target_core_transport.c 93.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-or-later
2 3 4 5 6
/*******************************************************************************
 * Filename:  target_core_transport.c
 *
 * This file contains the Generic Target Engine Core.
 *
7
 * (c) Copyright 2002-2013 Datera, Inc.
8 9 10 11 12 13 14 15 16 17 18 19 20 21
 *
 * Nicholas A. Bellinger <nab@kernel.org>
 *
 ******************************************************************************/

#include <linux/net.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/in.h>
#include <linux/cdrom.h>
22
#include <linux/module.h>
23
#include <linux/ratelimit.h>
24
#include <linux/vmalloc.h>
25 26 27
#include <asm/unaligned.h>
#include <net/sock.h>
#include <net/tcp.h>
28
#include <scsi/scsi_proto.h>
29
#include <scsi/scsi_common.h>
30 31

#include <target/target_core_base.h>
32 33
#include <target/target_core_backend.h>
#include <target/target_core_fabric.h>
34

C
Christoph Hellwig 已提交
35
#include "target_core_internal.h"
36 37 38 39
#include "target_core_alua.h"
#include "target_core_pr.h"
#include "target_core_ua.h"

40 41 42
#define CREATE_TRACE_POINTS
#include <trace/events/target.h>

43
static struct workqueue_struct *target_completion_wq;
44 45 46 47 48 49
static struct kmem_cache *se_sess_cache;
struct kmem_cache *se_ua_cache;
struct kmem_cache *t10_pr_reg_cache;
struct kmem_cache *t10_alua_lu_gp_cache;
struct kmem_cache *t10_alua_lu_gp_mem_cache;
struct kmem_cache *t10_alua_tg_pt_gp_cache;
50 51
struct kmem_cache *t10_alua_lba_map_cache;
struct kmem_cache *t10_alua_lba_map_mem_cache;
52 53

static void transport_complete_task_attr(struct se_cmd *cmd);
54
static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
55
static void transport_handle_queue_full(struct se_cmd *cmd,
56
		struct se_device *dev, int err, bool write_pending);
57
static void target_complete_ok_work(struct work_struct *work);
58

59
int init_se_kmem_caches(void)
60 61 62 63
{
	se_sess_cache = kmem_cache_create("se_sess_cache",
			sizeof(struct se_session), __alignof__(struct se_session),
			0, NULL);
64 65
	if (!se_sess_cache) {
		pr_err("kmem_cache_create() for struct se_session"
66
				" failed\n");
67
		goto out;
68 69 70 71
	}
	se_ua_cache = kmem_cache_create("se_ua_cache",
			sizeof(struct se_ua), __alignof__(struct se_ua),
			0, NULL);
72 73
	if (!se_ua_cache) {
		pr_err("kmem_cache_create() for struct se_ua failed\n");
74
		goto out_free_sess_cache;
75 76 77 78
	}
	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
			sizeof(struct t10_pr_registration),
			__alignof__(struct t10_pr_registration), 0, NULL);
79 80
	if (!t10_pr_reg_cache) {
		pr_err("kmem_cache_create() for struct t10_pr_registration"
81
				" failed\n");
82
		goto out_free_ua_cache;
83 84 85 86
	}
	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
			0, NULL);
87 88
	if (!t10_alua_lu_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
89
				" failed\n");
90
		goto out_free_pr_reg_cache;
91 92 93 94
	}
	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
			sizeof(struct t10_alua_lu_gp_member),
			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
95 96
	if (!t10_alua_lu_gp_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
97
				"cache failed\n");
98
		goto out_free_lu_gp_cache;
99 100 101 102
	}
	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
			sizeof(struct t10_alua_tg_pt_gp),
			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
103 104
	if (!t10_alua_tg_pt_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
105
				"cache failed\n");
106
		goto out_free_lu_gp_mem_cache;
107
	}
108 109 110 111 112 113 114
	t10_alua_lba_map_cache = kmem_cache_create(
			"t10_alua_lba_map_cache",
			sizeof(struct t10_alua_lba_map),
			__alignof__(struct t10_alua_lba_map), 0, NULL);
	if (!t10_alua_lba_map_cache) {
		pr_err("kmem_cache_create() for t10_alua_lba_map_"
				"cache failed\n");
115
		goto out_free_tg_pt_gp_cache;
116 117 118 119 120 121 122 123 124 125
	}
	t10_alua_lba_map_mem_cache = kmem_cache_create(
			"t10_alua_lba_map_mem_cache",
			sizeof(struct t10_alua_lba_map_member),
			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
	if (!t10_alua_lba_map_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
				"cache failed\n");
		goto out_free_lba_map_cache;
	}
126

127 128 129
	target_completion_wq = alloc_workqueue("target_completion",
					       WQ_MEM_RECLAIM, 0);
	if (!target_completion_wq)
130
		goto out_free_lba_map_mem_cache;
131

132
	return 0;
133

134 135 136 137
out_free_lba_map_mem_cache:
	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
out_free_lba_map_cache:
	kmem_cache_destroy(t10_alua_lba_map_cache);
138 139 140 141 142 143 144 145 146 147 148 149
out_free_tg_pt_gp_cache:
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
out_free_lu_gp_mem_cache:
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
out_free_lu_gp_cache:
	kmem_cache_destroy(t10_alua_lu_gp_cache);
out_free_pr_reg_cache:
	kmem_cache_destroy(t10_pr_reg_cache);
out_free_ua_cache:
	kmem_cache_destroy(se_ua_cache);
out_free_sess_cache:
	kmem_cache_destroy(se_sess_cache);
150
out:
151
	return -ENOMEM;
152 153
}

154
void release_se_kmem_caches(void)
155
{
156
	destroy_workqueue(target_completion_wq);
157 158 159 160 161 162
	kmem_cache_destroy(se_sess_cache);
	kmem_cache_destroy(se_ua_cache);
	kmem_cache_destroy(t10_pr_reg_cache);
	kmem_cache_destroy(t10_alua_lu_gp_cache);
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
163 164
	kmem_cache_destroy(t10_alua_lba_map_cache);
	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
165 166
}

167 168 169
/* This code ensures unique mib indexes are handed out. */
static DEFINE_SPINLOCK(scsi_mib_index_lock);
static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
170 171 172 173 174 175 176 177

/*
 * Allocate a new row index for the entry type specified
 */
u32 scsi_get_new_index(scsi_index_t type)
{
	u32 new_index;

178
	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
179

180 181 182
	spin_lock(&scsi_mib_index_lock);
	new_index = ++scsi_mib_index[type];
	spin_unlock(&scsi_mib_index_lock);
183 184 185 186

	return new_index;
}

187
void transport_subsystem_check_init(void)
188 189
{
	int ret;
190
	static int sub_api_initialized;
191

192 193 194
	if (sub_api_initialized)
		return;

195
	ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
196
	if (ret != 0)
197
		pr_err("Unable to load target_core_iblock\n");
198

199
	ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
200
	if (ret != 0)
201
		pr_err("Unable to load target_core_file\n");
202

203
	ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
204
	if (ret != 0)
205
		pr_err("Unable to load target_core_pscsi\n");
206

207
	ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
208 209 210
	if (ret != 0)
		pr_err("Unable to load target_core_user\n");

211
	sub_api_initialized = 1;
212 213
}

214 215 216 217 218 219 220
static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
{
	struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);

	wake_up(&sess->cmd_list_wq);
}

221 222 223 224 225 226
/**
 * transport_init_session - initialize a session object
 * @se_sess: Session object pointer.
 *
 * The caller must have zero-initialized @se_sess before calling this function.
 */
227
int transport_init_session(struct se_session *se_sess)
228 229 230 231 232
{
	INIT_LIST_HEAD(&se_sess->sess_list);
	INIT_LIST_HEAD(&se_sess->sess_acl_list);
	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
	spin_lock_init(&se_sess->sess_cmd_lock);
233
	init_waitqueue_head(&se_sess->cmd_list_wq);
234 235
	return percpu_ref_init(&se_sess->cmd_count,
			       target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
236 237 238
}
EXPORT_SYMBOL(transport_init_session);

239 240 241 242 243
/**
 * transport_alloc_session - allocate a session object and initialize it
 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
 */
struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
244 245
{
	struct se_session *se_sess;
246
	int ret;
247 248

	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
249 250
	if (!se_sess) {
		pr_err("Unable to allocate struct se_session from"
251 252 253
				" se_sess_cache\n");
		return ERR_PTR(-ENOMEM);
	}
254 255
	ret = transport_init_session(se_sess);
	if (ret < 0) {
256
		kmem_cache_free(se_sess_cache, se_sess);
257 258
		return ERR_PTR(ret);
	}
259
	se_sess->sup_prot_ops = sup_prot_ops;
260 261 262

	return se_sess;
}
263 264 265 266 267 268 269 270 271
EXPORT_SYMBOL(transport_alloc_session);

/**
 * transport_alloc_session_tags - allocate target driver private data
 * @se_sess:  Session pointer.
 * @tag_num:  Maximum number of in-flight commands between initiator and target.
 * @tag_size: Size in bytes of the private data a target driver associates with
 *	      each command.
 */
272 273 274 275 276
int transport_alloc_session_tags(struct se_session *se_sess,
			         unsigned int tag_num, unsigned int tag_size)
{
	int rc;

277 278
	se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
					 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
279
	if (!se_sess->sess_cmd_map) {
280 281
		pr_err("Unable to allocate se_sess->sess_cmd_map\n");
		return -ENOMEM;
282 283
	}

284 285
	rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
			false, GFP_KERNEL, NUMA_NO_NODE);
286 287 288
	if (rc < 0) {
		pr_err("Unable to init se_sess->sess_tag_pool,"
			" tag_num: %u\n", tag_num);
289
		kvfree(se_sess->sess_cmd_map);
290 291 292 293 294 295 296 297
		se_sess->sess_cmd_map = NULL;
		return -ENOMEM;
	}

	return 0;
}
EXPORT_SYMBOL(transport_alloc_session_tags);

298 299 300 301 302 303 304
/**
 * transport_init_session_tags - allocate a session and target driver private data
 * @tag_num:  Maximum number of in-flight commands between initiator and target.
 * @tag_size: Size in bytes of the private data a target driver associates with
 *	      each command.
 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
 */
305 306 307
static struct se_session *
transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
			    enum target_prot_op sup_prot_ops)
308 309 310 311
{
	struct se_session *se_sess;
	int rc;

312 313 314 315 316 317 318 319 320 321 322
	if (tag_num != 0 && !tag_size) {
		pr_err("init_session_tags called with percpu-ida tag_num:"
		       " %u, but zero tag_size\n", tag_num);
		return ERR_PTR(-EINVAL);
	}
	if (!tag_num && tag_size) {
		pr_err("init_session_tags called with percpu-ida tag_size:"
		       " %u, but zero tag_num\n", tag_size);
		return ERR_PTR(-EINVAL);
	}

323
	se_sess = transport_alloc_session(sup_prot_ops);
324 325 326 327 328 329 330 331 332 333 334 335
	if (IS_ERR(se_sess))
		return se_sess;

	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
	if (rc < 0) {
		transport_free_session(se_sess);
		return ERR_PTR(-ENOMEM);
	}

	return se_sess;
}

336
/*
337
 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
338 339 340 341 342 343 344
 */
void __transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
345
	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
346
	unsigned char buf[PR_REG_ISID_LEN];
347
	unsigned long flags;
348 349 350 351 352 353 354 355 356 357

	se_sess->se_tpg = se_tpg;
	se_sess->fabric_sess_ptr = fabric_sess_ptr;
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
	 *
	 * Only set for struct se_session's that will actually be moving I/O.
	 * eg: *NOT* discovery sessions.
	 */
	if (se_nacl) {
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
		/*
		 *
		 * Determine if fabric allows for T10-PI feature bits exposed to
		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
		 *
		 * If so, then always save prot_type on a per se_node_acl node
		 * basis and re-instate the previous sess_prot_type to avoid
		 * disabling PI from below any previously initiator side
		 * registered LUNs.
		 */
		if (se_nacl->saved_prot_type)
			se_sess->sess_prot_type = se_nacl->saved_prot_type;
		else if (tfo->tpg_check_prot_fabric_only)
			se_sess->sess_prot_type = se_nacl->saved_prot_type =
					tfo->tpg_check_prot_fabric_only(se_tpg);
373 374 375 376
		/*
		 * If the fabric module supports an ISID based TransportID,
		 * save this value in binary from the fabric I_T Nexus now.
		 */
377
		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
378
			memset(&buf[0], 0, PR_REG_ISID_LEN);
379
			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
380 381 382
					&buf[0], PR_REG_ISID_LEN);
			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
		}
383

384
		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
385 386 387 388 389 390 391 392
		/*
		 * The se_nacl->nacl_sess pointer will be set to the
		 * last active I_T Nexus for each struct se_node_acl.
		 */
		se_nacl->nacl_sess = se_sess;

		list_add_tail(&se_sess->sess_acl_list,
			      &se_nacl->acl_sess_list);
393
		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
394 395 396
	}
	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);

397
	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
398
		se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
399 400 401 402 403 404 405 406 407
}
EXPORT_SYMBOL(__transport_register_session);

void transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
408 409 410
	unsigned long flags;

	spin_lock_irqsave(&se_tpg->session_lock, flags);
411
	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
412
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
413 414 415
}
EXPORT_SYMBOL(transport_register_session);

416
struct se_session *
417
target_setup_session(struct se_portal_group *tpg,
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
		     unsigned int tag_num, unsigned int tag_size,
		     enum target_prot_op prot_op,
		     const char *initiatorname, void *private,
		     int (*callback)(struct se_portal_group *,
				     struct se_session *, void *))
{
	struct se_session *sess;

	/*
	 * If the fabric driver is using percpu-ida based pre allocation
	 * of I/O descriptor tags, go ahead and perform that setup now..
	 */
	if (tag_num != 0)
		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
	else
433
		sess = transport_alloc_session(prot_op);
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458

	if (IS_ERR(sess))
		return sess;

	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
					(unsigned char *)initiatorname);
	if (!sess->se_node_acl) {
		transport_free_session(sess);
		return ERR_PTR(-EACCES);
	}
	/*
	 * Go ahead and perform any remaining fabric setup that is
	 * required before transport_register_session().
	 */
	if (callback != NULL) {
		int rc = callback(tpg, sess, private);
		if (rc) {
			transport_free_session(sess);
			return ERR_PTR(rc);
		}
	}

	transport_register_session(tpg, sess->se_node_acl, sess, private);
	return sess;
}
459
EXPORT_SYMBOL(target_setup_session);
460

461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
{
	struct se_session *se_sess;
	ssize_t len = 0;

	spin_lock_bh(&se_tpg->session_lock);
	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
		if (!se_sess->se_node_acl)
			continue;
		if (!se_sess->se_node_acl->dynamic_node_acl)
			continue;
		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
			break;

		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
				se_sess->se_node_acl->initiatorname);
		len += 1; /* Include NULL terminator */
	}
	spin_unlock_bh(&se_tpg->session_lock);

	return len;
}
EXPORT_SYMBOL(target_show_dynamic_sessions);

485 486 487 488
static void target_complete_nacl(struct kref *kref)
{
	struct se_node_acl *nacl = container_of(kref,
				struct se_node_acl, acl_kref);
489
	struct se_portal_group *se_tpg = nacl->se_tpg;
490

491 492 493 494 495 496
	if (!nacl->dynamic_stop) {
		complete(&nacl->acl_free_comp);
		return;
	}

	mutex_lock(&se_tpg->acl_node_mutex);
497
	list_del_init(&nacl->acl_list);
498 499 500 501 502
	mutex_unlock(&se_tpg->acl_node_mutex);

	core_tpg_wait_for_nacl_pr_ref(nacl);
	core_free_device_list_for_node(nacl, se_tpg);
	kfree(nacl);
503 504 505 506 507 508
}

void target_put_nacl(struct se_node_acl *nacl)
{
	kref_put(&nacl->acl_kref, target_complete_nacl);
}
509
EXPORT_SYMBOL(target_put_nacl);
510

511 512 513
void transport_deregister_session_configfs(struct se_session *se_sess)
{
	struct se_node_acl *se_nacl;
514
	unsigned long flags;
515 516 517 518
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
	 */
	se_nacl = se_sess->se_node_acl;
519
	if (se_nacl) {
520
		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
C
Christoph Hellwig 已提交
521 522
		if (!list_empty(&se_sess->sess_acl_list))
			list_del_init(&se_sess->sess_acl_list);
523 524 525 526 527 528 529 530 531 532 533 534
		/*
		 * If the session list is empty, then clear the pointer.
		 * Otherwise, set the struct se_session pointer from the tail
		 * element of the per struct se_node_acl active session list.
		 */
		if (list_empty(&se_nacl->acl_sess_list))
			se_nacl->nacl_sess = NULL;
		else {
			se_nacl->nacl_sess = container_of(
					se_nacl->acl_sess_list.prev,
					struct se_session, sess_acl_list);
		}
535
		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
536 537 538 539 540 541
	}
}
EXPORT_SYMBOL(transport_deregister_session_configfs);

void transport_free_session(struct se_session *se_sess)
{
542
	struct se_node_acl *se_nacl = se_sess->se_node_acl;
543

544 545 546 547 548
	/*
	 * Drop the se_node_acl->nacl_kref obtained from within
	 * core_tpg_get_initiator_node_acl().
	 */
	if (se_nacl) {
549 550 551 552
		struct se_portal_group *se_tpg = se_nacl->se_tpg;
		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
		unsigned long flags;

553
		se_sess->se_node_acl = NULL;
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568

		/*
		 * Also determine if we need to drop the extra ->cmd_kref if
		 * it had been previously dynamically generated, and
		 * the endpoint is not caching dynamic ACLs.
		 */
		mutex_lock(&se_tpg->acl_node_mutex);
		if (se_nacl->dynamic_node_acl &&
		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
			if (list_empty(&se_nacl->acl_sess_list))
				se_nacl->dynamic_stop = true;
			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);

			if (se_nacl->dynamic_stop)
569
				list_del_init(&se_nacl->acl_list);
570 571 572 573 574 575
		}
		mutex_unlock(&se_tpg->acl_node_mutex);

		if (se_nacl->dynamic_stop)
			target_put_nacl(se_nacl);

576 577
		target_put_nacl(se_nacl);
	}
578
	if (se_sess->sess_cmd_map) {
579
		sbitmap_queue_free(&se_sess->sess_tag_pool);
580
		kvfree(se_sess->sess_cmd_map);
581
	}
582
	percpu_ref_exit(&se_sess->cmd_count);
583 584 585 586
	kmem_cache_free(se_sess_cache, se_sess);
}
EXPORT_SYMBOL(transport_free_session);

587 588 589 590 591 592 593 594 595
static int target_release_res(struct se_device *dev, void *data)
{
	struct se_session *sess = data;

	if (dev->reservation_holder == sess)
		target_release_reservation(dev);
	return 0;
}

596 597 598
void transport_deregister_session(struct se_session *se_sess)
{
	struct se_portal_group *se_tpg = se_sess->se_tpg;
599
	unsigned long flags;
600

601
	if (!se_tpg) {
602 603 604 605
		transport_free_session(se_sess);
		return;
	}

606
	spin_lock_irqsave(&se_tpg->session_lock, flags);
607 608 609
	list_del(&se_sess->sess_list);
	se_sess->se_tpg = NULL;
	se_sess->fabric_sess_ptr = NULL;
610
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
611

612 613 614 615 616 617
	/*
	 * Since the session is being removed, release SPC-2
	 * reservations held by the session that is disappearing.
	 */
	target_for_each_device(target_release_res, se_sess);

618
	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
619
		se_tpg->se_tpg_tfo->fabric_name);
620
	/*
621
	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
622
	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
623
	 * removal context from within transport_free_session() code.
624 625 626
	 *
	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
	 * to release all remaining generate_node_acl=1 created ACL resources.
627 628
	 */

629
	transport_free_session(se_sess);
630 631 632
}
EXPORT_SYMBOL(transport_deregister_session);

633 634 635 636 637 638 639
void target_remove_session(struct se_session *se_sess)
{
	transport_deregister_session_configfs(se_sess);
	transport_deregister_session(se_sess);
}
EXPORT_SYMBOL(target_remove_session);

640
static void target_remove_from_state_list(struct se_cmd *cmd)
641
{
642
	struct se_device *dev = cmd->se_dev;
643 644
	unsigned long flags;

645 646
	if (!dev)
		return;
647

648 649 650 651
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (cmd->state_active) {
		list_del(&cmd->state_list);
		cmd->state_active = false;
652
	}
653
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
654 655
}

656 657 658 659 660 661 662
/*
 * This function is called by the target core after the target core has
 * finished processing a SCSI command or SCSI TMF. Both the regular command
 * processing code and the code for aborting commands can call this
 * function. CMD_T_STOP is set if and only if another thread is waiting
 * inside transport_wait_for_tasks() for t_transport_stop_comp.
 */
663
static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
664 665 666
{
	unsigned long flags;

667
	target_remove_from_state_list(cmd);
668

669 670 671 672 673
	/*
	 * Clear struct se_cmd->se_lun before the handoff to FE.
	 */
	cmd->se_lun = NULL;

674
	spin_lock_irqsave(&cmd->t_state_lock, flags);
675 676
	/*
	 * Determine if frontend context caller is requesting the stopping of
677
	 * this command for frontend exceptions.
678
	 */
679
	if (cmd->transport_state & CMD_T_STOP) {
680 681
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
682

683
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
684

685
		complete_all(&cmd->t_transport_stop_comp);
686 687
		return 1;
	}
688
	cmd->transport_state &= ~CMD_T_ACTIVE;
689
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
690

691 692 693 694 695 696 697
	/*
	 * Some fabric modules like tcm_loop can release their internally
	 * allocated I/O reference and struct se_cmd now.
	 *
	 * Fabric modules are expected to return '1' here if the se_cmd being
	 * passed is released at this point, or zero if not being released.
	 */
698
	return cmd->se_tfo->check_stop_free(cmd);
699 700
}

701 702 703 704 705 706 707 708 709 710 711
static void transport_lun_remove_cmd(struct se_cmd *cmd)
{
	struct se_lun *lun = cmd->se_lun;

	if (!lun)
		return;

	if (cmpxchg(&cmd->lun_ref_active, true, false))
		percpu_ref_put(&lun->lun_ref);
}

712 713 714 715
static void target_complete_failure_work(struct work_struct *work)
{
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);

716 717
	transport_generic_request_failure(cmd,
			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
718 719
}

720
/*
721 722
 * Used when asking transport to copy Sense Data from the underlying
 * Linux/SCSI struct scsi_cmnd
723
 */
724
static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
725 726 727 728 729 730
{
	struct se_device *dev = cmd->se_dev;

	WARN_ON(!cmd->se_lun);

	if (!dev)
731
		return NULL;
732

733 734
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
		return NULL;
735

736
	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
737

738
	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
739
		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
740
	return cmd->sense_buffer;
741 742
}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
{
	unsigned char *cmd_sense_buf;
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	cmd_sense_buf = transport_get_sense_buffer(cmd);
	if (!cmd_sense_buf) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		return;
	}

	cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
	memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}
EXPORT_SYMBOL(transport_copy_sense_to_cmd);

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
static void target_handle_abort(struct se_cmd *cmd)
{
	bool tas = cmd->transport_state & CMD_T_TAS;
	bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
	int ret;

	pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);

	if (tas) {
		if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
			cmd->scsi_status = SAM_STAT_TASK_ABORTED;
			pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
				 cmd->t_task_cdb[0], cmd->tag);
			trace_target_cmd_complete(cmd);
			ret = cmd->se_tfo->queue_status(cmd);
			if (ret) {
				transport_handle_queue_full(cmd, cmd->se_dev,
							    ret, false);
				return;
			}
		} else {
			cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
			cmd->se_tfo->queue_tm_rsp(cmd);
		}
	} else {
		/*
		 * Allow the fabric driver to unmap any resources before
		 * releasing the descriptor via TFO->release_cmd().
		 */
		cmd->se_tfo->aborted_task(cmd);
		if (ack_kref)
			WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
		/*
		 * To do: establish a unit attention condition on the I_T
		 * nexus associated with cmd. See also the paragraph "Aborting
		 * commands" in SAM.
		 */
	}

	WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);

802 803
	transport_lun_remove_cmd(cmd);

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
	transport_cmd_check_stop_to_fabric(cmd);
}

static void target_abort_work(struct work_struct *work)
{
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);

	target_handle_abort(cmd);
}

static bool target_cmd_interrupted(struct se_cmd *cmd)
{
	int post_ret;

	if (cmd->transport_state & CMD_T_ABORTED) {
		if (cmd->transport_complete_callback)
			cmd->transport_complete_callback(cmd, false, &post_ret);
		INIT_WORK(&cmd->work, target_abort_work);
		queue_work(target_completion_wq, &cmd->work);
		return true;
	} else if (cmd->transport_state & CMD_T_STOP) {
		if (cmd->transport_complete_callback)
			cmd->transport_complete_callback(cmd, false, &post_ret);
		complete_all(&cmd->t_transport_stop_comp);
		return true;
	}

	return false;
}

/* May be called from interrupt context so must not sleep. */
835
void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
836
{
837
	int success;
838 839
	unsigned long flags;

840 841 842
	if (target_cmd_interrupted(cmd))
		return;

843 844
	cmd->scsi_status = scsi_status;

845
	spin_lock_irqsave(&cmd->t_state_lock, flags);
846 847
	switch (cmd->scsi_status) {
	case SAM_STAT_CHECK_CONDITION:
848
		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
849
			success = 1;
850 851 852 853
		else
			success = 0;
		break;
	default:
854
		success = 1;
855
		break;
856 857
	}

858
	cmd->t_state = TRANSPORT_COMPLETE;
859
	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
860
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
861

862 863
	INIT_WORK(&cmd->work, success ? target_complete_ok_work :
		  target_complete_failure_work);
864
	if (cmd->se_cmd_flags & SCF_USE_CPUID)
865
		queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
866 867
	else
		queue_work(target_completion_wq, &cmd->work);
868
}
869 870
EXPORT_SYMBOL(target_complete_cmd);

871 872
void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
{
873 874 875
	if ((scsi_status == SAM_STAT_GOOD ||
	     cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
	    length < cmd->data_length) {
876 877 878 879 880 881 882 883 884 885 886 887 888 889
		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
			cmd->residual_count += cmd->data_length - length;
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = cmd->data_length - length;
		}

		cmd->data_length = length;
	}

	target_complete_cmd(cmd, scsi_status);
}
EXPORT_SYMBOL(target_complete_cmd_with_length);

890
static void target_add_to_state_list(struct se_cmd *cmd)
891
{
892 893
	struct se_device *dev = cmd->se_dev;
	unsigned long flags;
894

895 896 897 898
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (!cmd->state_active) {
		list_add_tail(&cmd->state_list, &dev->state_list);
		cmd->state_active = true;
899
	}
900
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
901 902
}

903
/*
904
 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
905
 */
906 907
static void transport_write_pending_qf(struct se_cmd *cmd);
static void transport_complete_qf(struct se_cmd *cmd);
908

909
void target_qf_do_work(struct work_struct *work)
910 911 912
{
	struct se_device *dev = container_of(work, struct se_device,
					qf_work_queue);
913
	LIST_HEAD(qf_cmd_list);
914 915 916
	struct se_cmd *cmd, *cmd_tmp;

	spin_lock_irq(&dev->qf_cmd_lock);
917 918
	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
	spin_unlock_irq(&dev->qf_cmd_lock);
919

920
	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
921
		list_del(&cmd->se_qf_node);
922
		atomic_dec_mb(&dev->dev_qf_count);
923

924
		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
925
			" context: %s\n", cmd->se_tfo->fabric_name, cmd,
926
			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
927 928
			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
			: "UNKNOWN");
929

930 931
		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
			transport_write_pending_qf(cmd);
932 933
		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
			 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
934
			transport_complete_qf(cmd);
935 936 937
	}
}

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
{
	switch (cmd->data_direction) {
	case DMA_NONE:
		return "NONE";
	case DMA_FROM_DEVICE:
		return "READ";
	case DMA_TO_DEVICE:
		return "WRITE";
	case DMA_BIDIRECTIONAL:
		return "BIDI";
	default:
		break;
	}

	return "UNKNOWN";
}

void transport_dump_dev_state(
	struct se_device *dev,
	char *b,
	int *bl)
{
	*bl += sprintf(b + *bl, "Status: ");
962
	if (dev->export_count)
963
		*bl += sprintf(b + *bl, "ACTIVATED");
964
	else
965 966
		*bl += sprintf(b + *bl, "DEACTIVATED");

967
	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
968
	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
969 970
		dev->dev_attrib.block_size,
		dev->dev_attrib.hw_max_sectors);
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
	*bl += sprintf(b + *bl, "        ");
}

void transport_dump_vpd_proto_id(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int len;

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Protocol Identifier: ");

	switch (vpd->protocol_identifier) {
	case 0x00:
		sprintf(buf+len, "Fibre Channel\n");
		break;
	case 0x10:
		sprintf(buf+len, "Parallel SCSI\n");
		break;
	case 0x20:
		sprintf(buf+len, "SSA\n");
		break;
	case 0x30:
		sprintf(buf+len, "IEEE 1394\n");
		break;
	case 0x40:
		sprintf(buf+len, "SCSI Remote Direct Memory Access"
				" Protocol\n");
		break;
	case 0x50:
		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
		break;
	case 0x60:
		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
		break;
	case 0x70:
		sprintf(buf+len, "Automation/Drive Interface Transport"
				" Protocol\n");
		break;
	case 0x80:
		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n",
				vpd->protocol_identifier);
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1024
		pr_debug("%s", buf);
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
}

void
transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * Check if the Protocol Identifier Valid (PIV) bit is set..
	 *
	 * from spc3r23.pdf section 7.5.1
	 */
	 if (page_83[1] & 0x80) {
		vpd->protocol_identifier = (page_83[0] & 0xf0);
		vpd->protocol_identifier_set = 1;
		transport_dump_vpd_proto_id(vpd, NULL, 0);
	}
}
EXPORT_SYMBOL(transport_set_vpd_proto_id);

int transport_dump_vpd_assoc(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
1049 1050
	int ret = 0;
	int len;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Association: ");

	switch (vpd->association) {
	case 0x00:
		sprintf(buf+len, "addressed logical unit\n");
		break;
	case 0x10:
		sprintf(buf+len, "target port\n");
		break;
	case 0x20:
		sprintf(buf+len, "SCSI target device\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1067
		ret = -EINVAL;
1068 1069 1070 1071 1072 1073
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1074
		pr_debug("%s", buf);
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096

	return ret;
}

int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identification association..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 297
	 */
	vpd->association = (page_83[1] & 0x30);
	return transport_dump_vpd_assoc(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_assoc);

int transport_dump_vpd_ident_type(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
1097 1098
	int ret = 0;
	int len;
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Type: ");

	switch (vpd->device_identifier_type) {
	case 0x00:
		sprintf(buf+len, "Vendor specific\n");
		break;
	case 0x01:
		sprintf(buf+len, "T10 Vendor ID based\n");
		break;
	case 0x02:
		sprintf(buf+len, "EUI-64 based\n");
		break;
	case 0x03:
		sprintf(buf+len, "NAA\n");
		break;
	case 0x04:
		sprintf(buf+len, "Relative target port identifier\n");
		break;
	case 0x08:
		sprintf(buf+len, "SCSI name string\n");
		break;
	default:
		sprintf(buf+len, "Unsupported: 0x%02x\n",
				vpd->device_identifier_type);
1125
		ret = -EINVAL;
1126 1127 1128
		break;
	}

1129 1130 1131
	if (p_buf) {
		if (p_buf_len < strlen(buf)+1)
			return -EINVAL;
1132
		strncpy(p_buf, buf, p_buf_len);
1133
	} else {
1134
		pr_debug("%s", buf);
1135
	}
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

	return ret;
}

int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identifier type..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 298
	 */
	vpd->device_identifier_type = (page_83[1] & 0x0f);
	return transport_dump_vpd_ident_type(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident_type);

int transport_dump_vpd_ident(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int ret = 0;

	memset(buf, 0, VPD_TMP_BUF_SIZE);

	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
1164 1165
		snprintf(buf, sizeof(buf),
			"T10 VPD Binary Device Identifier: %s\n",
1166 1167 1168
			&vpd->device_identifier[0]);
		break;
	case 0x02: /* ASCII */
1169 1170
		snprintf(buf, sizeof(buf),
			"T10 VPD ASCII Device Identifier: %s\n",
1171 1172 1173
			&vpd->device_identifier[0]);
		break;
	case 0x03: /* UTF-8 */
1174 1175
		snprintf(buf, sizeof(buf),
			"T10 VPD UTF-8 Device Identifier: %s\n",
1176 1177 1178 1179 1180
			&vpd->device_identifier[0]);
		break;
	default:
		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
			" 0x%02x", vpd->device_identifier_code_set);
1181
		ret = -EINVAL;
1182 1183 1184 1185 1186 1187
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1188
		pr_debug("%s", buf);
1189 1190 1191 1192 1193 1194 1195 1196

	return ret;
}

int
transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
{
	static const char hex_str[] = "0123456789abcdef";
1197
	int j = 0, i = 4; /* offset to start of the identifier */
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229

	/*
	 * The VPD Code Set (encoding)
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 296
	 */
	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
		vpd->device_identifier[j++] =
				hex_str[vpd->device_identifier_type];
		while (i < (4 + page_83[3])) {
			vpd->device_identifier[j++] =
				hex_str[(page_83[i] & 0xf0) >> 4];
			vpd->device_identifier[j++] =
				hex_str[page_83[i] & 0x0f];
			i++;
		}
		break;
	case 0x02: /* ASCII */
	case 0x03: /* UTF-8 */
		while (i < (4 + page_83[3]))
			vpd->device_identifier[j++] = page_83[i++];
		break;
	default:
		break;
	}

	return transport_dump_vpd_ident(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident);

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
			       unsigned int size)
{
	u32 mtl;

	if (!cmd->se_tfo->max_data_sg_nents)
		return TCM_NO_SENSE;
	/*
	 * Check if fabric enforced maximum SGL entries per I/O descriptor
	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
	 * residual_count and reduce original cmd->data_length to maximum
	 * length based on single PAGE_SIZE entry scatter-lists.
	 */
	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
	if (cmd->data_length > mtl) {
		/*
		 * If an existing CDB overflow is present, calculate new residual
		 * based on CDB size minus fabric maximum transfer length.
		 *
		 * If an existing CDB underflow is present, calculate new residual
		 * based on original cmd->data_length minus fabric maximum transfer
		 * length.
		 *
		 * Otherwise, set the underflow residual based on cmd->data_length
		 * minus fabric maximum transfer length.
		 */
		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
			cmd->residual_count = (size - mtl);
		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
			u32 orig_dl = size + cmd->residual_count;
			cmd->residual_count = (orig_dl - mtl);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - mtl);
		}
		cmd->data_length = mtl;
		/*
		 * Reset sbc_check_prot() calculated protection payload
		 * length based upon the new smaller MTL.
		 */
		if (cmd->prot_length) {
			u32 sectors = (mtl / dev->dev_attrib.block_size);
			cmd->prot_length = dev->prot_length * sectors;
		}
	}
	return TCM_NO_SENSE;
}

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
/**
 * target_cmd_size_check - Check whether there will be a residual.
 * @cmd: SCSI command.
 * @size: Data buffer size derived from CDB. The data buffer size provided by
 *   the SCSI transport driver is available in @cmd->data_length.
 *
 * Compare the data buffer size from the CDB with the data buffer limit from the transport
 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
 *
 * Note: target drivers set @cmd->data_length by calling transport_init_se_cmd().
 *
 * Return: TCM_NO_SENSE
 */
1292 1293
sense_reason_t
target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1294 1295 1296 1297 1298 1299
{
	struct se_device *dev = cmd->se_dev;

	if (cmd->unknown_data_length) {
		cmd->data_length = size;
	} else if (size != cmd->data_length) {
1300
		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1301
			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1302
			" 0x%02x\n", cmd->se_tfo->fabric_name,
1303 1304
				cmd->data_length, size, cmd->t_task_cdb[0]);

1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
		if (cmd->data_direction == DMA_TO_DEVICE) {
			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
				pr_err_ratelimited("Rejecting underflow/overflow"
						   " for WRITE data CDB\n");
				return TCM_INVALID_CDB_FIELD;
			}
			/*
			 * Some fabric drivers like iscsi-target still expect to
			 * always reject overflow writes.  Reject this case until
			 * full fabric driver level support for overflow writes
			 * is introduced tree-wide.
			 */
			if (size > cmd->data_length) {
				pr_err_ratelimited("Rejecting overflow for"
						   " WRITE control CDB\n");
				return TCM_INVALID_CDB_FIELD;
			}
1322 1323 1324 1325 1326
		}
		/*
		 * Reject READ_* or WRITE_* with overflow/underflow for
		 * type SCF_SCSI_DATA_CDB.
		 */
1327
		if (dev->dev_attrib.block_size != 512)  {
1328 1329 1330 1331
			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
				" CDB on non 512-byte sector setup subsystem"
				" plugin: %s\n", dev->transport->name);
			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1332
			return TCM_INVALID_CDB_FIELD;
1333
		}
1334 1335 1336 1337 1338 1339
		/*
		 * For the overflow case keep the existing fabric provided
		 * ->data_length.  Otherwise for the underflow case, reset
		 * ->data_length to the smaller SCSI expected data transfer
		 * length.
		 */
1340 1341 1342 1343 1344 1345
		if (size > cmd->data_length) {
			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
			cmd->residual_count = (size - cmd->data_length);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - size);
1346
			cmd->data_length = size;
1347 1348 1349
		}
	}

1350
	return target_check_max_data_sg_nents(cmd, dev, size);
1351 1352 1353

}

1354 1355 1356
/*
 * Used by fabric modules containing a local struct se_cmd within their
 * fabric dependent per I/O descriptor.
1357 1358
 *
 * Preserves the value of @cmd->tag.
1359 1360 1361
 */
void transport_init_se_cmd(
	struct se_cmd *cmd,
1362
	const struct target_core_fabric_ops *tfo,
1363 1364 1365 1366
	struct se_session *se_sess,
	u32 data_length,
	int data_direction,
	int task_attr,
1367
	unsigned char *sense_buffer, u64 unpacked_lun)
1368
{
1369
	INIT_LIST_HEAD(&cmd->se_delayed_node);
1370
	INIT_LIST_HEAD(&cmd->se_qf_node);
1371
	INIT_LIST_HEAD(&cmd->se_cmd_list);
1372
	INIT_LIST_HEAD(&cmd->state_list);
1373
	init_completion(&cmd->t_transport_stop_comp);
1374 1375
	cmd->free_compl = NULL;
	cmd->abrt_compl = NULL;
1376
	spin_lock_init(&cmd->t_state_lock);
1377
	INIT_WORK(&cmd->work, NULL);
1378
	kref_init(&cmd->cmd_kref);
1379 1380 1381 1382 1383 1384 1385

	cmd->se_tfo = tfo;
	cmd->se_sess = se_sess;
	cmd->data_length = data_length;
	cmd->data_direction = data_direction;
	cmd->sam_task_attr = task_attr;
	cmd->sense_buffer = sense_buffer;
1386
	cmd->orig_fe_lun = unpacked_lun;
1387 1388

	cmd->state_active = false;
1389 1390 1391
}
EXPORT_SYMBOL(transport_init_se_cmd);

1392 1393
static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd *cmd)
1394
{
1395 1396
	struct se_device *dev = cmd->se_dev;

1397 1398 1399 1400
	/*
	 * Check if SAM Task Attribute emulation is enabled for this
	 * struct se_device storage object
	 */
1401
	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1402 1403
		return 0;

C
Christoph Hellwig 已提交
1404
	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1405
		pr_debug("SAM Task Attribute ACA"
1406
			" emulation is not supported\n");
1407
		return TCM_INVALID_CDB_FIELD;
1408
	}
1409

1410 1411 1412
	return 0;
}

1413
sense_reason_t
1414
target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb)
1415
{
1416
	sense_reason_t ret;
1417

1418
	cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1419 1420 1421 1422 1423
	/*
	 * Ensure that the received CDB is less than the max (252 + 8) bytes
	 * for VARIABLE_LENGTH_CMD
	 */
	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1424
		pr_err("Received SCSI CDB with command_size: %d that"
1425 1426
			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1427 1428
		ret = TCM_INVALID_CDB_FIELD;
		goto err;
1429 1430 1431 1432 1433 1434
	}
	/*
	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
	 * allocate the additional extended CDB buffer now..  Otherwise
	 * setup the pointer from __t_task_cdb to t_task_cdb.
	 */
1435 1436
	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1437
						GFP_KERNEL);
1438 1439
		if (!cmd->t_task_cdb) {
			pr_err("Unable to allocate cmd->t_task_cdb"
1440
				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1441
				scsi_command_size(cdb),
1442
				(unsigned long)sizeof(cmd->__t_task_cdb));
1443 1444
			ret = TCM_OUT_OF_RESOURCES;
			goto err;
1445
		}
1446
	}
1447
	/*
1448
	 * Copy the original CDB into cmd->
1449
	 */
1450
	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1451

1452
	trace_target_sequencer_start(cmd);
1453
	return 0;
1454 1455 1456 1457 1458 1459 1460 1461 1462

err:
	/*
	 * Copy the CDB here to allow trace_target_cmd_complete() to
	 * print the cdb to the trace buffers.
	 */
	memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
					 (unsigned int)TCM_MAX_COMMAND_SIZE));
	return ret;
1463 1464 1465 1466
}
EXPORT_SYMBOL(target_cmd_init_cdb);

sense_reason_t
1467
target_cmd_parse_cdb(struct se_cmd *cmd)
1468 1469 1470
{
	struct se_device *dev = cmd->se_dev;
	sense_reason_t ret;
1471

1472
	ret = dev->transport->parse_cdb(cmd);
1473 1474
	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
		pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1475
				    cmd->se_tfo->fabric_name,
1476 1477
				    cmd->se_sess->se_node_acl->initiatorname,
				    cmd->t_task_cdb[0]);
1478 1479 1480 1481 1482
	if (ret)
		return ret;

	ret = transport_check_alloc_task_attr(cmd);
	if (ret)
1483
		return ret;
1484 1485

	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1486
	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1487 1488
	return 0;
}
1489
EXPORT_SYMBOL(target_cmd_parse_cdb);
1490

1491 1492
/*
 * Used by fabric module frontends to queue tasks directly.
1493
 * May only be used from process context.
1494 1495 1496 1497
 */
int transport_handle_cdb_direct(
	struct se_cmd *cmd)
{
1498
	sense_reason_t ret;
1499

1500 1501
	if (!cmd->se_lun) {
		dump_stack();
1502
		pr_err("cmd->se_lun is NULL\n");
1503 1504 1505 1506
		return -EINVAL;
	}
	if (in_interrupt()) {
		dump_stack();
1507
		pr_err("transport_generic_handle_cdb cannot be called"
1508 1509 1510
				" from interrupt context\n");
		return -EINVAL;
	}
1511
	/*
1512 1513 1514
	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
	 * outstanding descriptors are handled correctly during shutdown via
	 * transport_wait_for_tasks()
1515 1516 1517 1518 1519
	 *
	 * Also, we don't take cmd->t_state_lock here as we only expect
	 * this to be called for initial descriptor submission.
	 */
	cmd->t_state = TRANSPORT_NEW_CMD;
1520 1521
	cmd->transport_state |= CMD_T_ACTIVE;

1522 1523 1524 1525 1526 1527
	/*
	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
	 * so follow TRANSPORT_NEW_CMD processing thread context usage
	 * and call transport_generic_request_failure() if necessary..
	 */
	ret = transport_generic_new_cmd(cmd);
1528 1529
	if (ret)
		transport_generic_request_failure(cmd, ret);
1530
	return 0;
1531 1532 1533
}
EXPORT_SYMBOL(transport_handle_cdb_direct);

1534
sense_reason_t
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
{
	if (!sgl || !sgl_count)
		return 0;

	/*
	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
	 * scatterlists already have been set to follow what the fabric
	 * passes for the original expected data transfer length.
	 */
	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
		pr_warn("Rejecting SCSI DATA overflow for fabric using"
			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
		return TCM_INVALID_CDB_FIELD;
	}

	cmd->t_data_sg = sgl;
	cmd->t_data_nents = sgl_count;
1554 1555
	cmd->t_bidi_data_sg = sgl_bidi;
	cmd->t_bidi_data_nents = sgl_bidi_count;
1556 1557 1558 1559 1560

	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
	return 0;
}

1561
/**
1562 1563
 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
 * 			 se_cmd + use pre-allocated SGL memory.
1564 1565 1566 1567 1568 1569 1570
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
1571
 * @task_attr: SAM task attribute
1572 1573
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
1574 1575 1576 1577
 * @sgl: struct scatterlist memory for unidirectional mapping
 * @sgl_count: scatterlist count for unidirectional mapping
 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1578 1579
 * @sgl_prot: struct scatterlist memory protection information
 * @sgl_prot_count: scatterlist count for protection information
1580
 *
1581 1582
 * Task tags are supported if the caller has set @se_cmd->tag.
 *
1583 1584 1585 1586
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
1587 1588
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
1589 1590
 */
int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1591
		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1592 1593
		u32 data_length, int task_attr, int data_dir, int flags,
		struct scatterlist *sgl, u32 sgl_count,
1594 1595
		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1596 1597
{
	struct se_portal_group *se_tpg;
1598 1599
	sense_reason_t rc;
	int ret;
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);
	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
	BUG_ON(in_interrupt());
	/*
	 * Initialize se_cmd for target operation.  From this point
	 * exceptions are handled by sending exception status via
	 * target_core_fabric_ops->queue_status() callback
	 */
	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1611 1612
				data_length, data_dir, task_attr, sense,
				unpacked_lun);
1613 1614 1615 1616 1617 1618

	if (flags & TARGET_SCF_USE_CPUID)
		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
	else
		se_cmd->cpuid = WORK_CPU_UNBOUND;

1619 1620
	if (flags & TARGET_SCF_UNKNOWN_SIZE)
		se_cmd->unknown_data_length = 1;
1621 1622 1623 1624 1625 1626
	/*
	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
	 * kref_put() to happen during fabric packet acknowledgement.
	 */
1627
	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1628 1629
	if (ret)
		return ret;
1630 1631 1632 1633 1634
	/*
	 * Signal bidirectional data payloads to target-core
	 */
	if (flags & TARGET_SCF_BIDI_OP)
		se_cmd->se_cmd_flags |= SCF_BIDI;
1635 1636 1637 1638 1639 1640 1641 1642

	rc = target_cmd_init_cdb(se_cmd, cdb);
	if (rc) {
		transport_send_check_condition_and_sense(se_cmd, rc, 0);
		target_put_sess_cmd(se_cmd);
		return 0;
	}

1643 1644 1645
	/*
	 * Locate se_lun pointer and attach it to struct se_cmd
	 */
1646
	rc = transport_lookup_cmd_lun(se_cmd);
1647 1648
	if (rc) {
		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1649
		target_put_sess_cmd(se_cmd);
1650
		return 0;
1651
	}
1652

1653
	rc = target_cmd_parse_cdb(se_cmd);
1654 1655 1656 1657 1658
	if (rc != 0) {
		transport_generic_request_failure(se_cmd, rc);
		return 0;
	}

1659 1660 1661 1662 1663 1664 1665
	/*
	 * Save pointers for SGLs containing protection information,
	 * if present.
	 */
	if (sgl_prot_count) {
		se_cmd->t_prot_sg = sgl_prot;
		se_cmd->t_prot_nents = sgl_prot_count;
1666
		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1667
	}
1668

1669 1670 1671 1672 1673 1674 1675 1676
	/*
	 * When a non zero sgl_count has been passed perform SGL passthrough
	 * mapping for pre-allocated fabric memory instead of having target
	 * core perform an internal SGL allocation..
	 */
	if (sgl_count != 0) {
		BUG_ON(!sgl);

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
		/*
		 * A work-around for tcm_loop as some userspace code via
		 * scsi-generic do not memset their associated read buffers,
		 * so go ahead and do that here for type non-data CDBs.  Also
		 * note that this is currently guaranteed to be a single SGL
		 * for this case by target core in target_setup_cmd_from_cdb()
		 * -> transport_generic_cmd_sequencer().
		 */
		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
		     se_cmd->data_direction == DMA_FROM_DEVICE) {
			unsigned char *buf = NULL;

			if (sgl)
				buf = kmap(sg_page(sgl)) + sgl->offset;

			if (buf) {
				memset(buf, 0, sgl->length);
				kunmap(sg_page(sgl));
			}
		}

1698 1699 1700
		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
				sgl_bidi, sgl_bidi_count);
		if (rc != 0) {
1701
			transport_generic_request_failure(se_cmd, rc);
1702 1703 1704
			return 0;
		}
	}
1705

1706 1707 1708 1709 1710 1711
	/*
	 * Check if we need to delay processing because of ALUA
	 * Active/NonOptimized primary access state..
	 */
	core_alua_check_nonop_delay(se_cmd);

1712
	transport_handle_cdb_direct(se_cmd);
1713
	return 0;
1714
}
1715 1716
EXPORT_SYMBOL(target_submit_cmd_map_sgls);

1717
/**
1718 1719 1720 1721 1722 1723 1724 1725
 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
1726
 * @task_attr: SAM task attribute
1727 1728 1729
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
 *
1730 1731
 * Task tags are supported if the caller has set @se_cmd->tag.
 *
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
 *
 * It also assumes interal target core SGL memory allocation.
 */
int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1742
		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1743 1744 1745 1746
		u32 data_length, int task_attr, int data_dir, int flags)
{
	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
			unpacked_lun, data_length, task_attr, data_dir,
1747
			flags, NULL, 0, NULL, 0, NULL, 0);
1748
}
1749 1750
EXPORT_SYMBOL(target_submit_cmd);

1751 1752 1753 1754 1755 1756
static void target_complete_tmr_failure(struct work_struct *work)
{
	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);

	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1757

1758
	transport_lun_remove_cmd(se_cmd);
1759
	transport_cmd_check_stop_to_fabric(se_cmd);
1760 1761
}

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
				       u64 *unpacked_lun)
{
	struct se_cmd *se_cmd;
	unsigned long flags;
	bool ret = false;

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
	list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
		if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
			continue;

		if (se_cmd->tag == tag) {
			*unpacked_lun = se_cmd->orig_fe_lun;
			ret = true;
			break;
		}
	}
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);

	return ret;
}

1785 1786 1787 1788 1789 1790 1791 1792
/**
 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
 *                     for TMR CDBs
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1793
 * @fabric_tmr_ptr: fabric context for TMR req
1794
 * @tm_type: Type of TM request
1795 1796
 * @gfp: gfp type for caller
 * @tag: referenced task tag for TMR_ABORT_TASK
1797
 * @flags: submit cmd flags
1798 1799 1800 1801
 *
 * Callable from all contexts.
 **/

1802
int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1803
		unsigned char *sense, u64 unpacked_lun,
1804
		void *fabric_tmr_ptr, unsigned char tm_type,
1805
		gfp_t gfp, u64 tag, int flags)
1806 1807 1808 1809 1810 1811 1812 1813
{
	struct se_portal_group *se_tpg;
	int ret;

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);

	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1814
			      0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun);
1815 1816 1817 1818
	/*
	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
	 * allocation failure.
	 */
1819
	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1820 1821
	if (ret < 0)
		return -ENOMEM;
1822

1823 1824 1825
	if (tm_type == TMR_ABORT_TASK)
		se_cmd->se_tmr_req->ref_task_tag = tag;

1826
	/* See target_submit_cmd for commentary */
1827
	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1828 1829 1830 1831
	if (ret) {
		core_tmr_release_req(se_cmd->se_tmr_req);
		return ret;
	}
1832 1833 1834 1835 1836 1837 1838 1839 1840
	/*
	 * If this is ABORT_TASK with no explicit fabric provided LUN,
	 * go ahead and search active session tags for a match to figure
	 * out unpacked_lun for the original se_cmd.
	 */
	if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
		if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun))
			goto failure;
	}
1841

1842
	ret = transport_lookup_tmr_lun(se_cmd);
1843 1844 1845
	if (ret)
		goto failure;

1846
	transport_generic_handle_tmr(se_cmd);
1847
	return 0;
1848 1849 1850 1851 1852 1853 1854 1855 1856

	/*
	 * For callback during failure handling, push this work off
	 * to process context with TMR_LUN_DOES_NOT_EXIST status.
	 */
failure:
	INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
	schedule_work(&se_cmd->work);
	return 0;
1857 1858 1859
}
EXPORT_SYMBOL(target_submit_tmr);

1860 1861 1862
/*
 * Handle SAM-esque emulation for generic transport request failures.
 */
1863 1864
void transport_generic_request_failure(struct se_cmd *cmd,
		sense_reason_t sense_reason)
1865
{
1866
	int ret = 0, post_ret;
1867

1868 1869 1870
	pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
		 sense_reason);
	target_show_cmd("-----[ ", cmd);
1871 1872 1873 1874

	/*
	 * For SAM Task Attribute emulation for failed struct se_cmd
	 */
1875
	transport_complete_task_attr(cmd);
1876

1877
	if (cmd->transport_complete_callback)
1878
		cmd->transport_complete_callback(cmd, false, &post_ret);
1879

1880 1881 1882
	if (cmd->transport_state & CMD_T_ABORTED) {
		INIT_WORK(&cmd->work, target_abort_work);
		queue_work(target_completion_wq, &cmd->work);
1883
		return;
1884
	}
1885

1886
	switch (sense_reason) {
1887 1888 1889 1890
	case TCM_NON_EXISTENT_LUN:
	case TCM_UNSUPPORTED_SCSI_OPCODE:
	case TCM_INVALID_CDB_FIELD:
	case TCM_INVALID_PARAMETER_LIST:
1891
	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1892 1893 1894
	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
	case TCM_UNKNOWN_MODE_PAGE:
	case TCM_WRITE_PROTECTED:
1895
	case TCM_ADDRESS_OUT_OF_RANGE:
1896 1897 1898
	case TCM_CHECK_CONDITION_ABORT_CMD:
	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
	case TCM_CHECK_CONDITION_NOT_READY:
1899 1900 1901
	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1902
	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1903 1904 1905 1906
	case TCM_TOO_MANY_TARGET_DESCS:
	case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
	case TCM_TOO_MANY_SEGMENT_DESCS:
	case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1907
		break;
1908
	case TCM_OUT_OF_RESOURCES:
1909 1910
		cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
		goto queue_status;
1911 1912 1913
	case TCM_LUN_BUSY:
		cmd->scsi_status = SAM_STAT_BUSY;
		goto queue_status;
1914
	case TCM_RESERVATION_CONFLICT:
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
		/*
		 * No SENSE Data payload for this case, set SCSI Status
		 * and queue the response to $FABRIC_MOD.
		 *
		 * Uses linux/include/scsi/scsi.h SAM status codes defs
		 */
		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
		/*
		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
		 * CONFLICT STATUS.
		 *
		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
		 */
1929
		if (cmd->se_sess &&
1930 1931
		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
					== TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
1932 1933 1934 1935
			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
					       cmd->orig_fe_lun, 0x2C,
					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
		}
1936 1937

		goto queue_status;
1938
	default:
1939
		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1940 1941
			cmd->t_task_cdb[0], sense_reason);
		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1942 1943
		break;
	}
1944

1945
	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1946
	if (ret)
1947
		goto queue_full;
1948

1949
check_stop:
1950
	transport_lun_remove_cmd(cmd);
A
Andy Grover 已提交
1951
	transport_cmd_check_stop_to_fabric(cmd);
1952 1953
	return;

1954 1955 1956 1957 1958
queue_status:
	trace_target_cmd_complete(cmd);
	ret = cmd->se_tfo->queue_status(cmd);
	if (!ret)
		goto check_stop;
1959
queue_full:
1960
	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1961
}
1962
EXPORT_SYMBOL(transport_generic_request_failure);
1963

1964
void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1965
{
1966
	sense_reason_t ret;
1967

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
	if (!cmd->execute_cmd) {
		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		goto err;
	}
	if (do_checks) {
		/*
		 * Check for an existing UNIT ATTENTION condition after
		 * target_handle_task_attr() has done SAM task attr
		 * checking, and possibly have already defered execution
		 * out to target_restart_delayed_cmds() context.
		 */
		ret = target_scsi3_ua_check(cmd);
		if (ret)
			goto err;

		ret = target_alua_state_check(cmd);
		if (ret)
			goto err;
1986

1987 1988 1989 1990
		ret = target_check_reservation(cmd);
		if (ret) {
			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
			goto err;
1991
		}
1992
	}
1993 1994 1995 1996 1997 1998

	ret = cmd->execute_cmd(cmd);
	if (!ret)
		return;
err:
	spin_lock_irq(&cmd->t_state_lock);
1999
	cmd->transport_state &= ~CMD_T_SENT;
2000 2001 2002
	spin_unlock_irq(&cmd->t_state_lock);

	transport_generic_request_failure(cmd, ret);
2003 2004
}

2005 2006
static int target_write_prot_action(struct se_cmd *cmd)
{
2007
	u32 sectors;
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	/*
	 * Perform WRITE_INSERT of PI using software emulation when backend
	 * device has PI enabled, if the transport has not already generated
	 * PI using hardware WRITE_INSERT offload.
	 */
	switch (cmd->prot_op) {
	case TARGET_PROT_DOUT_INSERT:
		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
			sbc_dif_generate(cmd);
		break;
2018 2019 2020 2021 2022
	case TARGET_PROT_DOUT_STRIP:
		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
			break;

		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
2023 2024
		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
					     sectors, 0, cmd->t_prot_sg, 0);
2025 2026
		if (unlikely(cmd->pi_err)) {
			spin_lock_irq(&cmd->t_state_lock);
2027
			cmd->transport_state &= ~CMD_T_SENT;
2028 2029 2030 2031 2032
			spin_unlock_irq(&cmd->t_state_lock);
			transport_generic_request_failure(cmd, cmd->pi_err);
			return -1;
		}
		break;
2033 2034 2035 2036 2037 2038 2039
	default:
		break;
	}

	return 0;
}

2040
static bool target_handle_task_attr(struct se_cmd *cmd)
2041 2042 2043
{
	struct se_device *dev = cmd->se_dev;

2044
	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2045
		return false;
2046

2047 2048
	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;

2049
	/*
L
Lucas De Marchi 已提交
2050
	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2051 2052
	 * to allow the passed struct se_cmd list of tasks to the front of the list.
	 */
2053
	switch (cmd->sam_task_attr) {
C
Christoph Hellwig 已提交
2054
	case TCM_HEAD_TAG:
2055 2056
		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
			 cmd->t_task_cdb[0]);
2057
		return false;
C
Christoph Hellwig 已提交
2058
	case TCM_ORDERED_TAG:
2059
		atomic_inc_mb(&dev->dev_ordered_sync);
2060

2061 2062
		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
			 cmd->t_task_cdb[0]);
2063

2064
		/*
2065 2066
		 * Execute an ORDERED command if no other older commands
		 * exist that need to be completed first.
2067
		 */
2068
		if (!atomic_read(&dev->simple_cmds))
2069
			return false;
2070 2071
		break;
	default:
2072 2073 2074
		/*
		 * For SIMPLE and UNTAGGED Task Attribute commands
		 */
2075
		atomic_inc_mb(&dev->simple_cmds);
2076
		break;
2077
	}
2078

2079 2080
	if (atomic_read(&dev->dev_ordered_sync) == 0)
		return false;
2081

2082 2083 2084 2085
	spin_lock(&dev->delayed_cmd_lock);
	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
	spin_unlock(&dev->delayed_cmd_lock);

2086 2087
	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
		cmd->t_task_cdb[0], cmd->sam_task_attr);
2088 2089 2090 2091 2092 2093 2094 2095
	return true;
}

void target_execute_cmd(struct se_cmd *cmd)
{
	/*
	 * Determine if frontend context caller is requesting the stopping of
	 * this command for frontend exceptions.
2096
	 *
2097
	 * If the received CDB has already been aborted stop processing it here.
2098
	 */
2099
	if (target_cmd_interrupted(cmd))
2100 2101
		return;

2102
	spin_lock_irq(&cmd->t_state_lock);
2103
	cmd->t_state = TRANSPORT_PROCESSING;
2104
	cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2105
	spin_unlock_irq(&cmd->t_state_lock);
2106 2107 2108

	if (target_write_prot_action(cmd))
		return;
2109

2110 2111
	if (target_handle_task_attr(cmd)) {
		spin_lock_irq(&cmd->t_state_lock);
2112
		cmd->transport_state &= ~CMD_T_SENT;
2113 2114 2115 2116
		spin_unlock_irq(&cmd->t_state_lock);
		return;
	}

2117
	__target_execute_cmd(cmd, true);
2118
}
2119
EXPORT_SYMBOL(target_execute_cmd);
2120

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
/*
 * Process all commands up to the last received ORDERED task attribute which
 * requires another blocking boundary
 */
static void target_restart_delayed_cmds(struct se_device *dev)
{
	for (;;) {
		struct se_cmd *cmd;

		spin_lock(&dev->delayed_cmd_lock);
		if (list_empty(&dev->delayed_cmd_list)) {
			spin_unlock(&dev->delayed_cmd_lock);
			break;
		}

		cmd = list_entry(dev->delayed_cmd_list.next,
				 struct se_cmd, se_delayed_node);
		list_del(&cmd->se_delayed_node);
		spin_unlock(&dev->delayed_cmd_lock);

2141 2142
		cmd->transport_state |= CMD_T_SENT;

2143
		__target_execute_cmd(cmd, true);
2144

C
Christoph Hellwig 已提交
2145
		if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2146 2147 2148 2149
			break;
	}
}

2150
/*
2151
 * Called from I/O completion to determine which dormant/delayed
2152 2153 2154 2155
 * and ordered cmds need to have their tasks added to the execution queue.
 */
static void transport_complete_task_attr(struct se_cmd *cmd)
{
2156
	struct se_device *dev = cmd->se_dev;
2157

2158
	if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2159 2160
		return;

2161 2162 2163
	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
		goto restart;

C
Christoph Hellwig 已提交
2164
	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2165
		atomic_dec_mb(&dev->simple_cmds);
2166
		dev->dev_cur_ordered_id++;
C
Christoph Hellwig 已提交
2167
	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2168
		dev->dev_cur_ordered_id++;
2169 2170
		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
			 dev->dev_cur_ordered_id);
C
Christoph Hellwig 已提交
2171
	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2172
		atomic_dec_mb(&dev->dev_ordered_sync);
2173 2174

		dev->dev_cur_ordered_id++;
2175 2176
		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
			 dev->dev_cur_ordered_id);
2177
	}
2178 2179
	cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;

2180
restart:
2181
	target_restart_delayed_cmds(dev);
2182 2183
}

2184
static void transport_complete_qf(struct se_cmd *cmd)
2185 2186 2187
{
	int ret = 0;

2188
	transport_complete_task_attr(cmd);
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	/*
	 * If a fabric driver ->write_pending() or ->queue_data_in() callback
	 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
	 * the same callbacks should not be retried.  Return CHECK_CONDITION
	 * if a scsi_status is not already set.
	 *
	 * If a fabric driver ->queue_status() has returned non zero, always
	 * keep retrying no matter what..
	 */
	if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
		if (cmd->scsi_status)
			goto queue_status;
2201

2202 2203
		translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
		goto queue_status;
2204
	}
2205

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
	/*
	 * Check if we need to send a sense buffer from
	 * the struct se_cmd in question. We do NOT want
	 * to take this path of the IO has been marked as
	 * needing to be treated like a "normal read". This
	 * is the case if it's a tape read, and either the
	 * FM, EOM, or ILI bits are set, but there is no
	 * sense data.
	 */
	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2217 2218
		goto queue_status;

2219 2220
	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
2221 2222 2223
		/* queue status if not treating this as a normal read */
		if (cmd->scsi_status &&
		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2224 2225
			goto queue_status;

2226
		trace_target_cmd_complete(cmd);
2227 2228 2229
		ret = cmd->se_tfo->queue_data_in(cmd);
		break;
	case DMA_TO_DEVICE:
2230
		if (cmd->se_cmd_flags & SCF_BIDI) {
2231
			ret = cmd->se_tfo->queue_data_in(cmd);
2232
			break;
2233
		}
2234
		/* fall through */
2235
	case DMA_NONE:
2236
queue_status:
2237
		trace_target_cmd_complete(cmd);
2238 2239 2240 2241 2242 2243
		ret = cmd->se_tfo->queue_status(cmd);
		break;
	default:
		break;
	}

2244
	if (ret < 0) {
2245
		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2246 2247
		return;
	}
2248
	transport_lun_remove_cmd(cmd);
2249
	transport_cmd_check_stop_to_fabric(cmd);
2250 2251
}

2252 2253
static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
					int err, bool write_pending)
2254
{
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
	/*
	 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
	 * ->queue_data_in() callbacks from new process context.
	 *
	 * Otherwise for other errors, transport_complete_qf() will send
	 * CHECK_CONDITION via ->queue_status() instead of attempting to
	 * retry associated fabric driver data-transfer callbacks.
	 */
	if (err == -EAGAIN || err == -ENOMEM) {
		cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
						 TRANSPORT_COMPLETE_QF_OK;
	} else {
		pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
		cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
	}

2271 2272
	spin_lock_irq(&dev->qf_cmd_lock);
	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2273
	atomic_inc_mb(&dev->dev_qf_count);
2274 2275 2276 2277 2278
	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);

	schedule_work(&cmd->se_dev->qf_work_queue);
}

2279
static bool target_read_prot_action(struct se_cmd *cmd)
2280
{
2281 2282 2283
	switch (cmd->prot_op) {
	case TARGET_PROT_DIN_STRIP:
		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2284 2285 2286 2287 2288 2289 2290
			u32 sectors = cmd->data_length >>
				  ilog2(cmd->se_dev->dev_attrib.block_size);

			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
						     sectors, 0, cmd->t_prot_sg,
						     0);
			if (cmd->pi_err)
2291
				return true;
2292
		}
2293
		break;
2294 2295 2296 2297 2298 2299
	case TARGET_PROT_DIN_INSERT:
		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
			break;

		sbc_dif_generate(cmd);
		break;
2300 2301
	default:
		break;
2302 2303 2304 2305 2306
	}

	return false;
}

2307
static void target_complete_ok_work(struct work_struct *work)
2308
{
2309
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2310
	int ret;
2311

2312 2313 2314 2315 2316
	/*
	 * Check if we need to move delayed/dormant tasks from cmds on the
	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
	 * Attribute.
	 */
2317 2318
	transport_complete_task_attr(cmd);

2319 2320 2321 2322 2323 2324 2325
	/*
	 * Check to schedule QUEUE_FULL work, or execute an existing
	 * cmd->transport_qf_callback()
	 */
	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
		schedule_work(&cmd->se_dev->qf_work_queue);

2326
	/*
2327
	 * Check if we need to send a sense buffer from
2328 2329 2330 2331 2332 2333
	 * the struct se_cmd in question. We do NOT want
	 * to take this path of the IO has been marked as
	 * needing to be treated like a "normal read". This
	 * is the case if it's a tape read, and either the
	 * FM, EOM, or ILI bits are set, but there is no
	 * sense data.
2334
	 */
2335 2336
	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2337 2338 2339
		WARN_ON(!cmd->scsi_status);
		ret = transport_send_check_condition_and_sense(
					cmd, 0, 1);
2340
		if (ret)
2341 2342
			goto queue_full;

2343
		transport_lun_remove_cmd(cmd);
2344 2345
		transport_cmd_check_stop_to_fabric(cmd);
		return;
2346 2347
	}
	/*
L
Lucas De Marchi 已提交
2348
	 * Check for a callback, used by amongst other things
2349
	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2350
	 */
2351 2352
	if (cmd->transport_complete_callback) {
		sense_reason_t rc;
2353 2354 2355
		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
		bool zero_dl = !(cmd->data_length);
		int post_ret = 0;
2356

2357 2358 2359
		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
		if (!rc && !post_ret) {
			if (caw && zero_dl)
2360 2361
				goto queue_rsp;

2362
			return;
2363 2364 2365
		} else if (rc) {
			ret = transport_send_check_condition_and_sense(cmd,
						rc, 0);
2366
			if (ret)
2367
				goto queue_full;
2368

2369
			transport_lun_remove_cmd(cmd);
2370 2371 2372
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
2373
	}
2374

2375
queue_rsp:
2376 2377
	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
		/*
		 * if this is a READ-type IO, but SCSI status
		 * is set, then skip returning data and just
		 * return the status -- unless this IO is marked
		 * as needing to be treated as a normal read,
		 * in which case we want to go ahead and return
		 * the data. This happens, for example, for tape
		 * reads with the FM, EOM, or ILI bits set, with
		 * no sense data.
		 */
		if (cmd->scsi_status &&
		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2390 2391
			goto queue_status;

2392 2393
		atomic_long_add(cmd->data_length,
				&cmd->se_lun->lun_stats.tx_data_octets);
2394 2395 2396 2397 2398
		/*
		 * Perform READ_STRIP of PI using software emulation when
		 * backend had PI enabled, if the transport will not be
		 * performing hardware READ_STRIP offload.
		 */
2399
		if (target_read_prot_action(cmd)) {
2400 2401
			ret = transport_send_check_condition_and_sense(cmd,
						cmd->pi_err, 0);
2402
			if (ret)
2403 2404
				goto queue_full;

2405
			transport_lun_remove_cmd(cmd);
2406 2407 2408
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
2409

2410
		trace_target_cmd_complete(cmd);
2411
		ret = cmd->se_tfo->queue_data_in(cmd);
2412
		if (ret)
2413
			goto queue_full;
2414 2415
		break;
	case DMA_TO_DEVICE:
2416 2417
		atomic_long_add(cmd->data_length,
				&cmd->se_lun->lun_stats.rx_data_octets);
2418 2419 2420
		/*
		 * Check if we need to send READ payload for BIDI-COMMAND
		 */
2421
		if (cmd->se_cmd_flags & SCF_BIDI) {
2422 2423
			atomic_long_add(cmd->data_length,
					&cmd->se_lun->lun_stats.tx_data_octets);
2424
			ret = cmd->se_tfo->queue_data_in(cmd);
2425
			if (ret)
2426
				goto queue_full;
2427 2428
			break;
		}
2429
		/* fall through */
2430
	case DMA_NONE:
2431
queue_status:
2432
		trace_target_cmd_complete(cmd);
2433
		ret = cmd->se_tfo->queue_status(cmd);
2434
		if (ret)
2435
			goto queue_full;
2436 2437 2438 2439 2440
		break;
	default:
		break;
	}

2441
	transport_lun_remove_cmd(cmd);
2442
	transport_cmd_check_stop_to_fabric(cmd);
2443 2444 2445
	return;

queue_full:
2446
	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2447
		" data_direction: %d\n", cmd, cmd->data_direction);
2448 2449

	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2450 2451
}

2452
void target_free_sgl(struct scatterlist *sgl, int nents)
2453
{
2454
	sgl_free_n_order(sgl, nents, 0);
2455
}
2456
EXPORT_SYMBOL(target_free_sgl);
2457

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
{
	/*
	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
	 * emulation, and free + reset pointers if necessary..
	 */
	if (!cmd->t_data_sg_orig)
		return;

	kfree(cmd->t_data_sg);
	cmd->t_data_sg = cmd->t_data_sg_orig;
	cmd->t_data_sg_orig = NULL;
	cmd->t_data_nents = cmd->t_data_nents_orig;
	cmd->t_data_nents_orig = 0;
}

2474 2475
static inline void transport_free_pages(struct se_cmd *cmd)
{
2476
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2477
		target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2478 2479 2480 2481
		cmd->t_prot_sg = NULL;
		cmd->t_prot_nents = 0;
	}

2482
	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2483 2484 2485 2486 2487
		/*
		 * Release special case READ buffer payload required for
		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
		 */
		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2488
			target_free_sgl(cmd->t_bidi_data_sg,
2489 2490 2491 2492
					   cmd->t_bidi_data_nents);
			cmd->t_bidi_data_sg = NULL;
			cmd->t_bidi_data_nents = 0;
		}
2493
		transport_reset_sgl_orig(cmd);
2494
		return;
2495 2496
	}
	transport_reset_sgl_orig(cmd);
2497

2498
	target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2499 2500
	cmd->t_data_sg = NULL;
	cmd->t_data_nents = 0;
2501

2502
	target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2503 2504
	cmd->t_bidi_data_sg = NULL;
	cmd->t_bidi_data_nents = 0;
2505 2506
}

2507
void *transport_kmap_data_sg(struct se_cmd *cmd)
2508
{
2509
	struct scatterlist *sg = cmd->t_data_sg;
2510 2511
	struct page **pages;
	int i;
2512 2513

	/*
2514 2515 2516
	 * We need to take into account a possible offset here for fabrics like
	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2517
	 */
2518 2519
	if (!cmd->t_data_nents)
		return NULL;
2520 2521 2522

	BUG_ON(!sg);
	if (cmd->t_data_nents == 1)
2523 2524 2525
		return kmap(sg_page(sg)) + sg->offset;

	/* >1 page. use vmap */
2526
	pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2527
	if (!pages)
2528 2529 2530 2531 2532 2533 2534 2535 2536
		return NULL;

	/* convert sg[] to pages[] */
	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
		pages[i] = sg_page(sg);
	}

	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
	kfree(pages);
2537
	if (!cmd->t_data_vmap)
2538 2539 2540
		return NULL;

	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2541
}
2542
EXPORT_SYMBOL(transport_kmap_data_sg);
2543

2544
void transport_kunmap_data_sg(struct se_cmd *cmd)
2545
{
2546
	if (!cmd->t_data_nents) {
2547
		return;
2548
	} else if (cmd->t_data_nents == 1) {
2549
		kunmap(sg_page(cmd->t_data_sg));
2550 2551
		return;
	}
2552 2553 2554

	vunmap(cmd->t_data_vmap);
	cmd->t_data_vmap = NULL;
2555
}
2556
EXPORT_SYMBOL(transport_kunmap_data_sg);
2557

2558
int
2559
target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2560
		 bool zero_page, bool chainable)
2561
{
2562
	gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2563

2564 2565
	*sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
	return *sgl ? 0 : -ENOMEM;
2566
}
2567
EXPORT_SYMBOL(target_alloc_sgl);
2568

2569
/*
2570 2571 2572
 * Allocate any required resources to execute the command.  For writes we
 * might not have the payload yet, so notify the fabric via a call to
 * ->write_pending instead. Otherwise place it on the execution queue.
2573
 */
2574 2575
sense_reason_t
transport_generic_new_cmd(struct se_cmd *cmd)
2576
{
2577
	unsigned long flags;
2578
	int ret = 0;
2579
	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2580

2581 2582 2583
	if (cmd->prot_op != TARGET_PROT_NORMAL &&
	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2584
				       cmd->prot_length, true, false);
2585 2586 2587 2588
		if (ret < 0)
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
	}

2589
	/*
2590
	 * Determine if the TCM fabric module has already allocated physical
2591
	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2592
	 * beforehand.
2593
	 */
2594 2595
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
	    cmd->data_length) {
2596

2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
		if ((cmd->se_cmd_flags & SCF_BIDI) ||
		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
			u32 bidi_length;

			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
				bidi_length = cmd->t_task_nolb *
					      cmd->se_dev->dev_attrib.block_size;
			else
				bidi_length = cmd->data_length;

			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
					       &cmd->t_bidi_data_nents,
2609
					       bidi_length, zero_flag, false);
2610 2611 2612 2613
			if (ret < 0)
				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		}

2614
		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2615
				       cmd->data_length, zero_flag, false);
2616
		if (ret < 0)
2617
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
		    cmd->data_length) {
		/*
		 * Special case for COMPARE_AND_WRITE with fabrics
		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
		 */
		u32 caw_length = cmd->t_task_nolb *
				 cmd->se_dev->dev_attrib.block_size;

		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
				       &cmd->t_bidi_data_nents,
2629
				       caw_length, zero_flag, false);
2630 2631
		if (ret < 0)
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2632 2633
	}
	/*
2634 2635 2636
	 * If this command is not a write we can execute it right here,
	 * for write buffers we need to notify the fabric driver first
	 * and let it call back once the write buffers are ready.
2637
	 */
2638
	target_add_to_state_list(cmd);
2639
	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2640 2641 2642
		target_execute_cmd(cmd);
		return 0;
	}
2643 2644 2645 2646 2647 2648 2649

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	cmd->t_state = TRANSPORT_WRITE_PENDING;
	/*
	 * Determine if frontend context caller is requesting the stopping of
	 * this command for frontend exceptions.
	 */
2650 2651
	if (cmd->transport_state & CMD_T_STOP &&
	    !cmd->se_tfo->write_pending_must_be_called) {
2652 2653 2654 2655 2656 2657
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			 __func__, __LINE__, cmd->tag);

		spin_unlock_irqrestore(&cmd->t_state_lock, flags);

		complete_all(&cmd->t_transport_stop_comp);
2658
		return 0;
2659 2660 2661
	}
	cmd->transport_state &= ~CMD_T_ACTIVE;
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2662 2663

	ret = cmd->se_tfo->write_pending(cmd);
2664
	if (ret)
2665 2666
		goto queue_full;

2667
	return 0;
2668

2669 2670
queue_full:
	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2671
	transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2672
	return 0;
2673
}
2674
EXPORT_SYMBOL(transport_generic_new_cmd);
2675

2676
static void transport_write_pending_qf(struct se_cmd *cmd)
2677
{
2678
	unsigned long flags;
2679
	int ret;
2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
	bool stop;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

	if (stop) {
		pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
		complete_all(&cmd->t_transport_stop_comp);
		return;
	}
2692 2693

	ret = cmd->se_tfo->write_pending(cmd);
2694
	if (ret) {
2695 2696
		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
			 cmd);
2697
		transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2698
	}
2699 2700
}

2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
static bool
__transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
			   unsigned long *flags);

static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
{
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}

2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
/*
 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
 * finished.
 */
void target_put_cmd_and_wait(struct se_cmd *cmd)
{
	DECLARE_COMPLETION_ONSTACK(compl);

	WARN_ON_ONCE(cmd->abrt_compl);
	cmd->abrt_compl = &compl;
	target_put_sess_cmd(cmd);
	wait_for_completion(&compl);
}

2728 2729 2730 2731
/*
 * This function is called by frontend drivers after processing of a command
 * has finished.
 *
2732 2733 2734
 * The protocol for ensuring that either the regular frontend command
 * processing flow or target_handle_abort() code drops one reference is as
 * follows:
2735
 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2736 2737
 *   the frontend driver to call this function synchronously or asynchronously.
 *   That will cause one reference to be dropped.
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
 * - During regular command processing the target core sets CMD_T_COMPLETE
 *   before invoking one of the .queue_*() functions.
 * - The code that aborts commands skips commands and TMFs for which
 *   CMD_T_COMPLETE has been set.
 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
 *   commands that will be aborted.
 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
 *   transport_generic_free_cmd() skips its call to target_put_sess_cmd().
 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
 *   be called and will drop a reference.
 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2749
 *   will be called. target_handle_abort() will drop the final reference.
2750
 */
2751
int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2752
{
2753
	DECLARE_COMPLETION_ONSTACK(compl);
2754
	int ret = 0;
2755
	bool aborted = false, tas = false;
2756

2757 2758 2759 2760
	if (wait_for_tasks)
		target_wait_free_cmd(cmd, &aborted, &tas);

	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2761 2762 2763 2764 2765
		/*
		 * Handle WRITE failure case where transport_generic_new_cmd()
		 * has already added se_cmd to state_list, but fabric has
		 * failed command before I/O submission.
		 */
2766
		if (cmd->state_active)
2767
			target_remove_from_state_list(cmd);
2768 2769 2770

		if (cmd->se_lun)
			transport_lun_remove_cmd(cmd);
2771
	}
2772
	if (aborted)
2773
		cmd->free_compl = &compl;
2774
	ret = target_put_sess_cmd(cmd);
2775 2776
	if (aborted) {
		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2777
		wait_for_completion(&compl);
2778
		ret = 1;
2779
	}
2780
	return ret;
2781 2782 2783
}
EXPORT_SYMBOL(transport_generic_free_cmd);

2784 2785
/**
 * target_get_sess_cmd - Add command to active ->sess_cmd_list
2786
 * @se_cmd:	command descriptor to add
2787
 * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2788
 */
2789
int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2790
{
2791
	struct se_session *se_sess = se_cmd->se_sess;
2792
	unsigned long flags;
2793
	int ret = 0;
2794

2795 2796 2797 2798 2799
	/*
	 * Add a second kref if the fabric caller is expecting to handle
	 * fabric acknowledgement that requires two target_put_sess_cmd()
	 * invocations before se_cmd descriptor release.
	 */
2800
	if (ack_kref) {
2801 2802 2803
		if (!kref_get_unless_zero(&se_cmd->cmd_kref))
			return -EINVAL;

2804 2805
		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
	}
2806

2807
	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2808 2809 2810 2811
	if (se_sess->sess_tearing_down) {
		ret = -ESHUTDOWN;
		goto out;
	}
2812
	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2813
	percpu_ref_get(&se_sess->cmd_count);
2814
out:
2815
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2816 2817

	if (ret && ack_kref)
2818
		target_put_sess_cmd(se_cmd);
2819

2820
	return ret;
2821
}
2822
EXPORT_SYMBOL(target_get_sess_cmd);
2823

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
static void target_free_cmd_mem(struct se_cmd *cmd)
{
	transport_free_pages(cmd);

	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
		core_tmr_release_req(cmd->se_tmr_req);
	if (cmd->t_task_cdb != cmd->__t_task_cdb)
		kfree(cmd->t_task_cdb);
}

2834
static void target_release_cmd_kref(struct kref *kref)
2835
{
2836 2837
	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
	struct se_session *se_sess = se_cmd->se_sess;
2838 2839
	struct completion *free_compl = se_cmd->free_compl;
	struct completion *abrt_compl = se_cmd->abrt_compl;
2840
	unsigned long flags;
2841

2842 2843
	if (se_sess) {
		spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2844
		list_del_init(&se_cmd->se_cmd_list);
2845
		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2846 2847
	}

2848
	target_free_cmd_mem(se_cmd);
2849
	se_cmd->se_tfo->release_cmd(se_cmd);
2850 2851 2852 2853
	if (free_compl)
		complete(free_compl);
	if (abrt_compl)
		complete(abrt_compl);
2854 2855

	percpu_ref_put(&se_sess->cmd_count);
2856 2857
}

2858 2859 2860 2861 2862 2863
/**
 * target_put_sess_cmd - decrease the command reference count
 * @se_cmd:	command to drop a reference from
 *
 * Returns 1 if and only if this target_put_sess_cmd() call caused the
 * refcount to drop to zero. Returns zero otherwise.
2864
 */
2865
int target_put_sess_cmd(struct se_cmd *se_cmd)
2866
{
2867
	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2868 2869 2870
}
EXPORT_SYMBOL(target_put_sess_cmd);

2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
static const char *data_dir_name(enum dma_data_direction d)
{
	switch (d) {
	case DMA_BIDIRECTIONAL:	return "BIDI";
	case DMA_TO_DEVICE:	return "WRITE";
	case DMA_FROM_DEVICE:	return "READ";
	case DMA_NONE:		return "NONE";
	}

	return "(?)";
}

static const char *cmd_state_name(enum transport_state_table t)
{
	switch (t) {
	case TRANSPORT_NO_STATE:	return "NO_STATE";
	case TRANSPORT_NEW_CMD:		return "NEW_CMD";
	case TRANSPORT_WRITE_PENDING:	return "WRITE_PENDING";
	case TRANSPORT_PROCESSING:	return "PROCESSING";
	case TRANSPORT_COMPLETE:	return "COMPLETE";
	case TRANSPORT_ISTATE_PROCESSING:
					return "ISTATE_PROCESSING";
	case TRANSPORT_COMPLETE_QF_WP:	return "COMPLETE_QF_WP";
	case TRANSPORT_COMPLETE_QF_OK:	return "COMPLETE_QF_OK";
	case TRANSPORT_COMPLETE_QF_ERR:	return "COMPLETE_QF_ERR";
	}

	return "(?)";
}

static void target_append_str(char **str, const char *txt)
{
	char *prev = *str;

	*str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
		kstrdup(txt, GFP_ATOMIC);
	kfree(prev);
}

/*
 * Convert a transport state bitmask into a string. The caller is
 * responsible for freeing the returned pointer.
 */
static char *target_ts_to_str(u32 ts)
{
	char *str = NULL;

	if (ts & CMD_T_ABORTED)
		target_append_str(&str, "aborted");
	if (ts & CMD_T_ACTIVE)
		target_append_str(&str, "active");
	if (ts & CMD_T_COMPLETE)
		target_append_str(&str, "complete");
	if (ts & CMD_T_SENT)
		target_append_str(&str, "sent");
	if (ts & CMD_T_STOP)
		target_append_str(&str, "stop");
	if (ts & CMD_T_FABRIC_STOP)
		target_append_str(&str, "fabric_stop");

	return str;
}

static const char *target_tmf_name(enum tcm_tmreq_table tmf)
{
	switch (tmf) {
	case TMR_ABORT_TASK:		return "ABORT_TASK";
	case TMR_ABORT_TASK_SET:	return "ABORT_TASK_SET";
	case TMR_CLEAR_ACA:		return "CLEAR_ACA";
	case TMR_CLEAR_TASK_SET:	return "CLEAR_TASK_SET";
	case TMR_LUN_RESET:		return "LUN_RESET";
	case TMR_TARGET_WARM_RESET:	return "TARGET_WARM_RESET";
	case TMR_TARGET_COLD_RESET:	return "TARGET_COLD_RESET";
	case TMR_UNKNOWN:		break;
	}
	return "(?)";
}

void target_show_cmd(const char *pfx, struct se_cmd *cmd)
{
	char *ts_str = target_ts_to_str(cmd->transport_state);
	const u8 *cdb = cmd->t_task_cdb;
	struct se_tmr_req *tmf = cmd->se_tmr_req;

	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
		pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
			 pfx, cdb[0], cdb[1], cmd->tag,
			 data_dir_name(cmd->data_direction),
			 cmd->se_tfo->get_cmd_state(cmd),
			 cmd_state_name(cmd->t_state), cmd->data_length,
			 kref_read(&cmd->cmd_kref), ts_str);
	} else {
		pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
			 pfx, target_tmf_name(tmf->function), cmd->tag,
			 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
			 cmd_state_name(cmd->t_state),
			 kref_read(&cmd->cmd_kref), ts_str);
	}
	kfree(ts_str);
}
EXPORT_SYMBOL(target_show_cmd);

2973
/**
2974
 * target_sess_cmd_list_set_waiting - Set sess_tearing_down so no new commands are queued.
2975
 * @se_sess:	session to flag
2976
 */
2977
void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2978 2979 2980 2981
{
	unsigned long flags;

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2982
	se_sess->sess_tearing_down = 1;
2983
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2984 2985

	percpu_ref_kill(&se_sess->cmd_count);
2986
}
2987
EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2988

2989
/**
2990
 * target_wait_for_sess_cmds - Wait for outstanding commands
2991 2992
 * @se_sess:    session to wait for active I/O
 */
2993
void target_wait_for_sess_cmds(struct se_session *se_sess)
2994
{
2995 2996
	struct se_cmd *cmd;
	int ret;
2997

2998 2999 3000
	WARN_ON_ONCE(!se_sess->sess_tearing_down);

	do {
3001 3002 3003
		ret = wait_event_timeout(se_sess->cmd_list_wq,
				percpu_ref_is_zero(&se_sess->cmd_count),
				180 * HZ);
3004 3005 3006 3007
		list_for_each_entry(cmd, &se_sess->sess_cmd_list, se_cmd_list)
			target_show_cmd("session shutdown: still waiting for ",
					cmd);
	} while (ret <= 0);
3008 3009 3010
}
EXPORT_SYMBOL(target_wait_for_sess_cmds);

3011 3012 3013 3014
/*
 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
 * all references to the LUN have been released. Called during LUN shutdown.
 */
3015
void transport_clear_lun_ref(struct se_lun *lun)
3016
{
3017
	percpu_ref_kill(&lun->lun_ref);
3018
	wait_for_completion(&lun->lun_shutdown_comp);
3019 3020
}

3021 3022 3023 3024 3025
static bool
__transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
			   bool *aborted, bool *tas, unsigned long *flags)
	__releases(&cmd->t_state_lock)
	__acquires(&cmd->t_state_lock)
3026 3027
{

3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
	assert_spin_locked(&cmd->t_state_lock);
	WARN_ON_ONCE(!irqs_disabled());

	if (fabric_stop)
		cmd->transport_state |= CMD_T_FABRIC_STOP;

	if (cmd->transport_state & CMD_T_ABORTED)
		*aborted = true;

	if (cmd->transport_state & CMD_T_TAS)
		*tas = true;

3040
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3041
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3042
		return false;
3043

3044
	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3045
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3046
		return false;
3047

3048 3049 3050 3051
	if (!(cmd->transport_state & CMD_T_ACTIVE))
		return false;

	if (fabric_stop && *aborted)
3052
		return false;
3053

3054
	cmd->transport_state |= CMD_T_STOP;
3055

3056
	target_show_cmd("wait_for_tasks: Stopping ", cmd);
3057

3058
	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3059

3060 3061 3062
	while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
					    180 * HZ))
		target_show_cmd("wait for tasks: ", cmd);
3063

3064
	spin_lock_irqsave(&cmd->t_state_lock, *flags);
3065
	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3066

3067 3068
	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3069

3070 3071 3072 3073
	return true;
}

/**
3074 3075
 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
 * @cmd: command to wait on
3076 3077 3078 3079 3080 3081 3082 3083
 */
bool transport_wait_for_tasks(struct se_cmd *cmd)
{
	unsigned long flags;
	bool ret, aborted = false, tas = false;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3084
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3085

3086
	return ret;
3087
}
3088
EXPORT_SYMBOL(transport_wait_for_tasks);
3089

3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
struct sense_info {
	u8 key;
	u8 asc;
	u8 ascq;
	bool add_sector_info;
};

static const struct sense_info sense_info_table[] = {
	[TCM_NO_SENSE] = {
		.key = NOT_READY
	},
	[TCM_NON_EXISTENT_LUN] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
	},
	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
	},
	[TCM_SECTOR_COUNT_TOO_MANY] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
	},
	[TCM_UNKNOWN_MODE_PAGE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x24, /* INVALID FIELD IN CDB */
	},
	[TCM_CHECK_CONDITION_ABORT_CMD] = {
		.key = ABORTED_COMMAND,
		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
		.ascq = 0x03,
	},
	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
		.key = ABORTED_COMMAND,
		.asc = 0x0c, /* WRITE ERROR */
		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
	},
	[TCM_INVALID_CDB_FIELD] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x24, /* INVALID FIELD IN CDB */
	},
	[TCM_INVALID_PARAMETER_LIST] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
	},
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
	[TCM_TOO_MANY_TARGET_DESCS] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
	},
	[TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
	},
	[TCM_TOO_MANY_SEGMENT_DESCS] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
	},
	[TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
	},
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
	},
	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x0c, /* WRITE ERROR */
		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
	},
	[TCM_SERVICE_CRC_ERROR] = {
		.key = ABORTED_COMMAND,
		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
		.ascq = 0x05, /* N/A */
	},
	[TCM_SNACK_REJECTED] = {
		.key = ABORTED_COMMAND,
		.asc = 0x11, /* READ ERROR */
		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
	},
	[TCM_WRITE_PROTECTED] = {
		.key = DATA_PROTECT,
		.asc = 0x27, /* WRITE PROTECTED */
	},
	[TCM_ADDRESS_OUT_OF_RANGE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
	},
	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
		.key = UNIT_ATTENTION,
	},
	[TCM_CHECK_CONDITION_NOT_READY] = {
		.key = NOT_READY,
	},
	[TCM_MISCOMPARE_VERIFY] = {
		.key = MISCOMPARE,
		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
		.ascq = 0x00,
	},
	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3194
		.key = ABORTED_COMMAND,
3195 3196 3197 3198 3199
		.asc = 0x10,
		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
		.add_sector_info = true,
	},
	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3200
		.key = ABORTED_COMMAND,
3201 3202 3203 3204 3205
		.asc = 0x10,
		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
		.add_sector_info = true,
	},
	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3206
		.key = ABORTED_COMMAND,
3207 3208 3209 3210
		.asc = 0x10,
		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
		.add_sector_info = true,
	},
3211 3212 3213 3214 3215 3216
	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
		.key = COPY_ABORTED,
		.asc = 0x0d,
		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */

	},
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
		/*
		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
		 * Solaris initiators.  Returning NOT READY instead means the
		 * operations will be retried a finite number of times and we
		 * can survive intermittent errors.
		 */
		.key = NOT_READY,
		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
	},
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
	[TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
		/*
		 * From spc4r22 section5.7.7,5.7.8
		 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
		 * or a REGISTER AND IGNORE EXISTING KEY service action or
		 * REGISTER AND MOVE service actionis attempted,
		 * but there are insufficient device server resources to complete the
		 * operation, then the command shall be terminated with CHECK CONDITION
		 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
		 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
		 */
		.key = ILLEGAL_REQUEST,
		.asc = 0x55,
		.ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
	},
3242 3243
};

3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
/**
 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
 *   be stored.
 * @reason: LIO sense reason code. If this argument has the value
 *   TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
 *   dequeuing a unit attention fails due to multiple commands being processed
 *   concurrently, set the command status to BUSY.
 *
 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
 */
3255
static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3256 3257 3258 3259
{
	const struct sense_info *si;
	u8 *buffer = cmd->sense_buffer;
	int r = (__force int)reason;
3260
	u8 key, asc, ascq;
3261
	bool desc_format = target_sense_desc_format(cmd->se_dev);
3262 3263 3264 3265 3266 3267 3268

	if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
		si = &sense_info_table[r];
	else
		si = &sense_info_table[(__force int)
				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];

3269
	key = si->key;
3270
	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3271 3272 3273 3274 3275
		if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
						       &ascq)) {
			cmd->scsi_status = SAM_STAT_BUSY;
			return;
		}
3276 3277 3278 3279 3280 3281 3282 3283
	} else if (si->asc == 0) {
		WARN_ON_ONCE(cmd->scsi_asc == 0);
		asc = cmd->scsi_asc;
		ascq = cmd->scsi_ascq;
	} else {
		asc = si->asc;
		ascq = si->ascq;
	}
3284

3285 3286 3287
	cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3288
	scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3289
	if (si->add_sector_info)
3290 3291 3292
		WARN_ON_ONCE(scsi_set_sense_information(buffer,
							cmd->scsi_sense_length,
							cmd->bad_sector) < 0);
3293 3294
}

3295 3296 3297
int
transport_send_check_condition_and_sense(struct se_cmd *cmd,
		sense_reason_t reason, int from_transport)
3298 3299 3300
{
	unsigned long flags;

3301 3302
	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);

3303
	spin_lock_irqsave(&cmd->t_state_lock, flags);
3304
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3305
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3306 3307 3308
		return 0;
	}
	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3309
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3310

3311 3312
	if (!from_transport)
		translate_sense_reason(cmd, reason);
3313

3314
	trace_target_cmd_complete(cmd);
3315
	return cmd->se_tfo->queue_status(cmd);
3316 3317 3318
}
EXPORT_SYMBOL(transport_send_check_condition_and_sense);

3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
/**
 * target_send_busy - Send SCSI BUSY status back to the initiator
 * @cmd: SCSI command for which to send a BUSY reply.
 *
 * Note: Only call this function if target_submit_cmd*() failed.
 */
int target_send_busy(struct se_cmd *cmd)
{
	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);

	cmd->scsi_status = SAM_STAT_BUSY;
	trace_target_cmd_complete(cmd);
	return cmd->se_tfo->queue_status(cmd);
}
EXPORT_SYMBOL(target_send_busy);

3335
static void target_tmr_work(struct work_struct *work)
3336
{
3337
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3338
	struct se_device *dev = cmd->se_dev;
3339 3340 3341
	struct se_tmr_req *tmr = cmd->se_tmr_req;
	int ret;

3342 3343
	if (cmd->transport_state & CMD_T_ABORTED)
		goto aborted;
3344

3345
	switch (tmr->function) {
3346
	case TMR_ABORT_TASK:
3347
		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3348
		break;
3349 3350 3351
	case TMR_ABORT_TASK_SET:
	case TMR_CLEAR_ACA:
	case TMR_CLEAR_TASK_SET:
3352 3353
		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
		break;
3354
	case TMR_LUN_RESET:
3355 3356 3357
		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
					 TMR_FUNCTION_REJECTED;
3358 3359 3360 3361 3362
		if (tmr->response == TMR_FUNCTION_COMPLETE) {
			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
					       cmd->orig_fe_lun, 0x29,
					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
		}
3363
		break;
3364
	case TMR_TARGET_WARM_RESET:
3365 3366
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
3367
	case TMR_TARGET_COLD_RESET:
3368 3369 3370
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	default:
3371
		pr_err("Unknown TMR function: 0x%02x.\n",
3372 3373 3374 3375 3376
				tmr->function);
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	}

3377 3378
	if (cmd->transport_state & CMD_T_ABORTED)
		goto aborted;
3379

3380
	cmd->se_tfo->queue_tm_rsp(cmd);
3381

3382
	transport_lun_remove_cmd(cmd);
3383
	transport_cmd_check_stop_to_fabric(cmd);
3384 3385 3386 3387
	return;

aborted:
	target_handle_abort(cmd);
3388 3389
}

3390 3391
int transport_generic_handle_tmr(
	struct se_cmd *cmd)
3392
{
3393
	unsigned long flags;
3394
	bool aborted = false;
3395 3396

	spin_lock_irqsave(&cmd->t_state_lock, flags);
3397 3398 3399 3400 3401 3402
	if (cmd->transport_state & CMD_T_ABORTED) {
		aborted = true;
	} else {
		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
		cmd->transport_state |= CMD_T_ACTIVE;
	}
3403 3404
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3405
	if (aborted) {
3406 3407 3408 3409
		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
				    cmd->se_tmr_req->function,
				    cmd->se_tmr_req->ref_task_tag, cmd->tag);
		target_handle_abort(cmd);
3410 3411 3412
		return 0;
	}

3413
	INIT_WORK(&cmd->work, target_tmr_work);
3414
	schedule_work(&cmd->work);
3415 3416
	return 0;
}
3417
EXPORT_SYMBOL(transport_generic_handle_tmr);
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436

bool
target_check_wce(struct se_device *dev)
{
	bool wce = false;

	if (dev->transport->get_write_cache)
		wce = dev->transport->get_write_cache(dev);
	else if (dev->dev_attrib.emulate_write_cache > 0)
		wce = true;

	return wce;
}

bool
target_check_fua(struct se_device *dev)
{
	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
}