target_core_transport.c 78.1 KB
Newer Older
1 2 3 4 5
/*******************************************************************************
 * Filename:  target_core_transport.c
 *
 * This file contains the Generic Target Engine Core.
 *
6
 * (c) Copyright 2002-2013 Datera, Inc.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 *
 * Nicholas A. Bellinger <nab@kernel.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 ******************************************************************************/

#include <linux/net.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/in.h>
#include <linux/cdrom.h>
35
#include <linux/module.h>
36
#include <linux/ratelimit.h>
37 38 39 40 41
#include <asm/unaligned.h>
#include <net/sock.h>
#include <net/tcp.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
42
#include <scsi/scsi_tcq.h>
43 44

#include <target/target_core_base.h>
45 46
#include <target/target_core_backend.h>
#include <target/target_core_fabric.h>
47 48
#include <target/target_core_configfs.h>

C
Christoph Hellwig 已提交
49
#include "target_core_internal.h"
50 51 52 53
#include "target_core_alua.h"
#include "target_core_pr.h"
#include "target_core_ua.h"

54 55 56
#define CREATE_TRACE_POINTS
#include <trace/events/target.h>

57
static struct workqueue_struct *target_completion_wq;
58 59 60 61 62 63 64
static struct kmem_cache *se_sess_cache;
struct kmem_cache *se_ua_cache;
struct kmem_cache *t10_pr_reg_cache;
struct kmem_cache *t10_alua_lu_gp_cache;
struct kmem_cache *t10_alua_lu_gp_mem_cache;
struct kmem_cache *t10_alua_tg_pt_gp_cache;
struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
65 66
struct kmem_cache *t10_alua_lba_map_cache;
struct kmem_cache *t10_alua_lba_map_mem_cache;
67 68

static void transport_complete_task_attr(struct se_cmd *cmd);
69
static void transport_handle_queue_full(struct se_cmd *cmd,
70
		struct se_device *dev);
71
static int transport_put_cmd(struct se_cmd *cmd);
72
static void target_complete_ok_work(struct work_struct *work);
73

74
int init_se_kmem_caches(void)
75 76 77 78
{
	se_sess_cache = kmem_cache_create("se_sess_cache",
			sizeof(struct se_session), __alignof__(struct se_session),
			0, NULL);
79 80
	if (!se_sess_cache) {
		pr_err("kmem_cache_create() for struct se_session"
81
				" failed\n");
82
		goto out;
83 84 85 86
	}
	se_ua_cache = kmem_cache_create("se_ua_cache",
			sizeof(struct se_ua), __alignof__(struct se_ua),
			0, NULL);
87 88
	if (!se_ua_cache) {
		pr_err("kmem_cache_create() for struct se_ua failed\n");
89
		goto out_free_sess_cache;
90 91 92 93
	}
	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
			sizeof(struct t10_pr_registration),
			__alignof__(struct t10_pr_registration), 0, NULL);
94 95
	if (!t10_pr_reg_cache) {
		pr_err("kmem_cache_create() for struct t10_pr_registration"
96
				" failed\n");
97
		goto out_free_ua_cache;
98 99 100 101
	}
	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
			0, NULL);
102 103
	if (!t10_alua_lu_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104
				" failed\n");
105
		goto out_free_pr_reg_cache;
106 107 108 109
	}
	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
			sizeof(struct t10_alua_lu_gp_member),
			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
110 111
	if (!t10_alua_lu_gp_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112
				"cache failed\n");
113
		goto out_free_lu_gp_cache;
114 115 116 117
	}
	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
			sizeof(struct t10_alua_tg_pt_gp),
			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
118 119
	if (!t10_alua_tg_pt_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120
				"cache failed\n");
121
		goto out_free_lu_gp_mem_cache;
122 123 124 125 126 127
	}
	t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
			"t10_alua_tg_pt_gp_mem_cache",
			sizeof(struct t10_alua_tg_pt_gp_member),
			__alignof__(struct t10_alua_tg_pt_gp_member),
			0, NULL);
128 129
	if (!t10_alua_tg_pt_gp_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
130
				"mem_t failed\n");
131
		goto out_free_tg_pt_gp_cache;
132
	}
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
	t10_alua_lba_map_cache = kmem_cache_create(
			"t10_alua_lba_map_cache",
			sizeof(struct t10_alua_lba_map),
			__alignof__(struct t10_alua_lba_map), 0, NULL);
	if (!t10_alua_lba_map_cache) {
		pr_err("kmem_cache_create() for t10_alua_lba_map_"
				"cache failed\n");
		goto out_free_tg_pt_gp_mem_cache;
	}
	t10_alua_lba_map_mem_cache = kmem_cache_create(
			"t10_alua_lba_map_mem_cache",
			sizeof(struct t10_alua_lba_map_member),
			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
	if (!t10_alua_lba_map_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
				"cache failed\n");
		goto out_free_lba_map_cache;
	}
151

152 153 154
	target_completion_wq = alloc_workqueue("target_completion",
					       WQ_MEM_RECLAIM, 0);
	if (!target_completion_wq)
155
		goto out_free_lba_map_mem_cache;
156

157
	return 0;
158

159 160 161 162
out_free_lba_map_mem_cache:
	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
out_free_lba_map_cache:
	kmem_cache_destroy(t10_alua_lba_map_cache);
163 164 165 166 167 168 169 170 171 172 173 174 175 176
out_free_tg_pt_gp_mem_cache:
	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
out_free_tg_pt_gp_cache:
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
out_free_lu_gp_mem_cache:
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
out_free_lu_gp_cache:
	kmem_cache_destroy(t10_alua_lu_gp_cache);
out_free_pr_reg_cache:
	kmem_cache_destroy(t10_pr_reg_cache);
out_free_ua_cache:
	kmem_cache_destroy(se_ua_cache);
out_free_sess_cache:
	kmem_cache_destroy(se_sess_cache);
177
out:
178
	return -ENOMEM;
179 180
}

181
void release_se_kmem_caches(void)
182
{
183
	destroy_workqueue(target_completion_wq);
184 185 186 187 188 189 190
	kmem_cache_destroy(se_sess_cache);
	kmem_cache_destroy(se_ua_cache);
	kmem_cache_destroy(t10_pr_reg_cache);
	kmem_cache_destroy(t10_alua_lu_gp_cache);
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
	kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
191 192
	kmem_cache_destroy(t10_alua_lba_map_cache);
	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
193 194
}

195 196 197
/* This code ensures unique mib indexes are handed out. */
static DEFINE_SPINLOCK(scsi_mib_index_lock);
static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
198 199 200 201 202 203 204 205

/*
 * Allocate a new row index for the entry type specified
 */
u32 scsi_get_new_index(scsi_index_t type)
{
	u32 new_index;

206
	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
207

208 209 210
	spin_lock(&scsi_mib_index_lock);
	new_index = ++scsi_mib_index[type];
	spin_unlock(&scsi_mib_index_lock);
211 212 213 214

	return new_index;
}

215
void transport_subsystem_check_init(void)
216 217
{
	int ret;
218
	static int sub_api_initialized;
219

220 221 222
	if (sub_api_initialized)
		return;

223 224
	ret = request_module("target_core_iblock");
	if (ret != 0)
225
		pr_err("Unable to load target_core_iblock\n");
226 227 228

	ret = request_module("target_core_file");
	if (ret != 0)
229
		pr_err("Unable to load target_core_file\n");
230 231 232

	ret = request_module("target_core_pscsi");
	if (ret != 0)
233
		pr_err("Unable to load target_core_pscsi\n");
234

235
	sub_api_initialized = 1;
236 237
}

238
struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
239 240 241 242
{
	struct se_session *se_sess;

	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
243 244
	if (!se_sess) {
		pr_err("Unable to allocate struct se_session from"
245 246 247 248 249
				" se_sess_cache\n");
		return ERR_PTR(-ENOMEM);
	}
	INIT_LIST_HEAD(&se_sess->sess_list);
	INIT_LIST_HEAD(&se_sess->sess_acl_list);
250
	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
251
	INIT_LIST_HEAD(&se_sess->sess_wait_list);
252
	spin_lock_init(&se_sess->sess_cmd_lock);
253
	kref_init(&se_sess->sess_kref);
254
	se_sess->sup_prot_ops = sup_prot_ops;
255 256 257 258 259

	return se_sess;
}
EXPORT_SYMBOL(transport_init_session);

260 261 262 263 264
int transport_alloc_session_tags(struct se_session *se_sess,
			         unsigned int tag_num, unsigned int tag_size)
{
	int rc;

265 266
	se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
					GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
267
	if (!se_sess->sess_cmd_map) {
268 269 270 271 272
		se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
		if (!se_sess->sess_cmd_map) {
			pr_err("Unable to allocate se_sess->sess_cmd_map\n");
			return -ENOMEM;
		}
273 274 275 276 277 278
	}

	rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
	if (rc < 0) {
		pr_err("Unable to init se_sess->sess_tag_pool,"
			" tag_num: %u\n", tag_num);
279 280 281 282
		if (is_vmalloc_addr(se_sess->sess_cmd_map))
			vfree(se_sess->sess_cmd_map);
		else
			kfree(se_sess->sess_cmd_map);
283 284 285 286 287 288 289 290 291
		se_sess->sess_cmd_map = NULL;
		return -ENOMEM;
	}

	return 0;
}
EXPORT_SYMBOL(transport_alloc_session_tags);

struct se_session *transport_init_session_tags(unsigned int tag_num,
292 293
					       unsigned int tag_size,
					       enum target_prot_op sup_prot_ops)
294 295 296 297
{
	struct se_session *se_sess;
	int rc;

298
	se_sess = transport_init_session(sup_prot_ops);
299 300 301 302 303 304 305 306 307 308 309 310 311
	if (IS_ERR(se_sess))
		return se_sess;

	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
	if (rc < 0) {
		transport_free_session(se_sess);
		return ERR_PTR(-ENOMEM);
	}

	return se_sess;
}
EXPORT_SYMBOL(transport_init_session_tags);

312
/*
313
 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
 */
void __transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
	unsigned char buf[PR_REG_ISID_LEN];

	se_sess->se_tpg = se_tpg;
	se_sess->fabric_sess_ptr = fabric_sess_ptr;
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
	 *
	 * Only set for struct se_session's that will actually be moving I/O.
	 * eg: *NOT* discovery sessions.
	 */
	if (se_nacl) {
		/*
		 * If the fabric module supports an ISID based TransportID,
		 * save this value in binary from the fabric I_T Nexus now.
		 */
336
		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
337
			memset(&buf[0], 0, PR_REG_ISID_LEN);
338
			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
339 340 341
					&buf[0], PR_REG_ISID_LEN);
			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
		}
342 343
		kref_get(&se_nacl->acl_kref);

344 345 346 347 348 349 350 351 352 353 354 355 356
		spin_lock_irq(&se_nacl->nacl_sess_lock);
		/*
		 * The se_nacl->nacl_sess pointer will be set to the
		 * last active I_T Nexus for each struct se_node_acl.
		 */
		se_nacl->nacl_sess = se_sess;

		list_add_tail(&se_sess->sess_acl_list,
			      &se_nacl->acl_sess_list);
		spin_unlock_irq(&se_nacl->nacl_sess_lock);
	}
	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);

357
	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
358
		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
359 360 361 362 363 364 365 366 367
}
EXPORT_SYMBOL(__transport_register_session);

void transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
368 369 370
	unsigned long flags;

	spin_lock_irqsave(&se_tpg->session_lock, flags);
371
	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
372
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
373 374 375
}
EXPORT_SYMBOL(transport_register_session);

376
static void target_release_session(struct kref *kref)
377 378 379 380 381 382 383 384 385 386 387 388 389 390
{
	struct se_session *se_sess = container_of(kref,
			struct se_session, sess_kref);
	struct se_portal_group *se_tpg = se_sess->se_tpg;

	se_tpg->se_tpg_tfo->close_session(se_sess);
}

void target_get_session(struct se_session *se_sess)
{
	kref_get(&se_sess->sess_kref);
}
EXPORT_SYMBOL(target_get_session);

391
void target_put_session(struct se_session *se_sess)
392
{
393 394 395 396 397 398
	struct se_portal_group *tpg = se_sess->se_tpg;

	if (tpg->se_tpg_tfo->put_session != NULL) {
		tpg->se_tpg_tfo->put_session(se_sess);
		return;
	}
399
	kref_put(&se_sess->sess_kref, target_release_session);
400 401 402
}
EXPORT_SYMBOL(target_put_session);

403 404 405 406 407 408 409 410 411 412 413 414 415
static void target_complete_nacl(struct kref *kref)
{
	struct se_node_acl *nacl = container_of(kref,
				struct se_node_acl, acl_kref);

	complete(&nacl->acl_free_comp);
}

void target_put_nacl(struct se_node_acl *nacl)
{
	kref_put(&nacl->acl_kref, target_complete_nacl);
}

416 417 418
void transport_deregister_session_configfs(struct se_session *se_sess)
{
	struct se_node_acl *se_nacl;
419
	unsigned long flags;
420 421 422 423
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
	 */
	se_nacl = se_sess->se_node_acl;
424
	if (se_nacl) {
425
		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
426 427
		if (se_nacl->acl_stop == 0)
			list_del(&se_sess->sess_acl_list);
428 429 430 431 432 433 434 435 436 437 438 439
		/*
		 * If the session list is empty, then clear the pointer.
		 * Otherwise, set the struct se_session pointer from the tail
		 * element of the per struct se_node_acl active session list.
		 */
		if (list_empty(&se_nacl->acl_sess_list))
			se_nacl->nacl_sess = NULL;
		else {
			se_nacl->nacl_sess = container_of(
					se_nacl->acl_sess_list.prev,
					struct se_session, sess_acl_list);
		}
440
		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
441 442 443 444 445 446
	}
}
EXPORT_SYMBOL(transport_deregister_session_configfs);

void transport_free_session(struct se_session *se_sess)
{
447 448
	if (se_sess->sess_cmd_map) {
		percpu_ida_destroy(&se_sess->sess_tag_pool);
449 450 451 452
		if (is_vmalloc_addr(se_sess->sess_cmd_map))
			vfree(se_sess->sess_cmd_map);
		else
			kfree(se_sess->sess_cmd_map);
453
	}
454 455 456 457 458 459 460
	kmem_cache_free(se_sess_cache, se_sess);
}
EXPORT_SYMBOL(transport_free_session);

void transport_deregister_session(struct se_session *se_sess)
{
	struct se_portal_group *se_tpg = se_sess->se_tpg;
461
	struct target_core_fabric_ops *se_tfo;
462
	struct se_node_acl *se_nacl;
463
	unsigned long flags;
464
	bool comp_nacl = true;
465

466
	if (!se_tpg) {
467 468 469
		transport_free_session(se_sess);
		return;
	}
470
	se_tfo = se_tpg->se_tpg_tfo;
471

472
	spin_lock_irqsave(&se_tpg->session_lock, flags);
473 474 475
	list_del(&se_sess->sess_list);
	se_sess->se_tpg = NULL;
	se_sess->fabric_sess_ptr = NULL;
476
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
477 478 479 480 481 482

	/*
	 * Determine if we need to do extra work for this initiator node's
	 * struct se_node_acl if it had been previously dynamically generated.
	 */
	se_nacl = se_sess->se_node_acl;
483 484 485 486 487 488 489 490 491 492 493 494 495

	spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
	if (se_nacl && se_nacl->dynamic_node_acl) {
		if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
			list_del(&se_nacl->acl_list);
			se_tpg->num_node_acls--;
			spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
			core_tpg_wait_for_nacl_pr_ref(se_nacl);
			core_free_device_list_for_node(se_nacl, se_tpg);
			se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);

			comp_nacl = false;
			spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
496 497
		}
	}
498
	spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
499

500
	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
501
		se_tpg->se_tpg_tfo->get_fabric_name());
502
	/*
503
	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
504 505
	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
	 * removal context.
506 507
	 */
	if (se_nacl && comp_nacl == true)
508
		target_put_nacl(se_nacl);
509

510
	transport_free_session(se_sess);
511 512 513 514
}
EXPORT_SYMBOL(transport_deregister_session);

/*
515
 * Called with cmd->t_state_lock held.
516
 */
517
static void target_remove_from_state_list(struct se_cmd *cmd)
518
{
519
	struct se_device *dev = cmd->se_dev;
520 521
	unsigned long flags;

522 523
	if (!dev)
		return;
524

525 526
	if (cmd->transport_state & CMD_T_BUSY)
		return;
527

528 529 530 531
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (cmd->state_active) {
		list_del(&cmd->state_list);
		cmd->state_active = false;
532
	}
533
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
534 535
}

536 537
static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
				    bool write_pending)
538 539 540
{
	unsigned long flags;

541
	spin_lock_irqsave(&cmd->t_state_lock, flags);
542 543 544
	if (write_pending)
		cmd->t_state = TRANSPORT_WRITE_PENDING;

545 546 547 548 549 550 551 552 553
	if (remove_from_lists) {
		target_remove_from_state_list(cmd);

		/*
		 * Clear struct se_cmd->se_lun before the handoff to FE.
		 */
		cmd->se_lun = NULL;
	}

554 555
	/*
	 * Determine if frontend context caller is requesting the stopping of
556
	 * this command for frontend exceptions.
557
	 */
558 559 560
	if (cmd->transport_state & CMD_T_STOP) {
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
			__func__, __LINE__,
561
			cmd->se_tfo->get_task_tag(cmd));
562

563
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
564

565
		complete(&cmd->t_transport_stop_comp);
566 567
		return 1;
	}
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

	cmd->transport_state &= ~CMD_T_ACTIVE;
	if (remove_from_lists) {
		/*
		 * Some fabric modules like tcm_loop can release
		 * their internally allocated I/O reference now and
		 * struct se_cmd now.
		 *
		 * Fabric modules are expected to return '1' here if the
		 * se_cmd being passed is released at this point,
		 * or zero if not being released.
		 */
		if (cmd->se_tfo->check_stop_free != NULL) {
			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
			return cmd->se_tfo->check_stop_free(cmd);
583
		}
584
	}
585

586
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
587 588 589 590 591
	return 0;
}

static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
{
592
	return transport_cmd_check_stop(cmd, true, false);
593 594 595 596
}

static void transport_lun_remove_cmd(struct se_cmd *cmd)
{
597
	struct se_lun *lun = cmd->se_lun;
598

599
	if (!lun)
600 601
		return;

602 603
	if (cmpxchg(&cmd->lun_ref_active, true, false))
		percpu_ref_put(&lun->lun_ref);
604 605 606 607
}

void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
{
608 609
	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
		transport_lun_remove_cmd(cmd);
610 611 612 613 614 615
	/*
	 * Allow the fabric driver to unmap any resources before
	 * releasing the descriptor via TFO->release_cmd()
	 */
	if (remove)
		cmd->se_tfo->aborted_task(cmd);
616

617 618
	if (transport_cmd_check_stop_to_fabric(cmd))
		return;
619
	if (remove)
620
		transport_put_cmd(cmd);
621 622
}

623 624 625 626
static void target_complete_failure_work(struct work_struct *work)
{
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);

627 628
	transport_generic_request_failure(cmd,
			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
629 630
}

631
/*
632 633
 * Used when asking transport to copy Sense Data from the underlying
 * Linux/SCSI struct scsi_cmnd
634
 */
635
static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
636 637 638 639 640 641
{
	struct se_device *dev = cmd->se_dev;

	WARN_ON(!cmd->se_lun);

	if (!dev)
642
		return NULL;
643

644 645
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
		return NULL;
646

647
	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
648

649
	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
650
		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
651
	return cmd->sense_buffer;
652 653
}

654
void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
655
{
656
	struct se_device *dev = cmd->se_dev;
657
	int success = scsi_status == GOOD;
658 659
	unsigned long flags;

660 661 662
	cmd->scsi_status = scsi_status;


663
	spin_lock_irqsave(&cmd->t_state_lock, flags);
664
	cmd->transport_state &= ~CMD_T_BUSY;
665 666

	if (dev && dev->transport->transport_complete) {
667 668 669 670
		dev->transport->transport_complete(cmd,
				cmd->t_data_sg,
				transport_get_sense_buffer(cmd));
		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
671 672 673 674
			success = 1;
	}

	/*
675
	 * See if we are waiting to complete for an exception condition.
676
	 */
677
	if (cmd->transport_state & CMD_T_REQUEST_STOP) {
678
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
679
		complete(&cmd->task_stop_comp);
680 681
		return;
	}
682

683
	/*
684
	 * Check for case where an explicit ABORT_TASK has been received
685 686 687 688 689 690 691
	 * and transport_wait_for_tasks() will be waiting for completion..
	 */
	if (cmd->transport_state & CMD_T_ABORTED &&
	    cmd->transport_state & CMD_T_STOP) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		complete(&cmd->t_transport_stop_comp);
		return;
692
	} else if (!success) {
693
		INIT_WORK(&cmd->work, target_complete_failure_work);
694
	} else {
695
		INIT_WORK(&cmd->work, target_complete_ok_work);
696
	}
697 698

	cmd->t_state = TRANSPORT_COMPLETE;
699
	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
700
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
701

702
	queue_work(target_completion_wq, &cmd->work);
703
}
704 705
EXPORT_SYMBOL(target_complete_cmd);

706
static void target_add_to_state_list(struct se_cmd *cmd)
707
{
708 709
	struct se_device *dev = cmd->se_dev;
	unsigned long flags;
710

711 712 713 714
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (!cmd->state_active) {
		list_add_tail(&cmd->state_list, &dev->state_list);
		cmd->state_active = true;
715
	}
716
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
717 718
}

719
/*
720
 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
721
 */
722 723
static void transport_write_pending_qf(struct se_cmd *cmd);
static void transport_complete_qf(struct se_cmd *cmd);
724

725
void target_qf_do_work(struct work_struct *work)
726 727 728
{
	struct se_device *dev = container_of(work, struct se_device,
					qf_work_queue);
729
	LIST_HEAD(qf_cmd_list);
730 731 732
	struct se_cmd *cmd, *cmd_tmp;

	spin_lock_irq(&dev->qf_cmd_lock);
733 734
	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
	spin_unlock_irq(&dev->qf_cmd_lock);
735

736
	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
737 738 739 740
		list_del(&cmd->se_qf_node);
		atomic_dec(&dev->dev_qf_count);
		smp_mb__after_atomic_dec();

741
		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
742
			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
743
			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
744 745
			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
			: "UNKNOWN");
746

747 748 749 750
		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
			transport_write_pending_qf(cmd);
		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
			transport_complete_qf(cmd);
751 752 753
	}
}

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
{
	switch (cmd->data_direction) {
	case DMA_NONE:
		return "NONE";
	case DMA_FROM_DEVICE:
		return "READ";
	case DMA_TO_DEVICE:
		return "WRITE";
	case DMA_BIDIRECTIONAL:
		return "BIDI";
	default:
		break;
	}

	return "UNKNOWN";
}

void transport_dump_dev_state(
	struct se_device *dev,
	char *b,
	int *bl)
{
	*bl += sprintf(b + *bl, "Status: ");
778
	if (dev->export_count)
779
		*bl += sprintf(b + *bl, "ACTIVATED");
780
	else
781 782
		*bl += sprintf(b + *bl, "DEACTIVATED");

783
	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
784
	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
785 786
		dev->dev_attrib.block_size,
		dev->dev_attrib.hw_max_sectors);
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
	*bl += sprintf(b + *bl, "        ");
}

void transport_dump_vpd_proto_id(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int len;

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Protocol Identifier: ");

	switch (vpd->protocol_identifier) {
	case 0x00:
		sprintf(buf+len, "Fibre Channel\n");
		break;
	case 0x10:
		sprintf(buf+len, "Parallel SCSI\n");
		break;
	case 0x20:
		sprintf(buf+len, "SSA\n");
		break;
	case 0x30:
		sprintf(buf+len, "IEEE 1394\n");
		break;
	case 0x40:
		sprintf(buf+len, "SCSI Remote Direct Memory Access"
				" Protocol\n");
		break;
	case 0x50:
		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
		break;
	case 0x60:
		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
		break;
	case 0x70:
		sprintf(buf+len, "Automation/Drive Interface Transport"
				" Protocol\n");
		break;
	case 0x80:
		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n",
				vpd->protocol_identifier);
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
840
		pr_debug("%s", buf);
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
}

void
transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * Check if the Protocol Identifier Valid (PIV) bit is set..
	 *
	 * from spc3r23.pdf section 7.5.1
	 */
	 if (page_83[1] & 0x80) {
		vpd->protocol_identifier = (page_83[0] & 0xf0);
		vpd->protocol_identifier_set = 1;
		transport_dump_vpd_proto_id(vpd, NULL, 0);
	}
}
EXPORT_SYMBOL(transport_set_vpd_proto_id);

int transport_dump_vpd_assoc(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
865 866
	int ret = 0;
	int len;
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Association: ");

	switch (vpd->association) {
	case 0x00:
		sprintf(buf+len, "addressed logical unit\n");
		break;
	case 0x10:
		sprintf(buf+len, "target port\n");
		break;
	case 0x20:
		sprintf(buf+len, "SCSI target device\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
883
		ret = -EINVAL;
884 885 886 887 888 889
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
890
		pr_debug("%s", buf);
891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912

	return ret;
}

int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identification association..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 297
	 */
	vpd->association = (page_83[1] & 0x30);
	return transport_dump_vpd_assoc(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_assoc);

int transport_dump_vpd_ident_type(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
913 914
	int ret = 0;
	int len;
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Type: ");

	switch (vpd->device_identifier_type) {
	case 0x00:
		sprintf(buf+len, "Vendor specific\n");
		break;
	case 0x01:
		sprintf(buf+len, "T10 Vendor ID based\n");
		break;
	case 0x02:
		sprintf(buf+len, "EUI-64 based\n");
		break;
	case 0x03:
		sprintf(buf+len, "NAA\n");
		break;
	case 0x04:
		sprintf(buf+len, "Relative target port identifier\n");
		break;
	case 0x08:
		sprintf(buf+len, "SCSI name string\n");
		break;
	default:
		sprintf(buf+len, "Unsupported: 0x%02x\n",
				vpd->device_identifier_type);
941
		ret = -EINVAL;
942 943 944
		break;
	}

945 946 947
	if (p_buf) {
		if (p_buf_len < strlen(buf)+1)
			return -EINVAL;
948
		strncpy(p_buf, buf, p_buf_len);
949
	} else {
950
		pr_debug("%s", buf);
951
	}
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979

	return ret;
}

int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identifier type..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 298
	 */
	vpd->device_identifier_type = (page_83[1] & 0x0f);
	return transport_dump_vpd_ident_type(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident_type);

int transport_dump_vpd_ident(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int ret = 0;

	memset(buf, 0, VPD_TMP_BUF_SIZE);

	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
980 981
		snprintf(buf, sizeof(buf),
			"T10 VPD Binary Device Identifier: %s\n",
982 983 984
			&vpd->device_identifier[0]);
		break;
	case 0x02: /* ASCII */
985 986
		snprintf(buf, sizeof(buf),
			"T10 VPD ASCII Device Identifier: %s\n",
987 988 989
			&vpd->device_identifier[0]);
		break;
	case 0x03: /* UTF-8 */
990 991
		snprintf(buf, sizeof(buf),
			"T10 VPD UTF-8 Device Identifier: %s\n",
992 993 994 995 996
			&vpd->device_identifier[0]);
		break;
	default:
		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
			" 0x%02x", vpd->device_identifier_code_set);
997
		ret = -EINVAL;
998 999 1000 1001 1002 1003
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1004
		pr_debug("%s", buf);
1005 1006 1007 1008 1009 1010 1011 1012

	return ret;
}

int
transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
{
	static const char hex_str[] = "0123456789abcdef";
1013
	int j = 0, i = 4; /* offset to start of the identifier */
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

	/*
	 * The VPD Code Set (encoding)
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 296
	 */
	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
		vpd->device_identifier[j++] =
				hex_str[vpd->device_identifier_type];
		while (i < (4 + page_83[3])) {
			vpd->device_identifier[j++] =
				hex_str[(page_83[i] & 0xf0) >> 4];
			vpd->device_identifier[j++] =
				hex_str[page_83[i] & 0x0f];
			i++;
		}
		break;
	case 0x02: /* ASCII */
	case 0x03: /* UTF-8 */
		while (i < (4 + page_83[3]))
			vpd->device_identifier[j++] = page_83[i++];
		break;
	default:
		break;
	}

	return transport_dump_vpd_ident(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident);

1046 1047
sense_reason_t
target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
{
	struct se_device *dev = cmd->se_dev;

	if (cmd->unknown_data_length) {
		cmd->data_length = size;
	} else if (size != cmd->data_length) {
		pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
				cmd->data_length, size, cmd->t_task_cdb[0]);

		if (cmd->data_direction == DMA_TO_DEVICE) {
			pr_err("Rejecting underflow/overflow"
					" WRITE data\n");
1062
			return TCM_INVALID_CDB_FIELD;
1063 1064 1065 1066 1067
		}
		/*
		 * Reject READ_* or WRITE_* with overflow/underflow for
		 * type SCF_SCSI_DATA_CDB.
		 */
1068
		if (dev->dev_attrib.block_size != 512)  {
1069 1070 1071 1072
			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
				" CDB on non 512-byte sector setup subsystem"
				" plugin: %s\n", dev->transport->name);
			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1073
			return TCM_INVALID_CDB_FIELD;
1074
		}
1075 1076 1077 1078 1079 1080
		/*
		 * For the overflow case keep the existing fabric provided
		 * ->data_length.  Otherwise for the underflow case, reset
		 * ->data_length to the smaller SCSI expected data transfer
		 * length.
		 */
1081 1082 1083 1084 1085 1086
		if (size > cmd->data_length) {
			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
			cmd->residual_count = (size - cmd->data_length);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - size);
1087
			cmd->data_length = size;
1088 1089 1090 1091 1092 1093 1094
		}
	}

	return 0;

}

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
/*
 * Used by fabric modules containing a local struct se_cmd within their
 * fabric dependent per I/O descriptor.
 */
void transport_init_se_cmd(
	struct se_cmd *cmd,
	struct target_core_fabric_ops *tfo,
	struct se_session *se_sess,
	u32 data_length,
	int data_direction,
	int task_attr,
	unsigned char *sense_buffer)
{
1108
	INIT_LIST_HEAD(&cmd->se_delayed_node);
1109
	INIT_LIST_HEAD(&cmd->se_qf_node);
1110
	INIT_LIST_HEAD(&cmd->se_cmd_list);
1111
	INIT_LIST_HEAD(&cmd->state_list);
1112
	init_completion(&cmd->t_transport_stop_comp);
1113
	init_completion(&cmd->cmd_wait_comp);
1114
	init_completion(&cmd->task_stop_comp);
1115
	spin_lock_init(&cmd->t_state_lock);
1116
	cmd->transport_state = CMD_T_DEV_ACTIVE;
1117 1118 1119 1120 1121 1122 1123

	cmd->se_tfo = tfo;
	cmd->se_sess = se_sess;
	cmd->data_length = data_length;
	cmd->data_direction = data_direction;
	cmd->sam_task_attr = task_attr;
	cmd->sense_buffer = sense_buffer;
1124 1125

	cmd->state_active = false;
1126 1127 1128
}
EXPORT_SYMBOL(transport_init_se_cmd);

1129 1130
static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd *cmd)
1131
{
1132 1133
	struct se_device *dev = cmd->se_dev;

1134 1135 1136 1137
	/*
	 * Check if SAM Task Attribute emulation is enabled for this
	 * struct se_device storage object
	 */
1138
	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1139 1140
		return 0;

1141
	if (cmd->sam_task_attr == MSG_ACA_TAG) {
1142
		pr_debug("SAM Task Attribute ACA"
1143
			" emulation is not supported\n");
1144
		return TCM_INVALID_CDB_FIELD;
1145 1146 1147 1148 1149
	}
	/*
	 * Used to determine when ORDERED commands should go from
	 * Dormant to Active status.
	 */
1150
	cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1151
	smp_mb__after_atomic_inc();
1152
	pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1153
			cmd->se_ordered_id, cmd->sam_task_attr,
1154
			dev->transport->name);
1155 1156 1157
	return 0;
}

1158 1159
sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1160
{
1161
	struct se_device *dev = cmd->se_dev;
1162
	sense_reason_t ret;
1163 1164 1165 1166 1167 1168

	/*
	 * Ensure that the received CDB is less than the max (252 + 8) bytes
	 * for VARIABLE_LENGTH_CMD
	 */
	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1169
		pr_err("Received SCSI CDB with command_size: %d that"
1170 1171
			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1172
		return TCM_INVALID_CDB_FIELD;
1173 1174 1175 1176 1177 1178
	}
	/*
	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
	 * allocate the additional extended CDB buffer now..  Otherwise
	 * setup the pointer from __t_task_cdb to t_task_cdb.
	 */
1179 1180
	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1181
						GFP_KERNEL);
1182 1183
		if (!cmd->t_task_cdb) {
			pr_err("Unable to allocate cmd->t_task_cdb"
1184
				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1185
				scsi_command_size(cdb),
1186
				(unsigned long)sizeof(cmd->__t_task_cdb));
1187
			return TCM_OUT_OF_RESOURCES;
1188 1189
		}
	} else
1190
		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1191
	/*
1192
	 * Copy the original CDB into cmd->
1193
	 */
1194
	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1195

1196 1197
	trace_target_sequencer_start(cmd);

1198 1199 1200
	/*
	 * Check for an existing UNIT ATTENTION condition
	 */
1201 1202 1203
	ret = target_scsi3_ua_check(cmd);
	if (ret)
		return ret;
1204

C
Christoph Hellwig 已提交
1205
	ret = target_alua_state_check(cmd);
1206 1207
	if (ret)
		return ret;
1208

1209
	ret = target_check_reservation(cmd);
1210 1211
	if (ret) {
		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1212
		return ret;
1213
	}
1214

1215
	ret = dev->transport->parse_cdb(cmd);
1216 1217 1218 1219 1220
	if (ret)
		return ret;

	ret = transport_check_alloc_task_attr(cmd);
	if (ret)
1221
		return ret;
1222 1223 1224

	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;

1225 1226 1227 1228 1229 1230
	spin_lock(&cmd->se_lun->lun_sep_lock);
	if (cmd->se_lun->lun_sep)
		cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
	spin_unlock(&cmd->se_lun->lun_sep_lock);
	return 0;
}
1231
EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1232

1233 1234 1235 1236 1237 1238 1239
/*
 * Used by fabric module frontends to queue tasks directly.
 * Many only be used from process context only
 */
int transport_handle_cdb_direct(
	struct se_cmd *cmd)
{
1240
	sense_reason_t ret;
1241

1242 1243
	if (!cmd->se_lun) {
		dump_stack();
1244
		pr_err("cmd->se_lun is NULL\n");
1245 1246 1247 1248
		return -EINVAL;
	}
	if (in_interrupt()) {
		dump_stack();
1249
		pr_err("transport_generic_handle_cdb cannot be called"
1250 1251 1252
				" from interrupt context\n");
		return -EINVAL;
	}
1253
	/*
1254 1255 1256
	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
	 * outstanding descriptors are handled correctly during shutdown via
	 * transport_wait_for_tasks()
1257 1258 1259 1260 1261
	 *
	 * Also, we don't take cmd->t_state_lock here as we only expect
	 * this to be called for initial descriptor submission.
	 */
	cmd->t_state = TRANSPORT_NEW_CMD;
1262 1263
	cmd->transport_state |= CMD_T_ACTIVE;

1264 1265 1266 1267 1268 1269
	/*
	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
	 * so follow TRANSPORT_NEW_CMD processing thread context usage
	 * and call transport_generic_request_failure() if necessary..
	 */
	ret = transport_generic_new_cmd(cmd);
1270 1271
	if (ret)
		transport_generic_request_failure(cmd, ret);
1272
	return 0;
1273 1274 1275
}
EXPORT_SYMBOL(transport_handle_cdb_direct);

1276
sense_reason_t
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
{
	if (!sgl || !sgl_count)
		return 0;

	/*
	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
	 * scatterlists already have been set to follow what the fabric
	 * passes for the original expected data transfer length.
	 */
	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
		pr_warn("Rejecting SCSI DATA overflow for fabric using"
			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
		return TCM_INVALID_CDB_FIELD;
	}

	cmd->t_data_sg = sgl;
	cmd->t_data_nents = sgl_count;

	if (sgl_bidi && sgl_bidi_count) {
		cmd->t_bidi_data_sg = sgl_bidi;
		cmd->t_bidi_data_nents = sgl_bidi_count;
	}
	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
	return 0;
}

1305 1306 1307
/*
 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
 * 			 se_cmd + use pre-allocated SGL memory.
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
 * @task_addr: SAM task attribute
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
1318 1319 1320 1321
 * @sgl: struct scatterlist memory for unidirectional mapping
 * @sgl_count: scatterlist count for unidirectional mapping
 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1322 1323
 * @sgl_prot: struct scatterlist memory protection information
 * @sgl_prot_count: scatterlist count for protection information
1324
 *
1325 1326 1327 1328
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
1329 1330
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
1331 1332
 */
int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1333
		unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1334 1335
		u32 data_length, int task_attr, int data_dir, int flags,
		struct scatterlist *sgl, u32 sgl_count,
1336 1337
		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1338 1339
{
	struct se_portal_group *se_tpg;
1340 1341
	sense_reason_t rc;
	int ret;
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);
	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
	BUG_ON(in_interrupt());
	/*
	 * Initialize se_cmd for target operation.  From this point
	 * exceptions are handled by sending exception status via
	 * target_core_fabric_ops->queue_status() callback
	 */
	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
				data_length, data_dir, task_attr, sense);
1354 1355
	if (flags & TARGET_SCF_UNKNOWN_SIZE)
		se_cmd->unknown_data_length = 1;
1356 1357 1358 1359 1360 1361
	/*
	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
	 * kref_put() to happen during fabric packet acknowledgement.
	 */
1362 1363 1364
	ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
	if (ret)
		return ret;
1365 1366 1367 1368 1369 1370 1371 1372
	/*
	 * Signal bidirectional data payloads to target-core
	 */
	if (flags & TARGET_SCF_BIDI_OP)
		se_cmd->se_cmd_flags |= SCF_BIDI;
	/*
	 * Locate se_lun pointer and attach it to struct se_cmd
	 */
1373 1374 1375
	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
	if (rc) {
		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1376
		target_put_sess_cmd(se_sess, se_cmd);
1377
		return 0;
1378
	}
1379 1380 1381 1382 1383 1384 1385

	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
	if (rc != 0) {
		transport_generic_request_failure(se_cmd, rc);
		return 0;
	}

1386 1387 1388 1389 1390 1391 1392 1393
	/*
	 * Save pointers for SGLs containing protection information,
	 * if present.
	 */
	if (sgl_prot_count) {
		se_cmd->t_prot_sg = sgl_prot;
		se_cmd->t_prot_nents = sgl_prot_count;
	}
1394

1395 1396 1397 1398 1399 1400 1401 1402
	/*
	 * When a non zero sgl_count has been passed perform SGL passthrough
	 * mapping for pre-allocated fabric memory instead of having target
	 * core perform an internal SGL allocation..
	 */
	if (sgl_count != 0) {
		BUG_ON(!sgl);

1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
		/*
		 * A work-around for tcm_loop as some userspace code via
		 * scsi-generic do not memset their associated read buffers,
		 * so go ahead and do that here for type non-data CDBs.  Also
		 * note that this is currently guaranteed to be a single SGL
		 * for this case by target core in target_setup_cmd_from_cdb()
		 * -> transport_generic_cmd_sequencer().
		 */
		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
		     se_cmd->data_direction == DMA_FROM_DEVICE) {
			unsigned char *buf = NULL;

			if (sgl)
				buf = kmap(sg_page(sgl)) + sgl->offset;

			if (buf) {
				memset(buf, 0, sgl->length);
				kunmap(sg_page(sgl));
			}
		}

1424 1425 1426
		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
				sgl_bidi, sgl_bidi_count);
		if (rc != 0) {
1427
			transport_generic_request_failure(se_cmd, rc);
1428 1429 1430
			return 0;
		}
	}
1431

1432 1433 1434 1435 1436 1437
	/*
	 * Check if we need to delay processing because of ALUA
	 * Active/NonOptimized primary access state..
	 */
	core_alua_check_nonop_delay(se_cmd);

1438
	transport_handle_cdb_direct(se_cmd);
1439
	return 0;
1440
}
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
EXPORT_SYMBOL(target_submit_cmd_map_sgls);

/*
 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
 * @task_addr: SAM task attribute
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
 *
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
 *
 * It also assumes interal target core SGL memory allocation.
 */
int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
		unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
		u32 data_length, int task_attr, int data_dir, int flags)
{
	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
			unpacked_lun, data_length, task_attr, data_dir,
1471
			flags, NULL, 0, NULL, 0, NULL, 0);
1472
}
1473 1474
EXPORT_SYMBOL(target_submit_cmd);

1475 1476 1477 1478 1479 1480
static void target_complete_tmr_failure(struct work_struct *work)
{
	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);

	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1481 1482

	transport_cmd_check_stop_to_fabric(se_cmd);
1483 1484
}

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
/**
 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
 *                     for TMR CDBs
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @fabric_context: fabric context for TMR req
 * @tm_type: Type of TM request
1495 1496
 * @gfp: gfp type for caller
 * @tag: referenced task tag for TMR_ABORT_TASK
1497
 * @flags: submit cmd flags
1498 1499 1500 1501
 *
 * Callable from all contexts.
 **/

1502
int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1503
		unsigned char *sense, u32 unpacked_lun,
1504 1505
		void *fabric_tmr_ptr, unsigned char tm_type,
		gfp_t gfp, unsigned int tag, int flags)
1506 1507 1508 1509 1510 1511 1512 1513 1514
{
	struct se_portal_group *se_tpg;
	int ret;

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);

	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
			      0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1515 1516 1517 1518
	/*
	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
	 * allocation failure.
	 */
1519
	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1520 1521
	if (ret < 0)
		return -ENOMEM;
1522

1523 1524 1525
	if (tm_type == TMR_ABORT_TASK)
		se_cmd->se_tmr_req->ref_task_tag = tag;

1526
	/* See target_submit_cmd for commentary */
1527 1528 1529 1530 1531
	ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
	if (ret) {
		core_tmr_release_req(se_cmd->se_tmr_req);
		return ret;
	}
1532 1533 1534

	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
	if (ret) {
1535 1536 1537 1538 1539 1540
		/*
		 * For callback during failure handling, push this work off
		 * to process context with TMR_LUN_DOES_NOT_EXIST status.
		 */
		INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
		schedule_work(&se_cmd->work);
1541
		return 0;
1542 1543
	}
	transport_generic_handle_tmr(se_cmd);
1544
	return 0;
1545 1546 1547
}
EXPORT_SYMBOL(target_submit_tmr);

1548
/*
1549
 * If the cmd is active, request it to be stopped and sleep until it
1550 1551
 * has completed.
 */
1552
bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1553 1554 1555
{
	bool was_active = false;

1556 1557
	if (cmd->transport_state & CMD_T_BUSY) {
		cmd->transport_state |= CMD_T_REQUEST_STOP;
1558 1559
		spin_unlock_irqrestore(&cmd->t_state_lock, *flags);

1560 1561 1562
		pr_debug("cmd %p waiting to complete\n", cmd);
		wait_for_completion(&cmd->task_stop_comp);
		pr_debug("cmd %p stopped successfully\n", cmd);
1563 1564

		spin_lock_irqsave(&cmd->t_state_lock, *flags);
1565 1566
		cmd->transport_state &= ~CMD_T_REQUEST_STOP;
		cmd->transport_state &= ~CMD_T_BUSY;
1567 1568 1569 1570 1571 1572
		was_active = true;
	}

	return was_active;
}

1573 1574 1575
/*
 * Handle SAM-esque emulation for generic transport request failures.
 */
1576 1577
void transport_generic_request_failure(struct se_cmd *cmd,
		sense_reason_t sense_reason)
1578
{
1579 1580
	int ret = 0;

1581
	pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1582
		" CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1583
		cmd->t_task_cdb[0]);
1584
	pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1585
		cmd->se_tfo->get_cmd_state(cmd),
1586
		cmd->t_state, sense_reason);
1587
	pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1588 1589 1590
		(cmd->transport_state & CMD_T_ACTIVE) != 0,
		(cmd->transport_state & CMD_T_STOP) != 0,
		(cmd->transport_state & CMD_T_SENT) != 0);
1591 1592 1593 1594

	/*
	 * For SAM Task Attribute emulation for failed struct se_cmd
	 */
1595
	transport_complete_task_attr(cmd);
1596 1597 1598 1599 1600 1601 1602
	/*
	 * Handle special case for COMPARE_AND_WRITE failure, where the
	 * callback is expected to drop the per device ->caw_mutex.
	 */
	if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
	     cmd->transport_complete_callback)
		cmd->transport_complete_callback(cmd);
1603

1604
	switch (sense_reason) {
1605 1606 1607 1608
	case TCM_NON_EXISTENT_LUN:
	case TCM_UNSUPPORTED_SCSI_OPCODE:
	case TCM_INVALID_CDB_FIELD:
	case TCM_INVALID_PARAMETER_LIST:
1609
	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1610 1611 1612
	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
	case TCM_UNKNOWN_MODE_PAGE:
	case TCM_WRITE_PROTECTED:
1613
	case TCM_ADDRESS_OUT_OF_RANGE:
1614 1615 1616
	case TCM_CHECK_CONDITION_ABORT_CMD:
	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
	case TCM_CHECK_CONDITION_NOT_READY:
1617 1618 1619
	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1620
		break;
1621 1622 1623
	case TCM_OUT_OF_RESOURCES:
		sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		break;
1624
	case TCM_RESERVATION_CONFLICT:
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
		/*
		 * No SENSE Data payload for this case, set SCSI Status
		 * and queue the response to $FABRIC_MOD.
		 *
		 * Uses linux/include/scsi/scsi.h SAM status codes defs
		 */
		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
		/*
		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
		 * CONFLICT STATUS.
		 *
		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
		 */
1639
		if (cmd->se_sess &&
1640
		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1641
			core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1642 1643 1644
				cmd->orig_fe_lun, 0x2C,
				ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);

1645 1646
		trace_target_cmd_complete(cmd);
		ret = cmd->se_tfo-> queue_status(cmd);
1647
		if (ret == -EAGAIN || ret == -ENOMEM)
1648
			goto queue_full;
1649 1650
		goto check_stop;
	default:
1651
		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1652 1653
			cmd->t_task_cdb[0], sense_reason);
		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1654 1655
		break;
	}
1656

1657
	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1658 1659
	if (ret == -EAGAIN || ret == -ENOMEM)
		goto queue_full;
1660

1661 1662
check_stop:
	transport_lun_remove_cmd(cmd);
1663
	if (!transport_cmd_check_stop_to_fabric(cmd))
1664
		;
1665 1666 1667
	return;

queue_full:
1668 1669
	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
	transport_handle_queue_full(cmd, cmd->se_dev);
1670
}
1671
EXPORT_SYMBOL(transport_generic_request_failure);
1672

1673
void __target_execute_cmd(struct se_cmd *cmd)
1674
{
1675
	sense_reason_t ret;
1676

1677 1678 1679 1680 1681 1682
	if (cmd->execute_cmd) {
		ret = cmd->execute_cmd(cmd);
		if (ret) {
			spin_lock_irq(&cmd->t_state_lock);
			cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
			spin_unlock_irq(&cmd->t_state_lock);
1683

1684 1685
			transport_generic_request_failure(cmd, ret);
		}
1686 1687 1688
	}
}

1689
static bool target_handle_task_attr(struct se_cmd *cmd)
1690 1691 1692
{
	struct se_device *dev = cmd->se_dev;

1693 1694
	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
		return false;
1695

1696
	/*
L
Lucas De Marchi 已提交
1697
	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1698 1699
	 * to allow the passed struct se_cmd list of tasks to the front of the list.
	 */
1700 1701 1702 1703 1704
	switch (cmd->sam_task_attr) {
	case MSG_HEAD_TAG:
		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
			 "se_ordered_id: %u\n",
			 cmd->t_task_cdb[0], cmd->se_ordered_id);
1705
		return false;
1706 1707
	case MSG_ORDERED_TAG:
		atomic_inc(&dev->dev_ordered_sync);
1708 1709
		smp_mb__after_atomic_inc();

1710 1711 1712 1713
		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
			 " se_ordered_id: %u\n",
			 cmd->t_task_cdb[0], cmd->se_ordered_id);

1714
		/*
1715 1716
		 * Execute an ORDERED command if no other older commands
		 * exist that need to be completed first.
1717
		 */
1718
		if (!atomic_read(&dev->simple_cmds))
1719
			return false;
1720 1721
		break;
	default:
1722 1723 1724
		/*
		 * For SIMPLE and UNTAGGED Task Attribute commands
		 */
1725
		atomic_inc(&dev->simple_cmds);
1726
		smp_mb__after_atomic_inc();
1727
		break;
1728
	}
1729

1730 1731
	if (atomic_read(&dev->dev_ordered_sync) == 0)
		return false;
1732

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	spin_lock(&dev->delayed_cmd_lock);
	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
	spin_unlock(&dev->delayed_cmd_lock);

	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
		" delayed CMD list, se_ordered_id: %u\n",
		cmd->t_task_cdb[0], cmd->sam_task_attr,
		cmd->se_ordered_id);
	return true;
}

void target_execute_cmd(struct se_cmd *cmd)
{
	/*
	 * If the received CDB has aleady been aborted stop processing it here.
	 */
1749
	if (transport_check_aborted_status(cmd, 1))
1750
		return;
1751

1752 1753 1754 1755
	/*
	 * Determine if frontend context caller is requesting the stopping of
	 * this command for frontend exceptions.
	 */
1756
	spin_lock_irq(&cmd->t_state_lock);
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
	if (cmd->transport_state & CMD_T_STOP) {
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
			__func__, __LINE__,
			cmd->se_tfo->get_task_tag(cmd));

		spin_unlock_irq(&cmd->t_state_lock);
		complete(&cmd->t_transport_stop_comp);
		return;
	}

	cmd->t_state = TRANSPORT_PROCESSING;
1768
	cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1769
	spin_unlock_irq(&cmd->t_state_lock);
1770 1771 1772 1773 1774 1775 1776 1777 1778
	/*
	 * Perform WRITE_INSERT of PI using software emulation when backend
	 * device has PI enabled, if the transport has not already generated
	 * PI using hardware WRITE_INSERT offload.
	 */
	if (cmd->prot_op == TARGET_PROT_DOUT_INSERT) {
		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
			sbc_dif_generate(cmd);
	}
1779

1780 1781 1782 1783 1784 1785 1786 1787
	if (target_handle_task_attr(cmd)) {
		spin_lock_irq(&cmd->t_state_lock);
		cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
		spin_unlock_irq(&cmd->t_state_lock);
		return;
	}

	__target_execute_cmd(cmd);
1788
}
1789
EXPORT_SYMBOL(target_execute_cmd);
1790

1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
/*
 * Process all commands up to the last received ORDERED task attribute which
 * requires another blocking boundary
 */
static void target_restart_delayed_cmds(struct se_device *dev)
{
	for (;;) {
		struct se_cmd *cmd;

		spin_lock(&dev->delayed_cmd_lock);
		if (list_empty(&dev->delayed_cmd_list)) {
			spin_unlock(&dev->delayed_cmd_lock);
			break;
		}

		cmd = list_entry(dev->delayed_cmd_list.next,
				 struct se_cmd, se_delayed_node);
		list_del(&cmd->se_delayed_node);
		spin_unlock(&dev->delayed_cmd_lock);

		__target_execute_cmd(cmd);

		if (cmd->sam_task_attr == MSG_ORDERED_TAG)
			break;
	}
}

1818
/*
1819
 * Called from I/O completion to determine which dormant/delayed
1820 1821 1822 1823
 * and ordered cmds need to have their tasks added to the execution queue.
 */
static void transport_complete_task_attr(struct se_cmd *cmd)
{
1824
	struct se_device *dev = cmd->se_dev;
1825

1826 1827 1828
	if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
		return;

1829
	if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1830 1831 1832
		atomic_dec(&dev->simple_cmds);
		smp_mb__after_atomic_dec();
		dev->dev_cur_ordered_id++;
1833
		pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1834 1835
			" SIMPLE: %u\n", dev->dev_cur_ordered_id,
			cmd->se_ordered_id);
1836
	} else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1837
		dev->dev_cur_ordered_id++;
1838
		pr_debug("Incremented dev_cur_ordered_id: %u for"
1839 1840
			" HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
			cmd->se_ordered_id);
1841
	} else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1842 1843 1844 1845
		atomic_dec(&dev->dev_ordered_sync);
		smp_mb__after_atomic_dec();

		dev->dev_cur_ordered_id++;
1846
		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1847 1848 1849
			" %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
	}

1850
	target_restart_delayed_cmds(dev);
1851 1852
}

1853
static void transport_complete_qf(struct se_cmd *cmd)
1854 1855 1856
{
	int ret = 0;

1857
	transport_complete_task_attr(cmd);
1858 1859

	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1860
		trace_target_cmd_complete(cmd);
1861 1862 1863 1864
		ret = cmd->se_tfo->queue_status(cmd);
		if (ret)
			goto out;
	}
1865 1866 1867

	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
1868
		trace_target_cmd_complete(cmd);
1869 1870 1871
		ret = cmd->se_tfo->queue_data_in(cmd);
		break;
	case DMA_TO_DEVICE:
1872
		if (cmd->se_cmd_flags & SCF_BIDI) {
1873 1874
			ret = cmd->se_tfo->queue_data_in(cmd);
			if (ret < 0)
1875
				break;
1876 1877 1878
		}
		/* Fall through for DMA_TO_DEVICE */
	case DMA_NONE:
1879
		trace_target_cmd_complete(cmd);
1880 1881 1882 1883 1884 1885
		ret = cmd->se_tfo->queue_status(cmd);
		break;
	default:
		break;
	}

1886 1887 1888 1889 1890 1891 1892
out:
	if (ret < 0) {
		transport_handle_queue_full(cmd, cmd->se_dev);
		return;
	}
	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
1893 1894 1895 1896
}

static void transport_handle_queue_full(
	struct se_cmd *cmd,
1897
	struct se_device *dev)
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
{
	spin_lock_irq(&dev->qf_cmd_lock);
	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
	atomic_inc(&dev->dev_qf_count);
	smp_mb__after_atomic_inc();
	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);

	schedule_work(&cmd->se_dev->qf_work_queue);
}

1908
static void target_complete_ok_work(struct work_struct *work)
1909
{
1910
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1911
	int ret;
1912

1913 1914 1915 1916 1917
	/*
	 * Check if we need to move delayed/dormant tasks from cmds on the
	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
	 * Attribute.
	 */
1918 1919
	transport_complete_task_attr(cmd);

1920 1921 1922 1923 1924 1925 1926
	/*
	 * Check to schedule QUEUE_FULL work, or execute an existing
	 * cmd->transport_qf_callback()
	 */
	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
		schedule_work(&cmd->se_dev->qf_work_queue);

1927
	/*
1928
	 * Check if we need to send a sense buffer from
1929 1930 1931
	 * the struct se_cmd in question.
	 */
	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1932 1933 1934 1935 1936 1937 1938 1939 1940
		WARN_ON(!cmd->scsi_status);
		ret = transport_send_check_condition_and_sense(
					cmd, 0, 1);
		if (ret == -EAGAIN || ret == -ENOMEM)
			goto queue_full;

		transport_lun_remove_cmd(cmd);
		transport_cmd_check_stop_to_fabric(cmd);
		return;
1941 1942
	}
	/*
L
Lucas De Marchi 已提交
1943
	 * Check for a callback, used by amongst other things
1944
	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
1945
	 */
1946 1947 1948 1949
	if (cmd->transport_complete_callback) {
		sense_reason_t rc;

		rc = cmd->transport_complete_callback(cmd);
1950
		if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
1951
			return;
1952 1953 1954 1955 1956
		} else if (rc) {
			ret = transport_send_check_condition_and_sense(cmd,
						rc, 0);
			if (ret == -EAGAIN || ret == -ENOMEM)
				goto queue_full;
1957

1958 1959 1960 1961
			transport_lun_remove_cmd(cmd);
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
1962
	}
1963 1964 1965 1966

	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
		spin_lock(&cmd->se_lun->lun_sep_lock);
1967 1968
		if (cmd->se_lun->lun_sep) {
			cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1969 1970 1971 1972
					cmd->data_length;
		}
		spin_unlock(&cmd->se_lun->lun_sep_lock);

1973
		trace_target_cmd_complete(cmd);
1974
		ret = cmd->se_tfo->queue_data_in(cmd);
1975
		if (ret == -EAGAIN || ret == -ENOMEM)
1976
			goto queue_full;
1977 1978 1979
		break;
	case DMA_TO_DEVICE:
		spin_lock(&cmd->se_lun->lun_sep_lock);
1980 1981
		if (cmd->se_lun->lun_sep) {
			cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1982 1983 1984 1985 1986 1987
				cmd->data_length;
		}
		spin_unlock(&cmd->se_lun->lun_sep_lock);
		/*
		 * Check if we need to send READ payload for BIDI-COMMAND
		 */
1988
		if (cmd->se_cmd_flags & SCF_BIDI) {
1989
			spin_lock(&cmd->se_lun->lun_sep_lock);
1990 1991
			if (cmd->se_lun->lun_sep) {
				cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1992 1993 1994
					cmd->data_length;
			}
			spin_unlock(&cmd->se_lun->lun_sep_lock);
1995
			ret = cmd->se_tfo->queue_data_in(cmd);
1996
			if (ret == -EAGAIN || ret == -ENOMEM)
1997
				goto queue_full;
1998 1999 2000 2001
			break;
		}
		/* Fall through for DMA_TO_DEVICE */
	case DMA_NONE:
2002
		trace_target_cmd_complete(cmd);
2003
		ret = cmd->se_tfo->queue_status(cmd);
2004
		if (ret == -EAGAIN || ret == -ENOMEM)
2005
			goto queue_full;
2006 2007 2008 2009 2010 2011 2012
		break;
	default:
		break;
	}

	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
2013 2014 2015
	return;

queue_full:
2016
	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2017
		" data_direction: %d\n", cmd, cmd->data_direction);
2018 2019
	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
	transport_handle_queue_full(cmd, cmd->se_dev);
2020 2021
}

2022
static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2023
{
2024 2025
	struct scatterlist *sg;
	int count;
2026

2027 2028
	for_each_sg(sgl, sg, nents, count)
		__free_page(sg_page(sg));
2029

2030 2031
	kfree(sgl);
}
2032

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
{
	/*
	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
	 * emulation, and free + reset pointers if necessary..
	 */
	if (!cmd->t_data_sg_orig)
		return;

	kfree(cmd->t_data_sg);
	cmd->t_data_sg = cmd->t_data_sg_orig;
	cmd->t_data_sg_orig = NULL;
	cmd->t_data_nents = cmd->t_data_nents_orig;
	cmd->t_data_nents_orig = 0;
}

2049 2050
static inline void transport_free_pages(struct se_cmd *cmd)
{
2051 2052
	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
		transport_reset_sgl_orig(cmd);
2053
		return;
2054 2055
	}
	transport_reset_sgl_orig(cmd);
2056 2057

	transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2058 2059
	cmd->t_data_sg = NULL;
	cmd->t_data_nents = 0;
2060

2061
	transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2062 2063
	cmd->t_bidi_data_sg = NULL;
	cmd->t_bidi_data_nents = 0;
2064 2065 2066 2067

	transport_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
	cmd->t_prot_sg = NULL;
	cmd->t_prot_nents = 0;
2068 2069
}

C
Christoph Hellwig 已提交
2070 2071 2072 2073 2074 2075 2076
/**
 * transport_release_cmd - free a command
 * @cmd:       command to free
 *
 * This routine unconditionally frees a command, and reference counting
 * or list removal must be done in the caller.
 */
2077
static int transport_release_cmd(struct se_cmd *cmd)
C
Christoph Hellwig 已提交
2078 2079 2080
{
	BUG_ON(!cmd->se_tfo);

2081
	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
C
Christoph Hellwig 已提交
2082 2083 2084 2085
		core_tmr_release_req(cmd->se_tmr_req);
	if (cmd->t_task_cdb != cmd->__t_task_cdb)
		kfree(cmd->t_task_cdb);
	/*
2086 2087
	 * If this cmd has been setup with target_get_sess_cmd(), drop
	 * the kref and call ->release_cmd() in kref callback.
C
Christoph Hellwig 已提交
2088
	 */
2089
	return target_put_sess_cmd(cmd->se_sess, cmd);
C
Christoph Hellwig 已提交
2090 2091
}

2092 2093 2094 2095 2096 2097
/**
 * transport_put_cmd - release a reference to a command
 * @cmd:       command to release
 *
 * This routine releases our reference to the command and frees it if possible.
 */
2098
static int transport_put_cmd(struct se_cmd *cmd)
2099 2100
{
	transport_free_pages(cmd);
2101
	return transport_release_cmd(cmd);
2102 2103
}

2104
void *transport_kmap_data_sg(struct se_cmd *cmd)
2105
{
2106
	struct scatterlist *sg = cmd->t_data_sg;
2107 2108
	struct page **pages;
	int i;
2109 2110

	/*
2111 2112 2113
	 * We need to take into account a possible offset here for fabrics like
	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2114
	 */
2115 2116
	if (!cmd->t_data_nents)
		return NULL;
2117 2118 2119

	BUG_ON(!sg);
	if (cmd->t_data_nents == 1)
2120 2121 2122 2123
		return kmap(sg_page(sg)) + sg->offset;

	/* >1 page. use vmap */
	pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2124
	if (!pages)
2125 2126 2127 2128 2129 2130 2131 2132 2133
		return NULL;

	/* convert sg[] to pages[] */
	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
		pages[i] = sg_page(sg);
	}

	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
	kfree(pages);
2134
	if (!cmd->t_data_vmap)
2135 2136 2137
		return NULL;

	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2138
}
2139
EXPORT_SYMBOL(transport_kmap_data_sg);
2140

2141
void transport_kunmap_data_sg(struct se_cmd *cmd)
2142
{
2143
	if (!cmd->t_data_nents) {
2144
		return;
2145
	} else if (cmd->t_data_nents == 1) {
2146
		kunmap(sg_page(cmd->t_data_sg));
2147 2148
		return;
	}
2149 2150 2151

	vunmap(cmd->t_data_vmap);
	cmd->t_data_vmap = NULL;
2152
}
2153
EXPORT_SYMBOL(transport_kunmap_data_sg);
2154

2155
int
2156 2157
target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
		 bool zero_page)
2158
{
2159
	struct scatterlist *sg;
2160
	struct page *page;
2161 2162
	gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
	unsigned int nent;
2163
	int i = 0;
2164

2165 2166 2167
	nent = DIV_ROUND_UP(length, PAGE_SIZE);
	sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
	if (!sg)
2168
		return -ENOMEM;
2169

2170
	sg_init_table(sg, nent);
2171

2172 2173
	while (length) {
		u32 page_len = min_t(u32, length, PAGE_SIZE);
2174
		page = alloc_page(GFP_KERNEL | zero_flag);
2175 2176
		if (!page)
			goto out;
2177

2178
		sg_set_page(&sg[i], page, page_len, 0);
2179 2180
		length -= page_len;
		i++;
2181
	}
2182 2183
	*sgl = sg;
	*nents = nent;
2184 2185
	return 0;

2186
out:
2187
	while (i > 0) {
2188
		i--;
2189
		__free_page(sg_page(&sg[i]));
2190
	}
2191
	kfree(sg);
2192
	return -ENOMEM;
2193 2194
}

2195
/*
2196 2197 2198
 * Allocate any required resources to execute the command.  For writes we
 * might not have the payload yet, so notify the fabric via a call to
 * ->write_pending instead. Otherwise place it on the execution queue.
2199
 */
2200 2201
sense_reason_t
transport_generic_new_cmd(struct se_cmd *cmd)
2202 2203 2204 2205 2206 2207
{
	int ret = 0;

	/*
	 * Determine is the TCM fabric module has already allocated physical
	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2208
	 * beforehand.
2209
	 */
2210 2211
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
	    cmd->data_length) {
2212 2213
		bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
		if ((cmd->se_cmd_flags & SCF_BIDI) ||
		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
			u32 bidi_length;

			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
				bidi_length = cmd->t_task_nolb *
					      cmd->se_dev->dev_attrib.block_size;
			else
				bidi_length = cmd->data_length;

			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
					       &cmd->t_bidi_data_nents,
					       bidi_length, zero_flag);
			if (ret < 0)
				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		}

2231
		if (cmd->prot_op != TARGET_PROT_NORMAL) {
2232 2233 2234 2235 2236 2237 2238
			ret = target_alloc_sgl(&cmd->t_prot_sg,
					       &cmd->t_prot_nents,
					       cmd->prot_length, true);
			if (ret < 0)
				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		}

2239 2240
		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
				       cmd->data_length, zero_flag);
2241
		if (ret < 0)
2242
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2243 2244
	}
	/*
2245 2246 2247
	 * If this command is not a write we can execute it right here,
	 * for write buffers we need to notify the fabric driver first
	 * and let it call back once the write buffers are ready.
2248
	 */
2249
	target_add_to_state_list(cmd);
2250 2251 2252 2253
	if (cmd->data_direction != DMA_TO_DEVICE) {
		target_execute_cmd(cmd);
		return 0;
	}
2254
	transport_cmd_check_stop(cmd, false, true);
2255 2256 2257 2258 2259

	ret = cmd->se_tfo->write_pending(cmd);
	if (ret == -EAGAIN || ret == -ENOMEM)
		goto queue_full;

2260 2261 2262
	/* fabric drivers should only return -EAGAIN or -ENOMEM as error */
	WARN_ON(ret);

2263
	return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2264

2265 2266 2267 2268 2269
queue_full:
	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
	cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
	transport_handle_queue_full(cmd, cmd->se_dev);
	return 0;
2270
}
2271
EXPORT_SYMBOL(transport_generic_new_cmd);
2272

2273
static void transport_write_pending_qf(struct se_cmd *cmd)
2274
{
2275 2276 2277 2278
	int ret;

	ret = cmd->se_tfo->write_pending(cmd);
	if (ret == -EAGAIN || ret == -ENOMEM) {
2279 2280 2281 2282
		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
			 cmd);
		transport_handle_queue_full(cmd, cmd->se_dev);
	}
2283 2284
}

2285
int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2286
{
2287
	unsigned long flags;
2288 2289
	int ret = 0;

2290
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2291
		if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2292 2293
			 transport_wait_for_tasks(cmd);

2294
		ret = transport_release_cmd(cmd);
2295 2296 2297
	} else {
		if (wait_for_tasks)
			transport_wait_for_tasks(cmd);
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
		/*
		 * Handle WRITE failure case where transport_generic_new_cmd()
		 * has already added se_cmd to state_list, but fabric has
		 * failed command before I/O submission.
		 */
		if (cmd->state_active) {
			spin_lock_irqsave(&cmd->t_state_lock, flags);
			target_remove_from_state_list(cmd);
			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		}
2308

2309
		if (cmd->se_lun)
2310 2311
			transport_lun_remove_cmd(cmd);

2312
		ret = transport_put_cmd(cmd);
2313
	}
2314
	return ret;
2315 2316 2317
}
EXPORT_SYMBOL(transport_generic_free_cmd);

2318 2319 2320
/* target_get_sess_cmd - Add command to active ->sess_cmd_list
 * @se_sess:	session to reference
 * @se_cmd:	command descriptor to add
2321
 * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2322
 */
2323
int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2324
			       bool ack_kref)
2325 2326
{
	unsigned long flags;
2327
	int ret = 0;
2328

2329
	kref_init(&se_cmd->cmd_kref);
2330 2331 2332 2333 2334
	/*
	 * Add a second kref if the fabric caller is expecting to handle
	 * fabric acknowledgement that requires two target_put_sess_cmd()
	 * invocations before se_cmd descriptor release.
	 */
2335
	if (ack_kref == true) {
2336
		kref_get(&se_cmd->cmd_kref);
2337 2338
		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
	}
2339

2340
	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2341 2342 2343 2344
	if (se_sess->sess_tearing_down) {
		ret = -ESHUTDOWN;
		goto out;
	}
2345
	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2346
out:
2347
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2348
	return ret;
2349
}
2350
EXPORT_SYMBOL(target_get_sess_cmd);
2351

2352
static void target_release_cmd_kref(struct kref *kref)
2353
{
2354 2355
	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
	struct se_session *se_sess = se_cmd->se_sess;
2356 2357

	if (list_empty(&se_cmd->se_cmd_list)) {
2358
		spin_unlock(&se_sess->sess_cmd_lock);
2359
		se_cmd->se_tfo->release_cmd(se_cmd);
2360
		return;
2361 2362
	}
	if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2363
		spin_unlock(&se_sess->sess_cmd_lock);
2364
		complete(&se_cmd->cmd_wait_comp);
2365
		return;
2366 2367
	}
	list_del(&se_cmd->se_cmd_list);
2368
	spin_unlock(&se_sess->sess_cmd_lock);
2369

2370 2371 2372 2373 2374 2375 2376 2377 2378
	se_cmd->se_tfo->release_cmd(se_cmd);
}

/* target_put_sess_cmd - Check for active I/O shutdown via kref_put
 * @se_sess:	session to reference
 * @se_cmd:	command descriptor to drop
 */
int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
{
2379 2380
	return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
			&se_sess->sess_cmd_lock);
2381 2382 2383
}
EXPORT_SYMBOL(target_put_sess_cmd);

2384 2385 2386 2387
/* target_sess_cmd_list_set_waiting - Flag all commands in
 *         sess_cmd_list to complete cmd_wait_comp.  Set
 *         sess_tearing_down so no more commands are queued.
 * @se_sess:	session to flag
2388
 */
2389
void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2390 2391 2392 2393 2394
{
	struct se_cmd *se_cmd;
	unsigned long flags;

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2395 2396 2397 2398
	if (se_sess->sess_tearing_down) {
		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
		return;
	}
2399
	se_sess->sess_tearing_down = 1;
2400
	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2401

2402
	list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2403 2404 2405 2406
		se_cmd->cmd_wait_set = 1;

	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
}
2407
EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2408 2409 2410 2411

/* target_wait_for_sess_cmds - Wait for outstanding descriptors
 * @se_sess:    session to wait for active I/O
 */
2412
void target_wait_for_sess_cmds(struct se_session *se_sess)
2413 2414
{
	struct se_cmd *se_cmd, *tmp_cmd;
2415
	unsigned long flags;
2416 2417

	list_for_each_entry_safe(se_cmd, tmp_cmd,
2418
				&se_sess->sess_wait_list, se_cmd_list) {
2419 2420 2421 2422 2423 2424
		list_del(&se_cmd->se_cmd_list);

		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
			" %d\n", se_cmd, se_cmd->t_state,
			se_cmd->se_tfo->get_cmd_state(se_cmd));

2425 2426 2427 2428
		wait_for_completion(&se_cmd->cmd_wait_comp);
		pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
			" fabric state: %d\n", se_cmd, se_cmd->t_state,
			se_cmd->se_tfo->get_cmd_state(se_cmd));
2429 2430 2431

		se_cmd->se_tfo->release_cmd(se_cmd);
	}
2432 2433 2434 2435 2436

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
	WARN_ON(!list_empty(&se_sess->sess_cmd_list));
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);

2437 2438 2439
}
EXPORT_SYMBOL(target_wait_for_sess_cmds);

2440
static int transport_clear_lun_ref_thread(void *p)
2441
{
J
Jörn Engel 已提交
2442
	struct se_lun *lun = p;
2443

2444 2445 2446
	percpu_ref_kill(&lun->lun_ref);

	wait_for_completion(&lun->lun_ref_comp);
2447 2448 2449 2450 2451
	complete(&lun->lun_shutdown_comp);

	return 0;
}

2452
int transport_clear_lun_ref(struct se_lun *lun)
2453 2454 2455
{
	struct task_struct *kt;

2456
	kt = kthread_run(transport_clear_lun_ref_thread, lun,
2457 2458
			"tcm_cl_%u", lun->unpacked_lun);
	if (IS_ERR(kt)) {
2459
		pr_err("Unable to start clear_lun thread\n");
2460
		return PTR_ERR(kt);
2461 2462 2463 2464 2465 2466
	}
	wait_for_completion(&lun->lun_shutdown_comp);

	return 0;
}

2467 2468 2469
/**
 * transport_wait_for_tasks - wait for completion to occur
 * @cmd:	command to wait
2470
 *
2471 2472
 * Called from frontend fabric context to wait for storage engine
 * to pause and/or release frontend generated struct se_cmd.
2473
 */
2474
bool transport_wait_for_tasks(struct se_cmd *cmd)
2475 2476 2477
{
	unsigned long flags;

2478
	spin_lock_irqsave(&cmd->t_state_lock, flags);
2479 2480
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2481
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2482
		return false;
2483
	}
2484

2485 2486
	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2487
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2488
		return false;
2489
	}
2490

2491
	if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2492
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2493
		return false;
2494
	}
2495

2496
	cmd->transport_state |= CMD_T_STOP;
2497

2498
	pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2499
		" i_state: %d, t_state: %d, CMD_T_STOP\n",
2500 2501
		cmd, cmd->se_tfo->get_task_tag(cmd),
		cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2502

2503
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2504

2505
	wait_for_completion(&cmd->t_transport_stop_comp);
2506

2507
	spin_lock_irqsave(&cmd->t_state_lock, flags);
2508
	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2509

2510
	pr_debug("wait_for_tasks: Stopped wait_for_completion("
2511
		"&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2512
		cmd->se_tfo->get_task_tag(cmd));
2513

2514
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2515 2516

	return true;
2517
}
2518
EXPORT_SYMBOL(transport_wait_for_tasks);
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530

static int transport_get_sense_codes(
	struct se_cmd *cmd,
	u8 *asc,
	u8 *ascq)
{
	*asc = cmd->scsi_asc;
	*ascq = cmd->scsi_ascq;

	return 0;
}

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
static
void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector)
{
	/* Place failed LBA in sense data information descriptor 0. */
	buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc;
	buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */
	buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa;
	buffer[SPC_VALIDITY_OFFSET] = 0x80;

	/* Descriptor Information: failing sector */
	put_unaligned_be64(bad_sector, &buffer[12]);
}

2544 2545 2546
int
transport_send_check_condition_and_sense(struct se_cmd *cmd,
		sense_reason_t reason, int from_transport)
2547 2548 2549 2550 2551
{
	unsigned char *buffer = cmd->sense_buffer;
	unsigned long flags;
	u8 asc = 0, ascq = 0;

2552
	spin_lock_irqsave(&cmd->t_state_lock, flags);
2553
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2554
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2555 2556 2557
		return 0;
	}
	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2558
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2559 2560 2561 2562 2563 2564

	if (!reason && from_transport)
		goto after_reason;

	if (!from_transport)
		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2565

2566 2567 2568 2569 2570
	/*
	 * Actual SENSE DATA, see SPC-3 7.23.2  SPC_SENSE_KEY_OFFSET uses
	 * SENSE KEY values from include/scsi/scsi.h
	 */
	switch (reason) {
H
Hannes Reinecke 已提交
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
	case TCM_NO_SENSE:
		/* CURRENT ERROR */
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
		/* Not Ready */
		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
		/* NO ADDITIONAL SENSE INFORMATION */
		buffer[SPC_ASC_KEY_OFFSET] = 0;
		buffer[SPC_ASCQ_KEY_OFFSET] = 0;
		break;
2581
	case TCM_NON_EXISTENT_LUN:
2582
		/* CURRENT ERROR */
2583 2584
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2585
		/* ILLEGAL REQUEST */
2586
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2587
		/* LOGICAL UNIT NOT SUPPORTED */
2588
		buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2589
		break;
2590 2591 2592
	case TCM_UNSUPPORTED_SCSI_OPCODE:
	case TCM_SECTOR_COUNT_TOO_MANY:
		/* CURRENT ERROR */
2593 2594
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2595
		/* ILLEGAL REQUEST */
2596
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2597
		/* INVALID COMMAND OPERATION CODE */
2598
		buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2599 2600 2601
		break;
	case TCM_UNKNOWN_MODE_PAGE:
		/* CURRENT ERROR */
2602 2603
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2604
		/* ILLEGAL REQUEST */
2605
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2606
		/* INVALID FIELD IN CDB */
2607
		buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2608 2609 2610
		break;
	case TCM_CHECK_CONDITION_ABORT_CMD:
		/* CURRENT ERROR */
2611 2612
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2613
		/* ABORTED COMMAND */
2614
		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2615
		/* BUS DEVICE RESET FUNCTION OCCURRED */
2616 2617
		buffer[SPC_ASC_KEY_OFFSET] = 0x29;
		buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2618 2619 2620
		break;
	case TCM_INCORRECT_AMOUNT_OF_DATA:
		/* CURRENT ERROR */
2621 2622
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2623
		/* ABORTED COMMAND */
2624
		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2625
		/* WRITE ERROR */
2626
		buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2627
		/* NOT ENOUGH UNSOLICITED DATA */
2628
		buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2629 2630 2631
		break;
	case TCM_INVALID_CDB_FIELD:
		/* CURRENT ERROR */
2632 2633
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2634
		/* ILLEGAL REQUEST */
2635
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2636
		/* INVALID FIELD IN CDB */
2637
		buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2638 2639 2640
		break;
	case TCM_INVALID_PARAMETER_LIST:
		/* CURRENT ERROR */
2641 2642
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2643
		/* ILLEGAL REQUEST */
2644
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2645
		/* INVALID FIELD IN PARAMETER LIST */
2646
		buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2647
		break;
2648 2649 2650 2651 2652 2653 2654 2655 2656
	case TCM_PARAMETER_LIST_LENGTH_ERROR:
		/* CURRENT ERROR */
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
		/* ILLEGAL REQUEST */
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
		/* PARAMETER LIST LENGTH ERROR */
		buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
		break;
2657 2658
	case TCM_UNEXPECTED_UNSOLICITED_DATA:
		/* CURRENT ERROR */
2659 2660
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2661
		/* ABORTED COMMAND */
2662
		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2663
		/* WRITE ERROR */
2664
		buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2665
		/* UNEXPECTED_UNSOLICITED_DATA */
2666
		buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2667 2668 2669
		break;
	case TCM_SERVICE_CRC_ERROR:
		/* CURRENT ERROR */
2670 2671
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2672
		/* ABORTED COMMAND */
2673
		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2674
		/* PROTOCOL SERVICE CRC ERROR */
2675
		buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2676
		/* N/A */
2677
		buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2678 2679 2680
		break;
	case TCM_SNACK_REJECTED:
		/* CURRENT ERROR */
2681 2682
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2683
		/* ABORTED COMMAND */
2684
		buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2685
		/* READ ERROR */
2686
		buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2687
		/* FAILED RETRANSMISSION REQUEST */
2688
		buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2689 2690 2691
		break;
	case TCM_WRITE_PROTECTED:
		/* CURRENT ERROR */
2692 2693
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2694
		/* DATA PROTECT */
2695
		buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2696
		/* WRITE PROTECTED */
2697
		buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2698
		break;
2699 2700
	case TCM_ADDRESS_OUT_OF_RANGE:
		/* CURRENT ERROR */
2701 2702
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2703
		/* ILLEGAL REQUEST */
2704
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2705
		/* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2706
		buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2707
		break;
2708 2709
	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
		/* CURRENT ERROR */
2710 2711
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2712
		/* UNIT ATTENTION */
2713
		buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2714
		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2715 2716
		buffer[SPC_ASC_KEY_OFFSET] = asc;
		buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2717 2718 2719
		break;
	case TCM_CHECK_CONDITION_NOT_READY:
		/* CURRENT ERROR */
2720 2721
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2722
		/* Not Ready */
2723
		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2724
		transport_get_sense_codes(cmd, &asc, &ascq);
2725 2726
		buffer[SPC_ASC_KEY_OFFSET] = asc;
		buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2727
		break;
2728 2729 2730 2731 2732 2733 2734 2735 2736
	case TCM_MISCOMPARE_VERIFY:
		/* CURRENT ERROR */
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
		buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
		/* MISCOMPARE DURING VERIFY OPERATION */
		buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
		buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
		break;
2737 2738 2739 2740 2741 2742 2743 2744 2745
	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
		/* CURRENT ERROR */
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
		/* ILLEGAL REQUEST */
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
		/* LOGICAL BLOCK GUARD CHECK FAILED */
		buffer[SPC_ASC_KEY_OFFSET] = 0x10;
		buffer[SPC_ASCQ_KEY_OFFSET] = 0x01;
2746
		transport_err_sector_info(buffer, cmd->bad_sector);
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
		break;
	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
		/* CURRENT ERROR */
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
		/* ILLEGAL REQUEST */
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
		/* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
		buffer[SPC_ASC_KEY_OFFSET] = 0x10;
		buffer[SPC_ASCQ_KEY_OFFSET] = 0x02;
2757
		transport_err_sector_info(buffer, cmd->bad_sector);
2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
		break;
	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
		/* CURRENT ERROR */
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
		/* ILLEGAL REQUEST */
		buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
		/* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
		buffer[SPC_ASC_KEY_OFFSET] = 0x10;
		buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2768
		transport_err_sector_info(buffer, cmd->bad_sector);
2769
		break;
2770 2771 2772
	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
	default:
		/* CURRENT ERROR */
2773 2774
		buffer[0] = 0x70;
		buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2775 2776 2777 2778 2779 2780 2781
		/*
		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
		 * Solaris initiators.  Returning NOT READY instead means the
		 * operations will be retried a finite number of times and we
		 * can survive intermittent errors.
		 */
		buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2782
		/* LOGICAL UNIT COMMUNICATION FAILURE */
2783
		buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
		break;
	}
	/*
	 * This code uses linux/include/scsi/scsi.h SAM status codes!
	 */
	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
	/*
	 * Automatically padded, this value is encoded in the fabric's
	 * data_length response PDU containing the SCSI defined sense data.
	 */
2794
	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
2795 2796

after_reason:
2797
	trace_target_cmd_complete(cmd);
2798
	return cmd->se_tfo->queue_status(cmd);
2799 2800 2801 2802 2803
}
EXPORT_SYMBOL(transport_send_check_condition_and_sense);

int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
{
2804 2805
	if (!(cmd->transport_state & CMD_T_ABORTED))
		return 0;
2806

2807 2808 2809 2810 2811
	/*
	 * If cmd has been aborted but either no status is to be sent or it has
	 * already been sent, just return
	 */
	if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS))
2812
		return 1;
2813

2814 2815
	pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
		 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2816

2817
	cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
2818
	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2819
	trace_target_cmd_complete(cmd);
2820 2821 2822
	cmd->se_tfo->queue_status(cmd);

	return 1;
2823 2824 2825 2826 2827
}
EXPORT_SYMBOL(transport_check_aborted_status);

void transport_send_task_abort(struct se_cmd *cmd)
{
2828 2829 2830
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
2831
	if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
2832 2833 2834 2835 2836
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		return;
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

2837 2838 2839 2840 2841 2842 2843
	/*
	 * If there are still expected incoming fabric WRITEs, we wait
	 * until until they have completed before sending a TASK_ABORTED
	 * response.  This response with TASK_ABORTED status will be
	 * queued back to fabric module by transport_check_aborted_status().
	 */
	if (cmd->data_direction == DMA_TO_DEVICE) {
2844
		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2845
			cmd->transport_state |= CMD_T_ABORTED;
2846
			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
2847
			smp_mb__after_atomic_inc();
2848
			return;
2849 2850 2851
		}
	}
	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2852

2853 2854
	transport_lun_remove_cmd(cmd);

2855
	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2856
		" ITT: 0x%08x\n", cmd->t_task_cdb[0],
2857
		cmd->se_tfo->get_task_tag(cmd));
2858

2859
	trace_target_cmd_complete(cmd);
2860
	cmd->se_tfo->queue_status(cmd);
2861 2862
}

2863
static void target_tmr_work(struct work_struct *work)
2864
{
2865
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2866
	struct se_device *dev = cmd->se_dev;
2867 2868 2869 2870
	struct se_tmr_req *tmr = cmd->se_tmr_req;
	int ret;

	switch (tmr->function) {
2871
	case TMR_ABORT_TASK:
2872
		core_tmr_abort_task(dev, tmr, cmd->se_sess);
2873
		break;
2874 2875 2876
	case TMR_ABORT_TASK_SET:
	case TMR_CLEAR_ACA:
	case TMR_CLEAR_TASK_SET:
2877 2878
		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
		break;
2879
	case TMR_LUN_RESET:
2880 2881 2882 2883
		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
					 TMR_FUNCTION_REJECTED;
		break;
2884
	case TMR_TARGET_WARM_RESET:
2885 2886
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
2887
	case TMR_TARGET_COLD_RESET:
2888 2889 2890
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	default:
2891
		pr_err("Uknown TMR function: 0x%02x.\n",
2892 2893 2894 2895 2896 2897
				tmr->function);
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	}

	cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2898
	cmd->se_tfo->queue_tm_rsp(cmd);
2899

2900
	transport_cmd_check_stop_to_fabric(cmd);
2901 2902
}

2903 2904
int transport_generic_handle_tmr(
	struct se_cmd *cmd)
2905
{
2906 2907
	INIT_WORK(&cmd->work, target_tmr_work);
	queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2908 2909
	return 0;
}
2910
EXPORT_SYMBOL(transport_generic_handle_tmr);