target_core_transport.c 79.4 KB
Newer Older
1 2 3 4 5
/*******************************************************************************
 * Filename:  target_core_transport.c
 *
 * This file contains the Generic Target Engine Core.
 *
6
 * (c) Copyright 2002-2013 Datera, Inc.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 *
 * Nicholas A. Bellinger <nab@kernel.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 ******************************************************************************/

#include <linux/net.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/in.h>
#include <linux/cdrom.h>
35
#include <linux/module.h>
36
#include <linux/ratelimit.h>
37
#include <linux/vmalloc.h>
38 39 40
#include <asm/unaligned.h>
#include <net/sock.h>
#include <net/tcp.h>
41
#include <scsi/scsi_proto.h>
42
#include <scsi/scsi_common.h>
43 44

#include <target/target_core_base.h>
45 46
#include <target/target_core_backend.h>
#include <target/target_core_fabric.h>
47

C
Christoph Hellwig 已提交
48
#include "target_core_internal.h"
49 50 51 52
#include "target_core_alua.h"
#include "target_core_pr.h"
#include "target_core_ua.h"

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/target.h>

56
static struct workqueue_struct *target_completion_wq;
57 58 59 60 61 62
static struct kmem_cache *se_sess_cache;
struct kmem_cache *se_ua_cache;
struct kmem_cache *t10_pr_reg_cache;
struct kmem_cache *t10_alua_lu_gp_cache;
struct kmem_cache *t10_alua_lu_gp_mem_cache;
struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 64
struct kmem_cache *t10_alua_lba_map_cache;
struct kmem_cache *t10_alua_lba_map_mem_cache;
65 66

static void transport_complete_task_attr(struct se_cmd *cmd);
67
static void transport_handle_queue_full(struct se_cmd *cmd,
68
		struct se_device *dev);
69
static int transport_put_cmd(struct se_cmd *cmd);
70
static void target_complete_ok_work(struct work_struct *work);
71

72
int init_se_kmem_caches(void)
73 74 75 76
{
	se_sess_cache = kmem_cache_create("se_sess_cache",
			sizeof(struct se_session), __alignof__(struct se_session),
			0, NULL);
77 78
	if (!se_sess_cache) {
		pr_err("kmem_cache_create() for struct se_session"
79
				" failed\n");
80
		goto out;
81 82 83 84
	}
	se_ua_cache = kmem_cache_create("se_ua_cache",
			sizeof(struct se_ua), __alignof__(struct se_ua),
			0, NULL);
85 86
	if (!se_ua_cache) {
		pr_err("kmem_cache_create() for struct se_ua failed\n");
87
		goto out_free_sess_cache;
88 89 90 91
	}
	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
			sizeof(struct t10_pr_registration),
			__alignof__(struct t10_pr_registration), 0, NULL);
92 93
	if (!t10_pr_reg_cache) {
		pr_err("kmem_cache_create() for struct t10_pr_registration"
94
				" failed\n");
95
		goto out_free_ua_cache;
96 97 98 99
	}
	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
			0, NULL);
100 101
	if (!t10_alua_lu_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102
				" failed\n");
103
		goto out_free_pr_reg_cache;
104 105 106 107
	}
	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
			sizeof(struct t10_alua_lu_gp_member),
			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 109
	if (!t10_alua_lu_gp_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110
				"cache failed\n");
111
		goto out_free_lu_gp_cache;
112 113 114 115
	}
	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
			sizeof(struct t10_alua_tg_pt_gp),
			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 117
	if (!t10_alua_tg_pt_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118
				"cache failed\n");
119
		goto out_free_lu_gp_mem_cache;
120
	}
121 122 123 124 125 126 127
	t10_alua_lba_map_cache = kmem_cache_create(
			"t10_alua_lba_map_cache",
			sizeof(struct t10_alua_lba_map),
			__alignof__(struct t10_alua_lba_map), 0, NULL);
	if (!t10_alua_lba_map_cache) {
		pr_err("kmem_cache_create() for t10_alua_lba_map_"
				"cache failed\n");
128
		goto out_free_tg_pt_gp_cache;
129 130 131 132 133 134 135 136 137 138
	}
	t10_alua_lba_map_mem_cache = kmem_cache_create(
			"t10_alua_lba_map_mem_cache",
			sizeof(struct t10_alua_lba_map_member),
			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
	if (!t10_alua_lba_map_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
				"cache failed\n");
		goto out_free_lba_map_cache;
	}
139

140 141 142
	target_completion_wq = alloc_workqueue("target_completion",
					       WQ_MEM_RECLAIM, 0);
	if (!target_completion_wq)
143
		goto out_free_lba_map_mem_cache;
144

145
	return 0;
146

147 148 149 150
out_free_lba_map_mem_cache:
	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
out_free_lba_map_cache:
	kmem_cache_destroy(t10_alua_lba_map_cache);
151 152 153 154 155 156 157 158 159 160 161 162
out_free_tg_pt_gp_cache:
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
out_free_lu_gp_mem_cache:
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
out_free_lu_gp_cache:
	kmem_cache_destroy(t10_alua_lu_gp_cache);
out_free_pr_reg_cache:
	kmem_cache_destroy(t10_pr_reg_cache);
out_free_ua_cache:
	kmem_cache_destroy(se_ua_cache);
out_free_sess_cache:
	kmem_cache_destroy(se_sess_cache);
163
out:
164
	return -ENOMEM;
165 166
}

167
void release_se_kmem_caches(void)
168
{
169
	destroy_workqueue(target_completion_wq);
170 171 172 173 174 175
	kmem_cache_destroy(se_sess_cache);
	kmem_cache_destroy(se_ua_cache);
	kmem_cache_destroy(t10_pr_reg_cache);
	kmem_cache_destroy(t10_alua_lu_gp_cache);
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 177
	kmem_cache_destroy(t10_alua_lba_map_cache);
	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 179
}

180 181 182
/* This code ensures unique mib indexes are handed out. */
static DEFINE_SPINLOCK(scsi_mib_index_lock);
static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183 184 185 186 187 188 189 190

/*
 * Allocate a new row index for the entry type specified
 */
u32 scsi_get_new_index(scsi_index_t type)
{
	u32 new_index;

191
	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192

193 194 195
	spin_lock(&scsi_mib_index_lock);
	new_index = ++scsi_mib_index[type];
	spin_unlock(&scsi_mib_index_lock);
196 197 198 199

	return new_index;
}

200
void transport_subsystem_check_init(void)
201 202
{
	int ret;
203
	static int sub_api_initialized;
204

205 206 207
	if (sub_api_initialized)
		return;

208 209
	ret = request_module("target_core_iblock");
	if (ret != 0)
210
		pr_err("Unable to load target_core_iblock\n");
211 212 213

	ret = request_module("target_core_file");
	if (ret != 0)
214
		pr_err("Unable to load target_core_file\n");
215 216 217

	ret = request_module("target_core_pscsi");
	if (ret != 0)
218
		pr_err("Unable to load target_core_pscsi\n");
219

220 221 222 223
	ret = request_module("target_core_user");
	if (ret != 0)
		pr_err("Unable to load target_core_user\n");

224
	sub_api_initialized = 1;
225 226
}

227
struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
228 229 230 231
{
	struct se_session *se_sess;

	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232 233
	if (!se_sess) {
		pr_err("Unable to allocate struct se_session from"
234 235 236 237 238
				" se_sess_cache\n");
		return ERR_PTR(-ENOMEM);
	}
	INIT_LIST_HEAD(&se_sess->sess_list);
	INIT_LIST_HEAD(&se_sess->sess_acl_list);
239
	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240
	INIT_LIST_HEAD(&se_sess->sess_wait_list);
241
	spin_lock_init(&se_sess->sess_cmd_lock);
242
	kref_init(&se_sess->sess_kref);
243
	se_sess->sup_prot_ops = sup_prot_ops;
244 245 246 247 248

	return se_sess;
}
EXPORT_SYMBOL(transport_init_session);

249 250 251 252 253
int transport_alloc_session_tags(struct se_session *se_sess,
			         unsigned int tag_num, unsigned int tag_size)
{
	int rc;

254 255
	se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
					GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
256
	if (!se_sess->sess_cmd_map) {
257 258 259 260 261
		se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
		if (!se_sess->sess_cmd_map) {
			pr_err("Unable to allocate se_sess->sess_cmd_map\n");
			return -ENOMEM;
		}
262 263 264 265 266 267
	}

	rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
	if (rc < 0) {
		pr_err("Unable to init se_sess->sess_tag_pool,"
			" tag_num: %u\n", tag_num);
268
		kvfree(se_sess->sess_cmd_map);
269 270 271 272 273 274 275 276 277
		se_sess->sess_cmd_map = NULL;
		return -ENOMEM;
	}

	return 0;
}
EXPORT_SYMBOL(transport_alloc_session_tags);

struct se_session *transport_init_session_tags(unsigned int tag_num,
278 279
					       unsigned int tag_size,
					       enum target_prot_op sup_prot_ops)
280 281 282 283
{
	struct se_session *se_sess;
	int rc;

284
	se_sess = transport_init_session(sup_prot_ops);
285 286 287 288 289 290 291 292 293 294 295 296 297
	if (IS_ERR(se_sess))
		return se_sess;

	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
	if (rc < 0) {
		transport_free_session(se_sess);
		return ERR_PTR(-ENOMEM);
	}

	return se_sess;
}
EXPORT_SYMBOL(transport_init_session_tags);

298
/*
299
 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
300 301 302 303 304 305 306
 */
void __transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
307
	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
308 309 310 311 312 313 314 315 316 317 318
	unsigned char buf[PR_REG_ISID_LEN];

	se_sess->se_tpg = se_tpg;
	se_sess->fabric_sess_ptr = fabric_sess_ptr;
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
	 *
	 * Only set for struct se_session's that will actually be moving I/O.
	 * eg: *NOT* discovery sessions.
	 */
	if (se_nacl) {
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
		/*
		 *
		 * Determine if fabric allows for T10-PI feature bits exposed to
		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
		 *
		 * If so, then always save prot_type on a per se_node_acl node
		 * basis and re-instate the previous sess_prot_type to avoid
		 * disabling PI from below any previously initiator side
		 * registered LUNs.
		 */
		if (se_nacl->saved_prot_type)
			se_sess->sess_prot_type = se_nacl->saved_prot_type;
		else if (tfo->tpg_check_prot_fabric_only)
			se_sess->sess_prot_type = se_nacl->saved_prot_type =
					tfo->tpg_check_prot_fabric_only(se_tpg);
334 335 336 337
		/*
		 * If the fabric module supports an ISID based TransportID,
		 * save this value in binary from the fabric I_T Nexus now.
		 */
338
		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
339
			memset(&buf[0], 0, PR_REG_ISID_LEN);
340
			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
341 342 343
					&buf[0], PR_REG_ISID_LEN);
			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
		}
344

345 346 347 348 349 350 351 352 353 354 355 356 357
		spin_lock_irq(&se_nacl->nacl_sess_lock);
		/*
		 * The se_nacl->nacl_sess pointer will be set to the
		 * last active I_T Nexus for each struct se_node_acl.
		 */
		se_nacl->nacl_sess = se_sess;

		list_add_tail(&se_sess->sess_acl_list,
			      &se_nacl->acl_sess_list);
		spin_unlock_irq(&se_nacl->nacl_sess_lock);
	}
	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);

358
	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
359
		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
360 361 362 363 364 365 366 367 368
}
EXPORT_SYMBOL(__transport_register_session);

void transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
369 370 371
	unsigned long flags;

	spin_lock_irqsave(&se_tpg->session_lock, flags);
372
	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
373
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
374 375 376
}
EXPORT_SYMBOL(transport_register_session);

377
static void target_release_session(struct kref *kref)
378 379 380 381 382 383 384 385
{
	struct se_session *se_sess = container_of(kref,
			struct se_session, sess_kref);
	struct se_portal_group *se_tpg = se_sess->se_tpg;

	se_tpg->se_tpg_tfo->close_session(se_sess);
}

386
int target_get_session(struct se_session *se_sess)
387
{
388
	return kref_get_unless_zero(&se_sess->sess_kref);
389 390 391
}
EXPORT_SYMBOL(target_get_session);

392
void target_put_session(struct se_session *se_sess)
393
{
394
	kref_put(&se_sess->sess_kref, target_release_session);
395 396 397
}
EXPORT_SYMBOL(target_put_session);

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
{
	struct se_session *se_sess;
	ssize_t len = 0;

	spin_lock_bh(&se_tpg->session_lock);
	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
		if (!se_sess->se_node_acl)
			continue;
		if (!se_sess->se_node_acl->dynamic_node_acl)
			continue;
		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
			break;

		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
				se_sess->se_node_acl->initiatorname);
		len += 1; /* Include NULL terminator */
	}
	spin_unlock_bh(&se_tpg->session_lock);

	return len;
}
EXPORT_SYMBOL(target_show_dynamic_sessions);

422 423 424 425 426 427 428 429 430 431 432 433
static void target_complete_nacl(struct kref *kref)
{
	struct se_node_acl *nacl = container_of(kref,
				struct se_node_acl, acl_kref);

	complete(&nacl->acl_free_comp);
}

void target_put_nacl(struct se_node_acl *nacl)
{
	kref_put(&nacl->acl_kref, target_complete_nacl);
}
434
EXPORT_SYMBOL(target_put_nacl);
435

436 437 438
void transport_deregister_session_configfs(struct se_session *se_sess)
{
	struct se_node_acl *se_nacl;
439
	unsigned long flags;
440 441 442 443
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
	 */
	se_nacl = se_sess->se_node_acl;
444
	if (se_nacl) {
445
		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
446 447
		if (se_nacl->acl_stop == 0)
			list_del(&se_sess->sess_acl_list);
448 449 450 451 452 453 454 455 456 457 458 459
		/*
		 * If the session list is empty, then clear the pointer.
		 * Otherwise, set the struct se_session pointer from the tail
		 * element of the per struct se_node_acl active session list.
		 */
		if (list_empty(&se_nacl->acl_sess_list))
			se_nacl->nacl_sess = NULL;
		else {
			se_nacl->nacl_sess = container_of(
					se_nacl->acl_sess_list.prev,
					struct se_session, sess_acl_list);
		}
460
		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
461 462 463 464 465 466
	}
}
EXPORT_SYMBOL(transport_deregister_session_configfs);

void transport_free_session(struct se_session *se_sess)
{
467 468 469 470 471 472 473 474 475
	struct se_node_acl *se_nacl = se_sess->se_node_acl;
	/*
	 * Drop the se_node_acl->nacl_kref obtained from within
	 * core_tpg_get_initiator_node_acl().
	 */
	if (se_nacl) {
		se_sess->se_node_acl = NULL;
		target_put_nacl(se_nacl);
	}
476 477
	if (se_sess->sess_cmd_map) {
		percpu_ida_destroy(&se_sess->sess_tag_pool);
478
		kvfree(se_sess->sess_cmd_map);
479
	}
480 481 482 483 484 485 486
	kmem_cache_free(se_sess_cache, se_sess);
}
EXPORT_SYMBOL(transport_free_session);

void transport_deregister_session(struct se_session *se_sess)
{
	struct se_portal_group *se_tpg = se_sess->se_tpg;
487
	const struct target_core_fabric_ops *se_tfo;
488
	struct se_node_acl *se_nacl;
489
	unsigned long flags;
490
	bool drop_nacl = false;
491

492
	if (!se_tpg) {
493 494 495
		transport_free_session(se_sess);
		return;
	}
496
	se_tfo = se_tpg->se_tpg_tfo;
497

498
	spin_lock_irqsave(&se_tpg->session_lock, flags);
499 500 501
	list_del(&se_sess->sess_list);
	se_sess->se_tpg = NULL;
	se_sess->fabric_sess_ptr = NULL;
502
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
503 504 505 506 507 508

	/*
	 * Determine if we need to do extra work for this initiator node's
	 * struct se_node_acl if it had been previously dynamically generated.
	 */
	se_nacl = se_sess->se_node_acl;
509

510
	mutex_lock(&se_tpg->acl_node_mutex);
511 512 513
	if (se_nacl && se_nacl->dynamic_node_acl) {
		if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
			list_del(&se_nacl->acl_list);
514
			drop_nacl = true;
515 516
		}
	}
517
	mutex_unlock(&se_tpg->acl_node_mutex);
518

519 520 521
	if (drop_nacl) {
		core_tpg_wait_for_nacl_pr_ref(se_nacl);
		core_free_device_list_for_node(se_nacl, se_tpg);
522
		se_sess->se_node_acl = NULL;
523 524
		kfree(se_nacl);
	}
525
	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
526
		se_tpg->se_tpg_tfo->get_fabric_name());
527
	/*
528
	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
529
	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
530
	 * removal context from within transport_free_session() code.
531 532
	 */

533
	transport_free_session(se_sess);
534 535 536
}
EXPORT_SYMBOL(transport_deregister_session);

537
static void target_remove_from_state_list(struct se_cmd *cmd)
538
{
539
	struct se_device *dev = cmd->se_dev;
540 541
	unsigned long flags;

542 543
	if (!dev)
		return;
544

545 546
	if (cmd->transport_state & CMD_T_BUSY)
		return;
547

548 549 550 551
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (cmd->state_active) {
		list_del(&cmd->state_list);
		cmd->state_active = false;
552
	}
553
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
554 555
}

556 557
static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
				    bool write_pending)
558 559 560
{
	unsigned long flags;

561 562 563 564 565 566 567 568 569
	if (remove_from_lists) {
		target_remove_from_state_list(cmd);

		/*
		 * Clear struct se_cmd->se_lun before the handoff to FE.
		 */
		cmd->se_lun = NULL;
	}

570 571 572 573
	spin_lock_irqsave(&cmd->t_state_lock, flags);
	if (write_pending)
		cmd->t_state = TRANSPORT_WRITE_PENDING;

574 575
	/*
	 * Determine if frontend context caller is requesting the stopping of
576
	 * this command for frontend exceptions.
577
	 */
578
	if (cmd->transport_state & CMD_T_STOP) {
579 580
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
581

582
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
583

584
		complete_all(&cmd->t_transport_stop_comp);
585 586
		return 1;
	}
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

	cmd->transport_state &= ~CMD_T_ACTIVE;
	if (remove_from_lists) {
		/*
		 * Some fabric modules like tcm_loop can release
		 * their internally allocated I/O reference now and
		 * struct se_cmd now.
		 *
		 * Fabric modules are expected to return '1' here if the
		 * se_cmd being passed is released at this point,
		 * or zero if not being released.
		 */
		if (cmd->se_tfo->check_stop_free != NULL) {
			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
			return cmd->se_tfo->check_stop_free(cmd);
602
		}
603
	}
604

605
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
606 607 608 609 610
	return 0;
}

static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
{
611
	return transport_cmd_check_stop(cmd, true, false);
612 613 614 615
}

static void transport_lun_remove_cmd(struct se_cmd *cmd)
{
616
	struct se_lun *lun = cmd->se_lun;
617

618
	if (!lun)
619 620
		return;

621 622
	if (cmpxchg(&cmd->lun_ref_active, true, false))
		percpu_ref_put(&lun->lun_ref);
623 624 625 626
}

void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
{
627 628
	bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);

629 630
	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
		transport_lun_remove_cmd(cmd);
631 632 633 634 635 636
	/*
	 * Allow the fabric driver to unmap any resources before
	 * releasing the descriptor via TFO->release_cmd()
	 */
	if (remove)
		cmd->se_tfo->aborted_task(cmd);
637

638 639
	if (transport_cmd_check_stop_to_fabric(cmd))
		return;
640
	if (remove && ack_kref)
641
		transport_put_cmd(cmd);
642 643
}

644 645 646 647
static void target_complete_failure_work(struct work_struct *work)
{
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);

648 649
	transport_generic_request_failure(cmd,
			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
650 651
}

652
/*
653 654
 * Used when asking transport to copy Sense Data from the underlying
 * Linux/SCSI struct scsi_cmnd
655
 */
656
static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
657 658 659 660 661 662
{
	struct se_device *dev = cmd->se_dev;

	WARN_ON(!cmd->se_lun);

	if (!dev)
663
		return NULL;
664

665 666
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
		return NULL;
667

668
	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
669

670
	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
671
		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
672
	return cmd->sense_buffer;
673 674
}

675
void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
676
{
677
	struct se_device *dev = cmd->se_dev;
678
	int success = scsi_status == GOOD;
679 680
	unsigned long flags;

681 682 683
	cmd->scsi_status = scsi_status;


684
	spin_lock_irqsave(&cmd->t_state_lock, flags);
685
	cmd->transport_state &= ~CMD_T_BUSY;
686 687

	if (dev && dev->transport->transport_complete) {
688 689 690 691
		dev->transport->transport_complete(cmd,
				cmd->t_data_sg,
				transport_get_sense_buffer(cmd));
		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
692 693 694 695
			success = 1;
	}

	/*
696
	 * See if we are waiting to complete for an exception condition.
697
	 */
698
	if (cmd->transport_state & CMD_T_REQUEST_STOP) {
699
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
700
		complete(&cmd->task_stop_comp);
701 702
		return;
	}
703

704
	/*
705
	 * Check for case where an explicit ABORT_TASK has been received
706 707
	 * and transport_wait_for_tasks() will be waiting for completion..
	 */
708
	if (cmd->transport_state & CMD_T_ABORTED ||
709 710
	    cmd->transport_state & CMD_T_STOP) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
711
		complete_all(&cmd->t_transport_stop_comp);
712
		return;
713
	} else if (!success) {
714
		INIT_WORK(&cmd->work, target_complete_failure_work);
715
	} else {
716
		INIT_WORK(&cmd->work, target_complete_ok_work);
717
	}
718 719

	cmd->t_state = TRANSPORT_COMPLETE;
720
	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
721
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
722

723 724 725 726
	if (cmd->cpuid == -1)
		queue_work(target_completion_wq, &cmd->work);
	else
		queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
727
}
728 729
EXPORT_SYMBOL(target_complete_cmd);

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
{
	if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
			cmd->residual_count += cmd->data_length - length;
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = cmd->data_length - length;
		}

		cmd->data_length = length;
	}

	target_complete_cmd(cmd, scsi_status);
}
EXPORT_SYMBOL(target_complete_cmd_with_length);

747
static void target_add_to_state_list(struct se_cmd *cmd)
748
{
749 750
	struct se_device *dev = cmd->se_dev;
	unsigned long flags;
751

752 753 754 755
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (!cmd->state_active) {
		list_add_tail(&cmd->state_list, &dev->state_list);
		cmd->state_active = true;
756
	}
757
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
758 759
}

760
/*
761
 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
762
 */
763 764
static void transport_write_pending_qf(struct se_cmd *cmd);
static void transport_complete_qf(struct se_cmd *cmd);
765

766
void target_qf_do_work(struct work_struct *work)
767 768 769
{
	struct se_device *dev = container_of(work, struct se_device,
					qf_work_queue);
770
	LIST_HEAD(qf_cmd_list);
771 772 773
	struct se_cmd *cmd, *cmd_tmp;

	spin_lock_irq(&dev->qf_cmd_lock);
774 775
	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
	spin_unlock_irq(&dev->qf_cmd_lock);
776

777
	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
778
		list_del(&cmd->se_qf_node);
779
		atomic_dec_mb(&dev->dev_qf_count);
780

781
		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
782
			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
783
			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
784 785
			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
			: "UNKNOWN");
786

787 788 789 790
		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
			transport_write_pending_qf(cmd);
		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
			transport_complete_qf(cmd);
791 792 793
	}
}

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817
unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
{
	switch (cmd->data_direction) {
	case DMA_NONE:
		return "NONE";
	case DMA_FROM_DEVICE:
		return "READ";
	case DMA_TO_DEVICE:
		return "WRITE";
	case DMA_BIDIRECTIONAL:
		return "BIDI";
	default:
		break;
	}

	return "UNKNOWN";
}

void transport_dump_dev_state(
	struct se_device *dev,
	char *b,
	int *bl)
{
	*bl += sprintf(b + *bl, "Status: ");
818
	if (dev->export_count)
819
		*bl += sprintf(b + *bl, "ACTIVATED");
820
	else
821 822
		*bl += sprintf(b + *bl, "DEACTIVATED");

823
	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
824
	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
825 826
		dev->dev_attrib.block_size,
		dev->dev_attrib.hw_max_sectors);
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
	*bl += sprintf(b + *bl, "        ");
}

void transport_dump_vpd_proto_id(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int len;

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Protocol Identifier: ");

	switch (vpd->protocol_identifier) {
	case 0x00:
		sprintf(buf+len, "Fibre Channel\n");
		break;
	case 0x10:
		sprintf(buf+len, "Parallel SCSI\n");
		break;
	case 0x20:
		sprintf(buf+len, "SSA\n");
		break;
	case 0x30:
		sprintf(buf+len, "IEEE 1394\n");
		break;
	case 0x40:
		sprintf(buf+len, "SCSI Remote Direct Memory Access"
				" Protocol\n");
		break;
	case 0x50:
		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
		break;
	case 0x60:
		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
		break;
	case 0x70:
		sprintf(buf+len, "Automation/Drive Interface Transport"
				" Protocol\n");
		break;
	case 0x80:
		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n",
				vpd->protocol_identifier);
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
880
		pr_debug("%s", buf);
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
}

void
transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * Check if the Protocol Identifier Valid (PIV) bit is set..
	 *
	 * from spc3r23.pdf section 7.5.1
	 */
	 if (page_83[1] & 0x80) {
		vpd->protocol_identifier = (page_83[0] & 0xf0);
		vpd->protocol_identifier_set = 1;
		transport_dump_vpd_proto_id(vpd, NULL, 0);
	}
}
EXPORT_SYMBOL(transport_set_vpd_proto_id);

int transport_dump_vpd_assoc(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
905 906
	int ret = 0;
	int len;
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Association: ");

	switch (vpd->association) {
	case 0x00:
		sprintf(buf+len, "addressed logical unit\n");
		break;
	case 0x10:
		sprintf(buf+len, "target port\n");
		break;
	case 0x20:
		sprintf(buf+len, "SCSI target device\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
923
		ret = -EINVAL;
924 925 926 927 928 929
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
930
		pr_debug("%s", buf);
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952

	return ret;
}

int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identification association..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 297
	 */
	vpd->association = (page_83[1] & 0x30);
	return transport_dump_vpd_assoc(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_assoc);

int transport_dump_vpd_ident_type(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
953 954
	int ret = 0;
	int len;
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Type: ");

	switch (vpd->device_identifier_type) {
	case 0x00:
		sprintf(buf+len, "Vendor specific\n");
		break;
	case 0x01:
		sprintf(buf+len, "T10 Vendor ID based\n");
		break;
	case 0x02:
		sprintf(buf+len, "EUI-64 based\n");
		break;
	case 0x03:
		sprintf(buf+len, "NAA\n");
		break;
	case 0x04:
		sprintf(buf+len, "Relative target port identifier\n");
		break;
	case 0x08:
		sprintf(buf+len, "SCSI name string\n");
		break;
	default:
		sprintf(buf+len, "Unsupported: 0x%02x\n",
				vpd->device_identifier_type);
981
		ret = -EINVAL;
982 983 984
		break;
	}

985 986 987
	if (p_buf) {
		if (p_buf_len < strlen(buf)+1)
			return -EINVAL;
988
		strncpy(p_buf, buf, p_buf_len);
989
	} else {
990
		pr_debug("%s", buf);
991
	}
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019

	return ret;
}

int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identifier type..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 298
	 */
	vpd->device_identifier_type = (page_83[1] & 0x0f);
	return transport_dump_vpd_ident_type(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident_type);

int transport_dump_vpd_ident(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int ret = 0;

	memset(buf, 0, VPD_TMP_BUF_SIZE);

	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
1020 1021
		snprintf(buf, sizeof(buf),
			"T10 VPD Binary Device Identifier: %s\n",
1022 1023 1024
			&vpd->device_identifier[0]);
		break;
	case 0x02: /* ASCII */
1025 1026
		snprintf(buf, sizeof(buf),
			"T10 VPD ASCII Device Identifier: %s\n",
1027 1028 1029
			&vpd->device_identifier[0]);
		break;
	case 0x03: /* UTF-8 */
1030 1031
		snprintf(buf, sizeof(buf),
			"T10 VPD UTF-8 Device Identifier: %s\n",
1032 1033 1034 1035 1036
			&vpd->device_identifier[0]);
		break;
	default:
		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
			" 0x%02x", vpd->device_identifier_code_set);
1037
		ret = -EINVAL;
1038 1039 1040 1041 1042 1043
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1044
		pr_debug("%s", buf);
1045 1046 1047 1048 1049 1050 1051 1052

	return ret;
}

int
transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
{
	static const char hex_str[] = "0123456789abcdef";
1053
	int j = 0, i = 4; /* offset to start of the identifier */
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085

	/*
	 * The VPD Code Set (encoding)
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 296
	 */
	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
		vpd->device_identifier[j++] =
				hex_str[vpd->device_identifier_type];
		while (i < (4 + page_83[3])) {
			vpd->device_identifier[j++] =
				hex_str[(page_83[i] & 0xf0) >> 4];
			vpd->device_identifier[j++] =
				hex_str[page_83[i] & 0x0f];
			i++;
		}
		break;
	case 0x02: /* ASCII */
	case 0x03: /* UTF-8 */
		while (i < (4 + page_83[3]))
			vpd->device_identifier[j++] = page_83[i++];
		break;
	default:
		break;
	}

	return transport_dump_vpd_ident(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident);

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
			       unsigned int size)
{
	u32 mtl;

	if (!cmd->se_tfo->max_data_sg_nents)
		return TCM_NO_SENSE;
	/*
	 * Check if fabric enforced maximum SGL entries per I/O descriptor
	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
	 * residual_count and reduce original cmd->data_length to maximum
	 * length based on single PAGE_SIZE entry scatter-lists.
	 */
	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
	if (cmd->data_length > mtl) {
		/*
		 * If an existing CDB overflow is present, calculate new residual
		 * based on CDB size minus fabric maximum transfer length.
		 *
		 * If an existing CDB underflow is present, calculate new residual
		 * based on original cmd->data_length minus fabric maximum transfer
		 * length.
		 *
		 * Otherwise, set the underflow residual based on cmd->data_length
		 * minus fabric maximum transfer length.
		 */
		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
			cmd->residual_count = (size - mtl);
		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
			u32 orig_dl = size + cmd->residual_count;
			cmd->residual_count = (orig_dl - mtl);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - mtl);
		}
		cmd->data_length = mtl;
		/*
		 * Reset sbc_check_prot() calculated protection payload
		 * length based upon the new smaller MTL.
		 */
		if (cmd->prot_length) {
			u32 sectors = (mtl / dev->dev_attrib.block_size);
			cmd->prot_length = dev->prot_length * sectors;
		}
	}
	return TCM_NO_SENSE;
}

1135 1136
sense_reason_t
target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
{
	struct se_device *dev = cmd->se_dev;

	if (cmd->unknown_data_length) {
		cmd->data_length = size;
	} else if (size != cmd->data_length) {
		pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
				cmd->data_length, size, cmd->t_task_cdb[0]);

1148 1149 1150
		if (cmd->data_direction == DMA_TO_DEVICE &&
		    cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
			pr_err("Rejecting underflow/overflow WRITE data\n");
1151
			return TCM_INVALID_CDB_FIELD;
1152 1153 1154 1155 1156
		}
		/*
		 * Reject READ_* or WRITE_* with overflow/underflow for
		 * type SCF_SCSI_DATA_CDB.
		 */
1157
		if (dev->dev_attrib.block_size != 512)  {
1158 1159 1160 1161
			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
				" CDB on non 512-byte sector setup subsystem"
				" plugin: %s\n", dev->transport->name);
			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1162
			return TCM_INVALID_CDB_FIELD;
1163
		}
1164 1165 1166 1167 1168 1169
		/*
		 * For the overflow case keep the existing fabric provided
		 * ->data_length.  Otherwise for the underflow case, reset
		 * ->data_length to the smaller SCSI expected data transfer
		 * length.
		 */
1170 1171 1172 1173 1174 1175
		if (size > cmd->data_length) {
			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
			cmd->residual_count = (size - cmd->data_length);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - size);
1176
			cmd->data_length = size;
1177 1178 1179
		}
	}

1180
	return target_check_max_data_sg_nents(cmd, dev, size);
1181 1182 1183

}

1184 1185 1186
/*
 * Used by fabric modules containing a local struct se_cmd within their
 * fabric dependent per I/O descriptor.
1187 1188
 *
 * Preserves the value of @cmd->tag.
1189 1190 1191
 */
void transport_init_se_cmd(
	struct se_cmd *cmd,
1192
	const struct target_core_fabric_ops *tfo,
1193 1194 1195 1196 1197 1198
	struct se_session *se_sess,
	u32 data_length,
	int data_direction,
	int task_attr,
	unsigned char *sense_buffer)
{
1199
	INIT_LIST_HEAD(&cmd->se_delayed_node);
1200
	INIT_LIST_HEAD(&cmd->se_qf_node);
1201
	INIT_LIST_HEAD(&cmd->se_cmd_list);
1202
	INIT_LIST_HEAD(&cmd->state_list);
1203
	init_completion(&cmd->t_transport_stop_comp);
1204
	init_completion(&cmd->cmd_wait_comp);
1205
	init_completion(&cmd->task_stop_comp);
1206
	spin_lock_init(&cmd->t_state_lock);
1207
	kref_init(&cmd->cmd_kref);
1208
	cmd->transport_state = CMD_T_DEV_ACTIVE;
1209 1210 1211 1212 1213 1214 1215

	cmd->se_tfo = tfo;
	cmd->se_sess = se_sess;
	cmd->data_length = data_length;
	cmd->data_direction = data_direction;
	cmd->sam_task_attr = task_attr;
	cmd->sense_buffer = sense_buffer;
1216 1217

	cmd->state_active = false;
1218 1219 1220
}
EXPORT_SYMBOL(transport_init_se_cmd);

1221 1222
static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd *cmd)
1223
{
1224 1225
	struct se_device *dev = cmd->se_dev;

1226 1227 1228 1229
	/*
	 * Check if SAM Task Attribute emulation is enabled for this
	 * struct se_device storage object
	 */
1230
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1231 1232
		return 0;

C
Christoph Hellwig 已提交
1233
	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1234
		pr_debug("SAM Task Attribute ACA"
1235
			" emulation is not supported\n");
1236
		return TCM_INVALID_CDB_FIELD;
1237
	}
1238

1239 1240 1241
	return 0;
}

1242 1243
sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1244
{
1245
	struct se_device *dev = cmd->se_dev;
1246
	sense_reason_t ret;
1247 1248 1249 1250 1251 1252

	/*
	 * Ensure that the received CDB is less than the max (252 + 8) bytes
	 * for VARIABLE_LENGTH_CMD
	 */
	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1253
		pr_err("Received SCSI CDB with command_size: %d that"
1254 1255
			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1256
		return TCM_INVALID_CDB_FIELD;
1257 1258 1259 1260 1261 1262
	}
	/*
	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
	 * allocate the additional extended CDB buffer now..  Otherwise
	 * setup the pointer from __t_task_cdb to t_task_cdb.
	 */
1263 1264
	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1265
						GFP_KERNEL);
1266 1267
		if (!cmd->t_task_cdb) {
			pr_err("Unable to allocate cmd->t_task_cdb"
1268
				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1269
				scsi_command_size(cdb),
1270
				(unsigned long)sizeof(cmd->__t_task_cdb));
1271
			return TCM_OUT_OF_RESOURCES;
1272 1273
		}
	} else
1274
		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1275
	/*
1276
	 * Copy the original CDB into cmd->
1277
	 */
1278
	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1279

1280 1281
	trace_target_sequencer_start(cmd);

1282 1283 1284
	/*
	 * Check for an existing UNIT ATTENTION condition
	 */
1285 1286 1287
	ret = target_scsi3_ua_check(cmd);
	if (ret)
		return ret;
1288

C
Christoph Hellwig 已提交
1289
	ret = target_alua_state_check(cmd);
1290 1291
	if (ret)
		return ret;
1292

1293
	ret = target_check_reservation(cmd);
1294 1295
	if (ret) {
		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1296
		return ret;
1297
	}
1298

1299
	ret = dev->transport->parse_cdb(cmd);
1300 1301 1302 1303 1304
	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
		pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
				    cmd->se_tfo->get_fabric_name(),
				    cmd->se_sess->se_node_acl->initiatorname,
				    cmd->t_task_cdb[0]);
1305 1306 1307 1308 1309
	if (ret)
		return ret;

	ret = transport_check_alloc_task_attr(cmd);
	if (ret)
1310
		return ret;
1311 1312

	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1313
	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1314 1315
	return 0;
}
1316
EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1317

1318 1319
/*
 * Used by fabric module frontends to queue tasks directly.
1320
 * May only be used from process context.
1321 1322 1323 1324
 */
int transport_handle_cdb_direct(
	struct se_cmd *cmd)
{
1325
	sense_reason_t ret;
1326

1327 1328
	if (!cmd->se_lun) {
		dump_stack();
1329
		pr_err("cmd->se_lun is NULL\n");
1330 1331 1332 1333
		return -EINVAL;
	}
	if (in_interrupt()) {
		dump_stack();
1334
		pr_err("transport_generic_handle_cdb cannot be called"
1335 1336 1337
				" from interrupt context\n");
		return -EINVAL;
	}
1338
	/*
1339 1340 1341
	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
	 * outstanding descriptors are handled correctly during shutdown via
	 * transport_wait_for_tasks()
1342 1343 1344 1345 1346
	 *
	 * Also, we don't take cmd->t_state_lock here as we only expect
	 * this to be called for initial descriptor submission.
	 */
	cmd->t_state = TRANSPORT_NEW_CMD;
1347 1348
	cmd->transport_state |= CMD_T_ACTIVE;

1349 1350 1351 1352 1353 1354
	/*
	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
	 * so follow TRANSPORT_NEW_CMD processing thread context usage
	 * and call transport_generic_request_failure() if necessary..
	 */
	ret = transport_generic_new_cmd(cmd);
1355 1356
	if (ret)
		transport_generic_request_failure(cmd, ret);
1357
	return 0;
1358 1359 1360
}
EXPORT_SYMBOL(transport_handle_cdb_direct);

1361
sense_reason_t
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
{
	if (!sgl || !sgl_count)
		return 0;

	/*
	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
	 * scatterlists already have been set to follow what the fabric
	 * passes for the original expected data transfer length.
	 */
	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
		pr_warn("Rejecting SCSI DATA overflow for fabric using"
			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
		return TCM_INVALID_CDB_FIELD;
	}

	cmd->t_data_sg = sgl;
	cmd->t_data_nents = sgl_count;
1381 1382
	cmd->t_bidi_data_sg = sgl_bidi;
	cmd->t_bidi_data_nents = sgl_bidi_count;
1383 1384 1385 1386 1387

	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
	return 0;
}

1388 1389 1390
/*
 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
 * 			 se_cmd + use pre-allocated SGL memory.
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
 * @task_addr: SAM task attribute
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
1401 1402 1403 1404
 * @sgl: struct scatterlist memory for unidirectional mapping
 * @sgl_count: scatterlist count for unidirectional mapping
 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1405 1406
 * @sgl_prot: struct scatterlist memory protection information
 * @sgl_prot_count: scatterlist count for protection information
1407
 *
1408 1409
 * Task tags are supported if the caller has set @se_cmd->tag.
 *
1410 1411 1412 1413
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
1414 1415
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
1416 1417
 */
int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1418
		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1419 1420
		u32 data_length, int task_attr, int data_dir, int flags,
		struct scatterlist *sgl, u32 sgl_count,
1421 1422
		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1423 1424
{
	struct se_portal_group *se_tpg;
1425 1426
	sense_reason_t rc;
	int ret;
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);
	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
	BUG_ON(in_interrupt());
	/*
	 * Initialize se_cmd for target operation.  From this point
	 * exceptions are handled by sending exception status via
	 * target_core_fabric_ops->queue_status() callback
	 */
	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
				data_length, data_dir, task_attr, sense);
1439 1440
	if (flags & TARGET_SCF_UNKNOWN_SIZE)
		se_cmd->unknown_data_length = 1;
1441 1442 1443 1444 1445 1446
	/*
	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
	 * kref_put() to happen during fabric packet acknowledgement.
	 */
1447
	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1448 1449
	if (ret)
		return ret;
1450 1451 1452 1453 1454 1455 1456 1457
	/*
	 * Signal bidirectional data payloads to target-core
	 */
	if (flags & TARGET_SCF_BIDI_OP)
		se_cmd->se_cmd_flags |= SCF_BIDI;
	/*
	 * Locate se_lun pointer and attach it to struct se_cmd
	 */
1458 1459 1460
	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
	if (rc) {
		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1461
		target_put_sess_cmd(se_cmd);
1462
		return 0;
1463
	}
1464 1465 1466 1467 1468 1469 1470

	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
	if (rc != 0) {
		transport_generic_request_failure(se_cmd, rc);
		return 0;
	}

1471 1472 1473 1474 1475 1476 1477
	/*
	 * Save pointers for SGLs containing protection information,
	 * if present.
	 */
	if (sgl_prot_count) {
		se_cmd->t_prot_sg = sgl_prot;
		se_cmd->t_prot_nents = sgl_prot_count;
1478
		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1479
	}
1480

1481 1482 1483 1484 1485 1486 1487 1488
	/*
	 * When a non zero sgl_count has been passed perform SGL passthrough
	 * mapping for pre-allocated fabric memory instead of having target
	 * core perform an internal SGL allocation..
	 */
	if (sgl_count != 0) {
		BUG_ON(!sgl);

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
		/*
		 * A work-around for tcm_loop as some userspace code via
		 * scsi-generic do not memset their associated read buffers,
		 * so go ahead and do that here for type non-data CDBs.  Also
		 * note that this is currently guaranteed to be a single SGL
		 * for this case by target core in target_setup_cmd_from_cdb()
		 * -> transport_generic_cmd_sequencer().
		 */
		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
		     se_cmd->data_direction == DMA_FROM_DEVICE) {
			unsigned char *buf = NULL;

			if (sgl)
				buf = kmap(sg_page(sgl)) + sgl->offset;

			if (buf) {
				memset(buf, 0, sgl->length);
				kunmap(sg_page(sgl));
			}
		}

1510 1511 1512
		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
				sgl_bidi, sgl_bidi_count);
		if (rc != 0) {
1513
			transport_generic_request_failure(se_cmd, rc);
1514 1515 1516
			return 0;
		}
	}
1517

1518 1519 1520 1521 1522 1523
	/*
	 * Check if we need to delay processing because of ALUA
	 * Active/NonOptimized primary access state..
	 */
	core_alua_check_nonop_delay(se_cmd);

1524
	transport_handle_cdb_direct(se_cmd);
1525
	return 0;
1526
}
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
EXPORT_SYMBOL(target_submit_cmd_map_sgls);

/*
 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
 * @task_addr: SAM task attribute
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
 *
1542 1543
 * Task tags are supported if the caller has set @se_cmd->tag.
 *
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
 *
 * It also assumes interal target core SGL memory allocation.
 */
int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1554
		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1555 1556 1557 1558
		u32 data_length, int task_attr, int data_dir, int flags)
{
	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
			unpacked_lun, data_length, task_attr, data_dir,
1559
			flags, NULL, 0, NULL, 0, NULL, 0);
1560
}
1561 1562
EXPORT_SYMBOL(target_submit_cmd);

1563 1564 1565 1566 1567 1568
static void target_complete_tmr_failure(struct work_struct *work)
{
	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);

	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1569 1570

	transport_cmd_check_stop_to_fabric(se_cmd);
1571 1572
}

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
/**
 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
 *                     for TMR CDBs
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @fabric_context: fabric context for TMR req
 * @tm_type: Type of TM request
1583 1584
 * @gfp: gfp type for caller
 * @tag: referenced task tag for TMR_ABORT_TASK
1585
 * @flags: submit cmd flags
1586 1587 1588 1589
 *
 * Callable from all contexts.
 **/

1590
int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1591
		unsigned char *sense, u64 unpacked_lun,
1592
		void *fabric_tmr_ptr, unsigned char tm_type,
1593
		gfp_t gfp, u64 tag, int flags)
1594 1595 1596 1597 1598 1599 1600 1601
{
	struct se_portal_group *se_tpg;
	int ret;

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);

	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
C
Christoph Hellwig 已提交
1602
			      0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1603 1604 1605 1606
	/*
	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
	 * allocation failure.
	 */
1607
	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1608 1609
	if (ret < 0)
		return -ENOMEM;
1610

1611 1612 1613
	if (tm_type == TMR_ABORT_TASK)
		se_cmd->se_tmr_req->ref_task_tag = tag;

1614
	/* See target_submit_cmd for commentary */
1615
	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1616 1617 1618 1619
	if (ret) {
		core_tmr_release_req(se_cmd->se_tmr_req);
		return ret;
	}
1620 1621 1622

	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
	if (ret) {
1623 1624 1625 1626 1627 1628
		/*
		 * For callback during failure handling, push this work off
		 * to process context with TMR_LUN_DOES_NOT_EXIST status.
		 */
		INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
		schedule_work(&se_cmd->work);
1629
		return 0;
1630 1631
	}
	transport_generic_handle_tmr(se_cmd);
1632
	return 0;
1633 1634 1635
}
EXPORT_SYMBOL(target_submit_tmr);

1636
/*
1637
 * If the cmd is active, request it to be stopped and sleep until it
1638 1639
 * has completed.
 */
1640
bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1641 1642
	__releases(&cmd->t_state_lock)
	__acquires(&cmd->t_state_lock)
1643 1644 1645
{
	bool was_active = false;

1646 1647
	if (cmd->transport_state & CMD_T_BUSY) {
		cmd->transport_state |= CMD_T_REQUEST_STOP;
1648 1649
		spin_unlock_irqrestore(&cmd->t_state_lock, *flags);

1650 1651 1652
		pr_debug("cmd %p waiting to complete\n", cmd);
		wait_for_completion(&cmd->task_stop_comp);
		pr_debug("cmd %p stopped successfully\n", cmd);
1653 1654

		spin_lock_irqsave(&cmd->t_state_lock, *flags);
1655 1656
		cmd->transport_state &= ~CMD_T_REQUEST_STOP;
		cmd->transport_state &= ~CMD_T_BUSY;
1657 1658 1659 1660 1661 1662
		was_active = true;
	}

	return was_active;
}

1663 1664 1665
/*
 * Handle SAM-esque emulation for generic transport request failures.
 */
1666 1667
void transport_generic_request_failure(struct se_cmd *cmd,
		sense_reason_t sense_reason)
1668
{
1669
	int ret = 0, post_ret = 0;
1670

1671 1672
	pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
		" CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1673
	pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1674
		cmd->se_tfo->get_cmd_state(cmd),
1675
		cmd->t_state, sense_reason);
1676
	pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1677 1678 1679
		(cmd->transport_state & CMD_T_ACTIVE) != 0,
		(cmd->transport_state & CMD_T_STOP) != 0,
		(cmd->transport_state & CMD_T_SENT) != 0);
1680 1681 1682 1683

	/*
	 * For SAM Task Attribute emulation for failed struct se_cmd
	 */
1684
	transport_complete_task_attr(cmd);
1685 1686
	/*
	 * Handle special case for COMPARE_AND_WRITE failure, where the
1687
	 * callback is expected to drop the per device ->caw_sem.
1688 1689 1690
	 */
	if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
	     cmd->transport_complete_callback)
1691
		cmd->transport_complete_callback(cmd, false, &post_ret);
1692

1693
	switch (sense_reason) {
1694 1695 1696 1697
	case TCM_NON_EXISTENT_LUN:
	case TCM_UNSUPPORTED_SCSI_OPCODE:
	case TCM_INVALID_CDB_FIELD:
	case TCM_INVALID_PARAMETER_LIST:
1698
	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1699 1700 1701
	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
	case TCM_UNKNOWN_MODE_PAGE:
	case TCM_WRITE_PROTECTED:
1702
	case TCM_ADDRESS_OUT_OF_RANGE:
1703 1704 1705
	case TCM_CHECK_CONDITION_ABORT_CMD:
	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
	case TCM_CHECK_CONDITION_NOT_READY:
1706 1707 1708
	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1709
		break;
1710 1711 1712
	case TCM_OUT_OF_RESOURCES:
		sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		break;
1713
	case TCM_RESERVATION_CONFLICT:
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
		/*
		 * No SENSE Data payload for this case, set SCSI Status
		 * and queue the response to $FABRIC_MOD.
		 *
		 * Uses linux/include/scsi/scsi.h SAM status codes defs
		 */
		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
		/*
		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
		 * CONFLICT STATUS.
		 *
		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
		 */
1728
		if (cmd->se_sess &&
1729 1730 1731 1732 1733
		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
					       cmd->orig_fe_lun, 0x2C,
					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
		}
1734
		trace_target_cmd_complete(cmd);
1735
		ret = cmd->se_tfo->queue_status(cmd);
1736
		if (ret == -EAGAIN || ret == -ENOMEM)
1737
			goto queue_full;
1738 1739
		goto check_stop;
	default:
1740
		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1741 1742
			cmd->t_task_cdb[0], sense_reason);
		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1743 1744
		break;
	}
1745

1746
	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1747 1748
	if (ret == -EAGAIN || ret == -ENOMEM)
		goto queue_full;
1749

1750 1751
check_stop:
	transport_lun_remove_cmd(cmd);
A
Andy Grover 已提交
1752
	transport_cmd_check_stop_to_fabric(cmd);
1753 1754 1755
	return;

queue_full:
1756 1757
	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
	transport_handle_queue_full(cmd, cmd->se_dev);
1758
}
1759
EXPORT_SYMBOL(transport_generic_request_failure);
1760

1761
void __target_execute_cmd(struct se_cmd *cmd)
1762
{
1763
	sense_reason_t ret;
1764

1765 1766 1767 1768 1769 1770
	if (cmd->execute_cmd) {
		ret = cmd->execute_cmd(cmd);
		if (ret) {
			spin_lock_irq(&cmd->t_state_lock);
			cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
			spin_unlock_irq(&cmd->t_state_lock);
1771

1772 1773
			transport_generic_request_failure(cmd, ret);
		}
1774 1775 1776
	}
}

1777 1778
static int target_write_prot_action(struct se_cmd *cmd)
{
1779
	u32 sectors;
1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
	/*
	 * Perform WRITE_INSERT of PI using software emulation when backend
	 * device has PI enabled, if the transport has not already generated
	 * PI using hardware WRITE_INSERT offload.
	 */
	switch (cmd->prot_op) {
	case TARGET_PROT_DOUT_INSERT:
		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
			sbc_dif_generate(cmd);
		break;
1790 1791 1792 1793 1794
	case TARGET_PROT_DOUT_STRIP:
		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
			break;

		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1795 1796
		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
					     sectors, 0, cmd->t_prot_sg, 0);
1797 1798
		if (unlikely(cmd->pi_err)) {
			spin_lock_irq(&cmd->t_state_lock);
1799
			cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1800 1801 1802 1803 1804
			spin_unlock_irq(&cmd->t_state_lock);
			transport_generic_request_failure(cmd, cmd->pi_err);
			return -1;
		}
		break;
1805 1806 1807 1808 1809 1810 1811
	default:
		break;
	}

	return 0;
}

1812
static bool target_handle_task_attr(struct se_cmd *cmd)
1813 1814 1815
{
	struct se_device *dev = cmd->se_dev;

1816
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1817
		return false;
1818

1819
	/*
L
Lucas De Marchi 已提交
1820
	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1821 1822
	 * to allow the passed struct se_cmd list of tasks to the front of the list.
	 */
1823
	switch (cmd->sam_task_attr) {
C
Christoph Hellwig 已提交
1824
	case TCM_HEAD_TAG:
1825 1826
		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
			 cmd->t_task_cdb[0]);
1827
		return false;
C
Christoph Hellwig 已提交
1828
	case TCM_ORDERED_TAG:
1829
		atomic_inc_mb(&dev->dev_ordered_sync);
1830

1831 1832
		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
			 cmd->t_task_cdb[0]);
1833

1834
		/*
1835 1836
		 * Execute an ORDERED command if no other older commands
		 * exist that need to be completed first.
1837
		 */
1838
		if (!atomic_read(&dev->simple_cmds))
1839
			return false;
1840 1841
		break;
	default:
1842 1843 1844
		/*
		 * For SIMPLE and UNTAGGED Task Attribute commands
		 */
1845
		atomic_inc_mb(&dev->simple_cmds);
1846
		break;
1847
	}
1848

1849 1850
	if (atomic_read(&dev->dev_ordered_sync) == 0)
		return false;
1851

1852 1853 1854 1855
	spin_lock(&dev->delayed_cmd_lock);
	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
	spin_unlock(&dev->delayed_cmd_lock);

1856 1857
	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
		cmd->t_task_cdb[0], cmd->sam_task_attr);
1858 1859 1860 1861 1862 1863 1864 1865
	return true;
}

void target_execute_cmd(struct se_cmd *cmd)
{
	/*
	 * If the received CDB has aleady been aborted stop processing it here.
	 */
1866
	if (transport_check_aborted_status(cmd, 1))
1867
		return;
1868

1869 1870 1871 1872
	/*
	 * Determine if frontend context caller is requesting the stopping of
	 * this command for frontend exceptions.
	 */
1873
	spin_lock_irq(&cmd->t_state_lock);
1874
	if (cmd->transport_state & CMD_T_STOP) {
1875 1876
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
1877 1878

		spin_unlock_irq(&cmd->t_state_lock);
1879
		complete_all(&cmd->t_transport_stop_comp);
1880 1881 1882 1883
		return;
	}

	cmd->t_state = TRANSPORT_PROCESSING;
1884
	cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1885
	spin_unlock_irq(&cmd->t_state_lock);
1886 1887 1888

	if (target_write_prot_action(cmd))
		return;
1889

1890 1891
	if (target_handle_task_attr(cmd)) {
		spin_lock_irq(&cmd->t_state_lock);
1892
		cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1893 1894 1895 1896 1897
		spin_unlock_irq(&cmd->t_state_lock);
		return;
	}

	__target_execute_cmd(cmd);
1898
}
1899
EXPORT_SYMBOL(target_execute_cmd);
1900

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
/*
 * Process all commands up to the last received ORDERED task attribute which
 * requires another blocking boundary
 */
static void target_restart_delayed_cmds(struct se_device *dev)
{
	for (;;) {
		struct se_cmd *cmd;

		spin_lock(&dev->delayed_cmd_lock);
		if (list_empty(&dev->delayed_cmd_list)) {
			spin_unlock(&dev->delayed_cmd_lock);
			break;
		}

		cmd = list_entry(dev->delayed_cmd_list.next,
				 struct se_cmd, se_delayed_node);
		list_del(&cmd->se_delayed_node);
		spin_unlock(&dev->delayed_cmd_lock);

		__target_execute_cmd(cmd);

C
Christoph Hellwig 已提交
1923
		if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1924 1925 1926 1927
			break;
	}
}

1928
/*
1929
 * Called from I/O completion to determine which dormant/delayed
1930 1931 1932 1933
 * and ordered cmds need to have their tasks added to the execution queue.
 */
static void transport_complete_task_attr(struct se_cmd *cmd)
{
1934
	struct se_device *dev = cmd->se_dev;
1935

1936
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1937 1938
		return;

C
Christoph Hellwig 已提交
1939
	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
1940
		atomic_dec_mb(&dev->simple_cmds);
1941
		dev->dev_cur_ordered_id++;
1942 1943
		pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
			 dev->dev_cur_ordered_id);
C
Christoph Hellwig 已提交
1944
	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
1945
		dev->dev_cur_ordered_id++;
1946 1947
		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
			 dev->dev_cur_ordered_id);
C
Christoph Hellwig 已提交
1948
	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
1949
		atomic_dec_mb(&dev->dev_ordered_sync);
1950 1951

		dev->dev_cur_ordered_id++;
1952 1953
		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
			 dev->dev_cur_ordered_id);
1954 1955
	}

1956
	target_restart_delayed_cmds(dev);
1957 1958
}

1959
static void transport_complete_qf(struct se_cmd *cmd)
1960 1961 1962
{
	int ret = 0;

1963
	transport_complete_task_attr(cmd);
1964 1965

	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1966
		trace_target_cmd_complete(cmd);
1967
		ret = cmd->se_tfo->queue_status(cmd);
1968
		goto out;
1969
	}
1970 1971 1972

	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
1973
		trace_target_cmd_complete(cmd);
1974 1975 1976
		ret = cmd->se_tfo->queue_data_in(cmd);
		break;
	case DMA_TO_DEVICE:
1977
		if (cmd->se_cmd_flags & SCF_BIDI) {
1978
			ret = cmd->se_tfo->queue_data_in(cmd);
1979
			break;
1980 1981 1982
		}
		/* Fall through for DMA_TO_DEVICE */
	case DMA_NONE:
1983
		trace_target_cmd_complete(cmd);
1984 1985 1986 1987 1988 1989
		ret = cmd->se_tfo->queue_status(cmd);
		break;
	default:
		break;
	}

1990 1991 1992 1993 1994 1995 1996
out:
	if (ret < 0) {
		transport_handle_queue_full(cmd, cmd->se_dev);
		return;
	}
	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
1997 1998 1999 2000
}

static void transport_handle_queue_full(
	struct se_cmd *cmd,
2001
	struct se_device *dev)
2002 2003 2004
{
	spin_lock_irq(&dev->qf_cmd_lock);
	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2005
	atomic_inc_mb(&dev->dev_qf_count);
2006 2007 2008 2009 2010
	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);

	schedule_work(&cmd->se_dev->qf_work_queue);
}

2011
static bool target_read_prot_action(struct se_cmd *cmd)
2012
{
2013 2014 2015
	switch (cmd->prot_op) {
	case TARGET_PROT_DIN_STRIP:
		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2016 2017 2018 2019 2020 2021 2022
			u32 sectors = cmd->data_length >>
				  ilog2(cmd->se_dev->dev_attrib.block_size);

			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
						     sectors, 0, cmd->t_prot_sg,
						     0);
			if (cmd->pi_err)
2023
				return true;
2024
		}
2025
		break;
2026 2027 2028 2029 2030 2031
	case TARGET_PROT_DIN_INSERT:
		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
			break;

		sbc_dif_generate(cmd);
		break;
2032 2033
	default:
		break;
2034 2035 2036 2037 2038
	}

	return false;
}

2039
static void target_complete_ok_work(struct work_struct *work)
2040
{
2041
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2042
	int ret;
2043

2044 2045 2046 2047 2048
	/*
	 * Check if we need to move delayed/dormant tasks from cmds on the
	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
	 * Attribute.
	 */
2049 2050
	transport_complete_task_attr(cmd);

2051 2052 2053 2054 2055 2056 2057
	/*
	 * Check to schedule QUEUE_FULL work, or execute an existing
	 * cmd->transport_qf_callback()
	 */
	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
		schedule_work(&cmd->se_dev->qf_work_queue);

2058
	/*
2059
	 * Check if we need to send a sense buffer from
2060 2061 2062
	 * the struct se_cmd in question.
	 */
	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2063 2064 2065 2066 2067 2068 2069 2070 2071
		WARN_ON(!cmd->scsi_status);
		ret = transport_send_check_condition_and_sense(
					cmd, 0, 1);
		if (ret == -EAGAIN || ret == -ENOMEM)
			goto queue_full;

		transport_lun_remove_cmd(cmd);
		transport_cmd_check_stop_to_fabric(cmd);
		return;
2072 2073
	}
	/*
L
Lucas De Marchi 已提交
2074
	 * Check for a callback, used by amongst other things
2075
	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2076
	 */
2077 2078
	if (cmd->transport_complete_callback) {
		sense_reason_t rc;
2079 2080 2081
		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
		bool zero_dl = !(cmd->data_length);
		int post_ret = 0;
2082

2083 2084 2085
		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
		if (!rc && !post_ret) {
			if (caw && zero_dl)
2086 2087
				goto queue_rsp;

2088
			return;
2089 2090 2091 2092 2093
		} else if (rc) {
			ret = transport_send_check_condition_and_sense(cmd,
						rc, 0);
			if (ret == -EAGAIN || ret == -ENOMEM)
				goto queue_full;
2094

2095 2096 2097 2098
			transport_lun_remove_cmd(cmd);
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
2099
	}
2100

2101
queue_rsp:
2102 2103
	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
2104 2105
		atomic_long_add(cmd->data_length,
				&cmd->se_lun->lun_stats.tx_data_octets);
2106 2107 2108 2109 2110
		/*
		 * Perform READ_STRIP of PI using software emulation when
		 * backend had PI enabled, if the transport will not be
		 * performing hardware READ_STRIP offload.
		 */
2111
		if (target_read_prot_action(cmd)) {
2112 2113 2114 2115 2116 2117 2118 2119 2120
			ret = transport_send_check_condition_and_sense(cmd,
						cmd->pi_err, 0);
			if (ret == -EAGAIN || ret == -ENOMEM)
				goto queue_full;

			transport_lun_remove_cmd(cmd);
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
2121

2122
		trace_target_cmd_complete(cmd);
2123
		ret = cmd->se_tfo->queue_data_in(cmd);
2124
		if (ret == -EAGAIN || ret == -ENOMEM)
2125
			goto queue_full;
2126 2127
		break;
	case DMA_TO_DEVICE:
2128 2129
		atomic_long_add(cmd->data_length,
				&cmd->se_lun->lun_stats.rx_data_octets);
2130 2131 2132
		/*
		 * Check if we need to send READ payload for BIDI-COMMAND
		 */
2133
		if (cmd->se_cmd_flags & SCF_BIDI) {
2134 2135
			atomic_long_add(cmd->data_length,
					&cmd->se_lun->lun_stats.tx_data_octets);
2136
			ret = cmd->se_tfo->queue_data_in(cmd);
2137
			if (ret == -EAGAIN || ret == -ENOMEM)
2138
				goto queue_full;
2139 2140 2141 2142
			break;
		}
		/* Fall through for DMA_TO_DEVICE */
	case DMA_NONE:
2143
		trace_target_cmd_complete(cmd);
2144
		ret = cmd->se_tfo->queue_status(cmd);
2145
		if (ret == -EAGAIN || ret == -ENOMEM)
2146
			goto queue_full;
2147 2148 2149 2150 2151 2152 2153
		break;
	default:
		break;
	}

	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
2154 2155 2156
	return;

queue_full:
2157
	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2158
		" data_direction: %d\n", cmd, cmd->data_direction);
2159 2160
	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
	transport_handle_queue_full(cmd, cmd->se_dev);
2161 2162
}

2163
static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2164
{
2165 2166
	struct scatterlist *sg;
	int count;
2167

2168 2169
	for_each_sg(sgl, sg, nents, count)
		__free_page(sg_page(sg));
2170

2171 2172
	kfree(sgl);
}
2173

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
{
	/*
	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
	 * emulation, and free + reset pointers if necessary..
	 */
	if (!cmd->t_data_sg_orig)
		return;

	kfree(cmd->t_data_sg);
	cmd->t_data_sg = cmd->t_data_sg_orig;
	cmd->t_data_sg_orig = NULL;
	cmd->t_data_nents = cmd->t_data_nents_orig;
	cmd->t_data_nents_orig = 0;
}

2190 2191
static inline void transport_free_pages(struct se_cmd *cmd)
{
2192 2193 2194 2195 2196 2197
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
		transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
		cmd->t_prot_sg = NULL;
		cmd->t_prot_nents = 0;
	}

2198
	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
		/*
		 * Release special case READ buffer payload required for
		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
		 */
		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
			transport_free_sgl(cmd->t_bidi_data_sg,
					   cmd->t_bidi_data_nents);
			cmd->t_bidi_data_sg = NULL;
			cmd->t_bidi_data_nents = 0;
		}
2209
		transport_reset_sgl_orig(cmd);
2210
		return;
2211 2212
	}
	transport_reset_sgl_orig(cmd);
2213 2214

	transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2215 2216
	cmd->t_data_sg = NULL;
	cmd->t_data_nents = 0;
2217

2218
	transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2219 2220
	cmd->t_bidi_data_sg = NULL;
	cmd->t_bidi_data_nents = 0;
2221 2222
}

C
Christoph Hellwig 已提交
2223
/**
2224 2225
 * transport_put_cmd - release a reference to a command
 * @cmd:       command to release
C
Christoph Hellwig 已提交
2226
 *
2227
 * This routine releases our reference to the command and frees it if possible.
C
Christoph Hellwig 已提交
2228
 */
2229
static int transport_put_cmd(struct se_cmd *cmd)
C
Christoph Hellwig 已提交
2230 2231 2232
{
	BUG_ON(!cmd->se_tfo);
	/*
2233 2234
	 * If this cmd has been setup with target_get_sess_cmd(), drop
	 * the kref and call ->release_cmd() in kref callback.
C
Christoph Hellwig 已提交
2235
	 */
2236
	return target_put_sess_cmd(cmd);
C
Christoph Hellwig 已提交
2237 2238
}

2239
void *transport_kmap_data_sg(struct se_cmd *cmd)
2240
{
2241
	struct scatterlist *sg = cmd->t_data_sg;
2242 2243
	struct page **pages;
	int i;
2244 2245

	/*
2246 2247 2248
	 * We need to take into account a possible offset here for fabrics like
	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2249
	 */
2250 2251
	if (!cmd->t_data_nents)
		return NULL;
2252 2253 2254

	BUG_ON(!sg);
	if (cmd->t_data_nents == 1)
2255 2256 2257 2258
		return kmap(sg_page(sg)) + sg->offset;

	/* >1 page. use vmap */
	pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2259
	if (!pages)
2260 2261 2262 2263 2264 2265 2266 2267 2268
		return NULL;

	/* convert sg[] to pages[] */
	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
		pages[i] = sg_page(sg);
	}

	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
	kfree(pages);
2269
	if (!cmd->t_data_vmap)
2270 2271 2272
		return NULL;

	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2273
}
2274
EXPORT_SYMBOL(transport_kmap_data_sg);
2275

2276
void transport_kunmap_data_sg(struct se_cmd *cmd)
2277
{
2278
	if (!cmd->t_data_nents) {
2279
		return;
2280
	} else if (cmd->t_data_nents == 1) {
2281
		kunmap(sg_page(cmd->t_data_sg));
2282 2283
		return;
	}
2284 2285 2286

	vunmap(cmd->t_data_vmap);
	cmd->t_data_vmap = NULL;
2287
}
2288
EXPORT_SYMBOL(transport_kunmap_data_sg);
2289

2290
int
2291 2292
target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
		 bool zero_page)
2293
{
2294
	struct scatterlist *sg;
2295
	struct page *page;
2296 2297
	gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
	unsigned int nent;
2298
	int i = 0;
2299

2300 2301 2302
	nent = DIV_ROUND_UP(length, PAGE_SIZE);
	sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
	if (!sg)
2303
		return -ENOMEM;
2304

2305
	sg_init_table(sg, nent);
2306

2307 2308
	while (length) {
		u32 page_len = min_t(u32, length, PAGE_SIZE);
2309
		page = alloc_page(GFP_KERNEL | zero_flag);
2310 2311
		if (!page)
			goto out;
2312

2313
		sg_set_page(&sg[i], page, page_len, 0);
2314 2315
		length -= page_len;
		i++;
2316
	}
2317 2318
	*sgl = sg;
	*nents = nent;
2319 2320
	return 0;

2321
out:
2322
	while (i > 0) {
2323
		i--;
2324
		__free_page(sg_page(&sg[i]));
2325
	}
2326
	kfree(sg);
2327
	return -ENOMEM;
2328 2329
}

2330
/*
2331 2332 2333
 * Allocate any required resources to execute the command.  For writes we
 * might not have the payload yet, so notify the fabric via a call to
 * ->write_pending instead. Otherwise place it on the execution queue.
2334
 */
2335 2336
sense_reason_t
transport_generic_new_cmd(struct se_cmd *cmd)
2337 2338
{
	int ret = 0;
2339
	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2340

2341 2342 2343 2344 2345 2346 2347 2348
	if (cmd->prot_op != TARGET_PROT_NORMAL &&
	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
				       cmd->prot_length, true);
		if (ret < 0)
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
	}

2349 2350 2351
	/*
	 * Determine is the TCM fabric module has already allocated physical
	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2352
	 * beforehand.
2353
	 */
2354 2355
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
	    cmd->data_length) {
2356

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
		if ((cmd->se_cmd_flags & SCF_BIDI) ||
		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
			u32 bidi_length;

			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
				bidi_length = cmd->t_task_nolb *
					      cmd->se_dev->dev_attrib.block_size;
			else
				bidi_length = cmd->data_length;

			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
					       &cmd->t_bidi_data_nents,
					       bidi_length, zero_flag);
			if (ret < 0)
				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		}

2374 2375
		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
				       cmd->data_length, zero_flag);
2376
		if (ret < 0)
2377
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391
	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
		    cmd->data_length) {
		/*
		 * Special case for COMPARE_AND_WRITE with fabrics
		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
		 */
		u32 caw_length = cmd->t_task_nolb *
				 cmd->se_dev->dev_attrib.block_size;

		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
				       &cmd->t_bidi_data_nents,
				       caw_length, zero_flag);
		if (ret < 0)
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2392 2393
	}
	/*
2394 2395 2396
	 * If this command is not a write we can execute it right here,
	 * for write buffers we need to notify the fabric driver first
	 * and let it call back once the write buffers are ready.
2397
	 */
2398
	target_add_to_state_list(cmd);
2399
	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2400 2401 2402
		target_execute_cmd(cmd);
		return 0;
	}
2403
	transport_cmd_check_stop(cmd, false, true);
2404 2405 2406 2407 2408

	ret = cmd->se_tfo->write_pending(cmd);
	if (ret == -EAGAIN || ret == -ENOMEM)
		goto queue_full;

2409 2410 2411
	/* fabric drivers should only return -EAGAIN or -ENOMEM as error */
	WARN_ON(ret);

2412
	return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2413

2414 2415 2416 2417 2418
queue_full:
	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
	cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
	transport_handle_queue_full(cmd, cmd->se_dev);
	return 0;
2419
}
2420
EXPORT_SYMBOL(transport_generic_new_cmd);
2421

2422
static void transport_write_pending_qf(struct se_cmd *cmd)
2423
{
2424 2425 2426 2427
	int ret;

	ret = cmd->se_tfo->write_pending(cmd);
	if (ret == -EAGAIN || ret == -ENOMEM) {
2428 2429 2430 2431
		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
			 cmd);
		transport_handle_queue_full(cmd, cmd->se_dev);
	}
2432 2433
}

2434
int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2435
{
2436 2437
	int ret = 0;

2438
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2439
		if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2440
			transport_wait_for_tasks(cmd);
2441

2442
		ret = transport_put_cmd(cmd);
2443 2444 2445
	} else {
		if (wait_for_tasks)
			transport_wait_for_tasks(cmd);
2446 2447 2448 2449 2450
		/*
		 * Handle WRITE failure case where transport_generic_new_cmd()
		 * has already added se_cmd to state_list, but fabric has
		 * failed command before I/O submission.
		 */
2451
		if (cmd->state_active)
2452
			target_remove_from_state_list(cmd);
2453

2454
		if (cmd->se_lun)
2455 2456
			transport_lun_remove_cmd(cmd);

2457
		ret = transport_put_cmd(cmd);
2458
	}
2459
	return ret;
2460 2461 2462
}
EXPORT_SYMBOL(transport_generic_free_cmd);

2463 2464
/* target_get_sess_cmd - Add command to active ->sess_cmd_list
 * @se_cmd:	command descriptor to add
2465
 * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2466
 */
2467
int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2468
{
2469
	struct se_session *se_sess = se_cmd->se_sess;
2470
	unsigned long flags;
2471
	int ret = 0;
2472

2473 2474 2475 2476 2477
	/*
	 * Add a second kref if the fabric caller is expecting to handle
	 * fabric acknowledgement that requires two target_put_sess_cmd()
	 * invocations before se_cmd descriptor release.
	 */
2478
	if (ack_kref)
2479
		kref_get(&se_cmd->cmd_kref);
2480

2481
	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2482 2483 2484 2485
	if (se_sess->sess_tearing_down) {
		ret = -ESHUTDOWN;
		goto out;
	}
2486
	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2487
out:
2488
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2489 2490

	if (ret && ack_kref)
2491
		target_put_sess_cmd(se_cmd);
2492

2493
	return ret;
2494
}
2495
EXPORT_SYMBOL(target_get_sess_cmd);
2496

2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
static void target_free_cmd_mem(struct se_cmd *cmd)
{
	transport_free_pages(cmd);

	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
		core_tmr_release_req(cmd->se_tmr_req);
	if (cmd->t_task_cdb != cmd->__t_task_cdb)
		kfree(cmd->t_task_cdb);
}

2507
static void target_release_cmd_kref(struct kref *kref)
2508
{
2509 2510
	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
	struct se_session *se_sess = se_cmd->se_sess;
2511
	unsigned long flags;
2512

2513
	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2514
	if (list_empty(&se_cmd->se_cmd_list)) {
2515
		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2516
		target_free_cmd_mem(se_cmd);
2517
		se_cmd->se_tfo->release_cmd(se_cmd);
2518
		return;
2519 2520
	}
	if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2521
		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2522
		target_free_cmd_mem(se_cmd);
2523
		complete(&se_cmd->cmd_wait_comp);
2524
		return;
2525 2526
	}
	list_del(&se_cmd->se_cmd_list);
2527
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2528

2529
	target_free_cmd_mem(se_cmd);
2530 2531 2532 2533 2534 2535
	se_cmd->se_tfo->release_cmd(se_cmd);
}

/* target_put_sess_cmd - Check for active I/O shutdown via kref_put
 * @se_cmd:	command descriptor to drop
 */
2536
int target_put_sess_cmd(struct se_cmd *se_cmd)
2537
{
2538 2539
	struct se_session *se_sess = se_cmd->se_sess;

2540
	if (!se_sess) {
2541
		target_free_cmd_mem(se_cmd);
2542 2543 2544
		se_cmd->se_tfo->release_cmd(se_cmd);
		return 1;
	}
2545
	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2546 2547 2548
}
EXPORT_SYMBOL(target_put_sess_cmd);

2549 2550 2551 2552
/* target_sess_cmd_list_set_waiting - Flag all commands in
 *         sess_cmd_list to complete cmd_wait_comp.  Set
 *         sess_tearing_down so no more commands are queued.
 * @se_sess:	session to flag
2553
 */
2554
void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2555 2556 2557 2558 2559
{
	struct se_cmd *se_cmd;
	unsigned long flags;

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2560 2561 2562 2563
	if (se_sess->sess_tearing_down) {
		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
		return;
	}
2564
	se_sess->sess_tearing_down = 1;
2565
	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2566

2567
	list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2568 2569 2570 2571
		se_cmd->cmd_wait_set = 1;

	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
}
2572
EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2573 2574 2575 2576

/* target_wait_for_sess_cmds - Wait for outstanding descriptors
 * @se_sess:    session to wait for active I/O
 */
2577
void target_wait_for_sess_cmds(struct se_session *se_sess)
2578 2579
{
	struct se_cmd *se_cmd, *tmp_cmd;
2580
	unsigned long flags;
2581 2582

	list_for_each_entry_safe(se_cmd, tmp_cmd,
2583
				&se_sess->sess_wait_list, se_cmd_list) {
2584 2585 2586 2587 2588 2589
		list_del(&se_cmd->se_cmd_list);

		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
			" %d\n", se_cmd, se_cmd->t_state,
			se_cmd->se_tfo->get_cmd_state(se_cmd));

2590 2591 2592 2593
		wait_for_completion(&se_cmd->cmd_wait_comp);
		pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
			" fabric state: %d\n", se_cmd, se_cmd->t_state,
			se_cmd->se_tfo->get_cmd_state(se_cmd));
2594 2595 2596

		se_cmd->se_tfo->release_cmd(se_cmd);
	}
2597 2598 2599 2600 2601

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
	WARN_ON(!list_empty(&se_sess->sess_cmd_list));
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);

2602 2603 2604
}
EXPORT_SYMBOL(target_wait_for_sess_cmds);

2605
void transport_clear_lun_ref(struct se_lun *lun)
2606
{
2607 2608
	percpu_ref_kill(&lun->lun_ref);
	wait_for_completion(&lun->lun_ref_comp);
2609 2610
}

2611 2612 2613
/**
 * transport_wait_for_tasks - wait for completion to occur
 * @cmd:	command to wait
2614
 *
2615 2616
 * Called from frontend fabric context to wait for storage engine
 * to pause and/or release frontend generated struct se_cmd.
2617
 */
2618
bool transport_wait_for_tasks(struct se_cmd *cmd)
2619 2620 2621
{
	unsigned long flags;

2622
	spin_lock_irqsave(&cmd->t_state_lock, flags);
2623 2624
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2625
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2626
		return false;
2627
	}
2628

2629 2630
	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2631
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2632
		return false;
2633
	}
2634

2635
	if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2636
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2637
		return false;
2638
	}
2639

2640
	cmd->transport_state |= CMD_T_STOP;
2641

2642 2643
	pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d, t_state: %d, CMD_T_STOP\n",
		cmd, cmd->tag, cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2644

2645
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2646

2647
	wait_for_completion(&cmd->t_transport_stop_comp);
2648

2649
	spin_lock_irqsave(&cmd->t_state_lock, flags);
2650
	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2651

2652 2653
	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->t_transport_stop_comp) for ITT: 0x%08llx\n",
		cmd->tag);
2654

2655
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2656 2657

	return true;
2658
}
2659
EXPORT_SYMBOL(transport_wait_for_tasks);
2660

2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
struct sense_info {
	u8 key;
	u8 asc;
	u8 ascq;
	bool add_sector_info;
};

static const struct sense_info sense_info_table[] = {
	[TCM_NO_SENSE] = {
		.key = NOT_READY
	},
	[TCM_NON_EXISTENT_LUN] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
	},
	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
	},
	[TCM_SECTOR_COUNT_TOO_MANY] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
	},
	[TCM_UNKNOWN_MODE_PAGE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x24, /* INVALID FIELD IN CDB */
	},
	[TCM_CHECK_CONDITION_ABORT_CMD] = {
		.key = ABORTED_COMMAND,
		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
		.ascq = 0x03,
	},
	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
		.key = ABORTED_COMMAND,
		.asc = 0x0c, /* WRITE ERROR */
		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
	},
	[TCM_INVALID_CDB_FIELD] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x24, /* INVALID FIELD IN CDB */
	},
	[TCM_INVALID_PARAMETER_LIST] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
	},
	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
	},
	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x0c, /* WRITE ERROR */
		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
	},
	[TCM_SERVICE_CRC_ERROR] = {
		.key = ABORTED_COMMAND,
		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
		.ascq = 0x05, /* N/A */
	},
	[TCM_SNACK_REJECTED] = {
		.key = ABORTED_COMMAND,
		.asc = 0x11, /* READ ERROR */
		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
	},
	[TCM_WRITE_PROTECTED] = {
		.key = DATA_PROTECT,
		.asc = 0x27, /* WRITE PROTECTED */
	},
	[TCM_ADDRESS_OUT_OF_RANGE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
	},
	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
		.key = UNIT_ATTENTION,
	},
	[TCM_CHECK_CONDITION_NOT_READY] = {
		.key = NOT_READY,
	},
	[TCM_MISCOMPARE_VERIFY] = {
		.key = MISCOMPARE,
		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
		.ascq = 0x00,
	},
	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2745
		.key = ABORTED_COMMAND,
2746 2747 2748 2749 2750
		.asc = 0x10,
		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
		.add_sector_info = true,
	},
	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2751
		.key = ABORTED_COMMAND,
2752 2753 2754 2755 2756
		.asc = 0x10,
		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
		.add_sector_info = true,
	},
	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2757
		.key = ABORTED_COMMAND,
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
		.asc = 0x10,
		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
		.add_sector_info = true,
	},
	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
		/*
		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
		 * Solaris initiators.  Returning NOT READY instead means the
		 * operations will be retried a finite number of times and we
		 * can survive intermittent errors.
		 */
		.key = NOT_READY,
		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
	},
};

2774
static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2775 2776 2777 2778 2779
{
	const struct sense_info *si;
	u8 *buffer = cmd->sense_buffer;
	int r = (__force int)reason;
	u8 asc, ascq;
2780
	bool desc_format = target_sense_desc_format(cmd->se_dev);
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798

	if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
		si = &sense_info_table[r];
	else
		si = &sense_info_table[(__force int)
				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];

	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
		WARN_ON_ONCE(asc == 0);
	} else if (si->asc == 0) {
		WARN_ON_ONCE(cmd->scsi_asc == 0);
		asc = cmd->scsi_asc;
		ascq = cmd->scsi_ascq;
	} else {
		asc = si->asc;
		ascq = si->ascq;
	}
2799

2800
	scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
2801
	if (si->add_sector_info)
2802 2803 2804 2805 2806
		return scsi_set_sense_information(buffer,
						  cmd->scsi_sense_length,
						  cmd->bad_sector);

	return 0;
2807 2808
}

2809 2810 2811
int
transport_send_check_condition_and_sense(struct se_cmd *cmd,
		sense_reason_t reason, int from_transport)
2812 2813 2814
{
	unsigned long flags;

2815
	spin_lock_irqsave(&cmd->t_state_lock, flags);
2816
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2817
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2818 2819 2820
		return 0;
	}
	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2821
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2822

2823
	if (!from_transport) {
2824 2825
		int rc;

2826
		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2827 2828
		cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
		cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
2829 2830 2831
		rc = translate_sense_reason(cmd, reason);
		if (rc)
			return rc;
2832 2833
	}

2834
	trace_target_cmd_complete(cmd);
2835
	return cmd->se_tfo->queue_status(cmd);
2836 2837 2838 2839 2840
}
EXPORT_SYMBOL(transport_send_check_condition_and_sense);

int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
{
2841 2842
	if (!(cmd->transport_state & CMD_T_ABORTED))
		return 0;
2843

2844 2845 2846 2847 2848
	/*
	 * If cmd has been aborted but either no status is to be sent or it has
	 * already been sent, just return
	 */
	if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS))
2849
		return 1;
2850

2851 2852
	pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08llx\n",
		 cmd->t_task_cdb[0], cmd->tag);
2853

2854
	cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2855
	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2856
	trace_target_cmd_complete(cmd);
2857 2858 2859
	cmd->se_tfo->queue_status(cmd);

	return 1;
2860 2861 2862 2863 2864
}
EXPORT_SYMBOL(transport_check_aborted_status);

void transport_send_task_abort(struct se_cmd *cmd)
{
2865 2866 2867
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
2868
	if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2869 2870 2871 2872 2873
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		return;
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

2874 2875 2876 2877 2878 2879 2880
	/*
	 * If there are still expected incoming fabric WRITEs, we wait
	 * until until they have completed before sending a TASK_ABORTED
	 * response.  This response with TASK_ABORTED status will be
	 * queued back to fabric module by transport_check_aborted_status().
	 */
	if (cmd->data_direction == DMA_TO_DEVICE) {
2881
		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2882
			cmd->transport_state |= CMD_T_ABORTED;
2883
			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2884
			return;
2885 2886 2887
		}
	}
	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2888

2889 2890
	transport_lun_remove_cmd(cmd);

2891 2892
	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
		 cmd->t_task_cdb[0], cmd->tag);
2893

2894
	trace_target_cmd_complete(cmd);
2895
	cmd->se_tfo->queue_status(cmd);
2896 2897
}

2898
static void target_tmr_work(struct work_struct *work)
2899
{
2900
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2901
	struct se_device *dev = cmd->se_dev;
2902 2903 2904 2905
	struct se_tmr_req *tmr = cmd->se_tmr_req;
	int ret;

	switch (tmr->function) {
2906
	case TMR_ABORT_TASK:
2907
		core_tmr_abort_task(dev, tmr, cmd->se_sess);
2908
		break;
2909 2910 2911
	case TMR_ABORT_TASK_SET:
	case TMR_CLEAR_ACA:
	case TMR_CLEAR_TASK_SET:
2912 2913
		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
		break;
2914
	case TMR_LUN_RESET:
2915 2916 2917
		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
					 TMR_FUNCTION_REJECTED;
2918 2919 2920 2921 2922
		if (tmr->response == TMR_FUNCTION_COMPLETE) {
			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
					       cmd->orig_fe_lun, 0x29,
					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
		}
2923
		break;
2924
	case TMR_TARGET_WARM_RESET:
2925 2926
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
2927
	case TMR_TARGET_COLD_RESET:
2928 2929 2930
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	default:
2931
		pr_err("Uknown TMR function: 0x%02x.\n",
2932 2933 2934 2935 2936 2937
				tmr->function);
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	}

	cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2938
	cmd->se_tfo->queue_tm_rsp(cmd);
2939

2940
	transport_cmd_check_stop_to_fabric(cmd);
2941 2942
}

2943 2944
int transport_generic_handle_tmr(
	struct se_cmd *cmd)
2945
{
2946 2947 2948 2949 2950 2951
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	cmd->transport_state |= CMD_T_ACTIVE;
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

2952 2953
	INIT_WORK(&cmd->work, target_tmr_work);
	queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2954 2955
	return 0;
}
2956
EXPORT_SYMBOL(transport_generic_handle_tmr);
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975

bool
target_check_wce(struct se_device *dev)
{
	bool wce = false;

	if (dev->transport->get_write_cache)
		wce = dev->transport->get_write_cache(dev);
	else if (dev->dev_attrib.emulate_write_cache > 0)
		wce = true;

	return wce;
}

bool
target_check_fua(struct se_device *dev)
{
	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
}