free_lba_map_mem_cache:
	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
out_free_lba_map_cache:
	kmem_cache_destroy(t10_alua_lba_map_cache);
138 139 140 141 142 143 144 145 146 147 148 149
out_free_tg_pt_gp_cache:
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
out_free_lu_gp_mem_cache:
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
out_free_lu_gp_cache:
	kmem_cache_destroy(t10_alua_lu_gp_cache);
out_free_pr_reg_cache:
	kmem_cache_destroy(t10_pr_reg_cache);
out_free_ua_cache:
	kmem_cache_destroy(se_ua_cache);
out_free_sess_cache:
	kmem_cache_destroy(se_sess_cache);
150
out:
151
	return -ENOMEM;
152 153
}

154
void release_se_kmem_caches(void)
155
{
156
	destroy_workqueue(target_completion_wq);
157 158 159 160 161 162
	kmem_cache_destroy(se_sess_cache);
	kmem_cache_destroy(se_ua_cache);
	kmem_cache_destroy(t10_pr_reg_cache);
	kmem_cache_destroy(t10_alua_lu_gp_cache);
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
163 164
	kmem_cache_destroy(t10_alua_lba_map_cache);
	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
165 166
}

167 168 169
/* This code ensures unique mib indexes are handed out. */
static DEFINE_SPINLOCK(scsi_mib_index_lock);
static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
170 171 172 173 174 175 176 177

/*
 * Allocate a new row index for the entry type specified
 */
u32 scsi_get_new_index(scsi_index_t type)
{
	u32 new_index;

178
	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
179

180 181 182
	spin_lock(&scsi_mib_index_lock);
	new_index = ++scsi_mib_index[type];
	spin_unlock(&scsi_mib_index_lock);
183 184 185 186

	return new_index;
}

187
void transport_subsystem_check_init(void)
188 189
{
	int ret;
190
	static int sub_api_initialized;
191

192 193 194
	if (sub_api_initialized)
		return;

195
	ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
196
	if (ret != 0)
197
		pr_err("Unable to load target_core_iblock\n");
198

199
	ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
200
	if (ret != 0)
201
		pr_err("Unable to load target_core_file\n");
202

203
	ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
204
	if (ret != 0)
205
		pr_err("Unable to load target_core_pscsi\n");
206

207
	ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
208 209 210
	if (ret != 0)
		pr_err("Unable to load target_core_user\n");

211
	sub_api_initialized = 1;
212 213
}

214 215 216 217 218 219 220
static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
{
	struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);

	wake_up(&sess->cmd_list_wq);
}

221 222 223 224 225 226
/**
 * transport_init_session - initialize a session object
 * @se_sess: Session object pointer.
 *
 * The caller must have zero-initialized @se_sess before calling this function.
 */
227
int transport_init_session(struct se_session *se_sess)
228 229 230 231 232
{
	INIT_LIST_HEAD(&se_sess->sess_list);
	INIT_LIST_HEAD(&se_sess->sess_acl_list);
	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
	spin_lock_init(&se_sess->sess_cmd_lock);
233
	init_waitqueue_head(&se_sess->cmd_list_wq);
234 235
	return percpu_ref_init(&se_sess->cmd_count,
			       target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
236 237 238
}
EXPORT_SYMBOL(transport_init_session);

239 240 241 242 243
void transport_uninit_session(struct se_session *se_sess)
{
	percpu_ref_exit(&se_sess->cmd_count);
}

244 245 246 247 248
/**
 * transport_alloc_session - allocate a session object and initialize it
 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
 */
struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
249 250
{
	struct se_session *se_sess;
251
	int ret;
252 253

	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
254 255
	if (!se_sess) {
		pr_err("Unable to allocate struct se_session from"
256 257 258
				" se_sess_cache\n");
		return ERR_PTR(-ENOMEM);
	}
259 260
	ret = transport_init_session(se_sess);
	if (ret < 0) {
261
		kmem_cache_free(se_sess_cache, se_sess);
262 263
		return ERR_PTR(ret);
	}
264
	se_sess->sup_prot_ops = sup_prot_ops;
265 266 267

	return se_sess;
}
268 269 270 271 272 273 274 275 276
EXPORT_SYMBOL(transport_alloc_session);

/**
 * transport_alloc_session_tags - allocate target driver private data
 * @se_sess:  Session pointer.
 * @tag_num:  Maximum number of in-flight commands between initiator and target.
 * @tag_size: Size in bytes of the private data a target driver associates with
 *	      each command.
 */
277 278 279 280 281
int transport_alloc_session_tags(struct se_session *se_sess,
			         unsigned int tag_num, unsigned int tag_size)
{
	int rc;

282 283
	se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
					 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
284
	if (!se_sess->sess_cmd_map) {
285 286
		pr_err("Unable to allocate se_sess->sess_cmd_map\n");
		return -ENOMEM;
287 288
	}

289 290
	rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
			false, GFP_KERNEL, NUMA_NO_NODE);
291 292 293
	if (rc < 0) {
		pr_err("Unable to init se_sess->sess_tag_pool,"
			" tag_num: %u\n", tag_num);
294
		kvfree(se_sess->sess_cmd_map);
295 296 297 298 299 300 301 302
		se_sess->sess_cmd_map = NULL;
		return -ENOMEM;
	}

	return 0;
}
EXPORT_SYMBOL(transport_alloc_session_tags);

303 304 305 306 307 308 309
/**
 * transport_init_session_tags - allocate a session and target driver private data
 * @tag_num:  Maximum number of in-flight commands between initiator and target.
 * @tag_size: Size in bytes of the private data a target driver associates with
 *	      each command.
 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
 */
310 311 312
static struct se_session *
transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
			    enum target_prot_op sup_prot_ops)
313 314 315 316
{
	struct se_session *se_sess;
	int rc;

317 318 319 320 321 322 323 324 325 326 327
	if (tag_num != 0 && !tag_size) {
		pr_err("init_session_tags called with percpu-ida tag_num:"
		       " %u, but zero tag_size\n", tag_num);
		return ERR_PTR(-EINVAL);
	}
	if (!tag_num && tag_size) {
		pr_err("init_session_tags called with percpu-ida tag_size:"
		       " %u, but zero tag_num\n", tag_size);
		return ERR_PTR(-EINVAL);
	}

328
	se_sess = transport_alloc_session(sup_prot_ops);
329 330 331 332 333 334 335 336 337 338 339 340
	if (IS_ERR(se_sess))
		return se_sess;

	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
	if (rc < 0) {
		transport_free_session(se_sess);
		return ERR_PTR(-ENOMEM);
	}

	return se_sess;
}

341
/*
342
 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
343 344 345 346 347 348 349
 */
void __transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
350
	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
351
	unsigned char buf[PR_REG_ISID_LEN];
352
	unsigned long flags;
353 354 355 356 357 358 359 360 361 362

	se_sess->se_tpg = se_tpg;
	se_sess->fabric_sess_ptr = fabric_sess_ptr;
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
	 *
	 * Only set for struct se_session's that will actually be moving I/O.
	 * eg: *NOT* discovery sessions.
	 */
	if (se_nacl) {
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
		/*
		 *
		 * Determine if fabric allows for T10-PI feature bits exposed to
		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
		 *
		 * If so, then always save prot_type on a per se_node_acl node
		 * basis and re-instate the previous sess_prot_type to avoid
		 * disabling PI from below any previously initiator side
		 * registered LUNs.
		 */
		if (se_nacl->saved_prot_type)
			se_sess->sess_prot_type = se_nacl->saved_prot_type;
		else if (tfo->tpg_check_prot_fabric_only)
			se_sess->sess_prot_type = se_nacl->saved_prot_type =
					tfo->tpg_check_prot_fabric_only(se_tpg);
378 379 380 381
		/*
		 * If the fabric module supports an ISID based TransportID,
		 * save this value in binary from the fabric I_T Nexus now.
		 */
382
		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
383
			memset(&buf[0], 0, PR_REG_ISID_LEN);
384
			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
385 386 387
					&buf[0], PR_REG_ISID_LEN);
			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
		}
388

389
		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
390 391 392 393 394 395 396 397
		/*
		 * The se_nacl->nacl_sess pointer will be set to the
		 * last active I_T Nexus for each struct se_node_acl.
		 */
		se_nacl->nacl_sess = se_sess;

		list_add_tail(&se_sess->sess_acl_list,
			      &se_nacl->acl_sess_list);
398
		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
399 400 401
	}
	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);

402
	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
403
		se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
404 405 406 407 408 409 410 411 412
}
EXPORT_SYMBOL(__transport_register_session);

void transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
413 414 415
	unsigned long flags;

	spin_lock_irqsave(&se_tpg->session_lock, flags);
416
	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
417
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
418 419 420
}
EXPORT_SYMBOL(transport_register_session);

421
struct se_session *
422
target_setup_session(struct se_portal_group *tpg,
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
		     unsigned int tag_num, unsigned int tag_size,
		     enum target_prot_op prot_op,
		     const char *initiatorname, void *private,
		     int (*callback)(struct se_portal_group *,
				     struct se_session *, void *))
{
	struct se_session *sess;

	/*
	 * If the fabric driver is using percpu-ida based pre allocation
	 * of I/O descriptor tags, go ahead and perform that setup now..
	 */
	if (tag_num != 0)
		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
	else
438
		sess = transport_alloc_session(prot_op);
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463

	if (IS_ERR(sess))
		return sess;

	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
					(unsigned char *)initiatorname);
	if (!sess->se_node_acl) {
		transport_free_session(sess);
		return ERR_PTR(-EACCES);
	}
	/*
	 * Go ahead and perform any remaining fabric setup that is
	 * required before transport_register_session().
	 */
	if (callback != NULL) {
		int rc = callback(tpg, sess, private);
		if (rc) {
			transport_free_session(sess);
			return ERR_PTR(rc);
		}
	}

	transport_register_session(tpg, sess->se_node_acl, sess, private);
	return sess;
}
464
EXPORT_SYMBOL(target_setup_session);
465

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
{
	struct se_session *se_sess;
	ssize_t len = 0;

	spin_lock_bh(&se_tpg->session_lock);
	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
		if (!se_sess->se_node_acl)
			continue;
		if (!se_sess->se_node_acl->dynamic_node_acl)
			continue;
		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
			break;

		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
				se_sess->se_node_acl->initiatorname);
		len += 1; /* Include NULL terminator */
	}
	spin_unlock_bh(&se_tpg->session_lock);

	return len;
}
EXPORT_SYMBOL(target_show_dynamic_sessions);

490 491 492 493
static void target_complete_nacl(struct kref *kref)
{
	struct se_node_acl *nacl = container_of(kref,
				struct se_node_acl, acl_kref);
494
	struct se_portal_group *se_tpg = nacl->se_tpg;
495

496 497 498 499 500 501
	if (!nacl->dynamic_stop) {
		complete(&nacl->acl_free_comp);
		return;
	}

	mutex_lock(&se_tpg->acl_node_mutex);
502
	list_del_init(&nacl->acl_list);
503 504 505 506 507
	mutex_unlock(&se_tpg->acl_node_mutex);

	core_tpg_wait_for_nacl_pr_ref(nacl);
	core_free_device_list_for_node(nacl, se_tpg);
	kfree(nacl);
508 509 510 511 512 513
}

void target_put_nacl(struct se_node_acl *nacl)
{
	kref_put(&nacl->acl_kref, target_complete_nacl);
}
514
EXPORT_SYMBOL(target_put_nacl);
515

516 517 518
void transport_deregister_session_configfs(struct se_session *se_sess)
{
	struct se_node_acl *se_nacl;
519
	unsigned long flags;
520 521 522 523
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
	 */
	se_nacl = se_sess->se_node_acl;
524
	if (se_nacl) {
525
		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
C
Christoph Hellwig 已提交
526 527
		if (!list_empty(&se_sess->sess_acl_list))
			list_del_init(&se_sess->sess_acl_list);
528 529 530 531 532 533 534 535 536 537 538 539
		/*
		 * If the session list is empty, then clear the pointer.
		 * Otherwise, set the struct se_session pointer from the tail
		 * element of the per struct se_node_acl active session list.
		 */
		if (list_empty(&se_nacl->acl_sess_list))
			se_nacl->nacl_sess = NULL;
		else {
			se_nacl->nacl_sess = container_of(
					se_nacl->acl_sess_list.prev,
					struct se_session, sess_acl_list);
		}
540
		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
541 542 543 544 545 546
	}
}
EXPORT_SYMBOL(transport_deregister_session_configfs);

void transport_free_session(struct se_session *se_sess)
{
547
	struct se_node_acl *se_nacl = se_sess->se_node_acl;
548

549 550 551 552 553
	/*
	 * Drop the se_node_acl->nacl_kref obtained from within
	 * core_tpg_get_initiator_node_acl().
	 */
	if (se_nacl) {
554 555 556 557
		struct se_portal_group *se_tpg = se_nacl->se_tpg;
		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
		unsigned long flags;

558
		se_sess->se_node_acl = NULL;
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

		/*
		 * Also determine if we need to drop the extra ->cmd_kref if
		 * it had been previously dynamically generated, and
		 * the endpoint is not caching dynamic ACLs.
		 */
		mutex_lock(&se_tpg->acl_node_mutex);
		if (se_nacl->dynamic_node_acl &&
		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
			if (list_empty(&se_nacl->acl_sess_list))
				se_nacl->dynamic_stop = true;
			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);

			if (se_nacl->dynamic_stop)
574
				list_del_init(&se_nacl->acl_list);
575 576 577 578 579 580
		}
		mutex_unlock(&se_tpg->acl_node_mutex);

		if (se_nacl->dynamic_stop)
			target_put_nacl(se_nacl);

581 582
		target_put_nacl(se_nacl);
	}
583
	if (se_sess->sess_cmd_map) {
584
		sbitmap_queue_free(&se_sess->sess_tag_pool);
585
		kvfree(se_sess->sess_cmd_map);
586
	}
587
	transport_uninit_session(se_sess);
588 589 590 591
	kmem_cache_free(se_sess_cache, se_sess);
}
EXPORT_SYMBOL(transport_free_session);

592 593 594 595 596 597 598 599 600
static int target_release_res(struct se_device *dev, void *data)
{
	struct se_session *sess = data;

	if (dev->reservation_holder == sess)
		target_release_reservation(dev);
	return 0;
}

601 602 603
void transport_deregister_session(struct se_session *se_sess)
{
	struct se_portal_group *se_tpg = se_sess->se_tpg;
604
	unsigned long flags;
605

606
	if (!se_tpg) {
607 608 609 610
		transport_free_session(se_sess);
		return;
	}

611
	spin_lock_irqsave(&se_tpg->session_lock, flags);
612 613 614
	list_del(&se_sess->sess_list);
	se_sess->se_tpg = NULL;
	se_sess->fabric_sess_ptr = NULL;
615
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
616

617 618 619 620 621 622
	/*
	 * Since the session is being removed, release SPC-2
	 * reservations held by the session that is disappearing.
	 */
	target_for_each_device(target_release_res, se_sess);

623
	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
624
		se_tpg->se_tpg_tfo->fabric_name);
625
	/*
626
	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
627
	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
628
	 * removal context from within transport_free_session() code.
629 630 631
	 *
	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
	 * to release all remaining generate_node_acl=1 created ACL resources.
632 633
	 */

634
	transport_free_session(se_sess);
635 636 637
}
EXPORT_SYMBOL(transport_deregister_session);

638 639 640 641 642 643 644
void target_remove_session(struct se_session *se_sess)
{
	transport_deregister_session_configfs(se_sess);
	transport_deregister_session(se_sess);
}
EXPORT_SYMBOL(target_remove_session);

645
static void target_remove_from_state_list(struct se_cmd *cmd)
646
{
647
	struct se_device *dev = cmd->se_dev;
648 649
	unsigned long flags;

650 651
	if (!dev)
		return;
652

653 654 655 656
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (cmd->state_active) {
		list_del(&cmd->state_list);
		cmd->state_active = false;
657
	}
658
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
659 660
}

661 662 663 664 665 666 667
/*
 * This function is called by the target core after the target core has
 * finished processing a SCSI command or SCSI TMF. Both the regular command
 * processing code and the code for aborting commands can call this
 * function. CMD_T_STOP is set if and only if another thread is waiting
 * inside transport_wait_for_tasks() for t_transport_stop_comp.
 */
668
static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
669 670 671
{
	unsigned long flags;

672
	target_remove_from_state_list(cmd);
673

674 675 676 677 678
	/*
	 * Clear struct se_cmd->se_lun before the handoff to FE.
	 */
	cmd->se_lun = NULL;

679
	spin_lock_irqsave(&cmd->t_state_lock, flags);
680 681
	/*
	 * Determine if frontend context caller is requesting the stopping of
682
	 * this command for frontend exceptions.
683
	 */
684
	if (cmd->transport_state & CMD_T_STOP) {
685 686
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
687

688
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
689

690
		complete_all(&cmd->t_transport_stop_comp);
691 692
		return 1;
	}
693
	cmd->transport_state &= ~CMD_T_ACTIVE;
694
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
695

696 697 698 699 700 701 702
	/*
	 * Some fabric modules like tcm_loop can release their internally
	 * allocated I/O reference and struct se_cmd now.
	 *
	 * Fabric modules are expected to return '1' here if the se_cmd being
	 * passed is released at this point, or zero if not being released.
	 */
703
	return cmd->se_tfo->check_stop_free(cmd);
704 705
}

706 707 708 709 710 711 712 713 714 715 716
static void transport_lun_remove_cmd(struct se_cmd *cmd)
{
	struct se_lun *lun = cmd->se_lun;

	if (!lun)
		return;

	if (cmpxchg(&cmd->lun_ref_active, true, false))
		percpu_ref_put(&lun->lun_ref);
}

717 718 719 720
static void target_complete_failure_work(struct work_struct *work)
{
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);

721 722
	transport_generic_request_failure(cmd,
			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
723 724
}

725
/*
726 727
 * Used when asking transport to copy Sense Data from the underlying
 * Linux/SCSI struct scsi_cmnd
728
 */
729
static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
730 731 732 733 734 735
{
	struct se_device *dev = cmd->se_dev;

	WARN_ON(!cmd->se_lun);

	if (!dev)
736
		return NULL;
737

738 739
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
		return NULL;
740

741
	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
742

743
	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
744
		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
745
	return cmd->sense_buffer;
746 747
}

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
{
	unsigned char *cmd_sense_buf;
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	cmd_sense_buf = transport_get_sense_buffer(cmd);
	if (!cmd_sense_buf) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		return;
	}

	cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
	memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}
EXPORT_SYMBOL(transport_copy_sense_to_cmd);

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
static void target_handle_abort(struct se_cmd *cmd)
{
	bool tas = cmd->transport_state & CMD_T_TAS;
	bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
	int ret;

	pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);

	if (tas) {
		if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
			cmd->scsi_status = SAM_STAT_TASK_ABORTED;
			pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
				 cmd->t_task_cdb[0], cmd->tag);
			trace_target_cmd_complete(cmd);
			ret = cmd->se_tfo->queue_status(cmd);
			if (ret) {
				transport_handle_queue_full(cmd, cmd->se_dev,
							    ret, false);
				return;
			}
		} else {
			cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
			cmd->se_tfo->queue_tm_rsp(cmd);
		}
	} else {
		/*
		 * Allow the fabric driver to unmap any resources before
		 * releasing the descriptor via TFO->release_cmd().
		 */
		cmd->se_tfo->aborted_task(cmd);
		if (ack_kref)
			WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
		/*
		 * To do: establish a unit attention condition on the I_T
		 * nexus associated with cmd. See also the paragraph "Aborting
		 * commands" in SAM.
		 */
	}

	WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);

807 808
	transport_lun_remove_cmd(cmd);

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	transport_cmd_check_stop_to_fabric(cmd);
}

static void target_abort_work(struct work_struct *work)
{
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);

	target_handle_abort(cmd);
}

static bool target_cmd_interrupted(struct se_cmd *cmd)
{
	int post_ret;

	if (cmd->transport_state & CMD_T_ABORTED) {
		if (cmd->transport_complete_callback)
			cmd->transport_complete_callback(cmd, false, &post_ret);
		INIT_WORK(&cmd->work, target_abort_work);
		queue_work(target_completion_wq, &cmd->work);
		return true;
	} else if (cmd->transport_state & CMD_T_STOP) {
		if (cmd->transport_complete_callback)
			cmd->transport_complete_callback(cmd, false, &post_ret);
		complete_all(&cmd->t_transport_stop_comp);
		return true;
	}

	return false;
}

/* May be called from interrupt context so must not sleep. */
840
void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
841
{
842
	int success;
843 844
	unsigned long flags;

845 846 847
	if (target_cmd_interrupted(cmd))
		return;

848 849
	cmd->scsi_status = scsi_status;

850
	spin_lock_irqsave(&cmd->t_state_lock, flags);
851 852
	switch (cmd->scsi_status) {
	case SAM_STAT_CHECK_CONDITION:
853
		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
854
			success = 1;
855 856 857 858
		else
			success = 0;
		break;
	default:
859
		success = 1;
860
		break;
861 862
	}

863
	cmd->t_state = TRANSPORT_COMPLETE;
864
	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
865
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
866

867 868
	INIT_WORK(&cmd->work, success ? target_complete_ok_work :
		  target_complete_failure_work);
869
	if (cmd->se_cmd_flags & SCF_USE_CPUID)
870
		queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
871 872
	else
		queue_work(target_completion_wq, &cmd->work);
873
}
874 875
EXPORT_SYMBOL(target_complete_cmd);

876 877
void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
{
878 879 880
	if ((scsi_status == SAM_STAT_GOOD ||
	     cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
	    length < cmd->data_length) {
881 882 883 884 885 886 887 888 889 890 891 892 893 894
		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
			cmd->residual_count += cmd->data_length - length;
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = cmd->data_length - length;
		}

		cmd->data_length = length;
	}

	target_complete_cmd(cmd, scsi_status);
}
EXPORT_SYMBOL(target_complete_cmd_with_length);

895
static void target_add_to_state_list(struct se_cmd *cmd)
896
{
897 898
	struct se_device *dev = cmd->se_dev;
	unsigned long flags;
899

900 901 902 903
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (!cmd->state_active) {
		list_add_tail(&cmd->state_list, &dev->state_list);
		cmd->state_active = true;
904
	}
905
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
906 907
}

908
/*
909
 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
910
 */
911 912
static void transport_write_pending_qf(struct se_cmd *cmd);
static void transport_complete_qf(struct se_cmd *cmd);
913

914
void target_qf_do_work(struct work_struct *work)
915 916 917
{
	struct se_device *dev = container_of(work, struct se_device,
					qf_work_queue);
918
	LIST_HEAD(qf_cmd_list);
919 920 921
	struct se_cmd *cmd, *cmd_tmp;

	spin_lock_irq(&dev->qf_cmd_lock);
922 923
	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
	spin_unlock_irq(&dev->qf_cmd_lock);
924

925
	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
926
		list_del(&cmd->se_qf_node);
927
		atomic_dec_mb(&dev->dev_qf_count);
928

929
		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
930
			" context: %s\n", cmd->se_tfo->fabric_name, cmd,
931
			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
932 933
			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
			: "UNKNOWN");
934

935 936
		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
			transport_write_pending_qf(cmd);
937 938
		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
			 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
939
			transport_complete_qf(cmd);
940 941 942
	}
}

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
{
	switch (cmd->data_direction) {
	case DMA_NONE:
		return "NONE";
	case DMA_FROM_DEVICE:
		return "READ";
	case DMA_TO_DEVICE:
		return "WRITE";
	case DMA_BIDIRECTIONAL:
		return "BIDI";
	default:
		break;
	}

	return "UNKNOWN";
}

void transport_dump_dev_state(
	struct se_device *dev,
	char *b,
	int *bl)
{
	*bl += sprintf(b + *bl, "Status: ");
967
	if (dev->export_count)
968
		*bl += sprintf(b + *bl, "ACTIVATED");
969
	else
970 971
		*bl += sprintf(b + *bl, "DEACTIVATED");

972
	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
973
	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
974 975
		dev->dev_attrib.block_size,
		dev->dev_attrib.hw_max_sectors);
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	*bl += sprintf(b + *bl, "        ");
}

void transport_dump_vpd_proto_id(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int len;

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Protocol Identifier: ");

	switch (vpd->protocol_identifier) {
	case 0x00:
		sprintf(buf+len, "Fibre Channel\n");
		break;
	case 0x10:
		sprintf(buf+len, "Parallel SCSI\n");
		break;
	case 0x20:
		sprintf(buf+len, "SSA\n");
		break;
	case 0x30:
		sprintf(buf+len, "IEEE 1394\n");
		break;
	case 0x40:
		sprintf(buf+len, "SCSI Remote Direct Memory Access"
				" Protocol\n");
		break;
	case 0x50:
		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
		break;
	case 0x60:
		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
		break;
	case 0x70:
		sprintf(buf+len, "Automation/Drive Interface Transport"
				" Protocol\n");
		break;
	case 0x80:
		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n",
				vpd->protocol_identifier);
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1029
		pr_debug("%s", buf);
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
}

void
transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * Check if the Protocol Identifier Valid (PIV) bit is set..
	 *
	 * from spc3r23.pdf section 7.5.1
	 */
	 if (page_83[1] & 0x80) {
		vpd->protocol_identifier = (page_83[0] & 0xf0);
		vpd->protocol_identifier_set = 1;
		transport_dump_vpd_proto_id(vpd, NULL, 0);
	}
}
EXPORT_SYMBOL(transport_set_vpd_proto_id);

int transport_dump_vpd_assoc(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
1054 1055
	int ret = 0;
	int len;
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Association: ");

	switch (vpd->association) {
	case 0x00:
		sprintf(buf+len, "addressed logical unit\n");
		break;
	case 0x10:
		sprintf(buf+len, "target port\n");
		break;
	case 0x20:
		sprintf(buf+len, "SCSI target device\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1072
		ret = -EINVAL;
1073 1074 1075 1076 1077 1078
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1079
		pr_debug("%s", buf);
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101

	return ret;
}

int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identification association..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 297
	 */
	vpd->association = (page_83[1] & 0x30);
	return transport_dump_vpd_assoc(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_assoc);

int transport_dump_vpd_ident_type(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
1102 1103
	int ret = 0;
	int len;
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Type: ");

	switch (vpd->device_identifier_type) {
	case 0x00:
		sprintf(buf+len, "Vendor specific\n");
		break;
	case 0x01:
		sprintf(buf+len, "T10 Vendor ID based\n");
		break;
	case 0x02:
		sprintf(buf+len, "EUI-64 based\n");
		break;
	case 0x03:
		sprintf(buf+len, "NAA\n");
		break;
	case 0x04:
		sprintf(buf+len, "Relative target port identifier\n");
		break;
	case 0x08:
		sprintf(buf+len, "SCSI name string\n");
		break;
	default:
		sprintf(buf+len, "Unsupported: 0x%02x\n",
				vpd->device_identifier_type);
1130
		ret = -EINVAL;
1131 1132 1133
		break;
	}

1134 1135 1136
	if (p_buf) {
		if (p_buf_len < strlen(buf)+1)
			return -EINVAL;
1137
		strncpy(p_buf, buf, p_buf_len);
1138
	} else {
1139
		pr_debug("%s", buf);
1140
	}
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

	return ret;
}

int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identifier type..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 298
	 */
	vpd->device_identifier_type = (page_83[1] & 0x0f);
	return transport_dump_vpd_ident_type(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident_type);

int transport_dump_vpd_ident(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int ret = 0;

	memset(buf, 0, VPD_TMP_BUF_SIZE);

	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
1169 1170
		snprintf(buf, sizeof(buf),
			"T10 VPD Binary Device Identifier: %s\n",
1171 1172 1173
			&vpd->device_identifier[0]);
		break;
	case 0x02: /* ASCII */
1174 1175
		snprintf(buf, sizeof(buf),
			"T10 VPD ASCII Device Identifier: %s\n",
1176 1177 1178
			&vpd->device_identifier[0]);
		break;
	case 0x03: /* UTF-8 */
1179 1180
		snprintf(buf, sizeof(buf),
			"T10 VPD UTF-8 Device Identifier: %s\n",
1181 1182 1183 1184 1185
			&vpd->device_identifier[0]);
		break;
	default:
		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
			" 0x%02x", vpd->device_identifier_code_set);
1186
		ret = -EINVAL;
1187 1188 1189 1190 1191 1192
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1193
		pr_debug("%s", buf);
1194 1195 1196 1197 1198 1199 1200 1201

	return ret;
}

int
transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
{
	static const char hex_str[] = "0123456789abcdef";
1202
	int j = 0, i = 4; /* offset to start of the identifier */
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

	/*
	 * The VPD Code Set (encoding)
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 296
	 */
	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
		vpd->device_identifier[j++] =
				hex_str[vpd->device_identifier_type];
		while (i < (4 + page_83[3])) {
			vpd->device_identifier[j++] =
				hex_str[(page_83[i] & 0xf0) >> 4];
			vpd->device_identifier[j++] =
				hex_str[page_83[i] & 0x0f];
			i++;
		}
		break;
	case 0x02: /* ASCII */
	case 0x03: /* UTF-8 */
		while (i < (4 + page_83[3]))
			vpd->device_identifier[j++] = page_83[i++];
		break;
	default:
		break;
	}

	return transport_dump_vpd_ident(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident);

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
			       unsigned int size)
{
	u32 mtl;

	if (!cmd->se_tfo->max_data_sg_nents)
		return TCM_NO_SENSE;
	/*
	 * Check if fabric enforced maximum SGL entries per I/O descriptor
	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
	 * residual_count and reduce original cmd->data_length to maximum
	 * length based on single PAGE_SIZE entry scatter-lists.
	 */
	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
	if (cmd->data_length > mtl) {
		/*
		 * If an existing CDB overflow is present, calculate new residual
		 * based on CDB size minus fabric maximum transfer length.
		 *
		 * If an existing CDB underflow is present, calculate new residual
		 * based on original cmd->data_length minus fabric maximum transfer
		 * length.
		 *
		 * Otherwise, set the underflow residual based on cmd->data_length
		 * minus fabric maximum transfer length.
		 */
		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
			cmd->residual_count = (size - mtl);
		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
			u32 orig_dl = size + cmd->residual_count;
			cmd->residual_count = (orig_dl - mtl);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - mtl);
		}
		cmd->data_length = mtl;
		/*
		 * Reset sbc_check_prot() calculated protection payload
		 * length based upon the new smaller MTL.
		 */
		if (cmd->prot_length) {
			u32 sectors = (mtl / dev->dev_attrib.block_size);
			cmd->prot_length = dev->prot_length * sectors;
		}
	}
	return TCM_NO_SENSE;
}

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
/**
 * target_cmd_size_check - Check whether there will be a residual.
 * @cmd: SCSI command.
 * @size: Data buffer size derived from CDB. The data buffer size provided by
 *   the SCSI transport driver is available in @cmd->data_length.
 *
 * Compare the data buffer size from the CDB with the data buffer limit from the transport
 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
 *
 * Note: target drivers set @cmd->data_length by calling transport_init_se_cmd().
 *
 * Return: TCM_NO_SENSE
 */
1297 1298
sense_reason_t
target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1299 1300 1301 1302 1303 1304
{
	struct se_device *dev = cmd->se_dev;

	if (cmd->unknown_data_length) {
		cmd->data_length = size;
	} else if (size != cmd->data_length) {
1305
		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1306
			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1307
			" 0x%02x\n", cmd->se_tfo->fabric_name,
1308 1309
				cmd->data_length, size, cmd->t_task_cdb[0]);

1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
		if (cmd->data_direction == DMA_TO_DEVICE) {
			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
				pr_err_ratelimited("Rejecting underflow/overflow"
						   " for WRITE data CDB\n");
				return TCM_INVALID_CDB_FIELD;
			}
			/*
			 * Some fabric drivers like iscsi-target still expect to
			 * always reject overflow writes.  Reject this case until
			 * full fabric driver level support for overflow writes
			 * is introduced tree-wide.
			 */
			if (size > cmd->data_length) {
				pr_err_ratelimited("Rejecting overflow for"
						   " WRITE control CDB\n");
				return TCM_INVALID_CDB_FIELD;
			}
1327 1328 1329 1330 1331
		}
		/*
		 * Reject READ_* or WRITE_* with overflow/underflow for
		 * type SCF_SCSI_DATA_CDB.
		 */
1332
		if (dev->dev_attrib.block_size != 512)  {
1333 1334 1335 1336
			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
				" CDB on non 512-byte sector setup subsystem"
				" plugin: %s\n", dev->transport->name);
			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1337
			return TCM_INVALID_CDB_FIELD;
1338
		}
1339 1340 1341 1342 1343 1344
		/*
		 * For the overflow case keep the existing fabric provided
		 * ->data_length.  Otherwise for the underflow case, reset
		 * ->data_length to the smaller SCSI expected data transfer
		 * length.
		 */
1345 1346 1347 1348 1349 1350
		if (size > cmd->data_length) {
			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
			cmd->residual_count = (size - cmd->data_length);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - size);
1351
			cmd->data_length = size;
1352 1353 1354
		}
	}

1355
	return target_check_max_data_sg_nents(cmd, dev, size);
1356 1357 1358

}

1359 1360 1361
/*
 * Used by fabric modules containing a local struct se_cmd within their
 * fabric dependent per I/O descriptor.
1362 1363
 *
 * Preserves the value of @cmd->tag.
1364 1365 1366
 */
void transport_init_se_cmd(
	struct se_cmd *cmd,
1367
	const struct target_core_fabric_ops *tfo,
1368 1369 1370 1371
	struct se_session *se_sess,
	u32 data_length,
	int data_direction,
	int task_attr,
1372
	unsigned char *sense_buffer, u64 unpacked_lun)
1373
{
1374
	INIT_LIST_HEAD(&cmd->se_delayed_node);
1375
	INIT_LIST_HEAD(&cmd->se_qf_node);
1376
	INIT_LIST_HEAD(&cmd->se_cmd_list);
1377
	INIT_LIST_HEAD(&cmd->state_list);
1378
	init_completion(&cmd->t_transport_stop_comp);
1379 1380
	cmd->free_compl = NULL;
	cmd->abrt_compl = NULL;
1381
	spin_lock_init(&cmd->t_state_lock);
1382
	INIT_WORK(&cmd->work, NULL);
1383
	kref_init(&cmd->cmd_kref);
1384 1385 1386 1387 1388 1389 1390

	cmd->se_tfo = tfo;
	cmd->se_sess = se_sess;
	cmd->data_length = data_length;
	cmd->data_direction = data_direction;
	cmd->sam_task_attr = task_attr;
	cmd->sense_buffer = sense_buffer;
1391
	cmd->orig_fe_lun = unpacked_lun;
1392 1393

	cmd->state_active = false;
1394 1395 1396
}
EXPORT_SYMBOL(transport_init_se_cmd);

1397 1398
static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd *cmd)
1399
{
1400 1401
	struct se_device *dev = cmd->se_dev;

1402 1403 1404 1405
	/*
	 * Check if SAM Task Attribute emulation is enabled for this
	 * struct se_device storage object
	 */
1406
	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1407 1408
		return 0;

C
Christoph Hellwig 已提交
1409
	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1410
		pr_debug("SAM Task Attribute ACA"
1411
			" emulation is not supported\n");
1412
		return TCM_INVALID_CDB_FIELD;
1413
	}
1414

1415 1416 1417
	return 0;
}

1418
sense_reason_t
1419
target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb)
1420
{
1421
	sense_reason_t ret;
1422

1423
	cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1424 1425 1426 1427 1428
	/*
	 * Ensure that the received CDB is less than the max (252 + 8) bytes
	 * for VARIABLE_LENGTH_CMD
	 */
	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1429
		pr_err("Received SCSI CDB with command_size: %d that"
1430 1431
			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1432 1433
		ret = TCM_INVALID_CDB_FIELD;
		goto err;
1434 1435 1436 1437 1438 1439
	}
	/*
	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
	 * allocate the additional extended CDB buffer now..  Otherwise
	 * setup the pointer from __t_task_cdb to t_task_cdb.
	 */
1440 1441
	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1442
						GFP_KERNEL);
1443 1444
		if (!cmd->t_task_cdb) {
			pr_err("Unable to allocate cmd->t_task_cdb"
1445
				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1446
				scsi_command_size(cdb),
1447
				(unsigned long)sizeof(cmd->__t_task_cdb));
1448 1449
			ret = TCM_OUT_OF_RESOURCES;
			goto err;
1450
		}
1451
	}
1452
	/*
1453
	 * Copy the original CDB into cmd->
1454
	 */
1455
	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1456

1457
	trace_target_sequencer_start(cmd);
1458
	return 0;
1459 1460 1461 1462 1463 1464 1465 1466 1467

err:
	/*
	 * Copy the CDB here to allow trace_target_cmd_complete() to
	 * print the cdb to the trace buffers.
	 */
	memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
					 (unsigned int)TCM_MAX_COMMAND_SIZE));
	return ret;
1468 1469 1470 1471
}
EXPORT_SYMBOL(target_cmd_init_cdb);

sense_reason_t
1472
target_cmd_parse_cdb(struct se_cmd *cmd)
1473 1474 1475
{
	struct se_device *dev = cmd->se_dev;
	sense_reason_t ret;
1476

1477
	ret = dev->transport->parse_cdb(cmd);
1478 1479
	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
		pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1480
				    cmd->se_tfo->fabric_name,
1481 1482
				    cmd->se_sess->se_node_acl->initiatorname,
				    cmd->t_task_cdb[0]);
1483 1484 1485 1486 1487
	if (ret)
		return ret;

	ret = transport_check_alloc_task_attr(cmd);
	if (ret)
1488
		return ret;
1489 1490

	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1491
	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1492 1493
	return 0;
}
1494
EXPORT_SYMBOL(target_cmd_parse_cdb);
1495

1496 1497
/*
 * Used by fabric module frontends to queue tasks directly.
1498
 * May only be used from process context.
1499 1500 1501 1502
 */
int transport_handle_cdb_direct(
	struct se_cmd *cmd)
{
1503
	sense_reason_t ret;
1504

1505 1506
	if (!cmd->se_lun) {
		dump_stack();
1507
		pr_err("cmd->se_lun is NULL\n");
1508 1509 1510 1511
		return -EINVAL;
	}
	if (in_interrupt()) {
		dump_stack();
1512
		pr_err("transport_generic_handle_cdb cannot be called"
1513 1514 1515
				" from interrupt context\n");
		return -EINVAL;
	}
1516
	/*
1517 1518 1519
	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
	 * outstanding descriptors are handled correctly during shutdown via
	 * transport_wait_for_tasks()
1520 1521 1522 1523 1524
	 *
	 * Also, we don't take cmd->t_state_lock here as we only expect
	 * this to be called for initial descriptor submission.
	 */
	cmd->t_state = TRANSPORT_NEW_CMD;
1525 1526
	cmd->transport_state |= CMD_T_ACTIVE;

1527 1528 1529 1530 1531 1532
	/*
	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
	 * so follow TRANSPORT_NEW_CMD processing thread context usage
	 * and call transport_generic_request_failure() if necessary..
	 */
	ret = transport_generic_new_cmd(cmd);
1533 1534
	if (ret)
		transport_generic_request_failure(cmd, ret);
1535
	return 0;
1536 1537 1538
}
EXPORT_SYMBOL(transport_handle_cdb_direct);

1539
sense_reason_t
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
{
	if (!sgl || !sgl_count)
		return 0;

	/*
	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
	 * scatterlists already have been set to follow what the fabric
	 * passes for the original expected data transfer length.
	 */
	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
		pr_warn("Rejecting SCSI DATA overflow for fabric using"
			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
		return TCM_INVALID_CDB_FIELD;
	}

	cmd->t_data_sg = sgl;
	cmd->t_data_nents = sgl_count;
1559 1560
	cmd->t_bidi_data_sg = sgl_bidi;
	cmd->t_bidi_data_nents = sgl_bidi_count;
1561 1562 1563 1564 1565

	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
	return 0;
}

1566
/**
1567 1568
 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
 * 			 se_cmd + use pre-allocated SGL memory.
1569 1570 1571 1572 1573 1574 1575
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
1576
 * @task_attr: SAM task attribute
1577 1578
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
1579 1580 1581 1582
 * @sgl: struct scatterlist memory for unidirectional mapping
 * @sgl_count: scatterlist count for unidirectional mapping
 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1583 1584
 * @sgl_prot: struct scatterlist memory protection information
 * @sgl_prot_count: scatterlist count for protection information
1585
 *
1586 1587
 * Task tags are supported if the caller has set @se_cmd->tag.
 *
1588 1589 1590 1591
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
1592 1593
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
1594 1595
 */
int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1596
		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1597 1598
		u32 data_length, int task_attr, int data_dir, int flags,
		struct scatterlist *sgl, u32 sgl_count,
1599 1600
		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1601 1602
{
	struct se_portal_group *se_tpg;
1603 1604
	sense_reason_t rc;
	int ret;
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);
	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
	BUG_ON(in_interrupt());
	/*
	 * Initialize se_cmd for target operation.  From this point
	 * exceptions are handled by sending exception status via
	 * target_core_fabric_ops->queue_status() callback
	 */
	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1616 1617
				data_length, data_dir, task_attr, sense,
				unpacked_lun);
1618 1619 1620 1621 1622 1623

	if (flags & TARGET_SCF_USE_CPUID)
		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
	else
		se_cmd->cpuid = WORK_CPU_UNBOUND;

1624 1625
	if (flags & TARGET_SCF_UNKNOWN_SIZE)
		se_cmd->unknown_data_length = 1;
1626 1627 1628 1629 1630 1631
	/*
	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
	 * kref_put() to happen during fabric packet acknowledgement.
	 */
1632
	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1633 1634
	if (ret)
		return ret;
1635 1636 1637 1638 1639
	/*
	 * Signal bidirectional data payloads to target-core
	 */
	if (flags & TARGET_SCF_BIDI_OP)
		se_cmd->se_cmd_flags |= SCF_BIDI;
1640 1641 1642 1643 1644 1645 1646 1647

	rc = target_cmd_init_cdb(se_cmd, cdb);
	if (rc) {
		transport_send_check_condition_and_sense(se_cmd, rc, 0);
		target_put_sess_cmd(se_cmd);
		return 0;
	}

1648 1649 1650
	/*
	 * Locate se_lun pointer and attach it to struct se_cmd
	 */
1651
	rc = transport_lookup_cmd_lun(se_cmd);
1652 1653
	if (rc) {
		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1654
		target_put_sess_cmd(se_cmd);
1655
		return 0;
1656
	}
1657

1658
	rc = target_cmd_parse_cdb(se_cmd);
1659 1660 1661 1662 1663
	if (rc != 0) {
		transport_generic_request_failure(se_cmd, rc);
		return 0;
	}

1664 1665 1666 1667 1668 1669 1670
	/*
	 * Save pointers for SGLs containing protection information,
	 * if present.
	 */
	if (sgl_prot_count) {
		se_cmd->t_prot_sg = sgl_prot;
		se_cmd->t_prot_nents = sgl_prot_count;
1671
		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1672
	}
1673

1674 1675 1676 1677 1678 1679 1680 1681
	/*
	 * When a non zero sgl_count has been passed perform SGL passthrough
	 * mapping for pre-allocated fabric memory instead of having target
	 * core perform an internal SGL allocation..
	 */
	if (sgl_count != 0) {
		BUG_ON(!sgl);

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
		/*
		 * A work-around for tcm_loop as some userspace code via
		 * scsi-generic do not memset their associated read buffers,
		 * so go ahead and do that here for type non-data CDBs.  Also
		 * note that this is currently guaranteed to be a single SGL
		 * for this case by target core in target_setup_cmd_from_cdb()
		 * -> transport_generic_cmd_sequencer().
		 */
		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
		     se_cmd->data_direction == DMA_FROM_DEVICE) {
			unsigned char *buf = NULL;

			if (sgl)
				buf = kmap(sg_page(sgl)) + sgl->offset;

			if (buf) {
				memset(buf, 0, sgl->length);
				kunmap(sg_page(sgl));
			}
		}

1703 1704 1705
		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
				sgl_bidi, sgl_bidi_count);
		if (rc != 0) {
1706
			transport_generic_request_failure(se_cmd, rc);
1707 1708 1709
			return 0;
		}
	}
1710

1711 1712 1713 1714 1715 1716
	/*
	 * Check if we need to delay processing because of ALUA
	 * Active/NonOptimized primary access state..
	 */
	core_alua_check_nonop_delay(se_cmd);

1717
	transport_handle_cdb_direct(se_cmd);
1718
	return 0;
1719
}
1720 1721
EXPORT_SYMBOL(target_submit_cmd_map_sgls);

1722
/**
1723 1724 1725 1726 1727 1728 1729 1730
 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
1731
 * @task_attr: SAM task attribute
1732 1733 1734
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
 *
1735 1736
 * Task tags are supported if the caller has set @se_cmd->tag.
 *
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
 *
 * It also assumes interal target core SGL memory allocation.
 */
int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1747
		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1748 1749 1750 1751
		u32 data_length, int task_attr, int data_dir, int flags)
{
	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
			unpacked_lun, data_length, task_attr, data_dir,
1752
			flags, NULL, 0, NULL, 0, NULL, 0);
1753
}
1754 1755
EXPORT_SYMBOL(target_submit_cmd);

1756 1757 1758 1759 1760 1761
static void target_complete_tmr_failure(struct work_struct *work)
{
	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);

	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1762

1763
	transport_lun_remove_cmd(se_cmd);
1764
	transport_cmd_check_stop_to_fabric(se_cmd);
1765 1766
}

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
				       u64 *unpacked_lun)
{
	struct se_cmd *se_cmd;
	unsigned long flags;
	bool ret = false;

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
	list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
		if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
			continue;

		if (se_cmd->tag == tag) {
			*unpacked_lun = se_cmd->orig_fe_lun;
			ret = true;
			break;
		}
	}
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);

	return ret;
}

1790 1791 1792 1793 1794 1795 1796 1797
/**
 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
 *                     for TMR CDBs
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1798
 * @fabric_tmr_ptr: fabric context for TMR req
1799
 * @tm_type: Type of TM request
1800 1801
 * @gfp: gfp type for caller
 * @tag: referenced task tag for TMR_ABORT_TASK
1802
 * @flags: submit cmd flags
1803 1804 1805 1806
 *
 * Callable from all contexts.
 **/

1807
int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1808
		unsigned char *sense, u64 unpacked_lun,
1809
		void *fabric_tmr_ptr, unsigned char tm_type,
1810
		gfp_t gfp, u64 tag, int flags)
1811 1812 1813 1814 1815 1816 1817 1818
{
	struct se_portal_group *se_tpg;
	int ret;

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);

	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1819
			      0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun);
1820 1821 1822 1823
	/*
	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
	 * allocation failure.
	 */
1824
	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1825 1826
	if (ret < 0)
		return -ENOMEM;
1827

1828 1829 1830
	if (tm_type == TMR_ABORT_TASK)
		se_cmd->se_tmr_req->ref_task_tag = tag;

1831
	/* See target_submit_cmd for commentary */
1832
	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1833 1834 1835 1836
	if (ret) {
		core_tmr_release_req(se_cmd->se_tmr_req);
		return ret;
	}
1837 1838 1839 1840 1841 1842 1843 1844 1845
	/*
	 * If this is ABORT_TASK with no explicit fabric provided LUN,
	 * go ahead and search active session tags for a match to figure
	 * out unpacked_lun for the original se_cmd.
	 */
	if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
		if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun))
			goto failure;
	}
1846

1847
	ret = transport_lookup_tmr_lun(se_cmd);
1848 1849 1850
	if (ret)
		goto failure;

1851
	transport_generic_handle_tmr(se_cmd);
1852
	return 0;
1853 1854 1855 1856 1857 1858 1859 1860 1861

	/*
	 * For callback during failure handling, push this work off
	 * to process context with TMR_LUN_DOES_NOT_EXIST status.
	 */
failure:
	INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
	schedule_work(&se_cmd->work);
	return 0;
1862 1863 1864
}
EXPORT_SYMBOL(target_submit_tmr);

1865 1866 1867
/*
 * Handle SAM-esque emulation for generic transport request failures.
 */
1868 1869
void transport_generic_request_failure(struct se_cmd *cmd,
		sense_reason_t sense_reason)
1870
{
1871
	int ret = 0, post_ret;
1872

1873 1874 1875
	pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
		 sense_reason);
	target_show_cmd("-----[ ", cmd);
1876 1877 1878 1879

	/*
	 * For SAM Task Attribute emulation for failed struct se_cmd
	 */
1880
	transport_complete_task_attr(cmd);
1881

1882
	if (cmd->transport_complete_callback)
1883
		cmd->transport_complete_callback(cmd, false, &post_ret);
1884

1885 1886 1887
	if (cmd->transport_state & CMD_T_ABORTED) {
		INIT_WORK(&cmd->work, target_abort_work);
		queue_work(target_completion_wq, &cmd->work);
1888
		return;
1889
	}
1890

1891
	switch (sense_reason) {
1892 1893 1894 1895
	case TCM_NON_EXISTENT_LUN:
	case TCM_UNSUPPORTED_SCSI_OPCODE:
	case TCM_INVALID_CDB_FIELD:
	case TCM_INVALID_PARAMETER_LIST:
1896
	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1897 1898 1899
	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
	case TCM_UNKNOWN_MODE_PAGE:
	case TCM_WRITE_PROTECTED:
1900
	case TCM_ADDRESS_OUT_OF_RANGE:
1901 1902 1903
	case TCM_CHECK_CONDITION_ABORT_CMD:
	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
	case TCM_CHECK_CONDITION_NOT_READY:
1904 1905 1906
	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1907
	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1908 1909 1910 1911
	case TCM_TOO_MANY_TARGET_DESCS:
	case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
	case TCM_TOO_MANY_SEGMENT_DESCS:
	case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1912
		break;
1913
	case TCM_OUT_OF_RESOURCES:
1914 1915
		cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
		goto queue_status;
1916 1917 1918
	case TCM_LUN_BUSY:
		cmd->scsi_status = SAM_STAT_BUSY;
		goto queue_status;
1919
	case TCM_RESERVATION_CONFLICT:
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
		/*
		 * No SENSE Data payload for this case, set SCSI Status
		 * and queue the response to $FABRIC_MOD.
		 *
		 * Uses linux/include/scsi/scsi.h SAM status codes defs
		 */
		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
		/*
		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
		 * CONFLICT STATUS.
		 *
		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
		 */
1934
		if (cmd->se_sess &&
1935 1936
		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
					== TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
1937 1938 1939 1940
			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
					       cmd->orig_fe_lun, 0x2C,
					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
		}
1941 1942

		goto queue_status;
1943
	default:
1944
		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1945 1946
			cmd->t_task_cdb[0], sense_reason);
		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1947 1948
		break;
	}
1949

1950
	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1951
	if (ret)
1952
		goto queue_full;
1953

1954
check_stop:
1955
	transport_lun_remove_cmd(cmd);
A
Andy Grover 已提交
1956
	transport_cmd_check_stop_to_fabric(cmd);
1957 1958
	return;

1959 1960 1961 1962 1963
queue_status:
	trace_target_cmd_complete(cmd);
	ret = cmd->se_tfo->queue_status(cmd);
	if (!ret)
		goto check_stop;
1964
queue_full:
1965
	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1966
}
1967
EXPORT_SYMBOL(transport_generic_request_failure);
1968

1969
void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1970
{
1971
	sense_reason_t ret;
1972

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
	if (!cmd->execute_cmd) {
		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		goto err;
	}
	if (do_checks) {
		/*
		 * Check for an existing UNIT ATTENTION condition after
		 * target_handle_task_attr() has done SAM task attr
		 * checking, and possibly have already defered execution
		 * out to target_restart_delayed_cmds() context.
		 */
		ret = target_scsi3_ua_check(cmd);
		if (ret)
			goto err;

		ret = target_alua_state_check(cmd);
		if (ret)
			goto err;
1991

1992 1993 1994 1995
		ret = target_check_reservation(cmd);
		if (ret) {
			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
			goto err;
1996
		}
1997
	}
1998 1999 2000 2001 2002 2003

	ret = cmd->execute_cmd(cmd);
	if (!ret)
		return;
err:
	spin_lock_irq(&cmd->t_state_lock);
2004
	cmd->transport_state &= ~CMD_T_SENT;
2005 2006 2007
	spin_unlock_irq(&cmd->t_state_lock);

	transport_generic_request_failure(cmd, ret);
2008 2009
}

2010 2011
static int target_write_prot_action(struct se_cmd *cmd)
{
2012
	u32 sectors;
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	/*
	 * Perform WRITE_INSERT of PI using software emulation when backend
	 * device has PI enabled, if the transport has not already generated
	 * PI using hardware WRITE_INSERT offload.
	 */
	switch (cmd->prot_op) {
	case TARGET_PROT_DOUT_INSERT:
		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
			sbc_dif_generate(cmd);
		break;
2023 2024 2025 2026 2027
	case TARGET_PROT_DOUT_STRIP:
		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
			break;

		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
2028 2029
		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
					     sectors, 0, cmd->t_prot_sg, 0);
2030 2031
		if (unlikely(cmd->pi_err)) {
			spin_lock_irq(&cmd->t_state_lock);
2032
			cmd->transport_state &= ~CMD_T_SENT;
2033 2034 2035 2036 2037
			spin_unlock_irq(&cmd->t_state_lock);
			transport_generic_request_failure(cmd, cmd->pi_err);
			return -1;
		}
		break;
2038 2039 2040 2041 2042 2043 2044
	default:
		break;
	}

	return 0;
}

2045
static bool target_handle_task_attr(struct se_cmd *cmd)
2046 2047 2048
{
	struct se_device *dev = cmd->se_dev;

2049
	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2050
		return false;
2051

2052 2053
	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;

2054
	/*
L
Lucas De Marchi 已提交
2055
	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2056 2057
	 * to allow the passed struct se_cmd list of tasks to the front of the list.
	 */
2058
	switch (cmd->sam_task_attr) {
C
Christoph Hellwig 已提交
2059
	case TCM_HEAD_TAG:
2060 2061
		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
			 cmd->t_task_cdb[0]);
2062
		return false;
C
Christoph Hellwig 已提交
2063
	case TCM_ORDERED_TAG:
2064
		atomic_inc_mb(&dev->dev_ordered_sync);
2065

2066 2067
		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
			 cmd->t_task_cdb[0]);
2068

2069
		/*
2070 2071
		 * Execute an ORDERED command if no other older commands
		 * exist that need to be completed first.
2072
		 */
2073
		if (!atomic_read(&dev->simple_cmds))
2074
			return false;
2075 2076
		break;
	default:
2077 2078 2079
		/*
		 * For SIMPLE and UNTAGGED Task Attribute commands
		 */
2080
		atomic_inc_mb(&dev->simple_cmds);
2081
		break;
2082
	}
2083

2084 2085
	if (atomic_read(&dev->dev_ordered_sync) == 0)
		return false;
2086

2087 2088 2089 2090
	spin_lock(&dev->delayed_cmd_lock);
	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
	spin_unlock(&dev->delayed_cmd_lock);

2091 2092
	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
		cmd->t_task_cdb[0], cmd->sam_task_attr);
2093 2094 2095 2096 2097 2098 2099 2100
	return true;
}

void target_execute_cmd(struct se_cmd *cmd)
{
	/*
	 * Determine if frontend context caller is requesting the stopping of
	 * this command for frontend exceptions.
2101
	 *
2102
	 * If the received CDB has already been aborted stop processing it here.
2103
	 */
2104
	if (target_cmd_interrupted(cmd))
2105 2106
		return;

2107
	spin_lock_irq(&cmd->t_state_lock);
2108
	cmd->t_state = TRANSPORT_PROCESSING;
2109
	cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2110
	spin_unlock_irq(&cmd->t_state_lock);
2111 2112 2113

	if (target_write_prot_action(cmd))
		return;
2114

2115 2116
	if (target_handle_task_attr(cmd)) {
		spin_lock_irq(&cmd->t_state_lock);
2117
		cmd->transport_state &= ~CMD_T_SENT;
2118 2119 2120 2121
		spin_unlock_irq(&cmd->t_state_lock);
		return;
	}

2122
	__target_execute_cmd(cmd, true);
2123
}
2124
EXPORT_SYMBOL(target_execute_cmd);
2125

2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
/*
 * Process all commands up to the last received ORDERED task attribute which
 * requires another blocking boundary
 */
static void target_restart_delayed_cmds(struct se_device *dev)
{
	for (;;) {
		struct se_cmd *cmd;

		spin_lock(&dev->delayed_cmd_lock);
		if (list_empty(&dev->delayed_cmd_list)) {
			spin_unlock(&dev->delayed_cmd_lock);
			break;
		}

		cmd = list_entry(dev->delayed_cmd_list.next,
				 struct se_cmd, se_delayed_node);
		list_del(&cmd->se_delayed_node);
		spin_unlock(&dev->delayed_cmd_lock);

2146 2147
		cmd->transport_state |= CMD_T_SENT;

2148
		__target_execute_cmd(cmd, true);
2149

C
Christoph Hellwig 已提交
2150
		if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2151 2152 2153 2154
			break;
	}
}

2155
/*
2156
 * Called from I/O completion to determine which dormant/delayed
2157 2158 2159 2160
 * and ordered cmds need to have their tasks added to the execution queue.
 */
static void transport_complete_task_attr(struct se_cmd *cmd)
{
2161
	struct se_device *dev = cmd->se_dev;
2162

2163
	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2164 2165
		return;

2166 2167 2168
	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
		goto restart;

C
Christoph Hellwig 已提交
2169
	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2170
		atomic_dec_mb(&dev->simple_cmds);
2171
		dev->dev_cur_ordered_id++;
C
Christoph Hellwig 已提交
2172
	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2173
		dev->dev_cur_ordered_id++;
2174 2175
		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
			 dev->dev_cur_ordered_id);
C
Christoph Hellwig 已提交
2176
	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2177
		atomic_dec_mb(&dev->dev_ordered_sync);
2178 2179

		dev->dev_cur_ordered_id++;
2180 2181
		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
			 dev->dev_cur_ordered_id);
2182
	}
2183 2184
	cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;

2185
restart:
2186
	target_restart_delayed_cmds(dev);
2187 2188
}

2189
static void transport_complete_qf(struct se_cmd *cmd)
2190 2191 2192
{
	int ret = 0;

2193
	transport_complete_task_attr(cmd);
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
	/*
	 * If a fabric driver ->write_pending() or ->queue_data_in() callback
	 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
	 * the same callbacks should not be retried.  Return CHECK_CONDITION
	 * if a scsi_status is not already set.
	 *
	 * If a fabric driver ->queue_status() has returned non zero, always
	 * keep retrying no matter what..
	 */
	if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
		if (cmd->scsi_status)
			goto queue_status;
2206

2207 2208
		translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
		goto queue_status;
2209
	}
2210

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221
	/*
	 * Check if we need to send a sense buffer from
	 * the struct se_cmd in question. We do NOT want
	 * to take this path of the IO has been marked as
	 * needing to be treated like a "normal read". This
	 * is the case if it's a tape read, and either the
	 * FM, EOM, or ILI bits are set, but there is no
	 * sense data.
	 */
	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2222 2223
		goto queue_status;

2224 2225
	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
2226 2227 2228
		/* queue status if not treating this as a normal read */
		if (cmd->scsi_status &&
		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2229 2230
			goto queue_status;

2231
		trace_target_cmd_complete(cmd);
2232 2233 2234
		ret = cmd->se_tfo->queue_data_in(cmd);
		break;
	case DMA_TO_DEVICE:
2235
		if (cmd->se_cmd_flags & SCF_BIDI) {
2236
			ret = cmd->se_tfo->queue_data_in(cmd);
2237
			break;
2238
		}
2239
		/* fall through */
2240
	case DMA_NONE:
2241
queue_status:
2242
		trace_target_cmd_complete(cmd);
2243 2244 2245 2246 2247 2248
		ret = cmd->se_tfo->queue_status(cmd);
		break;
	default:
		break;
	}

2249
	if (ret < 0) {
2250
		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2251 2252
		return;
	}
2253
	transport_lun_remove_cmd(cmd);
2254
	transport_cmd_check_stop_to_fabric(cmd);
2255 2256
}

2257 2258
static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
					int err, bool write_pending)
2259
{
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	/*
	 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
	 * ->queue_data_in() callbacks from new process context.
	 *
	 * Otherwise for other errors, transport_complete_qf() will send
	 * CHECK_CONDITION via ->queue_status() instead of attempting to
	 * retry associated fabric driver data-transfer callbacks.
	 */
	if (err == -EAGAIN || err == -ENOMEM) {
		cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
						 TRANSPORT_COMPLETE_QF_OK;
	} else {
		pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
		cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
	}

2276 2277
	spin_lock_irq(&dev->qf_cmd_lock);
	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2278
	atomic_inc_mb(&dev->dev_qf_count);
2279 2280 2281 2282 2283
	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);

	schedule_work(&cmd->se_dev->qf_work_queue);
}

2284
static bool target_read_prot_action(struct se_cmd *cmd)
2285
{
2286 2287 2288
	switch (cmd->prot_op) {
	case TARGET_PROT_DIN_STRIP:
		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2289 2290 2291 2292 2293 2294 2295
			u32 sectors = cmd->data_length >>
				  ilog2(cmd->se_dev->dev_attrib.block_size);

			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
						     sectors, 0, cmd->t_prot_sg,
						     0);
			if (cmd->pi_err)
2296
				return true;
2297
		}
2298
		break;
2299 2300 2301 2302 2303 2304
	case TARGET_PROT_DIN_INSERT:
		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
			break;

		sbc_dif_generate(cmd);
		break;
2305 2306
	default:
		break;
2307 2308 2309 2310 2311
	}

	return false;
}

2312
static void target_complete_ok_work(struct work_struct *work)
2313
{
2314
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2315
	int ret;
2316

2317 2318 2319 2320 2321
	/*
	 * Check if we need to move delayed/dormant tasks from cmds on the
	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
	 * Attribute.
	 */
2322 2323
	transport_complete_task_attr(cmd);

2324 2325 2326 2327 2328 2329 2330
	/*
	 * Check to schedule QUEUE_FULL work, or execute an existing
	 * cmd->transport_qf_callback()
	 */
	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
		schedule_work(&cmd->se_dev->qf_work_queue);

2331
	/*
2332
	 * Check if we need to send a sense buffer from
2333 2334 2335 2336 2337 2338
	 * the struct se_cmd in question. We do NOT want
	 * to take this path of the IO has been marked as
	 * needing to be treated like a "normal read". This
	 * is the case if it's a tape read, and either the
	 * FM, EOM, or ILI bits are set, but there is no
	 * sense data.
2339
	 */
2340 2341
	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2342 2343 2344
		WARN_ON(!cmd->scsi_status);
		ret = transport_send_check_condition_and_sense(
					cmd, 0, 1);
2345
		if (ret)
2346 2347
			goto queue_full;

2348
		transport_lun_remove_cmd(cmd);
2349 2350
		transport_cmd_check_stop_to_fabric(cmd);
		return;
2351 2352
	}
	/*
L
Lucas De Marchi 已提交
2353
	 * Check for a callback, used by amongst other things
2354
	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2355
	 */
2356 2357
	if (cmd->transport_complete_callback) {
		sense_reason_t rc;
2358 2359 2360
		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
		bool zero_dl = !(cmd->data_length);
		int post_ret = 0;
2361

2362 2363 2364
		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
		if (!rc && !post_ret) {
			if (caw && zero_dl)
2365 2366
				goto queue_rsp;

2367
			return;
2368 2369 2370
		} else if (rc) {
			ret = transport_send_check_condition_and_sense(cmd,
						rc, 0);
2371
			if (ret)
2372
				goto queue_full;
2373

2374
			transport_lun_remove_cmd(cmd);
2375 2376 2377
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
2378
	}
2379

2380
queue_rsp:
2381 2382
	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
		/*
		 * if this is a READ-type IO, but SCSI status
		 * is set, then skip returning data and just
		 * return the status -- unless this IO is marked
		 * as needing to be treated as a normal read,
		 * in which case we want to go ahead and return
		 * the data. This happens, for example, for tape
		 * reads with the FM, EOM, or ILI bits set, with
		 * no sense data.
		 */
		if (cmd->scsi_status &&
		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2395 2396
			goto queue_status;

2397 2398
		atomic_long_add(cmd->data_length,
				&cmd->se_lun->lun_stats.tx_data_octets);
2399 2400 2401 2402 2403
		/*
		 * Perform READ_STRIP of PI using software emulation when
		 * backend had PI enabled, if the transport will not be
		 * performing hardware READ_STRIP offload.
		 */
2404
		if (target_read_prot_action(cmd)) {
2405 2406
			ret = transport_send_check_condition_and_sense(cmd,
						cmd->pi_err, 0);
2407
			if (ret)
2408 2409
				goto queue_full;

2410
			transport_lun_remove_cmd(cmd);
2411 2412 2413
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
2414

2415
		trace_target_cmd_complete(cmd);
2416
		ret = cmd->se_tfo->queue_data_in(cmd);
2417
		if (ret)
2418
			goto queue_full;
2419 2420
		break;
	case DMA_TO_DEVICE:
2421 2422
		atomic_long_add(cmd->data_length,
				&cmd->se_lun->lun_stats.rx_data_octets);
2423 2424 2425
		/*
		 * Check if we need to send READ payload for BIDI-COMMAND
		 */
2426
		if (cmd->se_cmd_flags & SCF_BIDI) {
2427 2428
			atomic_long_add(cmd->data_length,
					&cmd->se_lun->lun_stats.tx_data_octets);
2429
			ret = cmd->se_tfo->queue_data_in(cmd);
2430
			if (ret)
2431
				goto queue_full;
2432 2433
			break;
		}
2434
		/* fall through */
2435
	case DMA_NONE:
2436
queue_status:
2437
		trace_target_cmd_complete(cmd);
2438
		ret = cmd->se_tfo->queue_status(cmd);
2439
		if (ret)
2440
			goto queue_full;
2441 2442 2443 2444 2445
		break;
	default:
		break;
	}

2446
	transport_lun_remove_cmd(cmd);
2447
	transport_cmd_check_stop_to_fabric(cmd);
2448 2449 2450
	return;

queue_full:
2451
	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2452
		" data_direction: %d\n", cmd, cmd->data_direction);
2453 2454

	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2455 2456
}

2457
void target_free_sgl(struct scatterlist *sgl, int nents)
2458
{
2459
	sgl_free_n_order(sgl, nents, 0);
2460
}
2461
EXPORT_SYMBOL(target_free_sgl);
2462

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
{
	/*
	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
	 * emulation, and free + reset pointers if necessary..
	 */
	if (!cmd->t_data_sg_orig)
		return;

	kfree(cmd->t_data_sg);
	cmd->t_data_sg = cmd->t_data_sg_orig;
	cmd->t_data_sg_orig = NULL;
	cmd->t_data_nents = cmd->t_data_nents_orig;
	cmd->t_data_nents_orig = 0;
}

2479 2480
static inline void transport_free_pages(struct se_cmd *cmd)
{
2481
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2482
		target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2483 2484 2485 2486
		cmd->t_prot_sg = NULL;
		cmd->t_prot_nents = 0;
	}

2487
	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2488 2489 2490 2491 2492
		/*
		 * Release special case READ buffer payload required for
		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
		 */
		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2493
			target_free_sgl(cmd->t_bidi_data_sg,
2494 2495 2496 2497
					   cmd->t_bidi_data_nents);
			cmd->t_bidi_data_sg = NULL;
			cmd->t_bidi_data_nents = 0;
		}
2498
		transport_reset_sgl_orig(cmd);
2499
		return;
2500 2501
	}
	transport_reset_sgl_orig(cmd);
2502

2503
	target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2504 2505
	cmd->t_data_sg = NULL;
	cmd->t_data_nents = 0;
2506

2507
	target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2508 2509
	cmd->t_bidi_data_sg = NULL;
	cmd->t_bidi_data_nents = 0;
2510 2511
}

2512
void *transport_kmap_data_sg(struct se_cmd *cmd)
2513
{
2514
	struct scatterlist *sg = cmd->t_data_sg;
2515 2516
	struct page **pages;
	int i;
2517 2518

	/*
2519 2520 2521
	 * We need to take into account a possible offset here for fabrics like
	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2522
	 */
2523 2524
	if (!cmd->t_data_nents)
		return NULL;
2525 2526 2527

	BUG_ON(!sg);
	if (cmd->t_data_nents == 1)
2528 2529 2530
		return kmap(sg_page(sg)) + sg->offset;

	/* >1 page. use vmap */
2531
	pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2532
	if (!pages)
2533 2534 2535 2536 2537 2538 2539 2540 2541
		return NULL;

	/* convert sg[] to pages[] */
	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
		pages[i] = sg_page(sg);
	}

	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
	kfree(pages);
2542
	if (!cmd->t_data_vmap)
2543 2544 2545
		return NULL;

	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2546
}
2547
EXPORT_SYMBOL(transport_kmap_data_sg);
2548

2549
void transport_kunmap_data_sg(struct se_cmd *cmd)
2550
{
2551
	if (!cmd->t_data_nents) {
2552
		return;
2553
	} else if (cmd->t_data_nents == 1) {
2554
		kunmap(sg_page(cmd->t_data_sg));
2555 2556
		return;
	}
2557 2558 2559

	vunmap(cmd->t_data_vmap);
	cmd->t_data_vmap = NULL;
2560
}
2561
EXPORT_SYMBOL(transport_kunmap_data_sg);
2562

2563
int
2564
target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2565
		 bool zero_page, bool chainable)
2566
{
2567
	gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2568

2569 2570
	*sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
	return *sgl ? 0 : -ENOMEM;
2571
}
2572
EXPORT_SYMBOL(target_alloc_sgl);
2573

2574
/*
2575 2576 2577
 * Allocate any required resources to execute the command.  For writes we
 * might not have the payload yet, so notify the fabric via a call to
 * ->write_pending instead. Otherwise place it on the execution queue.
2578
 */
2579 2580
sense_reason_t
transport_generic_new_cmd(struct se_cmd *cmd)
2581
{
2582
	unsigned long flags;
2583
	int ret = 0;
2584
	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2585

2586 2587 2588
	if (cmd->prot_op != TARGET_PROT_NORMAL &&
	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2589
				       cmd->prot_length, true, false);
2590 2591 2592 2593
		if (ret < 0)
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
	}

2594
	/*
2595
	 * Determine if the TCM fabric module has already allocated physical
2596
	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2597
	 * beforehand.
2598
	 */
2599 2600
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
	    cmd->data_length) {
2601

2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
		if ((cmd->se_cmd_flags & SCF_BIDI) ||
		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
			u32 bidi_length;

			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
				bidi_length = cmd->t_task_nolb *
					      cmd->se_dev->dev_attrib.block_size;
			else
				bidi_length = cmd->data_length;

			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
					       &cmd->t_bidi_data_nents,
2614
					       bidi_length, zero_flag, false);
2615 2616 2617 2618
			if (ret < 0)
				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		}

2619
		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2620
				       cmd->data_length, zero_flag, false);
2621
		if (ret < 0)
2622
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
		    cmd->data_length) {
		/*
		 * Special case for COMPARE_AND_WRITE with fabrics
		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
		 */
		u32 caw_length = cmd->t_task_nolb *
				 cmd->se_dev->dev_attrib.block_size;

		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
				       &cmd->t_bidi_data_nents,
2634
				       caw_length, zero_flag, false);
2635 2636
		if (ret < 0)
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2637 2638
	}
	/*
2639 2640 2641
	 * If this command is not a write we can execute it right here,
	 * for write buffers we need to notify the fabric driver first
	 * and let it call back once the write buffers are ready.
2642
	 */
2643
	target_add_to_state_list(cmd);
2644
	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2645 2646 2647
		target_execute_cmd(cmd);
		return 0;
	}
2648 2649 2650 2651 2652 2653 2654

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	cmd->t_state = TRANSPORT_WRITE_PENDING;
	/*
	 * Determine if frontend context caller is requesting the stopping of
	 * this command for frontend exceptions.
	 */
2655 2656
	if (cmd->transport_state & CMD_T_STOP &&
	    !cmd->se_tfo->write_pending_must_be_called) {
2657 2658 2659 2660 2661 2662
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			 __func__, __LINE__, cmd->tag);

		spin_unlock_irqrestore(&cmd->t_state_lock, flags);

		complete_all(&cmd->t_transport_stop_comp);
2663
		return 0;
2664 2665 2666
	}
	cmd->transport_state &= ~CMD_T_ACTIVE;
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2667 2668

	ret = cmd->se_tfo->write_pending(cmd);
2669
	if (ret)
2670 2671
		goto queue_full;

2672
	return 0;
2673

2674 2675
queue_full:
	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2676
	transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2677
	return 0;
2678
}
2679
EXPORT_SYMBOL(transport_generic_new_cmd);
2680

2681
static void transport_write_pending_qf(struct se_cmd *cmd)
2682
{
2683
	unsigned long flags;
2684
	int ret;
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
	bool stop;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

	if (stop) {
		pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
		complete_all(&cmd->t_transport_stop_comp);
		return;
	}
2697 2698

	ret = cmd->se_tfo->write_pending(cmd);
2699
	if (ret) {
2700 2701
		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
			 cmd);
2702
		transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2703
	}
2704 2705
}

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
static bool
__transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
			   unsigned long *flags);

static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
{
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
/*
 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
 * finished.
 */
void target_put_cmd_and_wait(struct se_cmd *cmd)
{
	DECLARE_COMPLETION_ONSTACK(compl);

	WARN_ON_ONCE(cmd->abrt_compl);
	cmd->abrt_compl = &compl;
	target_put_sess_cmd(cmd);
	wait_for_completion(&compl);
}

2733 2734 2735 2736
/*
 * This function is called by frontend drivers after processing of a command
 * has finished.
 *
2737 2738 2739
 * The protocol for ensuring that either the regular frontend command
 * processing flow or target_handle_abort() code drops one reference is as
 * follows:
2740
 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2741 2742
 *   the frontend driver to call this function synchronously or asynchronously.
 *   That will cause one reference to be dropped.
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
 * - During regular command processing the target core sets CMD_T_COMPLETE
 *   before invoking one of the .queue_*() functions.
 * - The code that aborts commands skips commands and TMFs for which
 *   CMD_T_COMPLETE has been set.
 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
 *   commands that will be aborted.
 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
 *   transport_generic_free_cmd() skips its call to target_put_sess_cmd().
 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
 *   be called and will drop a reference.
 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2754
 *   will be called. target_handle_abort() will drop the final reference.
2755
 */
2756
int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2757
{
2758
	DECLARE_COMPLETION_ONSTACK(compl);
2759
	int ret = 0;
2760
	bool aborted = false, tas = false;
2761

2762 2763 2764 2765
	if (wait_for_tasks)
		target_wait_free_cmd(cmd, &aborted, &tas);

	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2766 2767 2768 2769 2770
		/*
		 * Handle WRITE failure case where transport_generic_new_cmd()
		 * has already added se_cmd to state_list, but fabric has
		 * failed command before I/O submission.
		 */
2771
		if (cmd->state_active)
2772
			target_remove_from_state_list(cmd);
2773 2774 2775

		if (cmd->se_lun)
			transport_lun_remove_cmd(cmd);
2776
	}
2777
	if (aborted)
2778
		cmd->free_compl = &compl;
2779
	ret = target_put_sess_cmd(cmd);
2780 2781
	if (aborted) {
		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2782
		wait_for_completion(&compl);
2783
		ret = 1;
2784
	}
2785
	return ret;
2786 2787 2788
}
EXPORT_SYMBOL(transport_generic_free_cmd);

2789 2790
/**
 * target_get_sess_cmd - Add command to active ->sess_cmd_list
2791
 * @se_cmd:	command descriptor to add
2792
 * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2793
 */
2794
int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2795
{
2796
	struct se_session *se_sess = se_cmd->se_sess;
2797
	unsigned long flags;
2798
	int ret = 0;
2799

2800 2801 2802 2803 2804
	/*
	 * Add a second kref if the fabric caller is expecting to handle
	 * fabric acknowledgement that requires two target_put_sess_cmd()
	 * invocations before se_cmd descriptor release.
	 */
2805
	if (ack_kref) {
2806 2807 2808
		if (!kref_get_unless_zero(&se_cmd->cmd_kref))
			return -EINVAL;

2809 2810
		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
	}
2811

2812
	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2813 2814 2815 2816
	if (se_sess->sess_tearing_down) {
		ret = -ESHUTDOWN;
		goto out;
	}
2817
	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2818
	percpu_ref_get(&se_sess->cmd_count);
2819
out:
2820
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2821 2822

	if (ret && ack_kref)
2823
		target_put_sess_cmd(se_cmd);
2824

2825
	return ret;
2826
}
2827
EXPORT_SYMBOL(target_get_sess_cmd);
2828

2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
static void target_free_cmd_mem(struct se_cmd *cmd)
{
	transport_free_pages(cmd);

	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
		core_tmr_release_req(cmd->se_tmr_req);
	if (cmd->t_task_cdb != cmd->__t_task_cdb)
		kfree(cmd->t_task_cdb);
}

2839
static void target_release_cmd_kref(struct kref *kref)
2840
{
2841 2842
	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
	struct se_session *se_sess = se_cmd->se_sess;
2843 2844
	struct completion *free_compl = se_cmd->free_compl;
	struct completion *abrt_compl = se_cmd->abrt_compl;
2845
	unsigned long flags;
2846

2847 2848
	if (se_sess) {
		spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2849
		list_del_init(&se_cmd->se_cmd_list);
2850
		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2851 2852
	}

2853
	target_free_cmd_mem(se_cmd);
2854
	se_cmd->se_tfo->release_cmd(se_cmd);
2855 2856 2857 2858
	if (free_compl)
		complete(free_compl);
	if (abrt_compl)
		complete(abrt_compl);
2859 2860

	percpu_ref_put(&se_sess->cmd_count);
2861 2862
}

2863 2864 2865 2866 2867 2868
/**
 * target_put_sess_cmd - decrease the command reference count
 * @se_cmd:	command to drop a reference from
 *
 * Returns 1 if and only if this target_put_sess_cmd() call caused the
 * refcount to drop to zero. Returns zero otherwise.
2869
 */
2870
int target_put_sess_cmd(struct se_cmd *se_cmd)
2871
{
2872
	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2873 2874 2875
}
EXPORT_SYMBOL(target_put_sess_cmd);

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
static const char *data_dir_name(enum dma_data_direction d)
{
	switch (d) {
	case DMA_BIDIRECTIONAL:	return "BIDI";
	case DMA_TO_DEVICE:	return "WRITE";
	case DMA_FROM_DEVICE:	return "READ";
	case DMA_NONE:		return "NONE";
	}

	return "(?)";
}

static const char *cmd_state_name(enum transport_state_table t)
{
	switch (t) {
	case TRANSPORT_NO_STATE:	return "NO_STATE";
	case TRANSPORT_NEW_CMD:		return "NEW_CMD";
	case TRANSPORT_WRITE_PENDING:	return "WRITE_PENDING";
	case TRANSPORT_PROCESSING:	return "PROCESSING";
	case TRANSPORT_COMPLETE:	return "COMPLETE";
	case TRANSPORT_ISTATE_PROCESSING:
					return "ISTATE_PROCESSING";
	case TRANSPORT_COMPLETE_QF_WP:	return "COMPLETE_QF_WP";
	case TRANSPORT_COMPLETE_QF_OK:	return "COMPLETE_QF_OK";
	case TRANSPORT_COMPLETE_QF_ERR:	return "COMPLETE_QF_ERR";
	}

	return "(?)";
}

static void target_append_str(char **str, const char *txt)
{
	char *prev = *str;

	*str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
		kstrdup(txt, GFP_ATOMIC);
	kfree(prev);
}

/*
 * Convert a transport state bitmask into a string. The caller is
 * responsible for freeing the returned pointer.
 */
static char *target_ts_to_str(u32 ts)
{
	char *str = NULL;

	if (ts & CMD_T_ABORTED)
		target_append_str(&str, "aborted");
	if (ts & CMD_T_ACTIVE)
		target_append_str(&str, "active");
	if (ts & CMD_T_COMPLETE)
		target_append_str(&str, "complete");
	if (ts & CMD_T_SENT)
		target_append_str(&str, "sent");
	if (ts & CMD_T_STOP)
		target_append_str(&str, "stop");
	if (ts & CMD_T_FABRIC_STOP)
		target_append_str(&str, "fabric_stop");

	return str;
}

static const char *target_tmf_name(enum tcm_tmreq_table tmf)
{
	switch (tmf) {
	case TMR_ABORT_TASK:		return "ABORT_TASK";
	case TMR_ABORT_TASK_SET:	return "ABORT_TASK_SET";
	case TMR_CLEAR_ACA:		return "CLEAR_ACA";
	case TMR_CLEAR_TASK_SET:	return "CLEAR_TASK_SET";
	case TMR_LUN_RESET:		return "LUN_RESET";
	case TMR_TARGET_WARM_RESET:	return "TARGET_WARM_RESET";
	case TMR_TARGET_COLD_RESET:	return "TARGET_COLD_RESET";
2949
	case TMR_LUN_RESET_PRO:		return "LUN_RESET_PRO";
2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
	case TMR_UNKNOWN:		break;
	}
	return "(?)";
}

void target_show_cmd(const char *pfx, struct se_cmd *cmd)
{
	char *ts_str = target_ts_to_str(cmd->transport_state);
	const u8 *cdb = cmd->t_task_cdb;
	struct se_tmr_req *tmf = cmd->se_tmr_req;

	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
		pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
			 pfx, cdb[0], cdb[1], cmd->tag,
			 data_dir_name(cmd->data_direction),
			 cmd->se_tfo->get_cmd_state(cmd),
			 cmd_state_name(cmd->t_state), cmd->data_length,
			 kref_read(&cmd->cmd_kref), ts_str);
	} else {
		pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
			 pfx, target_tmf_name(tmf->function), cmd->tag,
			 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
			 cmd_state_name(cmd->t_state),
			 kref_read(&cmd->cmd_kref), ts_str);
	}
	kfree(ts_str);
}
EXPORT_SYMBOL(target_show_cmd);

2979
/**
2980
 * target_sess_cmd_list_set_waiting - Set sess_tearing_down so no new commands are queued.
2981
 * @se_sess:	session to flag
2982
 */
2983
void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2984 2985 2986 2987
{
	unsigned long flags;

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2988
	se_sess->sess_tearing_down = 1;
2989
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2990 2991

	percpu_ref_kill(&se_sess->cmd_count);
2992
}
2993
EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2994

2995
/**
2996
 * target_wait_for_sess_cmds - Wait for outstanding commands
2997 2998
 * @se_sess:    session to wait for active I/O
 */
2999
void target_wait_for_sess_cmds(struct se_session *se_sess)
3000
{
3001 3002
	struct se_cmd *cmd;
	int ret;
3003

3004 3005 3006
	WARN_ON_ONCE(!se_sess->sess_tearing_down);

	do {
3007 3008 3009
		ret = wait_event_timeout(se_sess->cmd_list_wq,
				percpu_ref_is_zero(&se_sess->cmd_count),
				180 * HZ);
3010 3011 3012 3013
		list_for_each_entry(cmd, &se_sess->sess_cmd_list, se_cmd_list)
			target_show_cmd("session shutdown: still waiting for ",
					cmd);
	} while (ret <= 0);
3014 3015 3016
}
EXPORT_SYMBOL(target_wait_for_sess_cmds);

3017 3018 3019 3020
/*
 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
 * all references to the LUN have been released. Called during LUN shutdown.
 */
3021
void transport_clear_lun_ref(struct se_lun *lun)
3022
{
3023
	percpu_ref_kill(&lun->lun_ref);
3024
	wait_for_completion(&lun->lun_shutdown_comp);
3025 3026
}

3027 3028 3029 3030 3031
static bool
__transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
			   bool *aborted, bool *tas, unsigned long *flags)
	__releases(&cmd->t_state_lock)
	__acquires(&cmd->t_state_lock)
3032 3033
{

3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
	assert_spin_locked(&cmd->t_state_lock);
	WARN_ON_ONCE(!irqs_disabled());

	if (fabric_stop)
		cmd->transport_state |= CMD_T_FABRIC_STOP;

	if (cmd->transport_state & CMD_T_ABORTED)
		*aborted = true;

	if (cmd->transport_state & CMD_T_TAS)
		*tas = true;

3046
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3047
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3048
		return false;
3049

3050
	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3051
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3052
		return false;
3053

3054 3055 3056 3057
	if (!(cmd->transport_state & CMD_T_ACTIVE))
		return false;

	if (fabric_stop && *aborted)
3058
		return false;
3059

3060
	cmd->transport_state |= CMD_T_STOP;
3061

3062
	target_show_cmd("wait_for_tasks: Stopping ", cmd);
3063

3064
	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3065

3066 3067 3068
	while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
					    180 * HZ))
		target_show_cmd("wait for tasks: ", cmd);
3069

3070
	spin_lock_irqsave(&cmd->t_state_lock, *flags);
3071
	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3072

3073 3074
	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3075

3076 3077 3078 3079
	return true;
}

/**
3080 3081
 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
 * @cmd: command to wait on
3082 3083 3084 3085 3086 3087 3088 3089
 */
bool transport_wait_for_tasks(struct se_cmd *cmd)
{
	unsigned long flags;
	bool ret, aborted = false, tas = false;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3090
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3091

3092
	return ret;
3093
}
3094
EXPORT_SYMBOL(transport_wait_for_tasks);
3095

3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
struct sense_info {
	u8 key;
	u8 asc;
	u8 ascq;
	bool add_sector_info;
};

static const struct sense_info sense_info_table[] = {
	[TCM_NO_SENSE] = {
		.key = NOT_READY
	},
	[TCM_NON_EXISTENT_LUN] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
	},
	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
	},
	[TCM_SECTOR_COUNT_TOO_MANY] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
	},
	[TCM_UNKNOWN_MODE_PAGE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x24, /* INVALID FIELD IN CDB */
	},
	[TCM_CHECK_CONDITION_ABORT_CMD] = {
		.key = ABORTED_COMMAND,
		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
		.ascq = 0x03,
	},
	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
		.key = ABORTED_COMMAND,
		.asc = 0x0c, /* WRITE ERROR */
		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
	},
	[TCM_INVALID_CDB_FIELD] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x24, /* INVALID FIELD IN CDB */
	},
	[TCM_INVALID_PARAMETER_LIST] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
	},
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
	[TCM_TOO_MANY_TARGET_DESCS] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
	},
	[TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
	},
	[TCM_TOO_MANY_SEGMENT_DESCS] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
	},
	[TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
	},
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
	},
	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x0c, /* WRITE ERROR */
		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
	},
	[TCM_SERVICE_CRC_ERROR] = {
		.key = ABORTED_COMMAND,
		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
		.ascq = 0x05, /* N/A */
	},
	[TCM_SNACK_REJECTED] = {
		.key = ABORTED_COMMAND,
		.asc = 0x11, /* READ ERROR */
		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
	},
	[TCM_WRITE_PROTECTED] = {
		.key = DATA_PROTECT,
		.asc = 0x27, /* WRITE PROTECTED */
	},
	[TCM_ADDRESS_OUT_OF_RANGE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
	},
	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
		.key = UNIT_ATTENTION,
	},
	[TCM_CHECK_CONDITION_NOT_READY] = {
		.key = NOT_READY,
	},
	[TCM_MISCOMPARE_VERIFY] = {
		.key = MISCOMPARE,
		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
		.ascq = 0x00,
	},
	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3200
		.key = ABORTED_COMMAND,
3201 3202 3203 3204 3205
		.asc = 0x10,
		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
		.add_sector_info = true,
	},
	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3206
		.key = ABORTED_COMMAND,
3207 3208 3209 3210 3211
		.asc = 0x10,
		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
		.add_sector_info = true,
	},
	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3212
		.key = ABORTED_COMMAND,
3213 3214 3215 3216
		.asc = 0x10,
		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
		.add_sector_info = true,
	},
3217 3218 3219 3220 3221 3222
	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
		.key = COPY_ABORTED,
		.asc = 0x0d,
		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */

	},
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
		/*
		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
		 * Solaris initiators.  Returning NOT READY instead means the
		 * operations will be retried a finite number of times and we
		 * can survive intermittent errors.
		 */
		.key = NOT_READY,
		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
	},
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
	[TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
		/*
		 * From spc4r22 section5.7.7,5.7.8
		 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
		 * or a REGISTER AND IGNORE EXISTING KEY service action or
		 * REGISTER AND MOVE service actionis attempted,
		 * but there are insufficient device server resources to complete the
		 * operation, then the command shall be terminated with CHECK CONDITION
		 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
		 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
		 */
		.key = ILLEGAL_REQUEST,
		.asc = 0x55,
		.ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
	},
3248 3249
};

3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
/**
 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
 *   be stored.
 * @reason: LIO sense reason code. If this argument has the value
 *   TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
 *   dequeuing a unit attention fails due to multiple commands being processed
 *   concurrently, set the command status to BUSY.
 *
 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
 */
3261
static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3262 3263 3264 3265
{
	const struct sense_info *si;
	u8 *buffer = cmd->sense_buffer;
	int r = (__force int)reason;
3266
	u8 key, asc, ascq;
3267
	bool desc_format = target_sense_desc_format(cmd->se_dev);
3268 3269 3270 3271 3272 3273 3274

	if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
		si = &sense_info_table[r];
	else
		si = &sense_info_table[(__force int)
				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];

3275
	key = si->key;
3276
	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3277 3278 3279 3280 3281
		if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
						       &ascq)) {
			cmd->scsi_status = SAM_STAT_BUSY;
			return;
		}
3282 3283 3284 3285 3286 3287 3288 3289
	} else if (si->asc == 0) {
		WARN_ON_ONCE(cmd->scsi_asc == 0);
		asc = cmd->scsi_asc;
		ascq = cmd->scsi_ascq;
	} else {
		asc = si->asc;
		ascq = si->ascq;
	}
3290

3291 3292 3293
	cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3294
	scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3295
	if (si->add_sector_info)
3296 3297 3298
		WARN_ON_ONCE(scsi_set_sense_information(buffer,
							cmd->scsi_sense_length,
							cmd->bad_sector) < 0);
3299 3300
}

3301 3302 3303
int
transport_send_check_condition_and_sense(struct se_cmd *cmd,
		sense_reason_t reason, int from_transport)
3304 3305 3306
{
	unsigned long flags;

3307 3308
	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);

3309
	spin_lock_irqsave(&cmd->t_state_lock, flags);
3310
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3311
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3312 3313 3314
		return 0;
	}
	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3315
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3316

3317 3318
	if (!from_transport)
		translate_sense_reason(cmd, reason);
3319

3320
	trace_target_cmd_complete(cmd);
3321
	return cmd->se_tfo->queue_status(cmd);
3322 3323 3324
}
EXPORT_SYMBOL(transport_send_check_condition_and_sense);

3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
/**
 * target_send_busy - Send SCSI BUSY status back to the initiator
 * @cmd: SCSI command for which to send a BUSY reply.
 *
 * Note: Only call this function if target_submit_cmd*() failed.
 */
int target_send_busy(struct se_cmd *cmd)
{
	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);

	cmd->scsi_status = SAM_STAT_BUSY;
	trace_target_cmd_complete(cmd);
	return cmd->se_tfo->queue_status(cmd);
}
EXPORT_SYMBOL(target_send_busy);

3341
static void target_tmr_work(struct work_struct *work)
3342
{
3343
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3344
	struct se_device *dev = cmd->se_dev;
3345 3346 3347
	struct se_tmr_req *tmr = cmd->se_tmr_req;
	int ret;

3348 3349
	if (cmd->transport_state & CMD_T_ABORTED)
		goto aborted;
3350

3351
	switch (tmr->function) {
3352
	case TMR_ABORT_TASK:
3353
		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3354
		break;
3355 3356 3357
	case TMR_ABORT_TASK_SET:
	case TMR_CLEAR_ACA:
	case TMR_CLEAR_TASK_SET:
3358 3359
		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
		break;
3360
	case TMR_LUN_RESET:
3361 3362 3363
		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
					 TMR_FUNCTION_REJECTED;
3364 3365 3366 3367 3368
		if (tmr->response == TMR_FUNCTION_COMPLETE) {
			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
					       cmd->orig_fe_lun, 0x29,
					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
		}
3369
		break;
3370
	case TMR_TARGET_WARM_RESET:
3371 3372
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
3373
	case TMR_TARGET_COLD_RESET:
3374 3375 3376
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	default:
3377
		pr_err("Unknown TMR function: 0x%02x.\n",
3378 3379 3380 3381 3382
				tmr->function);
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	}

3383 3384
	if (cmd->transport_state & CMD_T_ABORTED)
		goto aborted;
3385

3386
	cmd->se_tfo->queue_tm_rsp(cmd);
3387

3388
	transport_lun_remove_cmd(cmd);
3389
	transport_cmd_check_stop_to_fabric(cmd);
3390 3391 3392 3393
	return;

aborted:
	target_handle_abort(cmd);
3394 3395
}

3396 3397
int transport_generic_handle_tmr(
	struct se_cmd *cmd)
3398
{
3399
	unsigned long flags;
3400
	bool aborted = false;
3401 3402

	spin_lock_irqsave(&cmd->t_state_lock, flags);
3403 3404 3405 3406 3407 3408
	if (cmd->transport_state & CMD_T_ABORTED) {
		aborted = true;
	} else {
		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
		cmd->transport_state |= CMD_T_ACTIVE;
	}
3409 3410
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3411
	if (aborted) {
3412 3413 3414 3415
		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
				    cmd->se_tmr_req->function,
				    cmd->se_tmr_req->ref_task_tag, cmd->tag);
		target_handle_abort(cmd);
3416 3417 3418
		return 0;
	}

3419
	INIT_WORK(&cmd->work, target_tmr_work);
3420
	schedule_work(&cmd->work);
3421 3422
	return 0;
}
3423
EXPORT_SYMBOL(transport_generic_handle_tmr);
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442

bool
target_check_wce(struct se_device *dev)
{
	bool wce = false;

	if (dev->transport->get_write_cache)
		wce = dev->transport->get_write_cache(dev);
	else if (dev->dev_attrib.emulate_write_cache > 0)
		wce = true;

	return wce;
}

bool
target_check_fua(struct se_device *dev)
{
	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
}