target_core_transport.c 92.1 KB
Newer Older
1 2 3 4 5
/*******************************************************************************
 * Filename:  target_core_transport.c
 *
 * This file contains the Generic Target Engine Core.
 *
6
 * (c) Copyright 2002-2013 Datera, Inc.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 *
 * Nicholas A. Bellinger <nab@kernel.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 ******************************************************************************/

#include <linux/net.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/in.h>
#include <linux/cdrom.h>
35
#include <linux/module.h>
36
#include <linux/ratelimit.h>
37
#include <linux/vmalloc.h>
38 39 40
#include <asm/unaligned.h>
#include <net/sock.h>
#include <net/tcp.h>
41
#include <scsi/scsi_proto.h>
42
#include <scsi/scsi_common.h>
43 44

#include <target/target_core_base.h>
45 46
#include <target/target_core_backend.h>
#include <target/target_core_fabric.h>
47

C
Christoph Hellwig 已提交
48
#include "target_core_internal.h"
49 50 51 52
#include "target_core_alua.h"
#include "target_core_pr.h"
#include "target_core_ua.h"

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/target.h>

56
static struct workqueue_struct *target_completion_wq;
57 58 59 60 61 62
static struct kmem_cache *se_sess_cache;
struct kmem_cache *se_ua_cache;
struct kmem_cache *t10_pr_reg_cache;
struct kmem_cache *t10_alua_lu_gp_cache;
struct kmem_cache *t10_alua_lu_gp_mem_cache;
struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 64
struct kmem_cache *t10_alua_lba_map_cache;
struct kmem_cache *t10_alua_lba_map_mem_cache;
65 66

static void transport_complete_task_attr(struct se_cmd *cmd);
67
static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
68
static void transport_handle_queue_full(struct se_cmd *cmd,
69
		struct se_device *dev, int err, bool write_pending);
70
static void target_complete_ok_work(struct work_struct *work);
71

72
int init_se_kmem_caches(void)
73 74 75 76
{
	se_sess_cache = kmem_cache_create("se_sess_cache",
			sizeof(struct se_session), __alignof__(struct se_session),
			0, NULL);
77 78
	if (!se_sess_cache) {
		pr_err("kmem_cache_create() for struct se_session"
79
				" failed\n");
80
		goto out;
81 82 83 84
	}
	se_ua_cache = kmem_cache_create("se_ua_cache",
			sizeof(struct se_ua), __alignof__(struct se_ua),
			0, NULL);
85 86
	if (!se_ua_cache) {
		pr_err("kmem_cache_create() for struct se_ua failed\n");
87
		goto out_free_sess_cache;
88 89 90 91
	}
	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
			sizeof(struct t10_pr_registration),
			__alignof__(struct t10_pr_registration), 0, NULL);
92 93
	if (!t10_pr_reg_cache) {
		pr_err("kmem_cache_create() for struct t10_pr_registration"
94
				" failed\n");
95
		goto out_free_ua_cache;
96 97 98 99
	}
	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
			0, NULL);
100 101
	if (!t10_alua_lu_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102
				" failed\n");
103
		goto out_free_pr_reg_cache;
104 105 106 107
	}
	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
			sizeof(struct t10_alua_lu_gp_member),
			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 109
	if (!t10_alua_lu_gp_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110
				"cache failed\n");
111
		goto out_free_lu_gp_cache;
112 113 114 115
	}
	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
			sizeof(struct t10_alua_tg_pt_gp),
			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 117
	if (!t10_alua_tg_pt_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118
				"cache failed\n");
119
		goto out_free_lu_gp_mem_cache;
120
	}
121 122 123 124 125 126 127
	t10_alua_lba_map_cache = kmem_cache_create(
			"t10_alua_lba_map_cache",
			sizeof(struct t10_alua_lba_map),
			__alignof__(struct t10_alua_lba_map), 0, NULL);
	if (!t10_alua_lba_map_cache) {
		pr_err("kmem_cache_create() for t10_alua_lba_map_"
				"cache failed\n");
128
		goto out_free_tg_pt_gp_cache;
129 130 131 132 133 134 135 136 137 138
	}
	t10_alua_lba_map_mem_cache = kmem_cache_create(
			"t10_alua_lba_map_mem_cache",
			sizeof(struct t10_alua_lba_map_member),
			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
	if (!t10_alua_lba_map_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
				"cache failed\n");
		goto out_free_lba_map_cache;
	}
139

140 141 142
	target_completion_wq = alloc_workqueue("target_completion",
					       WQ_MEM_RECLAIM, 0);
	if (!target_completion_wq)
143
		goto out_free_lba_map_mem_cache;
144

145
	return 0;
146

147 148 149 150
out_free_lba_map_mem_cache:
	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
out_free_lba_map_cache:
	kmem_cache_destroy(t10_alua_lba_map_cache);
151 152 153 154 155 156 157 158 159 160 161 162
out_free_tg_pt_gp_cache:
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
out_free_lu_gp_mem_cache:
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
out_free_lu_gp_cache:
	kmem_cache_destroy(t10_alua_lu_gp_cache);
out_free_pr_reg_cache:
	kmem_cache_destroy(t10_pr_reg_cache);
out_free_ua_cache:
	kmem_cache_destroy(se_ua_cache);
out_free_sess_cache:
	kmem_cache_destroy(se_sess_cache);
163
out:
164
	return -ENOMEM;
165 166
}

167
void release_se_kmem_caches(void)
168
{
169
	destroy_workqueue(target_completion_wq);
170 171 172 173 174 175
	kmem_cache_destroy(se_sess_cache);
	kmem_cache_destroy(se_ua_cache);
	kmem_cache_destroy(t10_pr_reg_cache);
	kmem_cache_destroy(t10_alua_lu_gp_cache);
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 177
	kmem_cache_destroy(t10_alua_lba_map_cache);
	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 179
}

180 181 182
/* This code ensures unique mib indexes are handed out. */
static DEFINE_SPINLOCK(scsi_mib_index_lock);
static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183 184 185 186 187 188 189 190

/*
 * Allocate a new row index for the entry type specified
 */
u32 scsi_get_new_index(scsi_index_t type)
{
	u32 new_index;

191
	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192

193 194 195
	spin_lock(&scsi_mib_index_lock);
	new_index = ++scsi_mib_index[type];
	spin_unlock(&scsi_mib_index_lock);
196 197 198 199

	return new_index;
}

200
void transport_subsystem_check_init(void)
201 202
{
	int ret;
203
	static int sub_api_initialized;
204

205 206 207
	if (sub_api_initialized)
		return;

208
	ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
209
	if (ret != 0)
210
		pr_err("Unable to load target_core_iblock\n");
211

212
	ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
213
	if (ret != 0)
214
		pr_err("Unable to load target_core_file\n");
215

216
	ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
217
	if (ret != 0)
218
		pr_err("Unable to load target_core_pscsi\n");
219

220
	ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
221 222 223
	if (ret != 0)
		pr_err("Unable to load target_core_user\n");

224
	sub_api_initialized = 1;
225 226
}

227 228 229 230 231 232 233
static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
{
	struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);

	wake_up(&sess->cmd_list_wq);
}

234 235 236 237 238 239
/**
 * transport_init_session - initialize a session object
 * @se_sess: Session object pointer.
 *
 * The caller must have zero-initialized @se_sess before calling this function.
 */
240
int transport_init_session(struct se_session *se_sess)
241 242 243 244 245
{
	INIT_LIST_HEAD(&se_sess->sess_list);
	INIT_LIST_HEAD(&se_sess->sess_acl_list);
	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
	spin_lock_init(&se_sess->sess_cmd_lock);
246
	init_waitqueue_head(&se_sess->cmd_list_wq);
247 248
	return percpu_ref_init(&se_sess->cmd_count,
			       target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
249 250 251
}
EXPORT_SYMBOL(transport_init_session);

252 253 254 255 256
/**
 * transport_alloc_session - allocate a session object and initialize it
 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
 */
struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
257 258
{
	struct se_session *se_sess;
259
	int ret;
260 261

	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
262 263
	if (!se_sess) {
		pr_err("Unable to allocate struct se_session from"
264 265 266
				" se_sess_cache\n");
		return ERR_PTR(-ENOMEM);
	}
267 268 269 270 271
	ret = transport_init_session(se_sess);
	if (ret < 0) {
		kfree(se_sess);
		return ERR_PTR(ret);
	}
272
	se_sess->sup_prot_ops = sup_prot_ops;
273 274 275

	return se_sess;
}
276 277 278 279 280 281 282 283 284
EXPORT_SYMBOL(transport_alloc_session);

/**
 * transport_alloc_session_tags - allocate target driver private data
 * @se_sess:  Session pointer.
 * @tag_num:  Maximum number of in-flight commands between initiator and target.
 * @tag_size: Size in bytes of the private data a target driver associates with
 *	      each command.
 */
285 286 287 288 289
int transport_alloc_session_tags(struct se_session *se_sess,
			         unsigned int tag_num, unsigned int tag_size)
{
	int rc;

290 291
	se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
					 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
292
	if (!se_sess->sess_cmd_map) {
293 294
		pr_err("Unable to allocate se_sess->sess_cmd_map\n");
		return -ENOMEM;
295 296
	}

297 298
	rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
			false, GFP_KERNEL, NUMA_NO_NODE);
299 300 301
	if (rc < 0) {
		pr_err("Unable to init se_sess->sess_tag_pool,"
			" tag_num: %u\n", tag_num);
302
		kvfree(se_sess->sess_cmd_map);
303 304 305 306 307 308 309 310
		se_sess->sess_cmd_map = NULL;
		return -ENOMEM;
	}

	return 0;
}
EXPORT_SYMBOL(transport_alloc_session_tags);

311 312 313 314 315 316 317
/**
 * transport_init_session_tags - allocate a session and target driver private data
 * @tag_num:  Maximum number of in-flight commands between initiator and target.
 * @tag_size: Size in bytes of the private data a target driver associates with
 *	      each command.
 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
 */
318 319 320
static struct se_session *
transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
			    enum target_prot_op sup_prot_ops)
321 322 323 324
{
	struct se_session *se_sess;
	int rc;

325 326 327 328 329 330 331 332 333 334 335
	if (tag_num != 0 && !tag_size) {
		pr_err("init_session_tags called with percpu-ida tag_num:"
		       " %u, but zero tag_size\n", tag_num);
		return ERR_PTR(-EINVAL);
	}
	if (!tag_num && tag_size) {
		pr_err("init_session_tags called with percpu-ida tag_size:"
		       " %u, but zero tag_num\n", tag_size);
		return ERR_PTR(-EINVAL);
	}

336
	se_sess = transport_alloc_session(sup_prot_ops);
337 338 339 340 341 342 343 344 345 346 347 348
	if (IS_ERR(se_sess))
		return se_sess;

	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
	if (rc < 0) {
		transport_free_session(se_sess);
		return ERR_PTR(-ENOMEM);
	}

	return se_sess;
}

349
/*
350
 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
351 352 353 354 355 356 357
 */
void __transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
358
	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
359
	unsigned char buf[PR_REG_ISID_LEN];
360
	unsigned long flags;
361 362 363 364 365 366 367 368 369 370

	se_sess->se_tpg = se_tpg;
	se_sess->fabric_sess_ptr = fabric_sess_ptr;
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
	 *
	 * Only set for struct se_session's that will actually be moving I/O.
	 * eg: *NOT* discovery sessions.
	 */
	if (se_nacl) {
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
		/*
		 *
		 * Determine if fabric allows for T10-PI feature bits exposed to
		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
		 *
		 * If so, then always save prot_type on a per se_node_acl node
		 * basis and re-instate the previous sess_prot_type to avoid
		 * disabling PI from below any previously initiator side
		 * registered LUNs.
		 */
		if (se_nacl->saved_prot_type)
			se_sess->sess_prot_type = se_nacl->saved_prot_type;
		else if (tfo->tpg_check_prot_fabric_only)
			se_sess->sess_prot_type = se_nacl->saved_prot_type =
					tfo->tpg_check_prot_fabric_only(se_tpg);
386 387 388 389
		/*
		 * If the fabric module supports an ISID based TransportID,
		 * save this value in binary from the fabric I_T Nexus now.
		 */
390
		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
391
			memset(&buf[0], 0, PR_REG_ISID_LEN);
392
			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
393 394 395
					&buf[0], PR_REG_ISID_LEN);
			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
		}
396

397
		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
398 399 400 401 402 403 404 405
		/*
		 * The se_nacl->nacl_sess pointer will be set to the
		 * last active I_T Nexus for each struct se_node_acl.
		 */
		se_nacl->nacl_sess = se_sess;

		list_add_tail(&se_sess->sess_acl_list,
			      &se_nacl->acl_sess_list);
406
		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
407 408 409
	}
	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);

410
	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
411
		se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
412 413 414 415 416 417 418 419 420
}
EXPORT_SYMBOL(__transport_register_session);

void transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
421 422 423
	unsigned long flags;

	spin_lock_irqsave(&se_tpg->session_lock, flags);
424
	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
425
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
426 427 428
}
EXPORT_SYMBOL(transport_register_session);

429
struct se_session *
430
target_setup_session(struct se_portal_group *tpg,
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
		     unsigned int tag_num, unsigned int tag_size,
		     enum target_prot_op prot_op,
		     const char *initiatorname, void *private,
		     int (*callback)(struct se_portal_group *,
				     struct se_session *, void *))
{
	struct se_session *sess;

	/*
	 * If the fabric driver is using percpu-ida based pre allocation
	 * of I/O descriptor tags, go ahead and perform that setup now..
	 */
	if (tag_num != 0)
		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
	else
446
		sess = transport_alloc_session(prot_op);
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

	if (IS_ERR(sess))
		return sess;

	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
					(unsigned char *)initiatorname);
	if (!sess->se_node_acl) {
		transport_free_session(sess);
		return ERR_PTR(-EACCES);
	}
	/*
	 * Go ahead and perform any remaining fabric setup that is
	 * required before transport_register_session().
	 */
	if (callback != NULL) {
		int rc = callback(tpg, sess, private);
		if (rc) {
			transport_free_session(sess);
			return ERR_PTR(rc);
		}
	}

	transport_register_session(tpg, sess->se_node_acl, sess, private);
	return sess;
}
472
EXPORT_SYMBOL(target_setup_session);
473

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
{
	struct se_session *se_sess;
	ssize_t len = 0;

	spin_lock_bh(&se_tpg->session_lock);
	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
		if (!se_sess->se_node_acl)
			continue;
		if (!se_sess->se_node_acl->dynamic_node_acl)
			continue;
		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
			break;

		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
				se_sess->se_node_acl->initiatorname);
		len += 1; /* Include NULL terminator */
	}
	spin_unlock_bh(&se_tpg->session_lock);

	return len;
}
EXPORT_SYMBOL(target_show_dynamic_sessions);

498 499 500 501
static void target_complete_nacl(struct kref *kref)
{
	struct se_node_acl *nacl = container_of(kref,
				struct se_node_acl, acl_kref);
502
	struct se_portal_group *se_tpg = nacl->se_tpg;
503

504 505 506 507 508 509
	if (!nacl->dynamic_stop) {
		complete(&nacl->acl_free_comp);
		return;
	}

	mutex_lock(&se_tpg->acl_node_mutex);
510
	list_del_init(&nacl->acl_list);
511 512 513 514 515
	mutex_unlock(&se_tpg->acl_node_mutex);

	core_tpg_wait_for_nacl_pr_ref(nacl);
	core_free_device_list_for_node(nacl, se_tpg);
	kfree(nacl);
516 517 518 519 520 521
}

void target_put_nacl(struct se_node_acl *nacl)
{
	kref_put(&nacl->acl_kref, target_complete_nacl);
}
522
EXPORT_SYMBOL(target_put_nacl);
523

524 525 526
void transport_deregister_session_configfs(struct se_session *se_sess)
{
	struct se_node_acl *se_nacl;
527
	unsigned long flags;
528 529 530 531
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
	 */
	se_nacl = se_sess->se_node_acl;
532
	if (se_nacl) {
533
		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
C
Christoph Hellwig 已提交
534 535
		if (!list_empty(&se_sess->sess_acl_list))
			list_del_init(&se_sess->sess_acl_list);
536 537 538 539 540 541 542 543 544 545 546 547
		/*
		 * If the session list is empty, then clear the pointer.
		 * Otherwise, set the struct se_session pointer from the tail
		 * element of the per struct se_node_acl active session list.
		 */
		if (list_empty(&se_nacl->acl_sess_list))
			se_nacl->nacl_sess = NULL;
		else {
			se_nacl->nacl_sess = container_of(
					se_nacl->acl_sess_list.prev,
					struct se_session, sess_acl_list);
		}
548
		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
549 550 551 552 553 554
	}
}
EXPORT_SYMBOL(transport_deregister_session_configfs);

void transport_free_session(struct se_session *se_sess)
{
555
	struct se_node_acl *se_nacl = se_sess->se_node_acl;
556

557 558 559 560 561
	/*
	 * Drop the se_node_acl->nacl_kref obtained from within
	 * core_tpg_get_initiator_node_acl().
	 */
	if (se_nacl) {
562 563 564 565
		struct se_portal_group *se_tpg = se_nacl->se_tpg;
		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
		unsigned long flags;

566
		se_sess->se_node_acl = NULL;
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

		/*
		 * Also determine if we need to drop the extra ->cmd_kref if
		 * it had been previously dynamically generated, and
		 * the endpoint is not caching dynamic ACLs.
		 */
		mutex_lock(&se_tpg->acl_node_mutex);
		if (se_nacl->dynamic_node_acl &&
		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
			if (list_empty(&se_nacl->acl_sess_list))
				se_nacl->dynamic_stop = true;
			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);

			if (se_nacl->dynamic_stop)
582
				list_del_init(&se_nacl->acl_list);
583 584 585 586 587 588
		}
		mutex_unlock(&se_tpg->acl_node_mutex);

		if (se_nacl->dynamic_stop)
			target_put_nacl(se_nacl);

589 590
		target_put_nacl(se_nacl);
	}
591
	if (se_sess->sess_cmd_map) {
592
		sbitmap_queue_free(&se_sess->sess_tag_pool);
593
		kvfree(se_sess->sess_cmd_map);
594
	}
595
	percpu_ref_exit(&se_sess->cmd_count);
596 597 598 599 600 601 602
	kmem_cache_free(se_sess_cache, se_sess);
}
EXPORT_SYMBOL(transport_free_session);

void transport_deregister_session(struct se_session *se_sess)
{
	struct se_portal_group *se_tpg = se_sess->se_tpg;
603
	unsigned long flags;
604

605
	if (!se_tpg) {
606 607 608 609
		transport_free_session(se_sess);
		return;
	}

610
	spin_lock_irqsave(&se_tpg->session_lock, flags);
611 612 613
	list_del(&se_sess->sess_list);
	se_sess->se_tpg = NULL;
	se_sess->fabric_sess_ptr = NULL;
614
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
615

616
	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
617
		se_tpg->se_tpg_tfo->fabric_name);
618
	/*
619
	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
620
	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
621
	 * removal context from within transport_free_session() code.
622 623 624
	 *
	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
	 * to release all remaining generate_node_acl=1 created ACL resources.
625 626
	 */

627
	transport_free_session(se_sess);
628 629 630
}
EXPORT_SYMBOL(transport_deregister_session);

631 632 633 634 635 636 637
void target_remove_session(struct se_session *se_sess)
{
	transport_deregister_session_configfs(se_sess);
	transport_deregister_session(se_sess);
}
EXPORT_SYMBOL(target_remove_session);

638
static void target_remove_from_state_list(struct se_cmd *cmd)
639
{
640
	struct se_device *dev = cmd->se_dev;
641 642
	unsigned long flags;

643 644
	if (!dev)
		return;
645

646 647 648 649
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (cmd->state_active) {
		list_del(&cmd->state_list);
		cmd->state_active = false;
650
	}
651
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
652 653
}

654 655 656 657 658 659 660
/*
 * This function is called by the target core after the target core has
 * finished processing a SCSI command or SCSI TMF. Both the regular command
 * processing code and the code for aborting commands can call this
 * function. CMD_T_STOP is set if and only if another thread is waiting
 * inside transport_wait_for_tasks() for t_transport_stop_comp.
 */
661
static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
662 663 664
{
	unsigned long flags;

665
	target_remove_from_state_list(cmd);
666

667 668 669 670
	/*
	 * Clear struct se_cmd->se_lun before the handoff to FE.
	 */
	cmd->se_lun = NULL;
671

672
	spin_lock_irqsave(&cmd->t_state_lock, flags);
673 674
	/*
	 * Determine if frontend context caller is requesting the stopping of
675
	 * this command for frontend exceptions.
676
	 */
677
	if (cmd->transport_state & CMD_T_STOP) {
678 679
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
680

681
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
682

683
		complete_all(&cmd->t_transport_stop_comp);
684 685
		return 1;
	}
686
	cmd->transport_state &= ~CMD_T_ACTIVE;
687
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
688

689 690 691 692 693 694 695
	/*
	 * Some fabric modules like tcm_loop can release their internally
	 * allocated I/O reference and struct se_cmd now.
	 *
	 * Fabric modules are expected to return '1' here if the se_cmd being
	 * passed is released at this point, or zero if not being released.
	 */
696
	return cmd->se_tfo->check_stop_free(cmd);
697 698 699 700
}

static void transport_lun_remove_cmd(struct se_cmd *cmd)
{
701
	struct se_lun *lun = cmd->se_lun;
702

703
	if (!lun)
704 705
		return;

706 707
	if (cmpxchg(&cmd->lun_ref_active, true, false))
		percpu_ref_put(&lun->lun_ref);
708 709
}

710 711 712 713
static void target_complete_failure_work(struct work_struct *work)
{
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);

714 715
	transport_generic_request_failure(cmd,
			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
716 717
}

718
/*
719 720
 * Used when asking transport to copy Sense Data from the underlying
 * Linux/SCSI struct scsi_cmnd
721
 */
722
static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
723 724 725 726 727 728
{
	struct se_device *dev = cmd->se_dev;

	WARN_ON(!cmd->se_lun);

	if (!dev)
729
		return NULL;
730

731 732
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
		return NULL;
733

734
	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
735

736
	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
737
		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
738
	return cmd->sense_buffer;
739 740
}

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
{
	unsigned char *cmd_sense_buf;
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	cmd_sense_buf = transport_get_sense_buffer(cmd);
	if (!cmd_sense_buf) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		return;
	}

	cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
	memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}
EXPORT_SYMBOL(transport_copy_sense_to_cmd);

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
static void target_handle_abort(struct se_cmd *cmd)
{
	bool tas = cmd->transport_state & CMD_T_TAS;
	bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
	int ret;

	pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);

	if (tas) {
		if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
			cmd->scsi_status = SAM_STAT_TASK_ABORTED;
			pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
				 cmd->t_task_cdb[0], cmd->tag);
			trace_target_cmd_complete(cmd);
			ret = cmd->se_tfo->queue_status(cmd);
			if (ret) {
				transport_handle_queue_full(cmd, cmd->se_dev,
							    ret, false);
				return;
			}
		} else {
			cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
			cmd->se_tfo->queue_tm_rsp(cmd);
		}
	} else {
		/*
		 * Allow the fabric driver to unmap any resources before
		 * releasing the descriptor via TFO->release_cmd().
		 */
		cmd->se_tfo->aborted_task(cmd);
		if (ack_kref)
			WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
		/*
		 * To do: establish a unit attention condition on the I_T
		 * nexus associated with cmd. See also the paragraph "Aborting
		 * commands" in SAM.
		 */
	}

	WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);

	transport_lun_remove_cmd(cmd);

	transport_cmd_check_stop_to_fabric(cmd);
}

static void target_abort_work(struct work_struct *work)
{
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);

	target_handle_abort(cmd);
}

static bool target_cmd_interrupted(struct se_cmd *cmd)
{
	int post_ret;

	if (cmd->transport_state & CMD_T_ABORTED) {
		if (cmd->transport_complete_callback)
			cmd->transport_complete_callback(cmd, false, &post_ret);
		INIT_WORK(&cmd->work, target_abort_work);
		queue_work(target_completion_wq, &cmd->work);
		return true;
	} else if (cmd->transport_state & CMD_T_STOP) {
		if (cmd->transport_complete_callback)
			cmd->transport_complete_callback(cmd, false, &post_ret);
		complete_all(&cmd->t_transport_stop_comp);
		return true;
	}

	return false;
}

/* May be called from interrupt context so must not sleep. */
833
void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
834
{
835
	int success;
836 837
	unsigned long flags;

838 839 840
	if (target_cmd_interrupted(cmd))
		return;

841 842
	cmd->scsi_status = scsi_status;

843
	spin_lock_irqsave(&cmd->t_state_lock, flags);
844 845
	switch (cmd->scsi_status) {
	case SAM_STAT_CHECK_CONDITION:
846
		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
847
			success = 1;
848 849 850 851
		else
			success = 0;
		break;
	default:
852
		success = 1;
853
		break;
854 855
	}

856
	cmd->t_state = TRANSPORT_COMPLETE;
857
	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
858
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
859

860 861
	INIT_WORK(&cmd->work, success ? target_complete_ok_work :
		  target_complete_failure_work);
862
	if (cmd->se_cmd_flags & SCF_USE_CPUID)
863
		queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
864 865
	else
		queue_work(target_completion_wq, &cmd->work);
866
}
867 868
EXPORT_SYMBOL(target_complete_cmd);

869 870
void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
{
871 872 873
	if ((scsi_status == SAM_STAT_GOOD ||
	     cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
	    length < cmd->data_length) {
874 875 876 877 878 879 880 881 882 883 884 885 886 887
		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
			cmd->residual_count += cmd->data_length - length;
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = cmd->data_length - length;
		}

		cmd->data_length = length;
	}

	target_complete_cmd(cmd, scsi_status);
}
EXPORT_SYMBOL(target_complete_cmd_with_length);

888
static void target_add_to_state_list(struct se_cmd *cmd)
889
{
890 891
	struct se_device *dev = cmd->se_dev;
	unsigned long flags;
892

893 894 895 896
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (!cmd->state_active) {
		list_add_tail(&cmd->state_list, &dev->state_list);
		cmd->state_active = true;
897
	}
898
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
899 900
}

901
/*
902
 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
903
 */
904 905
static void transport_write_pending_qf(struct se_cmd *cmd);
static void transport_complete_qf(struct se_cmd *cmd);
906

907
void target_qf_do_work(struct work_struct *work)
908 909 910
{
	struct se_device *dev = container_of(work, struct se_device,
					qf_work_queue);
911
	LIST_HEAD(qf_cmd_list);
912 913 914
	struct se_cmd *cmd, *cmd_tmp;

	spin_lock_irq(&dev->qf_cmd_lock);
915 916
	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
	spin_unlock_irq(&dev->qf_cmd_lock);
917

918
	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
919
		list_del(&cmd->se_qf_node);
920
		atomic_dec_mb(&dev->dev_qf_count);
921

922
		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
923
			" context: %s\n", cmd->se_tfo->fabric_name, cmd,
924
			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
925 926
			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
			: "UNKNOWN");
927

928 929
		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
			transport_write_pending_qf(cmd);
930 931
		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
			 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
932
			transport_complete_qf(cmd);
933 934 935
	}
}

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
{
	switch (cmd->data_direction) {
	case DMA_NONE:
		return "NONE";
	case DMA_FROM_DEVICE:
		return "READ";
	case DMA_TO_DEVICE:
		return "WRITE";
	case DMA_BIDIRECTIONAL:
		return "BIDI";
	default:
		break;
	}

	return "UNKNOWN";
}

void transport_dump_dev_state(
	struct se_device *dev,
	char *b,
	int *bl)
{
	*bl += sprintf(b + *bl, "Status: ");
960
	if (dev->export_count)
961
		*bl += sprintf(b + *bl, "ACTIVATED");
962
	else
963 964
		*bl += sprintf(b + *bl, "DEACTIVATED");

965
	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
966
	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
967 968
		dev->dev_attrib.block_size,
		dev->dev_attrib.hw_max_sectors);
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	*bl += sprintf(b + *bl, "        ");
}

void transport_dump_vpd_proto_id(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int len;

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Protocol Identifier: ");

	switch (vpd->protocol_identifier) {
	case 0x00:
		sprintf(buf+len, "Fibre Channel\n");
		break;
	case 0x10:
		sprintf(buf+len, "Parallel SCSI\n");
		break;
	case 0x20:
		sprintf(buf+len, "SSA\n");
		break;
	case 0x30:
		sprintf(buf+len, "IEEE 1394\n");
		break;
	case 0x40:
		sprintf(buf+len, "SCSI Remote Direct Memory Access"
				" Protocol\n");
		break;
	case 0x50:
		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
		break;
	case 0x60:
		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
		break;
	case 0x70:
		sprintf(buf+len, "Automation/Drive Interface Transport"
				" Protocol\n");
		break;
	case 0x80:
		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n",
				vpd->protocol_identifier);
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1022
		pr_debug("%s", buf);
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
}

void
transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * Check if the Protocol Identifier Valid (PIV) bit is set..
	 *
	 * from spc3r23.pdf section 7.5.1
	 */
	 if (page_83[1] & 0x80) {
		vpd->protocol_identifier = (page_83[0] & 0xf0);
		vpd->protocol_identifier_set = 1;
		transport_dump_vpd_proto_id(vpd, NULL, 0);
	}
}
EXPORT_SYMBOL(transport_set_vpd_proto_id);

int transport_dump_vpd_assoc(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
1047 1048
	int ret = 0;
	int len;
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Association: ");

	switch (vpd->association) {
	case 0x00:
		sprintf(buf+len, "addressed logical unit\n");
		break;
	case 0x10:
		sprintf(buf+len, "target port\n");
		break;
	case 0x20:
		sprintf(buf+len, "SCSI target device\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1065
		ret = -EINVAL;
1066 1067 1068 1069 1070 1071
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1072
		pr_debug("%s", buf);
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

	return ret;
}

int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identification association..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 297
	 */
	vpd->association = (page_83[1] & 0x30);
	return transport_dump_vpd_assoc(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_assoc);

int transport_dump_vpd_ident_type(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
1095 1096
	int ret = 0;
	int len;
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Type: ");

	switch (vpd->device_identifier_type) {
	case 0x00:
		sprintf(buf+len, "Vendor specific\n");
		break;
	case 0x01:
		sprintf(buf+len, "T10 Vendor ID based\n");
		break;
	case 0x02:
		sprintf(buf+len, "EUI-64 based\n");
		break;
	case 0x03:
		sprintf(buf+len, "NAA\n");
		break;
	case 0x04:
		sprintf(buf+len, "Relative target port identifier\n");
		break;
	case 0x08:
		sprintf(buf+len, "SCSI name string\n");
		break;
	default:
		sprintf(buf+len, "Unsupported: 0x%02x\n",
				vpd->device_identifier_type);
1123
		ret = -EINVAL;
1124 1125 1126
		break;
	}

1127 1128 1129
	if (p_buf) {
		if (p_buf_len < strlen(buf)+1)
			return -EINVAL;
1130
		strncpy(p_buf, buf, p_buf_len);
1131
	} else {
1132
		pr_debug("%s", buf);
1133
	}
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

	return ret;
}

int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identifier type..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 298
	 */
	vpd->device_identifier_type = (page_83[1] & 0x0f);
	return transport_dump_vpd_ident_type(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident_type);

int transport_dump_vpd_ident(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int ret = 0;

	memset(buf, 0, VPD_TMP_BUF_SIZE);

	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
1162 1163
		snprintf(buf, sizeof(buf),
			"T10 VPD Binary Device Identifier: %s\n",
1164 1165 1166
			&vpd->device_identifier[0]);
		break;
	case 0x02: /* ASCII */
1167 1168
		snprintf(buf, sizeof(buf),
			"T10 VPD ASCII Device Identifier: %s\n",
1169 1170 1171
			&vpd->device_identifier[0]);
		break;
	case 0x03: /* UTF-8 */
1172 1173
		snprintf(buf, sizeof(buf),
			"T10 VPD UTF-8 Device Identifier: %s\n",
1174 1175 1176 1177 1178
			&vpd->device_identifier[0]);
		break;
	default:
		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
			" 0x%02x", vpd->device_identifier_code_set);
1179
		ret = -EINVAL;
1180 1181 1182 1183 1184 1185
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1186
		pr_debug("%s", buf);
1187 1188 1189 1190 1191 1192 1193 1194

	return ret;
}

int
transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
{
	static const char hex_str[] = "0123456789abcdef";
1195
	int j = 0, i = 4; /* offset to start of the identifier */
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227

	/*
	 * The VPD Code Set (encoding)
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 296
	 */
	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
		vpd->device_identifier[j++] =
				hex_str[vpd->device_identifier_type];
		while (i < (4 + page_83[3])) {
			vpd->device_identifier[j++] =
				hex_str[(page_83[i] & 0xf0) >> 4];
			vpd->device_identifier[j++] =
				hex_str[page_83[i] & 0x0f];
			i++;
		}
		break;
	case 0x02: /* ASCII */
	case 0x03: /* UTF-8 */
		while (i < (4 + page_83[3]))
			vpd->device_identifier[j++] = page_83[i++];
		break;
	default:
		break;
	}

	return transport_dump_vpd_ident(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident);

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
			       unsigned int size)
{
	u32 mtl;

	if (!cmd->se_tfo->max_data_sg_nents)
		return TCM_NO_SENSE;
	/*
	 * Check if fabric enforced maximum SGL entries per I/O descriptor
	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
	 * residual_count and reduce original cmd->data_length to maximum
	 * length based on single PAGE_SIZE entry scatter-lists.
	 */
	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
	if (cmd->data_length > mtl) {
		/*
		 * If an existing CDB overflow is present, calculate new residual
		 * based on CDB size minus fabric maximum transfer length.
		 *
		 * If an existing CDB underflow is present, calculate new residual
		 * based on original cmd->data_length minus fabric maximum transfer
		 * length.
		 *
		 * Otherwise, set the underflow residual based on cmd->data_length
		 * minus fabric maximum transfer length.
		 */
		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
			cmd->residual_count = (size - mtl);
		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
			u32 orig_dl = size + cmd->residual_count;
			cmd->residual_count = (orig_dl - mtl);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - mtl);
		}
		cmd->data_length = mtl;
		/*
		 * Reset sbc_check_prot() calculated protection payload
		 * length based upon the new smaller MTL.
		 */
		if (cmd->prot_length) {
			u32 sectors = (mtl / dev->dev_attrib.block_size);
			cmd->prot_length = dev->prot_length * sectors;
		}
	}
	return TCM_NO_SENSE;
}

1277 1278
sense_reason_t
target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1279 1280 1281 1282 1283 1284
{
	struct se_device *dev = cmd->se_dev;

	if (cmd->unknown_data_length) {
		cmd->data_length = size;
	} else if (size != cmd->data_length) {
1285
		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1286
			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1287
			" 0x%02x\n", cmd->se_tfo->fabric_name,
1288 1289
				cmd->data_length, size, cmd->t_task_cdb[0]);

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		if (cmd->data_direction == DMA_TO_DEVICE) {
			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
				pr_err_ratelimited("Rejecting underflow/overflow"
						   " for WRITE data CDB\n");
				return TCM_INVALID_CDB_FIELD;
			}
			/*
			 * Some fabric drivers like iscsi-target still expect to
			 * always reject overflow writes.  Reject this case until
			 * full fabric driver level support for overflow writes
			 * is introduced tree-wide.
			 */
			if (size > cmd->data_length) {
				pr_err_ratelimited("Rejecting overflow for"
						   " WRITE control CDB\n");
				return TCM_INVALID_CDB_FIELD;
			}
1307 1308 1309 1310 1311
		}
		/*
		 * Reject READ_* or WRITE_* with overflow/underflow for
		 * type SCF_SCSI_DATA_CDB.
		 */
1312
		if (dev->dev_attrib.block_size != 512)  {
1313 1314 1315 1316
			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
				" CDB on non 512-byte sector setup subsystem"
				" plugin: %s\n", dev->transport->name);
			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1317
			return TCM_INVALID_CDB_FIELD;
1318
		}
1319 1320 1321 1322 1323 1324
		/*
		 * For the overflow case keep the existing fabric provided
		 * ->data_length.  Otherwise for the underflow case, reset
		 * ->data_length to the smaller SCSI expected data transfer
		 * length.
		 */
1325 1326 1327 1328 1329 1330
		if (size > cmd->data_length) {
			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
			cmd->residual_count = (size - cmd->data_length);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - size);
1331
			cmd->data_length = size;
1332 1333 1334
		}
	}

1335
	return target_check_max_data_sg_nents(cmd, dev, size);
1336 1337 1338

}

1339 1340 1341
/*
 * Used by fabric modules containing a local struct se_cmd within their
 * fabric dependent per I/O descriptor.
1342 1343
 *
 * Preserves the value of @cmd->tag.
1344 1345 1346
 */
void transport_init_se_cmd(
	struct se_cmd *cmd,
1347
	const struct target_core_fabric_ops *tfo,
1348 1349 1350 1351 1352 1353
	struct se_session *se_sess,
	u32 data_length,
	int data_direction,
	int task_attr,
	unsigned char *sense_buffer)
{
1354
	INIT_LIST_HEAD(&cmd->se_delayed_node);
1355
	INIT_LIST_HEAD(&cmd->se_qf_node);
1356
	INIT_LIST_HEAD(&cmd->se_cmd_list);
1357
	INIT_LIST_HEAD(&cmd->state_list);
1358
	init_completion(&cmd->t_transport_stop_comp);
1359 1360
	cmd->free_compl = NULL;
	cmd->abrt_compl = NULL;
1361
	spin_lock_init(&cmd->t_state_lock);
1362
	INIT_WORK(&cmd->work, NULL);
1363
	kref_init(&cmd->cmd_kref);
1364 1365 1366 1367 1368 1369 1370

	cmd->se_tfo = tfo;
	cmd->se_sess = se_sess;
	cmd->data_length = data_length;
	cmd->data_direction = data_direction;
	cmd->sam_task_attr = task_attr;
	cmd->sense_buffer = sense_buffer;
1371 1372

	cmd->state_active = false;
1373 1374 1375
}
EXPORT_SYMBOL(transport_init_se_cmd);

1376 1377
static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd *cmd)
1378
{
1379 1380
	struct se_device *dev = cmd->se_dev;

1381 1382 1383 1384
	/*
	 * Check if SAM Task Attribute emulation is enabled for this
	 * struct se_device storage object
	 */
1385
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1386 1387
		return 0;

C
Christoph Hellwig 已提交
1388
	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1389
		pr_debug("SAM Task Attribute ACA"
1390
			" emulation is not supported\n");
1391
		return TCM_INVALID_CDB_FIELD;
1392
	}
1393

1394 1395 1396
	return 0;
}

1397 1398
sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1399
{
1400
	struct se_device *dev = cmd->se_dev;
1401
	sense_reason_t ret;
1402 1403 1404 1405 1406 1407

	/*
	 * Ensure that the received CDB is less than the max (252 + 8) bytes
	 * for VARIABLE_LENGTH_CMD
	 */
	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1408
		pr_err("Received SCSI CDB with command_size: %d that"
1409 1410
			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1411
		return TCM_INVALID_CDB_FIELD;
1412 1413 1414 1415 1416 1417
	}
	/*
	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
	 * allocate the additional extended CDB buffer now..  Otherwise
	 * setup the pointer from __t_task_cdb to t_task_cdb.
	 */
1418 1419
	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1420
						GFP_KERNEL);
1421 1422
		if (!cmd->t_task_cdb) {
			pr_err("Unable to allocate cmd->t_task_cdb"
1423
				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1424
				scsi_command_size(cdb),
1425
				(unsigned long)sizeof(cmd->__t_task_cdb));
1426
			return TCM_OUT_OF_RESOURCES;
1427 1428
		}
	} else
1429
		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1430
	/*
1431
	 * Copy the original CDB into cmd->
1432
	 */
1433
	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1434

1435 1436
	trace_target_sequencer_start(cmd);

1437
	ret = dev->transport->parse_cdb(cmd);
1438 1439
	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
		pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1440
				    cmd->se_tfo->fabric_name,
1441 1442
				    cmd->se_sess->se_node_acl->initiatorname,
				    cmd->t_task_cdb[0]);
1443 1444 1445 1446 1447
	if (ret)
		return ret;

	ret = transport_check_alloc_task_attr(cmd);
	if (ret)
1448
		return ret;
1449 1450

	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1451
	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1452 1453
	return 0;
}
1454
EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1455

1456 1457
/*
 * Used by fabric module frontends to queue tasks directly.
1458
 * May only be used from process context.
1459 1460 1461 1462
 */
int transport_handle_cdb_direct(
	struct se_cmd *cmd)
{
1463
	sense_reason_t ret;
1464

1465 1466
	if (!cmd->se_lun) {
		dump_stack();
1467
		pr_err("cmd->se_lun is NULL\n");
1468 1469 1470 1471
		return -EINVAL;
	}
	if (in_interrupt()) {
		dump_stack();
1472
		pr_err("transport_generic_handle_cdb cannot be called"
1473 1474 1475
				" from interrupt context\n");
		return -EINVAL;
	}
1476
	/*
1477 1478 1479
	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
	 * outstanding descriptors are handled correctly during shutdown via
	 * transport_wait_for_tasks()
1480 1481 1482 1483 1484
	 *
	 * Also, we don't take cmd->t_state_lock here as we only expect
	 * this to be called for initial descriptor submission.
	 */
	cmd->t_state = TRANSPORT_NEW_CMD;
1485 1486
	cmd->transport_state |= CMD_T_ACTIVE;

1487 1488 1489 1490 1491 1492
	/*
	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
	 * so follow TRANSPORT_NEW_CMD processing thread context usage
	 * and call transport_generic_request_failure() if necessary..
	 */
	ret = transport_generic_new_cmd(cmd);
1493 1494
	if (ret)
		transport_generic_request_failure(cmd, ret);
1495
	return 0;
1496 1497 1498
}
EXPORT_SYMBOL(transport_handle_cdb_direct);

1499
sense_reason_t
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
{
	if (!sgl || !sgl_count)
		return 0;

	/*
	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
	 * scatterlists already have been set to follow what the fabric
	 * passes for the original expected data transfer length.
	 */
	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
		pr_warn("Rejecting SCSI DATA overflow for fabric using"
			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
		return TCM_INVALID_CDB_FIELD;
	}

	cmd->t_data_sg = sgl;
	cmd->t_data_nents = sgl_count;
1519 1520
	cmd->t_bidi_data_sg = sgl_bidi;
	cmd->t_bidi_data_nents = sgl_bidi_count;
1521 1522 1523 1524 1525

	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
	return 0;
}

1526
/**
1527 1528
 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
 * 			 se_cmd + use pre-allocated SGL memory.
1529 1530 1531 1532 1533 1534 1535
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
1536
 * @task_attr: SAM task attribute
1537 1538
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
1539 1540 1541 1542
 * @sgl: struct scatterlist memory for unidirectional mapping
 * @sgl_count: scatterlist count for unidirectional mapping
 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1543 1544
 * @sgl_prot: struct scatterlist memory protection information
 * @sgl_prot_count: scatterlist count for protection information
1545
 *
1546 1547
 * Task tags are supported if the caller has set @se_cmd->tag.
 *
1548 1549 1550 1551
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
1552 1553
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
1554 1555
 */
int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1556
		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1557 1558
		u32 data_length, int task_attr, int data_dir, int flags,
		struct scatterlist *sgl, u32 sgl_count,
1559 1560
		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1561 1562
{
	struct se_portal_group *se_tpg;
1563 1564
	sense_reason_t rc;
	int ret;
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);
	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
	BUG_ON(in_interrupt());
	/*
	 * Initialize se_cmd for target operation.  From this point
	 * exceptions are handled by sending exception status via
	 * target_core_fabric_ops->queue_status() callback
	 */
	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
				data_length, data_dir, task_attr, sense);
1577 1578 1579 1580 1581 1582

	if (flags & TARGET_SCF_USE_CPUID)
		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
	else
		se_cmd->cpuid = WORK_CPU_UNBOUND;

1583 1584
	if (flags & TARGET_SCF_UNKNOWN_SIZE)
		se_cmd->unknown_data_length = 1;
1585 1586 1587 1588 1589 1590
	/*
	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
	 * kref_put() to happen during fabric packet acknowledgement.
	 */
1591
	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1592 1593
	if (ret)
		return ret;
1594 1595 1596 1597 1598 1599 1600 1601
	/*
	 * Signal bidirectional data payloads to target-core
	 */
	if (flags & TARGET_SCF_BIDI_OP)
		se_cmd->se_cmd_flags |= SCF_BIDI;
	/*
	 * Locate se_lun pointer and attach it to struct se_cmd
	 */
1602 1603 1604
	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
	if (rc) {
		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1605
		target_put_sess_cmd(se_cmd);
1606
		return 0;
1607
	}
1608 1609 1610 1611 1612 1613 1614

	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
	if (rc != 0) {
		transport_generic_request_failure(se_cmd, rc);
		return 0;
	}

1615 1616 1617 1618 1619 1620 1621
	/*
	 * Save pointers for SGLs containing protection information,
	 * if present.
	 */
	if (sgl_prot_count) {
		se_cmd->t_prot_sg = sgl_prot;
		se_cmd->t_prot_nents = sgl_prot_count;
1622
		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1623
	}
1624

1625 1626 1627 1628 1629 1630 1631 1632
	/*
	 * When a non zero sgl_count has been passed perform SGL passthrough
	 * mapping for pre-allocated fabric memory instead of having target
	 * core perform an internal SGL allocation..
	 */
	if (sgl_count != 0) {
		BUG_ON(!sgl);

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
		/*
		 * A work-around for tcm_loop as some userspace code via
		 * scsi-generic do not memset their associated read buffers,
		 * so go ahead and do that here for type non-data CDBs.  Also
		 * note that this is currently guaranteed to be a single SGL
		 * for this case by target core in target_setup_cmd_from_cdb()
		 * -> transport_generic_cmd_sequencer().
		 */
		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
		     se_cmd->data_direction == DMA_FROM_DEVICE) {
			unsigned char *buf = NULL;

			if (sgl)
				buf = kmap(sg_page(sgl)) + sgl->offset;

			if (buf) {
				memset(buf, 0, sgl->length);
				kunmap(sg_page(sgl));
			}
		}

1654 1655 1656
		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
				sgl_bidi, sgl_bidi_count);
		if (rc != 0) {
1657
			transport_generic_request_failure(se_cmd, rc);
1658 1659 1660
			return 0;
		}
	}
1661

1662 1663 1664 1665 1666 1667
	/*
	 * Check if we need to delay processing because of ALUA
	 * Active/NonOptimized primary access state..
	 */
	core_alua_check_nonop_delay(se_cmd);

1668
	transport_handle_cdb_direct(se_cmd);
1669
	return 0;
1670
}
1671 1672
EXPORT_SYMBOL(target_submit_cmd_map_sgls);

1673
/**
1674 1675 1676 1677 1678 1679 1680 1681
 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
1682
 * @task_attr: SAM task attribute
1683 1684 1685
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
 *
1686 1687
 * Task tags are supported if the caller has set @se_cmd->tag.
 *
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
 *
 * It also assumes interal target core SGL memory allocation.
 */
int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1698
		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1699 1700 1701 1702
		u32 data_length, int task_attr, int data_dir, int flags)
{
	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
			unpacked_lun, data_length, task_attr, data_dir,
1703
			flags, NULL, 0, NULL, 0, NULL, 0);
1704
}
1705 1706
EXPORT_SYMBOL(target_submit_cmd);

1707 1708 1709 1710 1711 1712
static void target_complete_tmr_failure(struct work_struct *work)
{
	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);

	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1713

1714
	transport_lun_remove_cmd(se_cmd);
1715
	transport_cmd_check_stop_to_fabric(se_cmd);
1716 1717
}

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
				       u64 *unpacked_lun)
{
	struct se_cmd *se_cmd;
	unsigned long flags;
	bool ret = false;

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
	list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
		if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
			continue;

		if (se_cmd->tag == tag) {
			*unpacked_lun = se_cmd->orig_fe_lun;
			ret = true;
			break;
		}
	}
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);

	return ret;
}

1741 1742 1743 1744 1745 1746 1747 1748
/**
 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
 *                     for TMR CDBs
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1749
 * @fabric_tmr_ptr: fabric context for TMR req
1750
 * @tm_type: Type of TM request
1751 1752
 * @gfp: gfp type for caller
 * @tag: referenced task tag for TMR_ABORT_TASK
1753
 * @flags: submit cmd flags
1754 1755 1756 1757
 *
 * Callable from all contexts.
 **/

1758
int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1759
		unsigned char *sense, u64 unpacked_lun,
1760
		void *fabric_tmr_ptr, unsigned char tm_type,
1761
		gfp_t gfp, u64 tag, int flags)
1762 1763 1764 1765 1766 1767 1768 1769
{
	struct se_portal_group *se_tpg;
	int ret;

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);

	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
C
Christoph Hellwig 已提交
1770
			      0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1771 1772 1773 1774
	/*
	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
	 * allocation failure.
	 */
1775
	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1776 1777
	if (ret < 0)
		return -ENOMEM;
1778

1779 1780 1781
	if (tm_type == TMR_ABORT_TASK)
		se_cmd->se_tmr_req->ref_task_tag = tag;

1782
	/* See target_submit_cmd for commentary */
1783
	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1784 1785 1786 1787
	if (ret) {
		core_tmr_release_req(se_cmd->se_tmr_req);
		return ret;
	}
1788 1789 1790 1791 1792 1793 1794 1795 1796
	/*
	 * If this is ABORT_TASK with no explicit fabric provided LUN,
	 * go ahead and search active session tags for a match to figure
	 * out unpacked_lun for the original se_cmd.
	 */
	if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
		if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun))
			goto failure;
	}
1797 1798

	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1799 1800 1801
	if (ret)
		goto failure;

1802
	transport_generic_handle_tmr(se_cmd);
1803
	return 0;
1804 1805 1806 1807 1808 1809 1810 1811 1812

	/*
	 * For callback during failure handling, push this work off
	 * to process context with TMR_LUN_DOES_NOT_EXIST status.
	 */
failure:
	INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
	schedule_work(&se_cmd->work);
	return 0;
1813 1814 1815
}
EXPORT_SYMBOL(target_submit_tmr);

1816 1817 1818
/*
 * Handle SAM-esque emulation for generic transport request failures.
 */
1819 1820
void transport_generic_request_failure(struct se_cmd *cmd,
		sense_reason_t sense_reason)
1821
{
1822
	int ret = 0;
1823

1824 1825 1826
	pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
		 sense_reason);
	target_show_cmd("-----[ ", cmd);
1827 1828 1829 1830

	/*
	 * For SAM Task Attribute emulation for failed struct se_cmd
	 */
1831
	transport_complete_task_attr(cmd);
1832

1833 1834
	if (cmd->transport_complete_callback)
		cmd->transport_complete_callback(cmd, false, NULL);
1835

1836 1837 1838
	if (cmd->transport_state & CMD_T_ABORTED) {
		INIT_WORK(&cmd->work, target_abort_work);
		queue_work(target_completion_wq, &cmd->work);
1839
		return;
1840
	}
1841

1842
	switch (sense_reason) {
1843 1844 1845 1846
	case TCM_NON_EXISTENT_LUN:
	case TCM_UNSUPPORTED_SCSI_OPCODE:
	case TCM_INVALID_CDB_FIELD:
	case TCM_INVALID_PARAMETER_LIST:
1847
	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1848 1849 1850
	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
	case TCM_UNKNOWN_MODE_PAGE:
	case TCM_WRITE_PROTECTED:
1851
	case TCM_ADDRESS_OUT_OF_RANGE:
1852 1853 1854
	case TCM_CHECK_CONDITION_ABORT_CMD:
	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
	case TCM_CHECK_CONDITION_NOT_READY:
1855 1856 1857
	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1858
	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1859 1860 1861 1862
	case TCM_TOO_MANY_TARGET_DESCS:
	case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
	case TCM_TOO_MANY_SEGMENT_DESCS:
	case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1863
		break;
1864
	case TCM_OUT_OF_RESOURCES:
1865 1866
		cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
		goto queue_status;
1867 1868 1869
	case TCM_LUN_BUSY:
		cmd->scsi_status = SAM_STAT_BUSY;
		goto queue_status;
1870
	case TCM_RESERVATION_CONFLICT:
1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
		/*
		 * No SENSE Data payload for this case, set SCSI Status
		 * and queue the response to $FABRIC_MOD.
		 *
		 * Uses linux/include/scsi/scsi.h SAM status codes defs
		 */
		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
		/*
		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
		 * CONFLICT STATUS.
		 *
		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
		 */
1885
		if (cmd->se_sess &&
1886 1887 1888 1889 1890
		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
					       cmd->orig_fe_lun, 0x2C,
					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
		}
1891 1892

		goto queue_status;
1893
	default:
1894
		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1895 1896
			cmd->t_task_cdb[0], sense_reason);
		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1897 1898
		break;
	}
1899

1900
	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1901
	if (ret)
1902
		goto queue_full;
1903

1904 1905
check_stop:
	transport_lun_remove_cmd(cmd);
A
Andy Grover 已提交
1906
	transport_cmd_check_stop_to_fabric(cmd);
1907 1908
	return;

1909 1910 1911 1912 1913
queue_status:
	trace_target_cmd_complete(cmd);
	ret = cmd->se_tfo->queue_status(cmd);
	if (!ret)
		goto check_stop;
1914
queue_full:
1915
	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1916
}
1917
EXPORT_SYMBOL(transport_generic_request_failure);
1918

1919
void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1920
{
1921
	sense_reason_t ret;
1922

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	if (!cmd->execute_cmd) {
		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		goto err;
	}
	if (do_checks) {
		/*
		 * Check for an existing UNIT ATTENTION condition after
		 * target_handle_task_attr() has done SAM task attr
		 * checking, and possibly have already defered execution
		 * out to target_restart_delayed_cmds() context.
		 */
		ret = target_scsi3_ua_check(cmd);
		if (ret)
			goto err;

		ret = target_alua_state_check(cmd);
		if (ret)
			goto err;
1941

1942 1943 1944 1945
		ret = target_check_reservation(cmd);
		if (ret) {
			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
			goto err;
1946
		}
1947
	}
1948 1949 1950 1951 1952 1953

	ret = cmd->execute_cmd(cmd);
	if (!ret)
		return;
err:
	spin_lock_irq(&cmd->t_state_lock);
1954
	cmd->transport_state &= ~CMD_T_SENT;
1955 1956 1957
	spin_unlock_irq(&cmd->t_state_lock);

	transport_generic_request_failure(cmd, ret);
1958 1959
}

1960 1961
static int target_write_prot_action(struct se_cmd *cmd)
{
1962
	u32 sectors;
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	/*
	 * Perform WRITE_INSERT of PI using software emulation when backend
	 * device has PI enabled, if the transport has not already generated
	 * PI using hardware WRITE_INSERT offload.
	 */
	switch (cmd->prot_op) {
	case TARGET_PROT_DOUT_INSERT:
		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
			sbc_dif_generate(cmd);
		break;
1973 1974 1975 1976 1977
	case TARGET_PROT_DOUT_STRIP:
		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
			break;

		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1978 1979
		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
					     sectors, 0, cmd->t_prot_sg, 0);
1980 1981
		if (unlikely(cmd->pi_err)) {
			spin_lock_irq(&cmd->t_state_lock);
1982
			cmd->transport_state &= ~CMD_T_SENT;
1983 1984 1985 1986 1987
			spin_unlock_irq(&cmd->t_state_lock);
			transport_generic_request_failure(cmd, cmd->pi_err);
			return -1;
		}
		break;
1988 1989 1990 1991 1992 1993 1994
	default:
		break;
	}

	return 0;
}

1995
static bool target_handle_task_attr(struct se_cmd *cmd)
1996 1997 1998
{
	struct se_device *dev = cmd->se_dev;

1999
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2000
		return false;
2001

2002 2003
	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;

2004
	/*
L
Lucas De Marchi 已提交
2005
	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2006 2007
	 * to allow the passed struct se_cmd list of tasks to the front of the list.
	 */
2008
	switch (cmd->sam_task_attr) {
C
Christoph Hellwig 已提交
2009
	case TCM_HEAD_TAG:
2010 2011
		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
			 cmd->t_task_cdb[0]);
2012
		return false;
C
Christoph Hellwig 已提交
2013
	case TCM_ORDERED_TAG:
2014
		atomic_inc_mb(&dev->dev_ordered_sync);
2015

2016 2017
		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
			 cmd->t_task_cdb[0]);
2018

2019
		/*
2020 2021
		 * Execute an ORDERED command if no other older commands
		 * exist that need to be completed first.
2022
		 */
2023
		if (!atomic_read(&dev->simple_cmds))
2024
			return false;
2025 2026
		break;
	default:
2027 2028 2029
		/*
		 * For SIMPLE and UNTAGGED Task Attribute commands
		 */
2030
		atomic_inc_mb(&dev->simple_cmds);
2031
		break;
2032
	}
2033

2034 2035
	if (atomic_read(&dev->dev_ordered_sync) == 0)
		return false;
2036

2037 2038 2039 2040
	spin_lock(&dev->delayed_cmd_lock);
	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
	spin_unlock(&dev->delayed_cmd_lock);

2041 2042
	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
		cmd->t_task_cdb[0], cmd->sam_task_attr);
2043 2044 2045 2046 2047 2048 2049 2050
	return true;
}

void target_execute_cmd(struct se_cmd *cmd)
{
	/*
	 * Determine if frontend context caller is requesting the stopping of
	 * this command for frontend exceptions.
2051
	 *
2052
	 * If the received CDB has already been aborted stop processing it here.
2053
	 */
2054
	if (target_cmd_interrupted(cmd))
2055 2056
		return;

2057
	spin_lock_irq(&cmd->t_state_lock);
2058
	cmd->t_state = TRANSPORT_PROCESSING;
2059
	cmd->transport_state &= ~CMD_T_PRE_EXECUTE;
2060
	cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2061
	spin_unlock_irq(&cmd->t_state_lock);
2062 2063 2064

	if (target_write_prot_action(cmd))
		return;
2065

2066 2067
	if (target_handle_task_attr(cmd)) {
		spin_lock_irq(&cmd->t_state_lock);
2068
		cmd->transport_state &= ~CMD_T_SENT;
2069 2070 2071 2072
		spin_unlock_irq(&cmd->t_state_lock);
		return;
	}

2073
	__target_execute_cmd(cmd, true);
2074
}
2075
EXPORT_SYMBOL(target_execute_cmd);
2076

2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
/*
 * Process all commands up to the last received ORDERED task attribute which
 * requires another blocking boundary
 */
static void target_restart_delayed_cmds(struct se_device *dev)
{
	for (;;) {
		struct se_cmd *cmd;

		spin_lock(&dev->delayed_cmd_lock);
		if (list_empty(&dev->delayed_cmd_list)) {
			spin_unlock(&dev->delayed_cmd_lock);
			break;
		}

		cmd = list_entry(dev->delayed_cmd_list.next,
				 struct se_cmd, se_delayed_node);
		list_del(&cmd->se_delayed_node);
		spin_unlock(&dev->delayed_cmd_lock);

2097 2098
		cmd->transport_state |= CMD_T_SENT;

2099
		__target_execute_cmd(cmd, true);
2100

C
Christoph Hellwig 已提交
2101
		if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2102 2103 2104 2105
			break;
	}
}

2106
/*
2107
 * Called from I/O completion to determine which dormant/delayed
2108 2109 2110 2111
 * and ordered cmds need to have their tasks added to the execution queue.
 */
static void transport_complete_task_attr(struct se_cmd *cmd)
{
2112
	struct se_device *dev = cmd->se_dev;
2113

2114
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2115 2116
		return;

2117 2118 2119
	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
		goto restart;

C
Christoph Hellwig 已提交
2120
	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2121
		atomic_dec_mb(&dev->simple_cmds);
2122
		dev->dev_cur_ordered_id++;
C
Christoph Hellwig 已提交
2123
	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2124
		dev->dev_cur_ordered_id++;
2125 2126
		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
			 dev->dev_cur_ordered_id);
C
Christoph Hellwig 已提交
2127
	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2128
		atomic_dec_mb(&dev->dev_ordered_sync);
2129 2130

		dev->dev_cur_ordered_id++;
2131 2132
		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
			 dev->dev_cur_ordered_id);
2133
	}
2134 2135
	cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;

2136
restart:
2137
	target_restart_delayed_cmds(dev);
2138 2139
}

2140
static void transport_complete_qf(struct se_cmd *cmd)
2141 2142 2143
{
	int ret = 0;

2144
	transport_complete_task_attr(cmd);
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
	/*
	 * If a fabric driver ->write_pending() or ->queue_data_in() callback
	 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
	 * the same callbacks should not be retried.  Return CHECK_CONDITION
	 * if a scsi_status is not already set.
	 *
	 * If a fabric driver ->queue_status() has returned non zero, always
	 * keep retrying no matter what..
	 */
	if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
		if (cmd->scsi_status)
			goto queue_status;
2157

2158 2159
		translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
		goto queue_status;
2160
	}
2161

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
	/*
	 * Check if we need to send a sense buffer from
	 * the struct se_cmd in question. We do NOT want
	 * to take this path of the IO has been marked as
	 * needing to be treated like a "normal read". This
	 * is the case if it's a tape read, and either the
	 * FM, EOM, or ILI bits are set, but there is no
	 * sense data.
	 */
	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2173 2174
		goto queue_status;

2175 2176
	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
2177 2178 2179
		/* queue status if not treating this as a normal read */
		if (cmd->scsi_status &&
		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2180 2181
			goto queue_status;

2182
		trace_target_cmd_complete(cmd);
2183 2184 2185
		ret = cmd->se_tfo->queue_data_in(cmd);
		break;
	case DMA_TO_DEVICE:
2186
		if (cmd->se_cmd_flags & SCF_BIDI) {
2187
			ret = cmd->se_tfo->queue_data_in(cmd);
2188
			break;
2189
		}
2190
		/* fall through */
2191
	case DMA_NONE:
2192
queue_status:
2193
		trace_target_cmd_complete(cmd);
2194 2195 2196 2197 2198 2199
		ret = cmd->se_tfo->queue_status(cmd);
		break;
	default:
		break;
	}

2200
	if (ret < 0) {
2201
		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2202 2203 2204 2205
		return;
	}
	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
2206 2207
}

2208 2209
static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
					int err, bool write_pending)
2210
{
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
	/*
	 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
	 * ->queue_data_in() callbacks from new process context.
	 *
	 * Otherwise for other errors, transport_complete_qf() will send
	 * CHECK_CONDITION via ->queue_status() instead of attempting to
	 * retry associated fabric driver data-transfer callbacks.
	 */
	if (err == -EAGAIN || err == -ENOMEM) {
		cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
						 TRANSPORT_COMPLETE_QF_OK;
	} else {
		pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
		cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
	}

2227 2228
	spin_lock_irq(&dev->qf_cmd_lock);
	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2229
	atomic_inc_mb(&dev->dev_qf_count);
2230 2231 2232 2233 2234
	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);

	schedule_work(&cmd->se_dev->qf_work_queue);
}

2235
static bool target_read_prot_action(struct se_cmd *cmd)
2236
{
2237 2238 2239
	switch (cmd->prot_op) {
	case TARGET_PROT_DIN_STRIP:
		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2240 2241 2242 2243 2244 2245 2246
			u32 sectors = cmd->data_length >>
				  ilog2(cmd->se_dev->dev_attrib.block_size);

			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
						     sectors, 0, cmd->t_prot_sg,
						     0);
			if (cmd->pi_err)
2247
				return true;
2248
		}
2249
		break;
2250 2251 2252 2253 2254 2255
	case TARGET_PROT_DIN_INSERT:
		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
			break;

		sbc_dif_generate(cmd);
		break;
2256 2257
	default:
		break;
2258 2259 2260 2261 2262
	}

	return false;
}

2263
static void target_complete_ok_work(struct work_struct *work)
2264
{
2265
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2266
	int ret;
2267

2268 2269 2270 2271 2272
	/*
	 * Check if we need to move delayed/dormant tasks from cmds on the
	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
	 * Attribute.
	 */
2273 2274
	transport_complete_task_attr(cmd);

2275 2276 2277 2278 2279 2280 2281
	/*
	 * Check to schedule QUEUE_FULL work, or execute an existing
	 * cmd->transport_qf_callback()
	 */
	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
		schedule_work(&cmd->se_dev->qf_work_queue);

2282
	/*
2283
	 * Check if we need to send a sense buffer from
2284 2285 2286 2287 2288 2289
	 * the struct se_cmd in question. We do NOT want
	 * to take this path of the IO has been marked as
	 * needing to be treated like a "normal read". This
	 * is the case if it's a tape read, and either the
	 * FM, EOM, or ILI bits are set, but there is no
	 * sense data.
2290
	 */
2291 2292
	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2293 2294 2295
		WARN_ON(!cmd->scsi_status);
		ret = transport_send_check_condition_and_sense(
					cmd, 0, 1);
2296
		if (ret)
2297 2298 2299 2300 2301
			goto queue_full;

		transport_lun_remove_cmd(cmd);
		transport_cmd_check_stop_to_fabric(cmd);
		return;
2302 2303
	}
	/*
L
Lucas De Marchi 已提交
2304
	 * Check for a callback, used by amongst other things
2305
	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2306
	 */
2307 2308
	if (cmd->transport_complete_callback) {
		sense_reason_t rc;
2309 2310 2311
		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
		bool zero_dl = !(cmd->data_length);
		int post_ret = 0;
2312

2313 2314 2315
		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
		if (!rc && !post_ret) {
			if (caw && zero_dl)
2316 2317
				goto queue_rsp;

2318
			return;
2319 2320 2321
		} else if (rc) {
			ret = transport_send_check_condition_and_sense(cmd,
						rc, 0);
2322
			if (ret)
2323
				goto queue_full;
2324

2325 2326 2327 2328
			transport_lun_remove_cmd(cmd);
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
2329
	}
2330

2331
queue_rsp:
2332 2333
	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
		/*
		 * if this is a READ-type IO, but SCSI status
		 * is set, then skip returning data and just
		 * return the status -- unless this IO is marked
		 * as needing to be treated as a normal read,
		 * in which case we want to go ahead and return
		 * the data. This happens, for example, for tape
		 * reads with the FM, EOM, or ILI bits set, with
		 * no sense data.
		 */
		if (cmd->scsi_status &&
		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2346 2347
			goto queue_status;

2348 2349
		atomic_long_add(cmd->data_length,
				&cmd->se_lun->lun_stats.tx_data_octets);
2350 2351 2352 2353 2354
		/*
		 * Perform READ_STRIP of PI using software emulation when
		 * backend had PI enabled, if the transport will not be
		 * performing hardware READ_STRIP offload.
		 */
2355
		if (target_read_prot_action(cmd)) {
2356 2357
			ret = transport_send_check_condition_and_sense(cmd,
						cmd->pi_err, 0);
2358
			if (ret)
2359 2360 2361 2362 2363 2364
				goto queue_full;

			transport_lun_remove_cmd(cmd);
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
2365

2366
		trace_target_cmd_complete(cmd);
2367
		ret = cmd->se_tfo->queue_data_in(cmd);
2368
		if (ret)
2369
			goto queue_full;
2370 2371
		break;
	case DMA_TO_DEVICE:
2372 2373
		atomic_long_add(cmd->data_length,
				&cmd->se_lun->lun_stats.rx_data_octets);
2374 2375 2376
		/*
		 * Check if we need to send READ payload for BIDI-COMMAND
		 */
2377
		if (cmd->se_cmd_flags & SCF_BIDI) {
2378 2379
			atomic_long_add(cmd->data_length,
					&cmd->se_lun->lun_stats.tx_data_octets);
2380
			ret = cmd->se_tfo->queue_data_in(cmd);
2381
			if (ret)
2382
				goto queue_full;
2383 2384
			break;
		}
2385
		/* fall through */
2386
	case DMA_NONE:
2387
queue_status:
2388
		trace_target_cmd_complete(cmd);
2389
		ret = cmd->se_tfo->queue_status(cmd);
2390
		if (ret)
2391
			goto queue_full;
2392 2393 2394 2395 2396 2397 2398
		break;
	default:
		break;
	}

	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
2399 2400 2401
	return;

queue_full:
2402
	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2403
		" data_direction: %d\n", cmd, cmd->data_direction);
2404 2405

	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2406 2407
}

2408
void target_free_sgl(struct scatterlist *sgl, int nents)
2409
{
2410
	sgl_free_n_order(sgl, nents, 0);
2411
}
2412
EXPORT_SYMBOL(target_free_sgl);
2413

2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
{
	/*
	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
	 * emulation, and free + reset pointers if necessary..
	 */
	if (!cmd->t_data_sg_orig)
		return;

	kfree(cmd->t_data_sg);
	cmd->t_data_sg = cmd->t_data_sg_orig;
	cmd->t_data_sg_orig = NULL;
	cmd->t_data_nents = cmd->t_data_nents_orig;
	cmd->t_data_nents_orig = 0;
}

2430 2431
static inline void transport_free_pages(struct se_cmd *cmd)
{
2432
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2433
		target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2434 2435 2436 2437
		cmd->t_prot_sg = NULL;
		cmd->t_prot_nents = 0;
	}

2438
	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2439 2440 2441 2442 2443
		/*
		 * Release special case READ buffer payload required for
		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
		 */
		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2444
			target_free_sgl(cmd->t_bidi_data_sg,
2445 2446 2447 2448
					   cmd->t_bidi_data_nents);
			cmd->t_bidi_data_sg = NULL;
			cmd->t_bidi_data_nents = 0;
		}
2449
		transport_reset_sgl_orig(cmd);
2450
		return;
2451 2452
	}
	transport_reset_sgl_orig(cmd);
2453

2454
	target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2455 2456
	cmd->t_data_sg = NULL;
	cmd->t_data_nents = 0;
2457

2458
	target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2459 2460
	cmd->t_bidi_data_sg = NULL;
	cmd->t_bidi_data_nents = 0;
2461 2462
}

2463
void *transport_kmap_data_sg(struct se_cmd *cmd)
2464
{
2465
	struct scatterlist *sg = cmd->t_data_sg;
2466 2467
	struct page **pages;
	int i;
2468 2469

	/*
2470 2471 2472
	 * We need to take into account a possible offset here for fabrics like
	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2473
	 */
2474 2475
	if (!cmd->t_data_nents)
		return NULL;
2476 2477 2478

	BUG_ON(!sg);
	if (cmd->t_data_nents == 1)
2479 2480 2481
		return kmap(sg_page(sg)) + sg->offset;

	/* >1 page. use vmap */
2482
	pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2483
	if (!pages)
2484 2485 2486 2487 2488 2489 2490 2491 2492
		return NULL;

	/* convert sg[] to pages[] */
	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
		pages[i] = sg_page(sg);
	}

	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
	kfree(pages);
2493
	if (!cmd->t_data_vmap)
2494 2495 2496
		return NULL;

	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2497
}
2498
EXPORT_SYMBOL(transport_kmap_data_sg);
2499

2500
void transport_kunmap_data_sg(struct se_cmd *cmd)
2501
{
2502
	if (!cmd->t_data_nents) {
2503
		return;
2504
	} else if (cmd->t_data_nents == 1) {
2505
		kunmap(sg_page(cmd->t_data_sg));
2506 2507
		return;
	}
2508 2509 2510

	vunmap(cmd->t_data_vmap);
	cmd->t_data_vmap = NULL;
2511
}
2512
EXPORT_SYMBOL(transport_kunmap_data_sg);
2513

2514
int
2515
target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2516
		 bool zero_page, bool chainable)
2517
{
2518
	gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2519

2520 2521
	*sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
	return *sgl ? 0 : -ENOMEM;
2522
}
2523
EXPORT_SYMBOL(target_alloc_sgl);
2524

2525
/*
2526 2527 2528
 * Allocate any required resources to execute the command.  For writes we
 * might not have the payload yet, so notify the fabric via a call to
 * ->write_pending instead. Otherwise place it on the execution queue.
2529
 */
2530 2531
sense_reason_t
transport_generic_new_cmd(struct se_cmd *cmd)
2532
{
2533
	unsigned long flags;
2534
	int ret = 0;
2535
	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2536

2537 2538 2539
	if (cmd->prot_op != TARGET_PROT_NORMAL &&
	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2540
				       cmd->prot_length, true, false);
2541 2542 2543 2544
		if (ret < 0)
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
	}

2545
	/*
2546
	 * Determine if the TCM fabric module has already allocated physical
2547
	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2548
	 * beforehand.
2549
	 */
2550 2551
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
	    cmd->data_length) {
2552

2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
		if ((cmd->se_cmd_flags & SCF_BIDI) ||
		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
			u32 bidi_length;

			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
				bidi_length = cmd->t_task_nolb *
					      cmd->se_dev->dev_attrib.block_size;
			else
				bidi_length = cmd->data_length;

			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
					       &cmd->t_bidi_data_nents,
2565
					       bidi_length, zero_flag, false);
2566 2567 2568 2569
			if (ret < 0)
				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		}

2570
		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2571
				       cmd->data_length, zero_flag, false);
2572
		if (ret < 0)
2573
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584
	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
		    cmd->data_length) {
		/*
		 * Special case for COMPARE_AND_WRITE with fabrics
		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
		 */
		u32 caw_length = cmd->t_task_nolb *
				 cmd->se_dev->dev_attrib.block_size;

		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
				       &cmd->t_bidi_data_nents,
2585
				       caw_length, zero_flag, false);
2586 2587
		if (ret < 0)
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2588 2589
	}
	/*
2590 2591 2592
	 * If this command is not a write we can execute it right here,
	 * for write buffers we need to notify the fabric driver first
	 * and let it call back once the write buffers are ready.
2593
	 */
2594
	target_add_to_state_list(cmd);
2595
	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2596 2597 2598
		target_execute_cmd(cmd);
		return 0;
	}
2599 2600 2601 2602 2603 2604 2605

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	cmd->t_state = TRANSPORT_WRITE_PENDING;
	/*
	 * Determine if frontend context caller is requesting the stopping of
	 * this command for frontend exceptions.
	 */
2606 2607
	if (cmd->transport_state & CMD_T_STOP &&
	    !cmd->se_tfo->write_pending_must_be_called) {
2608 2609 2610 2611 2612 2613
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			 __func__, __LINE__, cmd->tag);

		spin_unlock_irqrestore(&cmd->t_state_lock, flags);

		complete_all(&cmd->t_transport_stop_comp);
2614
		return 0;
2615 2616 2617
	}
	cmd->transport_state &= ~CMD_T_ACTIVE;
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2618 2619

	ret = cmd->se_tfo->write_pending(cmd);
2620
	if (ret)
2621 2622
		goto queue_full;

2623
	return 0;
2624

2625 2626
queue_full:
	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2627
	transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2628
	return 0;
2629
}
2630
EXPORT_SYMBOL(transport_generic_new_cmd);
2631

2632
static void transport_write_pending_qf(struct se_cmd *cmd)
2633
{
2634
	unsigned long flags;
2635
	int ret;
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
	bool stop;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

	if (stop) {
		pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
		complete_all(&cmd->t_transport_stop_comp);
		return;
	}
2648 2649

	ret = cmd->se_tfo->write_pending(cmd);
2650
	if (ret) {
2651 2652
		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
			 cmd);
2653
		transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2654
	}
2655 2656
}

2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
static bool
__transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
			   unsigned long *flags);

static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
{
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}

2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
/*
 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
 * finished.
 */
void target_put_cmd_and_wait(struct se_cmd *cmd)
{
	DECLARE_COMPLETION_ONSTACK(compl);

	WARN_ON_ONCE(cmd->abrt_compl);
	cmd->abrt_compl = &compl;
	target_put_sess_cmd(cmd);
	wait_for_completion(&compl);
}

2684 2685 2686 2687
/*
 * This function is called by frontend drivers after processing of a command
 * has finished.
 *
2688 2689 2690
 * The protocol for ensuring that either the regular frontend command
 * processing flow or target_handle_abort() code drops one reference is as
 * follows:
2691
 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2692 2693
 *   the frontend driver to call this function synchronously or asynchronously.
 *   That will cause one reference to be dropped.
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
 * - During regular command processing the target core sets CMD_T_COMPLETE
 *   before invoking one of the .queue_*() functions.
 * - The code that aborts commands skips commands and TMFs for which
 *   CMD_T_COMPLETE has been set.
 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
 *   commands that will be aborted.
 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
 *   transport_generic_free_cmd() skips its call to target_put_sess_cmd().
 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
 *   be called and will drop a reference.
 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2705
 *   will be called. target_handle_abort() will drop the final reference.
2706
 */
2707
int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2708
{
2709
	DECLARE_COMPLETION_ONSTACK(compl);
2710
	int ret = 0;
2711
	bool aborted = false, tas = false;
2712

2713 2714 2715 2716
	if (wait_for_tasks)
		target_wait_free_cmd(cmd, &aborted, &tas);

	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2717 2718 2719 2720 2721
		/*
		 * Handle WRITE failure case where transport_generic_new_cmd()
		 * has already added se_cmd to state_list, but fabric has
		 * failed command before I/O submission.
		 */
2722
		if (cmd->state_active)
2723
			target_remove_from_state_list(cmd);
2724

2725
		if (cmd->se_lun)
2726
			transport_lun_remove_cmd(cmd);
2727
	}
2728
	if (aborted)
2729
		cmd->free_compl = &compl;
2730
	ret = target_put_sess_cmd(cmd);
2731 2732
	if (aborted) {
		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2733
		wait_for_completion(&compl);
2734
		ret = 1;
2735
	}
2736
	return ret;
2737 2738 2739
}
EXPORT_SYMBOL(transport_generic_free_cmd);

2740 2741
/**
 * target_get_sess_cmd - Add command to active ->sess_cmd_list
2742
 * @se_cmd:	command descriptor to add
2743
 * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2744
 */
2745
int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2746
{
2747
	struct se_session *se_sess = se_cmd->se_sess;
2748
	unsigned long flags;
2749
	int ret = 0;
2750

2751 2752 2753 2754 2755
	/*
	 * Add a second kref if the fabric caller is expecting to handle
	 * fabric acknowledgement that requires two target_put_sess_cmd()
	 * invocations before se_cmd descriptor release.
	 */
2756
	if (ack_kref) {
2757 2758 2759
		if (!kref_get_unless_zero(&se_cmd->cmd_kref))
			return -EINVAL;

2760 2761
		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
	}
2762

2763
	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2764 2765 2766 2767
	if (se_sess->sess_tearing_down) {
		ret = -ESHUTDOWN;
		goto out;
	}
2768
	se_cmd->transport_state |= CMD_T_PRE_EXECUTE;
2769
	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2770
	percpu_ref_get(&se_sess->cmd_count);
2771
out:
2772
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2773 2774

	if (ret && ack_kref)
2775
		target_put_sess_cmd(se_cmd);
2776

2777
	return ret;
2778
}
2779
EXPORT_SYMBOL(target_get_sess_cmd);
2780

2781 2782 2783 2784 2785 2786 2787 2788 2789 2790
static void target_free_cmd_mem(struct se_cmd *cmd)
{
	transport_free_pages(cmd);

	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
		core_tmr_release_req(cmd->se_tmr_req);
	if (cmd->t_task_cdb != cmd->__t_task_cdb)
		kfree(cmd->t_task_cdb);
}

2791
static void target_release_cmd_kref(struct kref *kref)
2792
{
2793 2794
	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
	struct se_session *se_sess = se_cmd->se_sess;
2795 2796
	struct completion *free_compl = se_cmd->free_compl;
	struct completion *abrt_compl = se_cmd->abrt_compl;
2797
	unsigned long flags;
2798

2799 2800
	if (se_sess) {
		spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2801
		list_del_init(&se_cmd->se_cmd_list);
2802
		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2803 2804
	}

2805
	target_free_cmd_mem(se_cmd);
2806
	se_cmd->se_tfo->release_cmd(se_cmd);
2807 2808 2809 2810
	if (free_compl)
		complete(free_compl);
	if (abrt_compl)
		complete(abrt_compl);
2811 2812

	percpu_ref_put(&se_sess->cmd_count);
2813 2814
}

2815 2816 2817 2818 2819 2820
/**
 * target_put_sess_cmd - decrease the command reference count
 * @se_cmd:	command to drop a reference from
 *
 * Returns 1 if and only if this target_put_sess_cmd() call caused the
 * refcount to drop to zero. Returns zero otherwise.
2821
 */
2822
int target_put_sess_cmd(struct se_cmd *se_cmd)
2823
{
2824
	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2825 2826 2827
}
EXPORT_SYMBOL(target_put_sess_cmd);

2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
static const char *data_dir_name(enum dma_data_direction d)
{
	switch (d) {
	case DMA_BIDIRECTIONAL:	return "BIDI";
	case DMA_TO_DEVICE:	return "WRITE";
	case DMA_FROM_DEVICE:	return "READ";
	case DMA_NONE:		return "NONE";
	}

	return "(?)";
}

static const char *cmd_state_name(enum transport_state_table t)
{
	switch (t) {
	case TRANSPORT_NO_STATE:	return "NO_STATE";
	case TRANSPORT_NEW_CMD:		return "NEW_CMD";
	case TRANSPORT_WRITE_PENDING:	return "WRITE_PENDING";
	case TRANSPORT_PROCESSING:	return "PROCESSING";
	case TRANSPORT_COMPLETE:	return "COMPLETE";
	case TRANSPORT_ISTATE_PROCESSING:
					return "ISTATE_PROCESSING";
	case TRANSPORT_COMPLETE_QF_WP:	return "COMPLETE_QF_WP";
	case TRANSPORT_COMPLETE_QF_OK:	return "COMPLETE_QF_OK";
	case TRANSPORT_COMPLETE_QF_ERR:	return "COMPLETE_QF_ERR";
	}

	return "(?)";
}

static void target_append_str(char **str, const char *txt)
{
	char *prev = *str;

	*str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
		kstrdup(txt, GFP_ATOMIC);
	kfree(prev);
}

/*
 * Convert a transport state bitmask into a string. The caller is
 * responsible for freeing the returned pointer.
 */
static char *target_ts_to_str(u32 ts)
{
	char *str = NULL;

	if (ts & CMD_T_ABORTED)
		target_append_str(&str, "aborted");
	if (ts & CMD_T_ACTIVE)
		target_append_str(&str, "active");
	if (ts & CMD_T_COMPLETE)
		target_append_str(&str, "complete");
	if (ts & CMD_T_SENT)
		target_append_str(&str, "sent");
	if (ts & CMD_T_STOP)
		target_append_str(&str, "stop");
	if (ts & CMD_T_FABRIC_STOP)
		target_append_str(&str, "fabric_stop");

	return str;
}

static const char *target_tmf_name(enum tcm_tmreq_table tmf)
{
	switch (tmf) {
	case TMR_ABORT_TASK:		return "ABORT_TASK";
	case TMR_ABORT_TASK_SET:	return "ABORT_TASK_SET";
	case TMR_CLEAR_ACA:		return "CLEAR_ACA";
	case TMR_CLEAR_TASK_SET:	return "CLEAR_TASK_SET";
	case TMR_LUN_RESET:		return "LUN_RESET";
	case TMR_TARGET_WARM_RESET:	return "TARGET_WARM_RESET";
	case TMR_TARGET_COLD_RESET:	return "TARGET_COLD_RESET";
	case TMR_UNKNOWN:		break;
	}
	return "(?)";
}

void target_show_cmd(const char *pfx, struct se_cmd *cmd)
{
	char *ts_str = target_ts_to_str(cmd->transport_state);
	const u8 *cdb = cmd->t_task_cdb;
	struct se_tmr_req *tmf = cmd->se_tmr_req;

	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
		pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
			 pfx, cdb[0], cdb[1], cmd->tag,
			 data_dir_name(cmd->data_direction),
			 cmd->se_tfo->get_cmd_state(cmd),
			 cmd_state_name(cmd->t_state), cmd->data_length,
			 kref_read(&cmd->cmd_kref), ts_str);
	} else {
		pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
			 pfx, target_tmf_name(tmf->function), cmd->tag,
			 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
			 cmd_state_name(cmd->t_state),
			 kref_read(&cmd->cmd_kref), ts_str);
	}
	kfree(ts_str);
}
EXPORT_SYMBOL(target_show_cmd);

2930
/**
2931
 * target_sess_cmd_list_set_waiting - Set sess_tearing_down so no new commands are queued.
2932
 * @se_sess:	session to flag
2933
 */
2934
void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2935 2936 2937 2938
{
	unsigned long flags;

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2939
	se_sess->sess_tearing_down = 1;
2940
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2941 2942

	percpu_ref_kill(&se_sess->cmd_count);
2943
}
2944
EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2945

2946
/**
2947
 * target_wait_for_sess_cmds - Wait for outstanding commands
2948 2949
 * @se_sess:    session to wait for active I/O
 */
2950
void target_wait_for_sess_cmds(struct se_session *se_sess)
2951
{
2952 2953
	struct se_cmd *cmd;
	int ret;
2954

2955 2956 2957
	WARN_ON_ONCE(!se_sess->sess_tearing_down);

	do {
2958 2959 2960
		ret = wait_event_timeout(se_sess->cmd_list_wq,
				percpu_ref_is_zero(&se_sess->cmd_count),
				180 * HZ);
2961 2962 2963 2964
		list_for_each_entry(cmd, &se_sess->sess_cmd_list, se_cmd_list)
			target_show_cmd("session shutdown: still waiting for ",
					cmd);
	} while (ret <= 0);
2965 2966 2967
}
EXPORT_SYMBOL(target_wait_for_sess_cmds);

2968 2969 2970 2971
/*
 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
 * all references to the LUN have been released. Called during LUN shutdown.
 */
2972
void transport_clear_lun_ref(struct se_lun *lun)
2973
{
2974
	percpu_ref_kill(&lun->lun_ref);
2975
	wait_for_completion(&lun->lun_shutdown_comp);
2976 2977
}

2978 2979 2980 2981 2982
static bool
__transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
			   bool *aborted, bool *tas, unsigned long *flags)
	__releases(&cmd->t_state_lock)
	__acquires(&cmd->t_state_lock)
2983 2984
{

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
	assert_spin_locked(&cmd->t_state_lock);
	WARN_ON_ONCE(!irqs_disabled());

	if (fabric_stop)
		cmd->transport_state |= CMD_T_FABRIC_STOP;

	if (cmd->transport_state & CMD_T_ABORTED)
		*aborted = true;

	if (cmd->transport_state & CMD_T_TAS)
		*tas = true;

2997
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2998
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2999
		return false;
3000

3001
	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3002
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3003
		return false;
3004

3005 3006 3007 3008
	if (!(cmd->transport_state & CMD_T_ACTIVE))
		return false;

	if (fabric_stop && *aborted)
3009
		return false;
3010

3011
	cmd->transport_state |= CMD_T_STOP;
3012

3013
	target_show_cmd("wait_for_tasks: Stopping ", cmd);
3014

3015
	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3016

3017 3018 3019
	while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
					    180 * HZ))
		target_show_cmd("wait for tasks: ", cmd);
3020

3021
	spin_lock_irqsave(&cmd->t_state_lock, *flags);
3022
	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3023

3024 3025
	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3026

3027 3028 3029 3030
	return true;
}

/**
3031 3032
 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
 * @cmd: command to wait on
3033 3034 3035 3036 3037 3038 3039 3040
 */
bool transport_wait_for_tasks(struct se_cmd *cmd)
{
	unsigned long flags;
	bool ret, aborted = false, tas = false;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3041
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3042

3043
	return ret;
3044
}
3045
EXPORT_SYMBOL(transport_wait_for_tasks);
3046

3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
struct sense_info {
	u8 key;
	u8 asc;
	u8 ascq;
	bool add_sector_info;
};

static const struct sense_info sense_info_table[] = {
	[TCM_NO_SENSE] = {
		.key = NOT_READY
	},
	[TCM_NON_EXISTENT_LUN] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
	},
	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
	},
	[TCM_SECTOR_COUNT_TOO_MANY] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
	},
	[TCM_UNKNOWN_MODE_PAGE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x24, /* INVALID FIELD IN CDB */
	},
	[TCM_CHECK_CONDITION_ABORT_CMD] = {
		.key = ABORTED_COMMAND,
		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
		.ascq = 0x03,
	},
	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
		.key = ABORTED_COMMAND,
		.asc = 0x0c, /* WRITE ERROR */
		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
	},
	[TCM_INVALID_CDB_FIELD] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x24, /* INVALID FIELD IN CDB */
	},
	[TCM_INVALID_PARAMETER_LIST] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
	},
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
	[TCM_TOO_MANY_TARGET_DESCS] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
	},
	[TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
	},
	[TCM_TOO_MANY_SEGMENT_DESCS] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
	},
	[TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
	},
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
	},
	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x0c, /* WRITE ERROR */
		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
	},
	[TCM_SERVICE_CRC_ERROR] = {
		.key = ABORTED_COMMAND,
		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
		.ascq = 0x05, /* N/A */
	},
	[TCM_SNACK_REJECTED] = {
		.key = ABORTED_COMMAND,
		.asc = 0x11, /* READ ERROR */
		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
	},
	[TCM_WRITE_PROTECTED] = {
		.key = DATA_PROTECT,
		.asc = 0x27, /* WRITE PROTECTED */
	},
	[TCM_ADDRESS_OUT_OF_RANGE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
	},
	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
		.key = UNIT_ATTENTION,
	},
	[TCM_CHECK_CONDITION_NOT_READY] = {
		.key = NOT_READY,
	},
	[TCM_MISCOMPARE_VERIFY] = {
		.key = MISCOMPARE,
		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
		.ascq = 0x00,
	},
	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3151
		.key = ABORTED_COMMAND,
3152 3153 3154 3155 3156
		.asc = 0x10,
		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
		.add_sector_info = true,
	},
	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3157
		.key = ABORTED_COMMAND,
3158 3159 3160 3161 3162
		.asc = 0x10,
		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
		.add_sector_info = true,
	},
	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3163
		.key = ABORTED_COMMAND,
3164 3165 3166 3167
		.asc = 0x10,
		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
		.add_sector_info = true,
	},
3168 3169 3170 3171 3172 3173
	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
		.key = COPY_ABORTED,
		.asc = 0x0d,
		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */

	},
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
		/*
		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
		 * Solaris initiators.  Returning NOT READY instead means the
		 * operations will be retried a finite number of times and we
		 * can survive intermittent errors.
		 */
		.key = NOT_READY,
		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
	},
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
	[TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
		/*
		 * From spc4r22 section5.7.7,5.7.8
		 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
		 * or a REGISTER AND IGNORE EXISTING KEY service action or
		 * REGISTER AND MOVE service actionis attempted,
		 * but there are insufficient device server resources to complete the
		 * operation, then the command shall be terminated with CHECK CONDITION
		 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
		 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
		 */
		.key = ILLEGAL_REQUEST,
		.asc = 0x55,
		.ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
	},
3199 3200
};

3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
/**
 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
 *   be stored.
 * @reason: LIO sense reason code. If this argument has the value
 *   TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
 *   dequeuing a unit attention fails due to multiple commands being processed
 *   concurrently, set the command status to BUSY.
 *
 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
 */
3212
static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3213 3214 3215 3216
{
	const struct sense_info *si;
	u8 *buffer = cmd->sense_buffer;
	int r = (__force int)reason;
3217
	u8 key, asc, ascq;
3218
	bool desc_format = target_sense_desc_format(cmd->se_dev);
3219 3220 3221 3222 3223 3224 3225

	if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
		si = &sense_info_table[r];
	else
		si = &sense_info_table[(__force int)
				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];

3226
	key = si->key;
3227
	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3228 3229 3230 3231 3232
		if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
						       &ascq)) {
			cmd->scsi_status = SAM_STAT_BUSY;
			return;
		}
3233 3234 3235 3236 3237 3238 3239 3240
	} else if (si->asc == 0) {
		WARN_ON_ONCE(cmd->scsi_asc == 0);
		asc = cmd->scsi_asc;
		ascq = cmd->scsi_ascq;
	} else {
		asc = si->asc;
		ascq = si->ascq;
	}
3241

3242 3243 3244
	cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3245
	scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3246
	if (si->add_sector_info)
3247 3248 3249
		WARN_ON_ONCE(scsi_set_sense_information(buffer,
							cmd->scsi_sense_length,
							cmd->bad_sector) < 0);
3250 3251
}

3252 3253 3254
int
transport_send_check_condition_and_sense(struct se_cmd *cmd,
		sense_reason_t reason, int from_transport)
3255 3256 3257
{
	unsigned long flags;

3258 3259
	WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);

3260
	spin_lock_irqsave(&cmd->t_state_lock, flags);
3261
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3262
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3263 3264 3265
		return 0;
	}
	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3266
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3267

3268 3269
	if (!from_transport)
		translate_sense_reason(cmd, reason);
3270

3271
	trace_target_cmd_complete(cmd);
3272
	return cmd->se_tfo->queue_status(cmd);
3273 3274 3275
}
EXPORT_SYMBOL(transport_send_check_condition_and_sense);

3276
static void target_tmr_work(struct work_struct *work)
3277
{
3278
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3279
	struct se_device *dev = cmd->se_dev;
3280 3281 3282
	struct se_tmr_req *tmr = cmd->se_tmr_req;
	int ret;

3283 3284
	if (cmd->transport_state & CMD_T_ABORTED)
		goto aborted;
3285

3286
	switch (tmr->function) {
3287
	case TMR_ABORT_TASK:
3288
		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3289
		break;
3290 3291 3292
	case TMR_ABORT_TASK_SET:
	case TMR_CLEAR_ACA:
	case TMR_CLEAR_TASK_SET:
3293 3294
		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
		break;
3295
	case TMR_LUN_RESET:
3296 3297 3298
		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
					 TMR_FUNCTION_REJECTED;
3299 3300 3301 3302 3303
		if (tmr->response == TMR_FUNCTION_COMPLETE) {
			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
					       cmd->orig_fe_lun, 0x29,
					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
		}
3304
		break;
3305
	case TMR_TARGET_WARM_RESET:
3306 3307
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
3308
	case TMR_TARGET_COLD_RESET:
3309 3310 3311
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	default:
3312
		pr_err("Unknown TMR function: 0x%02x.\n",
3313 3314 3315 3316 3317
				tmr->function);
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	}

3318 3319
	if (cmd->transport_state & CMD_T_ABORTED)
		goto aborted;
3320

3321
	cmd->se_tfo->queue_tm_rsp(cmd);
3322

3323
	transport_cmd_check_stop_to_fabric(cmd);
3324 3325 3326 3327
	return;

aborted:
	target_handle_abort(cmd);
3328 3329
}

3330 3331
int transport_generic_handle_tmr(
	struct se_cmd *cmd)
3332
{
3333
	unsigned long flags;
3334
	bool aborted = false;
3335 3336

	spin_lock_irqsave(&cmd->t_state_lock, flags);
3337 3338 3339 3340 3341 3342
	if (cmd->transport_state & CMD_T_ABORTED) {
		aborted = true;
	} else {
		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
		cmd->transport_state |= CMD_T_ACTIVE;
	}
3343 3344
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3345
	if (aborted) {
3346 3347 3348 3349
		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
				    cmd->se_tmr_req->function,
				    cmd->se_tmr_req->ref_task_tag, cmd->tag);
		target_handle_abort(cmd);
3350 3351 3352
		return 0;
	}

3353
	INIT_WORK(&cmd->work, target_tmr_work);
3354
	schedule_work(&cmd->work);
3355 3356
	return 0;
}
3357
EXPORT_SYMBOL(transport_generic_handle_tmr);
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376

bool
target_check_wce(struct se_device *dev)
{
	bool wce = false;

	if (dev->transport->get_write_cache)
		wce = dev->transport->get_write_cache(dev);
	else if (dev->dev_attrib.emulate_write_cache > 0)
		wce = true;

	return wce;
}

bool
target_check_fua(struct se_device *dev)
{
	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
}