target_core_transport.c 92.0 KB
Newer Older
1 2 3 4 5
/*******************************************************************************
 * Filename:  target_core_transport.c
 *
 * This file contains the Generic Target Engine Core.
 *
6
 * (c) Copyright 2002-2013 Datera, Inc.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 *
 * Nicholas A. Bellinger <nab@kernel.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 ******************************************************************************/

#include <linux/net.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/in.h>
#include <linux/cdrom.h>
35
#include <linux/module.h>
36
#include <linux/ratelimit.h>
37
#include <linux/vmalloc.h>
38 39 40
#include <asm/unaligned.h>
#include <net/sock.h>
#include <net/tcp.h>
41
#include <scsi/scsi_proto.h>
42
#include <scsi/scsi_common.h>
43 44

#include <target/target_core_base.h>
45 46
#include <target/target_core_backend.h>
#include <target/target_core_fabric.h>
47

C
Christoph Hellwig 已提交
48
#include "target_core_internal.h"
49 50 51 52
#include "target_core_alua.h"
#include "target_core_pr.h"
#include "target_core_ua.h"

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/target.h>

56
static struct workqueue_struct *target_completion_wq;
57 58 59 60 61 62
static struct kmem_cache *se_sess_cache;
struct kmem_cache *se_ua_cache;
struct kmem_cache *t10_pr_reg_cache;
struct kmem_cache *t10_alua_lu_gp_cache;
struct kmem_cache *t10_alua_lu_gp_mem_cache;
struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 64
struct kmem_cache *t10_alua_lba_map_cache;
struct kmem_cache *t10_alua_lba_map_mem_cache;
65 66

static void transport_complete_task_attr(struct se_cmd *cmd);
67
static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
68
static void transport_handle_queue_full(struct se_cmd *cmd,
69
		struct se_device *dev, int err, bool write_pending);
70
static int transport_put_cmd(struct se_cmd *cmd);
71
static void target_complete_ok_work(struct work_struct *work);
72

73
int init_se_kmem_caches(void)
74 75 76 77
{
	se_sess_cache = kmem_cache_create("se_sess_cache",
			sizeof(struct se_session), __alignof__(struct se_session),
			0, NULL);
78 79
	if (!se_sess_cache) {
		pr_err("kmem_cache_create() for struct se_session"
80
				" failed\n");
81
		goto out;
82 83 84 85
	}
	se_ua_cache = kmem_cache_create("se_ua_cache",
			sizeof(struct se_ua), __alignof__(struct se_ua),
			0, NULL);
86 87
	if (!se_ua_cache) {
		pr_err("kmem_cache_create() for struct se_ua failed\n");
88
		goto out_free_sess_cache;
89 90 91 92
	}
	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
			sizeof(struct t10_pr_registration),
			__alignof__(struct t10_pr_registration), 0, NULL);
93 94
	if (!t10_pr_reg_cache) {
		pr_err("kmem_cache_create() for struct t10_pr_registration"
95
				" failed\n");
96
		goto out_free_ua_cache;
97 98 99 100
	}
	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
			0, NULL);
101 102
	if (!t10_alua_lu_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103
				" failed\n");
104
		goto out_free_pr_reg_cache;
105 106 107 108
	}
	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
			sizeof(struct t10_alua_lu_gp_member),
			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
109 110
	if (!t10_alua_lu_gp_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111
				"cache failed\n");
112
		goto out_free_lu_gp_cache;
113 114 115 116
	}
	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
			sizeof(struct t10_alua_tg_pt_gp),
			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
117 118
	if (!t10_alua_tg_pt_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119
				"cache failed\n");
120
		goto out_free_lu_gp_mem_cache;
121
	}
122 123 124 125 126 127 128
	t10_alua_lba_map_cache = kmem_cache_create(
			"t10_alua_lba_map_cache",
			sizeof(struct t10_alua_lba_map),
			__alignof__(struct t10_alua_lba_map), 0, NULL);
	if (!t10_alua_lba_map_cache) {
		pr_err("kmem_cache_create() for t10_alua_lba_map_"
				"cache failed\n");
129
		goto out_free_tg_pt_gp_cache;
130 131 132 133 134 135 136 137 138 139
	}
	t10_alua_lba_map_mem_cache = kmem_cache_create(
			"t10_alua_lba_map_mem_cache",
			sizeof(struct t10_alua_lba_map_member),
			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
	if (!t10_alua_lba_map_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
				"cache failed\n");
		goto out_free_lba_map_cache;
	}
140

141 142 143
	target_completion_wq = alloc_workqueue("target_completion",
					       WQ_MEM_RECLAIM, 0);
	if (!target_completion_wq)
144
		goto out_free_lba_map_mem_cache;
145

146
	return 0;
147

148 149 150 151
out_free_lba_map_mem_cache:
	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
out_free_lba_map_cache:
	kmem_cache_destroy(t10_alua_lba_map_cache);
152 153 154 155 156 157 158 159 160 161 162 163
out_free_tg_pt_gp_cache:
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
out_free_lu_gp_mem_cache:
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
out_free_lu_gp_cache:
	kmem_cache_destroy(t10_alua_lu_gp_cache);
out_free_pr_reg_cache:
	kmem_cache_destroy(t10_pr_reg_cache);
out_free_ua_cache:
	kmem_cache_destroy(se_ua_cache);
out_free_sess_cache:
	kmem_cache_destroy(se_sess_cache);
164
out:
165
	return -ENOMEM;
166 167
}

168
void release_se_kmem_caches(void)
169
{
170
	destroy_workqueue(target_completion_wq);
171 172 173 174 175 176
	kmem_cache_destroy(se_sess_cache);
	kmem_cache_destroy(se_ua_cache);
	kmem_cache_destroy(t10_pr_reg_cache);
	kmem_cache_destroy(t10_alua_lu_gp_cache);
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
177 178
	kmem_cache_destroy(t10_alua_lba_map_cache);
	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
179 180
}

181 182 183
/* This code ensures unique mib indexes are handed out. */
static DEFINE_SPINLOCK(scsi_mib_index_lock);
static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
184 185 186 187 188 189 190 191

/*
 * Allocate a new row index for the entry type specified
 */
u32 scsi_get_new_index(scsi_index_t type)
{
	u32 new_index;

192
	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
193

194 195 196
	spin_lock(&scsi_mib_index_lock);
	new_index = ++scsi_mib_index[type];
	spin_unlock(&scsi_mib_index_lock);
197 198 199 200

	return new_index;
}

201
void transport_subsystem_check_init(void)
202 203
{
	int ret;
204
	static int sub_api_initialized;
205

206 207 208
	if (sub_api_initialized)
		return;

209 210
	ret = request_module("target_core_iblock");
	if (ret != 0)
211
		pr_err("Unable to load target_core_iblock\n");
212 213 214

	ret = request_module("target_core_file");
	if (ret != 0)
215
		pr_err("Unable to load target_core_file\n");
216 217 218

	ret = request_module("target_core_pscsi");
	if (ret != 0)
219
		pr_err("Unable to load target_core_pscsi\n");
220

221 222 223 224
	ret = request_module("target_core_user");
	if (ret != 0)
		pr_err("Unable to load target_core_user\n");

225
	sub_api_initialized = 1;
226 227
}

228
struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
229 230 231 232
{
	struct se_session *se_sess;

	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
233 234
	if (!se_sess) {
		pr_err("Unable to allocate struct se_session from"
235 236 237 238 239
				" se_sess_cache\n");
		return ERR_PTR(-ENOMEM);
	}
	INIT_LIST_HEAD(&se_sess->sess_list);
	INIT_LIST_HEAD(&se_sess->sess_acl_list);
240
	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
241
	INIT_LIST_HEAD(&se_sess->sess_wait_list);
242
	spin_lock_init(&se_sess->sess_cmd_lock);
243
	se_sess->sup_prot_ops = sup_prot_ops;
244 245 246 247 248

	return se_sess;
}
EXPORT_SYMBOL(transport_init_session);

249 250 251 252 253
int transport_alloc_session_tags(struct se_session *se_sess,
			         unsigned int tag_num, unsigned int tag_size)
{
	int rc;

254
	se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
255
					GFP_KERNEL | __GFP_NOWARN | __GFP_RETRY_MAYFAIL);
256
	if (!se_sess->sess_cmd_map) {
257 258 259 260 261
		se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
		if (!se_sess->sess_cmd_map) {
			pr_err("Unable to allocate se_sess->sess_cmd_map\n");
			return -ENOMEM;
		}
262 263 264 265 266 267
	}

	rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
	if (rc < 0) {
		pr_err("Unable to init se_sess->sess_tag_pool,"
			" tag_num: %u\n", tag_num);
268
		kvfree(se_sess->sess_cmd_map);
269 270 271 272 273 274 275 276 277
		se_sess->sess_cmd_map = NULL;
		return -ENOMEM;
	}

	return 0;
}
EXPORT_SYMBOL(transport_alloc_session_tags);

struct se_session *transport_init_session_tags(unsigned int tag_num,
278 279
					       unsigned int tag_size,
					       enum target_prot_op sup_prot_ops)
280 281 282 283
{
	struct se_session *se_sess;
	int rc;

284 285 286 287 288 289 290 291 292 293 294
	if (tag_num != 0 && !tag_size) {
		pr_err("init_session_tags called with percpu-ida tag_num:"
		       " %u, but zero tag_size\n", tag_num);
		return ERR_PTR(-EINVAL);
	}
	if (!tag_num && tag_size) {
		pr_err("init_session_tags called with percpu-ida tag_size:"
		       " %u, but zero tag_num\n", tag_size);
		return ERR_PTR(-EINVAL);
	}

295
	se_sess = transport_init_session(sup_prot_ops);
296 297 298 299 300 301 302 303 304 305 306 307 308
	if (IS_ERR(se_sess))
		return se_sess;

	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
	if (rc < 0) {
		transport_free_session(se_sess);
		return ERR_PTR(-ENOMEM);
	}

	return se_sess;
}
EXPORT_SYMBOL(transport_init_session_tags);

309
/*
310
 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
311 312 313 314 315 316 317
 */
void __transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
318
	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
319 320 321 322 323 324 325 326 327 328 329
	unsigned char buf[PR_REG_ISID_LEN];

	se_sess->se_tpg = se_tpg;
	se_sess->fabric_sess_ptr = fabric_sess_ptr;
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
	 *
	 * Only set for struct se_session's that will actually be moving I/O.
	 * eg: *NOT* discovery sessions.
	 */
	if (se_nacl) {
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
		/*
		 *
		 * Determine if fabric allows for T10-PI feature bits exposed to
		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
		 *
		 * If so, then always save prot_type on a per se_node_acl node
		 * basis and re-instate the previous sess_prot_type to avoid
		 * disabling PI from below any previously initiator side
		 * registered LUNs.
		 */
		if (se_nacl->saved_prot_type)
			se_sess->sess_prot_type = se_nacl->saved_prot_type;
		else if (tfo->tpg_check_prot_fabric_only)
			se_sess->sess_prot_type = se_nacl->saved_prot_type =
					tfo->tpg_check_prot_fabric_only(se_tpg);
345 346 347 348
		/*
		 * If the fabric module supports an ISID based TransportID,
		 * save this value in binary from the fabric I_T Nexus now.
		 */
349
		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
350
			memset(&buf[0], 0, PR_REG_ISID_LEN);
351
			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
352 353 354
					&buf[0], PR_REG_ISID_LEN);
			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
		}
355

356 357 358 359 360 361 362 363 364 365 366 367 368
		spin_lock_irq(&se_nacl->nacl_sess_lock);
		/*
		 * The se_nacl->nacl_sess pointer will be set to the
		 * last active I_T Nexus for each struct se_node_acl.
		 */
		se_nacl->nacl_sess = se_sess;

		list_add_tail(&se_sess->sess_acl_list,
			      &se_nacl->acl_sess_list);
		spin_unlock_irq(&se_nacl->nacl_sess_lock);
	}
	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);

369
	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
370
		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
371 372 373 374 375 376 377 378 379
}
EXPORT_SYMBOL(__transport_register_session);

void transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
380 381 382
	unsigned long flags;

	spin_lock_irqsave(&se_tpg->session_lock, flags);
383
	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
384
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
385 386 387
}
EXPORT_SYMBOL(transport_register_session);

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
struct se_session *
target_alloc_session(struct se_portal_group *tpg,
		     unsigned int tag_num, unsigned int tag_size,
		     enum target_prot_op prot_op,
		     const char *initiatorname, void *private,
		     int (*callback)(struct se_portal_group *,
				     struct se_session *, void *))
{
	struct se_session *sess;

	/*
	 * If the fabric driver is using percpu-ida based pre allocation
	 * of I/O descriptor tags, go ahead and perform that setup now..
	 */
	if (tag_num != 0)
		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
	else
		sess = transport_init_session(prot_op);

	if (IS_ERR(sess))
		return sess;

	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
					(unsigned char *)initiatorname);
	if (!sess->se_node_acl) {
		transport_free_session(sess);
		return ERR_PTR(-EACCES);
	}
	/*
	 * Go ahead and perform any remaining fabric setup that is
	 * required before transport_register_session().
	 */
	if (callback != NULL) {
		int rc = callback(tpg, sess, private);
		if (rc) {
			transport_free_session(sess);
			return ERR_PTR(rc);
		}
	}

	transport_register_session(tpg, sess->se_node_acl, sess, private);
	return sess;
}
EXPORT_SYMBOL(target_alloc_session);

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
{
	struct se_session *se_sess;
	ssize_t len = 0;

	spin_lock_bh(&se_tpg->session_lock);
	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
		if (!se_sess->se_node_acl)
			continue;
		if (!se_sess->se_node_acl->dynamic_node_acl)
			continue;
		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
			break;

		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
				se_sess->se_node_acl->initiatorname);
		len += 1; /* Include NULL terminator */
	}
	spin_unlock_bh(&se_tpg->session_lock);

	return len;
}
EXPORT_SYMBOL(target_show_dynamic_sessions);

457 458 459 460
static void target_complete_nacl(struct kref *kref)
{
	struct se_node_acl *nacl = container_of(kref,
				struct se_node_acl, acl_kref);
461
	struct se_portal_group *se_tpg = nacl->se_tpg;
462

463 464 465 466 467 468
	if (!nacl->dynamic_stop) {
		complete(&nacl->acl_free_comp);
		return;
	}

	mutex_lock(&se_tpg->acl_node_mutex);
469
	list_del_init(&nacl->acl_list);
470 471 472 473 474
	mutex_unlock(&se_tpg->acl_node_mutex);

	core_tpg_wait_for_nacl_pr_ref(nacl);
	core_free_device_list_for_node(nacl, se_tpg);
	kfree(nacl);
475 476 477 478 479 480
}

void target_put_nacl(struct se_node_acl *nacl)
{
	kref_put(&nacl->acl_kref, target_complete_nacl);
}
481
EXPORT_SYMBOL(target_put_nacl);
482

483 484 485
void transport_deregister_session_configfs(struct se_session *se_sess)
{
	struct se_node_acl *se_nacl;
486
	unsigned long flags;
487 488 489 490
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
	 */
	se_nacl = se_sess->se_node_acl;
491
	if (se_nacl) {
492
		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
C
Christoph Hellwig 已提交
493 494
		if (!list_empty(&se_sess->sess_acl_list))
			list_del_init(&se_sess->sess_acl_list);
495 496 497 498 499 500 501 502 503 504 505 506
		/*
		 * If the session list is empty, then clear the pointer.
		 * Otherwise, set the struct se_session pointer from the tail
		 * element of the per struct se_node_acl active session list.
		 */
		if (list_empty(&se_nacl->acl_sess_list))
			se_nacl->nacl_sess = NULL;
		else {
			se_nacl->nacl_sess = container_of(
					se_nacl->acl_sess_list.prev,
					struct se_session, sess_acl_list);
		}
507
		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
508 509 510 511 512 513
	}
}
EXPORT_SYMBOL(transport_deregister_session_configfs);

void transport_free_session(struct se_session *se_sess)
{
514
	struct se_node_acl *se_nacl = se_sess->se_node_acl;
515

516 517 518 519 520
	/*
	 * Drop the se_node_acl->nacl_kref obtained from within
	 * core_tpg_get_initiator_node_acl().
	 */
	if (se_nacl) {
521 522 523 524
		struct se_portal_group *se_tpg = se_nacl->se_tpg;
		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
		unsigned long flags;

525
		se_sess->se_node_acl = NULL;
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

		/*
		 * Also determine if we need to drop the extra ->cmd_kref if
		 * it had been previously dynamically generated, and
		 * the endpoint is not caching dynamic ACLs.
		 */
		mutex_lock(&se_tpg->acl_node_mutex);
		if (se_nacl->dynamic_node_acl &&
		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
			if (list_empty(&se_nacl->acl_sess_list))
				se_nacl->dynamic_stop = true;
			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);

			if (se_nacl->dynamic_stop)
541
				list_del_init(&se_nacl->acl_list);
542 543 544 545 546 547
		}
		mutex_unlock(&se_tpg->acl_node_mutex);

		if (se_nacl->dynamic_stop)
			target_put_nacl(se_nacl);

548 549
		target_put_nacl(se_nacl);
	}
550 551
	if (se_sess->sess_cmd_map) {
		percpu_ida_destroy(&se_sess->sess_tag_pool);
552
		kvfree(se_sess->sess_cmd_map);
553
	}
554 555 556 557 558 559 560
	kmem_cache_free(se_sess_cache, se_sess);
}
EXPORT_SYMBOL(transport_free_session);

void transport_deregister_session(struct se_session *se_sess)
{
	struct se_portal_group *se_tpg = se_sess->se_tpg;
561
	unsigned long flags;
562

563
	if (!se_tpg) {
564 565 566 567
		transport_free_session(se_sess);
		return;
	}

568
	spin_lock_irqsave(&se_tpg->session_lock, flags);
569 570 571
	list_del(&se_sess->sess_list);
	se_sess->se_tpg = NULL;
	se_sess->fabric_sess_ptr = NULL;
572
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
573

574
	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
575
		se_tpg->se_tpg_tfo->get_fabric_name());
576
	/*
577
	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
578
	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
579
	 * removal context from within transport_free_session() code.
580 581 582
	 *
	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
	 * to release all remaining generate_node_acl=1 created ACL resources.
583 584
	 */

585
	transport_free_session(se_sess);
586 587 588
}
EXPORT_SYMBOL(transport_deregister_session);

589
static void target_remove_from_state_list(struct se_cmd *cmd)
590
{
591
	struct se_device *dev = cmd->se_dev;
592 593
	unsigned long flags;

594 595
	if (!dev)
		return;
596

597 598 599 600
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (cmd->state_active) {
		list_del(&cmd->state_list);
		cmd->state_active = false;
601
	}
602
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
603 604
}

605
static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
606 607 608
{
	unsigned long flags;

609
	target_remove_from_state_list(cmd);
610

611 612 613 614
	/*
	 * Clear struct se_cmd->se_lun before the handoff to FE.
	 */
	cmd->se_lun = NULL;
615

616
	spin_lock_irqsave(&cmd->t_state_lock, flags);
617 618
	/*
	 * Determine if frontend context caller is requesting the stopping of
619
	 * this command for frontend exceptions.
620
	 */
621
	if (cmd->transport_state & CMD_T_STOP) {
622 623
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
624

625
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
626

627
		complete_all(&cmd->t_transport_stop_comp);
628 629
		return 1;
	}
630
	cmd->transport_state &= ~CMD_T_ACTIVE;
631
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
632

633 634 635 636 637 638 639
	/*
	 * Some fabric modules like tcm_loop can release their internally
	 * allocated I/O reference and struct se_cmd now.
	 *
	 * Fabric modules are expected to return '1' here if the se_cmd being
	 * passed is released at this point, or zero if not being released.
	 */
640
	return cmd->se_tfo->check_stop_free(cmd);
641 642 643 644
}

static void transport_lun_remove_cmd(struct se_cmd *cmd)
{
645
	struct se_lun *lun = cmd->se_lun;
646

647
	if (!lun)
648 649
		return;

650 651
	if (cmpxchg(&cmd->lun_ref_active, true, false))
		percpu_ref_put(&lun->lun_ref);
652 653
}

654
int transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
655
{
656
	bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
657
	int ret = 0;
658

659 660
	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
		transport_lun_remove_cmd(cmd);
661 662 663 664 665 666
	/*
	 * Allow the fabric driver to unmap any resources before
	 * releasing the descriptor via TFO->release_cmd()
	 */
	if (remove)
		cmd->se_tfo->aborted_task(cmd);
667

668
	if (transport_cmd_check_stop_to_fabric(cmd))
669
		return 1;
670
	if (remove && ack_kref)
671 672 673
		ret = transport_put_cmd(cmd);

	return ret;
674 675
}

676 677 678 679
static void target_complete_failure_work(struct work_struct *work)
{
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);

680 681
	transport_generic_request_failure(cmd,
			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
682 683
}

684
/*
685 686
 * Used when asking transport to copy Sense Data from the underlying
 * Linux/SCSI struct scsi_cmnd
687
 */
688
static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
689 690 691 692 693 694
{
	struct se_device *dev = cmd->se_dev;

	WARN_ON(!cmd->se_lun);

	if (!dev)
695
		return NULL;
696

697 698
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
		return NULL;
699

700
	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
701

702
	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
703
		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
704
	return cmd->sense_buffer;
705 706
}

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
{
	unsigned char *cmd_sense_buf;
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	cmd_sense_buf = transport_get_sense_buffer(cmd);
	if (!cmd_sense_buf) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		return;
	}

	cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
	memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}
EXPORT_SYMBOL(transport_copy_sense_to_cmd);

725
void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
726
{
727
	struct se_device *dev = cmd->se_dev;
728
	int success;
729 730
	unsigned long flags;

731 732
	cmd->scsi_status = scsi_status;

733
	spin_lock_irqsave(&cmd->t_state_lock, flags);
734 735
	switch (cmd->scsi_status) {
	case SAM_STAT_CHECK_CONDITION:
736
		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
737
			success = 1;
738 739 740 741
		else
			success = 0;
		break;
	default:
742
		success = 1;
743
		break;
744 745
	}

746
	/*
747
	 * Check for case where an explicit ABORT_TASK has been received
748 749
	 * and transport_wait_for_tasks() will be waiting for completion..
	 */
750
	if (cmd->transport_state & CMD_T_ABORTED ||
751 752
	    cmd->transport_state & CMD_T_STOP) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
753 754 755 756 757 758 759 760 761
		/*
		 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
		 * release se_device->caw_sem obtained by sbc_compare_and_write()
		 * since target_complete_ok_work() or target_complete_failure_work()
		 * won't be called to invoke the normal CAW completion callbacks.
		 */
		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
			up(&dev->caw_sem);
		}
762
		complete_all(&cmd->t_transport_stop_comp);
763
		return;
764
	} else if (!success) {
765
		INIT_WORK(&cmd->work, target_complete_failure_work);
766
	} else {
767
		INIT_WORK(&cmd->work, target_complete_ok_work);
768
	}
769 770

	cmd->t_state = TRANSPORT_COMPLETE;
771
	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
772
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
773

774
	if (cmd->se_cmd_flags & SCF_USE_CPUID)
775
		queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
776 777
	else
		queue_work(target_completion_wq, &cmd->work);
778
}
779 780
EXPORT_SYMBOL(target_complete_cmd);

781 782
void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
{
783
	if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
784 785 786 787 788 789 790 791 792 793 794 795 796 797
		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
			cmd->residual_count += cmd->data_length - length;
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = cmd->data_length - length;
		}

		cmd->data_length = length;
	}

	target_complete_cmd(cmd, scsi_status);
}
EXPORT_SYMBOL(target_complete_cmd_with_length);

798
static void target_add_to_state_list(struct se_cmd *cmd)
799
{
800 801
	struct se_device *dev = cmd->se_dev;
	unsigned long flags;
802

803 804 805 806
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (!cmd->state_active) {
		list_add_tail(&cmd->state_list, &dev->state_list);
		cmd->state_active = true;
807
	}
808
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
809 810
}

811
/*
812
 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
813
 */
814 815
static void transport_write_pending_qf(struct se_cmd *cmd);
static void transport_complete_qf(struct se_cmd *cmd);
816

817
void target_qf_do_work(struct work_struct *work)
818 819 820
{
	struct se_device *dev = container_of(work, struct se_device,
					qf_work_queue);
821
	LIST_HEAD(qf_cmd_list);
822 823 824
	struct se_cmd *cmd, *cmd_tmp;

	spin_lock_irq(&dev->qf_cmd_lock);
825 826
	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
	spin_unlock_irq(&dev->qf_cmd_lock);
827

828
	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
829
		list_del(&cmd->se_qf_node);
830
		atomic_dec_mb(&dev->dev_qf_count);
831

832
		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
833
			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
834
			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
835 836
			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
			: "UNKNOWN");
837

838 839
		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
			transport_write_pending_qf(cmd);
840 841
		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
			 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
842
			transport_complete_qf(cmd);
843 844 845
	}
}

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
{
	switch (cmd->data_direction) {
	case DMA_NONE:
		return "NONE";
	case DMA_FROM_DEVICE:
		return "READ";
	case DMA_TO_DEVICE:
		return "WRITE";
	case DMA_BIDIRECTIONAL:
		return "BIDI";
	default:
		break;
	}

	return "UNKNOWN";
}

void transport_dump_dev_state(
	struct se_device *dev,
	char *b,
	int *bl)
{
	*bl += sprintf(b + *bl, "Status: ");
870
	if (dev->export_count)
871
		*bl += sprintf(b + *bl, "ACTIVATED");
872
	else
873 874
		*bl += sprintf(b + *bl, "DEACTIVATED");

875
	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
876
	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
877 878
		dev->dev_attrib.block_size,
		dev->dev_attrib.hw_max_sectors);
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
	*bl += sprintf(b + *bl, "        ");
}

void transport_dump_vpd_proto_id(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int len;

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Protocol Identifier: ");

	switch (vpd->protocol_identifier) {
	case 0x00:
		sprintf(buf+len, "Fibre Channel\n");
		break;
	case 0x10:
		sprintf(buf+len, "Parallel SCSI\n");
		break;
	case 0x20:
		sprintf(buf+len, "SSA\n");
		break;
	case 0x30:
		sprintf(buf+len, "IEEE 1394\n");
		break;
	case 0x40:
		sprintf(buf+len, "SCSI Remote Direct Memory Access"
				" Protocol\n");
		break;
	case 0x50:
		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
		break;
	case 0x60:
		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
		break;
	case 0x70:
		sprintf(buf+len, "Automation/Drive Interface Transport"
				" Protocol\n");
		break;
	case 0x80:
		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n",
				vpd->protocol_identifier);
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
932
		pr_debug("%s", buf);
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
}

void
transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * Check if the Protocol Identifier Valid (PIV) bit is set..
	 *
	 * from spc3r23.pdf section 7.5.1
	 */
	 if (page_83[1] & 0x80) {
		vpd->protocol_identifier = (page_83[0] & 0xf0);
		vpd->protocol_identifier_set = 1;
		transport_dump_vpd_proto_id(vpd, NULL, 0);
	}
}
EXPORT_SYMBOL(transport_set_vpd_proto_id);

int transport_dump_vpd_assoc(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
957 958
	int ret = 0;
	int len;
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Association: ");

	switch (vpd->association) {
	case 0x00:
		sprintf(buf+len, "addressed logical unit\n");
		break;
	case 0x10:
		sprintf(buf+len, "target port\n");
		break;
	case 0x20:
		sprintf(buf+len, "SCSI target device\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
975
		ret = -EINVAL;
976 977 978 979 980 981
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
982
		pr_debug("%s", buf);
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004

	return ret;
}

int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identification association..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 297
	 */
	vpd->association = (page_83[1] & 0x30);
	return transport_dump_vpd_assoc(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_assoc);

int transport_dump_vpd_ident_type(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
1005 1006
	int ret = 0;
	int len;
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Type: ");

	switch (vpd->device_identifier_type) {
	case 0x00:
		sprintf(buf+len, "Vendor specific\n");
		break;
	case 0x01:
		sprintf(buf+len, "T10 Vendor ID based\n");
		break;
	case 0x02:
		sprintf(buf+len, "EUI-64 based\n");
		break;
	case 0x03:
		sprintf(buf+len, "NAA\n");
		break;
	case 0x04:
		sprintf(buf+len, "Relative target port identifier\n");
		break;
	case 0x08:
		sprintf(buf+len, "SCSI name string\n");
		break;
	default:
		sprintf(buf+len, "Unsupported: 0x%02x\n",
				vpd->device_identifier_type);
1033
		ret = -EINVAL;
1034 1035 1036
		break;
	}

1037 1038 1039
	if (p_buf) {
		if (p_buf_len < strlen(buf)+1)
			return -EINVAL;
1040
		strncpy(p_buf, buf, p_buf_len);
1041
	} else {
1042
		pr_debug("%s", buf);
1043
	}
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

	return ret;
}

int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identifier type..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 298
	 */
	vpd->device_identifier_type = (page_83[1] & 0x0f);
	return transport_dump_vpd_ident_type(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident_type);

int transport_dump_vpd_ident(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int ret = 0;

	memset(buf, 0, VPD_TMP_BUF_SIZE);

	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
1072 1073
		snprintf(buf, sizeof(buf),
			"T10 VPD Binary Device Identifier: %s\n",
1074 1075 1076
			&vpd->device_identifier[0]);
		break;
	case 0x02: /* ASCII */
1077 1078
		snprintf(buf, sizeof(buf),
			"T10 VPD ASCII Device Identifier: %s\n",
1079 1080 1081
			&vpd->device_identifier[0]);
		break;
	case 0x03: /* UTF-8 */
1082 1083
		snprintf(buf, sizeof(buf),
			"T10 VPD UTF-8 Device Identifier: %s\n",
1084 1085 1086 1087 1088
			&vpd->device_identifier[0]);
		break;
	default:
		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
			" 0x%02x", vpd->device_identifier_code_set);
1089
		ret = -EINVAL;
1090 1091 1092 1093 1094 1095
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1096
		pr_debug("%s", buf);
1097 1098 1099 1100 1101 1102 1103 1104

	return ret;
}

int
transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
{
	static const char hex_str[] = "0123456789abcdef";
1105
	int j = 0, i = 4; /* offset to start of the identifier */
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

	/*
	 * The VPD Code Set (encoding)
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 296
	 */
	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
		vpd->device_identifier[j++] =
				hex_str[vpd->device_identifier_type];
		while (i < (4 + page_83[3])) {
			vpd->device_identifier[j++] =
				hex_str[(page_83[i] & 0xf0) >> 4];
			vpd->device_identifier[j++] =
				hex_str[page_83[i] & 0x0f];
			i++;
		}
		break;
	case 0x02: /* ASCII */
	case 0x03: /* UTF-8 */
		while (i < (4 + page_83[3]))
			vpd->device_identifier[j++] = page_83[i++];
		break;
	default:
		break;
	}

	return transport_dump_vpd_ident(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident);

1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
			       unsigned int size)
{
	u32 mtl;

	if (!cmd->se_tfo->max_data_sg_nents)
		return TCM_NO_SENSE;
	/*
	 * Check if fabric enforced maximum SGL entries per I/O descriptor
	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
	 * residual_count and reduce original cmd->data_length to maximum
	 * length based on single PAGE_SIZE entry scatter-lists.
	 */
	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
	if (cmd->data_length > mtl) {
		/*
		 * If an existing CDB overflow is present, calculate new residual
		 * based on CDB size minus fabric maximum transfer length.
		 *
		 * If an existing CDB underflow is present, calculate new residual
		 * based on original cmd->data_length minus fabric maximum transfer
		 * length.
		 *
		 * Otherwise, set the underflow residual based on cmd->data_length
		 * minus fabric maximum transfer length.
		 */
		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
			cmd->residual_count = (size - mtl);
		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
			u32 orig_dl = size + cmd->residual_count;
			cmd->residual_count = (orig_dl - mtl);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - mtl);
		}
		cmd->data_length = mtl;
		/*
		 * Reset sbc_check_prot() calculated protection payload
		 * length based upon the new smaller MTL.
		 */
		if (cmd->prot_length) {
			u32 sectors = (mtl / dev->dev_attrib.block_size);
			cmd->prot_length = dev->prot_length * sectors;
		}
	}
	return TCM_NO_SENSE;
}

1187 1188
sense_reason_t
target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1189 1190 1191 1192 1193 1194
{
	struct se_device *dev = cmd->se_dev;

	if (cmd->unknown_data_length) {
		cmd->data_length = size;
	} else if (size != cmd->data_length) {
1195
		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1196 1197 1198 1199
			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
				cmd->data_length, size, cmd->t_task_cdb[0]);

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
		if (cmd->data_direction == DMA_TO_DEVICE) {
			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
				pr_err_ratelimited("Rejecting underflow/overflow"
						   " for WRITE data CDB\n");
				return TCM_INVALID_CDB_FIELD;
			}
			/*
			 * Some fabric drivers like iscsi-target still expect to
			 * always reject overflow writes.  Reject this case until
			 * full fabric driver level support for overflow writes
			 * is introduced tree-wide.
			 */
			if (size > cmd->data_length) {
				pr_err_ratelimited("Rejecting overflow for"
						   " WRITE control CDB\n");
				return TCM_INVALID_CDB_FIELD;
			}
1217 1218 1219 1220 1221
		}
		/*
		 * Reject READ_* or WRITE_* with overflow/underflow for
		 * type SCF_SCSI_DATA_CDB.
		 */
1222
		if (dev->dev_attrib.block_size != 512)  {
1223 1224 1225 1226
			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
				" CDB on non 512-byte sector setup subsystem"
				" plugin: %s\n", dev->transport->name);
			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1227
			return TCM_INVALID_CDB_FIELD;
1228
		}
1229 1230 1231 1232 1233 1234
		/*
		 * For the overflow case keep the existing fabric provided
		 * ->data_length.  Otherwise for the underflow case, reset
		 * ->data_length to the smaller SCSI expected data transfer
		 * length.
		 */
1235 1236 1237 1238 1239 1240
		if (size > cmd->data_length) {
			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
			cmd->residual_count = (size - cmd->data_length);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - size);
1241
			cmd->data_length = size;
1242 1243 1244
		}
	}

1245
	return target_check_max_data_sg_nents(cmd, dev, size);
1246 1247 1248

}

1249 1250 1251
/*
 * Used by fabric modules containing a local struct se_cmd within their
 * fabric dependent per I/O descriptor.
1252 1253
 *
 * Preserves the value of @cmd->tag.
1254 1255 1256
 */
void transport_init_se_cmd(
	struct se_cmd *cmd,
1257
	const struct target_core_fabric_ops *tfo,
1258 1259 1260 1261 1262 1263
	struct se_session *se_sess,
	u32 data_length,
	int data_direction,
	int task_attr,
	unsigned char *sense_buffer)
{
1264
	INIT_LIST_HEAD(&cmd->se_delayed_node);
1265
	INIT_LIST_HEAD(&cmd->se_qf_node);
1266
	INIT_LIST_HEAD(&cmd->se_cmd_list);
1267
	INIT_LIST_HEAD(&cmd->state_list);
1268
	init_completion(&cmd->t_transport_stop_comp);
1269
	init_completion(&cmd->cmd_wait_comp);
1270
	spin_lock_init(&cmd->t_state_lock);
1271
	INIT_WORK(&cmd->work, NULL);
1272
	kref_init(&cmd->cmd_kref);
1273 1274 1275 1276 1277 1278 1279

	cmd->se_tfo = tfo;
	cmd->se_sess = se_sess;
	cmd->data_length = data_length;
	cmd->data_direction = data_direction;
	cmd->sam_task_attr = task_attr;
	cmd->sense_buffer = sense_buffer;
1280 1281

	cmd->state_active = false;
1282 1283 1284
}
EXPORT_SYMBOL(transport_init_se_cmd);

1285 1286
static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd *cmd)
1287
{
1288 1289
	struct se_device *dev = cmd->se_dev;

1290 1291 1292 1293
	/*
	 * Check if SAM Task Attribute emulation is enabled for this
	 * struct se_device storage object
	 */
1294
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1295 1296
		return 0;

C
Christoph Hellwig 已提交
1297
	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1298
		pr_debug("SAM Task Attribute ACA"
1299
			" emulation is not supported\n");
1300
		return TCM_INVALID_CDB_FIELD;
1301
	}
1302

1303 1304 1305
	return 0;
}

1306 1307
sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1308
{
1309
	struct se_device *dev = cmd->se_dev;
1310
	sense_reason_t ret;
1311 1312 1313 1314 1315 1316

	/*
	 * Ensure that the received CDB is less than the max (252 + 8) bytes
	 * for VARIABLE_LENGTH_CMD
	 */
	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1317
		pr_err("Received SCSI CDB with command_size: %d that"
1318 1319
			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1320
		return TCM_INVALID_CDB_FIELD;
1321 1322 1323 1324 1325 1326
	}
	/*
	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
	 * allocate the additional extended CDB buffer now..  Otherwise
	 * setup the pointer from __t_task_cdb to t_task_cdb.
	 */
1327 1328
	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1329
						GFP_KERNEL);
1330 1331
		if (!cmd->t_task_cdb) {
			pr_err("Unable to allocate cmd->t_task_cdb"
1332
				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1333
				scsi_command_size(cdb),
1334
				(unsigned long)sizeof(cmd->__t_task_cdb));
1335
			return TCM_OUT_OF_RESOURCES;
1336 1337
		}
	} else
1338
		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1339
	/*
1340
	 * Copy the original CDB into cmd->
1341
	 */
1342
	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1343

1344 1345
	trace_target_sequencer_start(cmd);

1346
	ret = dev->transport->parse_cdb(cmd);
1347 1348 1349 1350 1351
	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
		pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
				    cmd->se_tfo->get_fabric_name(),
				    cmd->se_sess->se_node_acl->initiatorname,
				    cmd->t_task_cdb[0]);
1352 1353 1354 1355 1356
	if (ret)
		return ret;

	ret = transport_check_alloc_task_attr(cmd);
	if (ret)
1357
		return ret;
1358 1359

	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1360
	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1361 1362
	return 0;
}
1363
EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1364

1365 1366
/*
 * Used by fabric module frontends to queue tasks directly.
1367
 * May only be used from process context.
1368 1369 1370 1371
 */
int transport_handle_cdb_direct(
	struct se_cmd *cmd)
{
1372
	sense_reason_t ret;
1373

1374 1375
	if (!cmd->se_lun) {
		dump_stack();
1376
		pr_err("cmd->se_lun is NULL\n");
1377 1378 1379 1380
		return -EINVAL;
	}
	if (in_interrupt()) {
		dump_stack();
1381
		pr_err("transport_generic_handle_cdb cannot be called"
1382 1383 1384
				" from interrupt context\n");
		return -EINVAL;
	}
1385
	/*
1386 1387 1388
	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
	 * outstanding descriptors are handled correctly during shutdown via
	 * transport_wait_for_tasks()
1389 1390 1391 1392 1393
	 *
	 * Also, we don't take cmd->t_state_lock here as we only expect
	 * this to be called for initial descriptor submission.
	 */
	cmd->t_state = TRANSPORT_NEW_CMD;
1394 1395
	cmd->transport_state |= CMD_T_ACTIVE;

1396 1397 1398 1399 1400 1401
	/*
	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
	 * so follow TRANSPORT_NEW_CMD processing thread context usage
	 * and call transport_generic_request_failure() if necessary..
	 */
	ret = transport_generic_new_cmd(cmd);
1402 1403
	if (ret)
		transport_generic_request_failure(cmd, ret);
1404
	return 0;
1405 1406 1407
}
EXPORT_SYMBOL(transport_handle_cdb_direct);

1408
sense_reason_t
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
{
	if (!sgl || !sgl_count)
		return 0;

	/*
	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
	 * scatterlists already have been set to follow what the fabric
	 * passes for the original expected data transfer length.
	 */
	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
		pr_warn("Rejecting SCSI DATA overflow for fabric using"
			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
		return TCM_INVALID_CDB_FIELD;
	}

	cmd->t_data_sg = sgl;
	cmd->t_data_nents = sgl_count;
1428 1429
	cmd->t_bidi_data_sg = sgl_bidi;
	cmd->t_bidi_data_nents = sgl_bidi_count;
1430 1431 1432 1433 1434

	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
	return 0;
}

1435 1436 1437
/*
 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
 * 			 se_cmd + use pre-allocated SGL memory.
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
 * @task_addr: SAM task attribute
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
1448 1449 1450 1451
 * @sgl: struct scatterlist memory for unidirectional mapping
 * @sgl_count: scatterlist count for unidirectional mapping
 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1452 1453
 * @sgl_prot: struct scatterlist memory protection information
 * @sgl_prot_count: scatterlist count for protection information
1454
 *
1455 1456
 * Task tags are supported if the caller has set @se_cmd->tag.
 *
1457 1458 1459 1460
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
1461 1462
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
1463 1464
 */
int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1465
		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1466 1467
		u32 data_length, int task_attr, int data_dir, int flags,
		struct scatterlist *sgl, u32 sgl_count,
1468 1469
		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1470 1471
{
	struct se_portal_group *se_tpg;
1472 1473
	sense_reason_t rc;
	int ret;
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);
	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
	BUG_ON(in_interrupt());
	/*
	 * Initialize se_cmd for target operation.  From this point
	 * exceptions are handled by sending exception status via
	 * target_core_fabric_ops->queue_status() callback
	 */
	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
				data_length, data_dir, task_attr, sense);
1486 1487 1488 1489 1490 1491

	if (flags & TARGET_SCF_USE_CPUID)
		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
	else
		se_cmd->cpuid = WORK_CPU_UNBOUND;

1492 1493
	if (flags & TARGET_SCF_UNKNOWN_SIZE)
		se_cmd->unknown_data_length = 1;
1494 1495 1496 1497 1498 1499
	/*
	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
	 * kref_put() to happen during fabric packet acknowledgement.
	 */
1500
	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1501 1502
	if (ret)
		return ret;
1503 1504 1505 1506 1507 1508 1509 1510
	/*
	 * Signal bidirectional data payloads to target-core
	 */
	if (flags & TARGET_SCF_BIDI_OP)
		se_cmd->se_cmd_flags |= SCF_BIDI;
	/*
	 * Locate se_lun pointer and attach it to struct se_cmd
	 */
1511 1512 1513
	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
	if (rc) {
		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1514
		target_put_sess_cmd(se_cmd);
1515
		return 0;
1516
	}
1517 1518 1519 1520 1521 1522 1523

	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
	if (rc != 0) {
		transport_generic_request_failure(se_cmd, rc);
		return 0;
	}

1524 1525 1526 1527 1528 1529 1530
	/*
	 * Save pointers for SGLs containing protection information,
	 * if present.
	 */
	if (sgl_prot_count) {
		se_cmd->t_prot_sg = sgl_prot;
		se_cmd->t_prot_nents = sgl_prot_count;
1531
		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1532
	}
1533

1534 1535 1536 1537 1538 1539 1540 1541
	/*
	 * When a non zero sgl_count has been passed perform SGL passthrough
	 * mapping for pre-allocated fabric memory instead of having target
	 * core perform an internal SGL allocation..
	 */
	if (sgl_count != 0) {
		BUG_ON(!sgl);

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
		/*
		 * A work-around for tcm_loop as some userspace code via
		 * scsi-generic do not memset their associated read buffers,
		 * so go ahead and do that here for type non-data CDBs.  Also
		 * note that this is currently guaranteed to be a single SGL
		 * for this case by target core in target_setup_cmd_from_cdb()
		 * -> transport_generic_cmd_sequencer().
		 */
		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
		     se_cmd->data_direction == DMA_FROM_DEVICE) {
			unsigned char *buf = NULL;

			if (sgl)
				buf = kmap(sg_page(sgl)) + sgl->offset;

			if (buf) {
				memset(buf, 0, sgl->length);
				kunmap(sg_page(sgl));
			}
		}

1563 1564 1565
		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
				sgl_bidi, sgl_bidi_count);
		if (rc != 0) {
1566
			transport_generic_request_failure(se_cmd, rc);
1567 1568 1569
			return 0;
		}
	}
1570

1571 1572 1573 1574 1575 1576
	/*
	 * Check if we need to delay processing because of ALUA
	 * Active/NonOptimized primary access state..
	 */
	core_alua_check_nonop_delay(se_cmd);

1577
	transport_handle_cdb_direct(se_cmd);
1578
	return 0;
1579
}
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
EXPORT_SYMBOL(target_submit_cmd_map_sgls);

/*
 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
 * @task_addr: SAM task attribute
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
 *
1595 1596
 * Task tags are supported if the caller has set @se_cmd->tag.
 *
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
 *
 * It also assumes interal target core SGL memory allocation.
 */
int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1607
		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1608 1609 1610 1611
		u32 data_length, int task_attr, int data_dir, int flags)
{
	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
			unpacked_lun, data_length, task_attr, data_dir,
1612
			flags, NULL, 0, NULL, 0, NULL, 0);
1613
}
1614 1615
EXPORT_SYMBOL(target_submit_cmd);

1616 1617 1618 1619 1620 1621
static void target_complete_tmr_failure(struct work_struct *work)
{
	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);

	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1622

1623
	transport_lun_remove_cmd(se_cmd);
1624
	transport_cmd_check_stop_to_fabric(se_cmd);
1625 1626
}

1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
				       u64 *unpacked_lun)
{
	struct se_cmd *se_cmd;
	unsigned long flags;
	bool ret = false;

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
	list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
		if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
			continue;

		if (se_cmd->tag == tag) {
			*unpacked_lun = se_cmd->orig_fe_lun;
			ret = true;
			break;
		}
	}
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);

	return ret;
}

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
/**
 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
 *                     for TMR CDBs
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @fabric_context: fabric context for TMR req
 * @tm_type: Type of TM request
1660 1661
 * @gfp: gfp type for caller
 * @tag: referenced task tag for TMR_ABORT_TASK
1662
 * @flags: submit cmd flags
1663 1664 1665 1666
 *
 * Callable from all contexts.
 **/

1667
int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1668
		unsigned char *sense, u64 unpacked_lun,
1669
		void *fabric_tmr_ptr, unsigned char tm_type,
1670
		gfp_t gfp, u64 tag, int flags)
1671 1672 1673 1674 1675 1676 1677 1678
{
	struct se_portal_group *se_tpg;
	int ret;

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);

	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
C
Christoph Hellwig 已提交
1679
			      0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1680 1681 1682 1683
	/*
	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
	 * allocation failure.
	 */
1684
	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1685 1686
	if (ret < 0)
		return -ENOMEM;
1687

1688 1689 1690
	if (tm_type == TMR_ABORT_TASK)
		se_cmd->se_tmr_req->ref_task_tag = tag;

1691
	/* See target_submit_cmd for commentary */
1692
	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1693 1694 1695 1696
	if (ret) {
		core_tmr_release_req(se_cmd->se_tmr_req);
		return ret;
	}
1697 1698 1699 1700 1701 1702 1703 1704 1705
	/*
	 * If this is ABORT_TASK with no explicit fabric provided LUN,
	 * go ahead and search active session tags for a match to figure
	 * out unpacked_lun for the original se_cmd.
	 */
	if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
		if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun))
			goto failure;
	}
1706 1707

	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1708 1709 1710
	if (ret)
		goto failure;

1711
	transport_generic_handle_tmr(se_cmd);
1712
	return 0;
1713 1714 1715 1716 1717 1718 1719 1720 1721

	/*
	 * For callback during failure handling, push this work off
	 * to process context with TMR_LUN_DOES_NOT_EXIST status.
	 */
failure:
	INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
	schedule_work(&se_cmd->work);
	return 0;
1722 1723 1724
}
EXPORT_SYMBOL(target_submit_tmr);

1725 1726 1727
/*
 * Handle SAM-esque emulation for generic transport request failures.
 */
1728 1729
void transport_generic_request_failure(struct se_cmd *cmd,
		sense_reason_t sense_reason)
1730
{
1731
	int ret = 0, post_ret = 0;
1732

1733 1734 1735
	if (transport_check_aborted_status(cmd, 1))
		return;

1736 1737 1738
	pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
		 sense_reason);
	target_show_cmd("-----[ ", cmd);
1739 1740 1741 1742

	/*
	 * For SAM Task Attribute emulation for failed struct se_cmd
	 */
1743
	transport_complete_task_attr(cmd);
1744 1745
	/*
	 * Handle special case for COMPARE_AND_WRITE failure, where the
1746
	 * callback is expected to drop the per device ->caw_sem.
1747 1748 1749
	 */
	if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
	     cmd->transport_complete_callback)
1750
		cmd->transport_complete_callback(cmd, false, &post_ret);
1751

1752
	switch (sense_reason) {
1753 1754 1755 1756
	case TCM_NON_EXISTENT_LUN:
	case TCM_UNSUPPORTED_SCSI_OPCODE:
	case TCM_INVALID_CDB_FIELD:
	case TCM_INVALID_PARAMETER_LIST:
1757
	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1758 1759 1760
	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
	case TCM_UNKNOWN_MODE_PAGE:
	case TCM_WRITE_PROTECTED:
1761
	case TCM_ADDRESS_OUT_OF_RANGE:
1762 1763 1764
	case TCM_CHECK_CONDITION_ABORT_CMD:
	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
	case TCM_CHECK_CONDITION_NOT_READY:
1765 1766 1767
	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1768
	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1769 1770 1771 1772
	case TCM_TOO_MANY_TARGET_DESCS:
	case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
	case TCM_TOO_MANY_SEGMENT_DESCS:
	case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1773
		break;
1774 1775 1776
	case TCM_OUT_OF_RESOURCES:
		sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		break;
1777
	case TCM_RESERVATION_CONFLICT:
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
		/*
		 * No SENSE Data payload for this case, set SCSI Status
		 * and queue the response to $FABRIC_MOD.
		 *
		 * Uses linux/include/scsi/scsi.h SAM status codes defs
		 */
		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
		/*
		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
		 * CONFLICT STATUS.
		 *
		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
		 */
1792
		if (cmd->se_sess &&
1793 1794 1795 1796 1797
		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
					       cmd->orig_fe_lun, 0x2C,
					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
		}
1798
		trace_target_cmd_complete(cmd);
1799
		ret = cmd->se_tfo->queue_status(cmd);
1800
		if (ret)
1801
			goto queue_full;
1802 1803
		goto check_stop;
	default:
1804
		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1805 1806
			cmd->t_task_cdb[0], sense_reason);
		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1807 1808
		break;
	}
1809

1810
	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1811
	if (ret)
1812
		goto queue_full;
1813

1814 1815
check_stop:
	transport_lun_remove_cmd(cmd);
A
Andy Grover 已提交
1816
	transport_cmd_check_stop_to_fabric(cmd);
1817 1818 1819
	return;

queue_full:
1820
	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1821
}
1822
EXPORT_SYMBOL(transport_generic_request_failure);
1823

1824
void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1825
{
1826
	sense_reason_t ret;
1827

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	if (!cmd->execute_cmd) {
		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		goto err;
	}
	if (do_checks) {
		/*
		 * Check for an existing UNIT ATTENTION condition after
		 * target_handle_task_attr() has done SAM task attr
		 * checking, and possibly have already defered execution
		 * out to target_restart_delayed_cmds() context.
		 */
		ret = target_scsi3_ua_check(cmd);
		if (ret)
			goto err;

		ret = target_alua_state_check(cmd);
		if (ret)
			goto err;
1846

1847 1848 1849 1850
		ret = target_check_reservation(cmd);
		if (ret) {
			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
			goto err;
1851
		}
1852
	}
1853 1854 1855 1856 1857 1858

	ret = cmd->execute_cmd(cmd);
	if (!ret)
		return;
err:
	spin_lock_irq(&cmd->t_state_lock);
1859
	cmd->transport_state &= ~CMD_T_SENT;
1860 1861 1862
	spin_unlock_irq(&cmd->t_state_lock);

	transport_generic_request_failure(cmd, ret);
1863 1864
}

1865 1866
static int target_write_prot_action(struct se_cmd *cmd)
{
1867
	u32 sectors;
1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
	/*
	 * Perform WRITE_INSERT of PI using software emulation when backend
	 * device has PI enabled, if the transport has not already generated
	 * PI using hardware WRITE_INSERT offload.
	 */
	switch (cmd->prot_op) {
	case TARGET_PROT_DOUT_INSERT:
		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
			sbc_dif_generate(cmd);
		break;
1878 1879 1880 1881 1882
	case TARGET_PROT_DOUT_STRIP:
		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
			break;

		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1883 1884
		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
					     sectors, 0, cmd->t_prot_sg, 0);
1885 1886
		if (unlikely(cmd->pi_err)) {
			spin_lock_irq(&cmd->t_state_lock);
1887
			cmd->transport_state &= ~CMD_T_SENT;
1888 1889 1890 1891 1892
			spin_unlock_irq(&cmd->t_state_lock);
			transport_generic_request_failure(cmd, cmd->pi_err);
			return -1;
		}
		break;
1893 1894 1895 1896 1897 1898 1899
	default:
		break;
	}

	return 0;
}

1900
static bool target_handle_task_attr(struct se_cmd *cmd)
1901 1902 1903
{
	struct se_device *dev = cmd->se_dev;

1904
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1905
		return false;
1906

1907 1908
	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;

1909
	/*
L
Lucas De Marchi 已提交
1910
	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1911 1912
	 * to allow the passed struct se_cmd list of tasks to the front of the list.
	 */
1913
	switch (cmd->sam_task_attr) {
C
Christoph Hellwig 已提交
1914
	case TCM_HEAD_TAG:
1915 1916
		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
			 cmd->t_task_cdb[0]);
1917
		return false;
C
Christoph Hellwig 已提交
1918
	case TCM_ORDERED_TAG:
1919
		atomic_inc_mb(&dev->dev_ordered_sync);
1920

1921 1922
		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
			 cmd->t_task_cdb[0]);
1923

1924
		/*
1925 1926
		 * Execute an ORDERED command if no other older commands
		 * exist that need to be completed first.
1927
		 */
1928
		if (!atomic_read(&dev->simple_cmds))
1929
			return false;
1930 1931
		break;
	default:
1932 1933 1934
		/*
		 * For SIMPLE and UNTAGGED Task Attribute commands
		 */
1935
		atomic_inc_mb(&dev->simple_cmds);
1936
		break;
1937
	}
1938

1939 1940
	if (atomic_read(&dev->dev_ordered_sync) == 0)
		return false;
1941

1942 1943 1944 1945
	spin_lock(&dev->delayed_cmd_lock);
	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
	spin_unlock(&dev->delayed_cmd_lock);

1946 1947
	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
		cmd->t_task_cdb[0], cmd->sam_task_attr);
1948 1949 1950
	return true;
}

1951 1952
static int __transport_check_aborted_status(struct se_cmd *, int);

1953 1954 1955 1956 1957
void target_execute_cmd(struct se_cmd *cmd)
{
	/*
	 * Determine if frontend context caller is requesting the stopping of
	 * this command for frontend exceptions.
1958 1959
	 *
	 * If the received CDB has aleady been aborted stop processing it here.
1960
	 */
1961
	spin_lock_irq(&cmd->t_state_lock);
1962 1963 1964 1965
	if (__transport_check_aborted_status(cmd, 1)) {
		spin_unlock_irq(&cmd->t_state_lock);
		return;
	}
1966
	if (cmd->transport_state & CMD_T_STOP) {
1967 1968
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
1969 1970

		spin_unlock_irq(&cmd->t_state_lock);
1971
		complete_all(&cmd->t_transport_stop_comp);
1972 1973 1974 1975
		return;
	}

	cmd->t_state = TRANSPORT_PROCESSING;
1976
	cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
1977
	spin_unlock_irq(&cmd->t_state_lock);
1978 1979 1980

	if (target_write_prot_action(cmd))
		return;
1981

1982 1983
	if (target_handle_task_attr(cmd)) {
		spin_lock_irq(&cmd->t_state_lock);
1984
		cmd->transport_state &= ~CMD_T_SENT;
1985 1986 1987 1988
		spin_unlock_irq(&cmd->t_state_lock);
		return;
	}

1989
	__target_execute_cmd(cmd, true);
1990
}
1991
EXPORT_SYMBOL(target_execute_cmd);
1992

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
/*
 * Process all commands up to the last received ORDERED task attribute which
 * requires another blocking boundary
 */
static void target_restart_delayed_cmds(struct se_device *dev)
{
	for (;;) {
		struct se_cmd *cmd;

		spin_lock(&dev->delayed_cmd_lock);
		if (list_empty(&dev->delayed_cmd_list)) {
			spin_unlock(&dev->delayed_cmd_lock);
			break;
		}

		cmd = list_entry(dev->delayed_cmd_list.next,
				 struct se_cmd, se_delayed_node);
		list_del(&cmd->se_delayed_node);
		spin_unlock(&dev->delayed_cmd_lock);

2013
		__target_execute_cmd(cmd, true);
2014

C
Christoph Hellwig 已提交
2015
		if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2016 2017 2018 2019
			break;
	}
}

2020
/*
2021
 * Called from I/O completion to determine which dormant/delayed
2022 2023 2024 2025
 * and ordered cmds need to have their tasks added to the execution queue.
 */
static void transport_complete_task_attr(struct se_cmd *cmd)
{
2026
	struct se_device *dev = cmd->se_dev;
2027

2028
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2029 2030
		return;

2031 2032 2033
	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
		goto restart;

C
Christoph Hellwig 已提交
2034
	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2035
		atomic_dec_mb(&dev->simple_cmds);
2036
		dev->dev_cur_ordered_id++;
C
Christoph Hellwig 已提交
2037
	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2038
		dev->dev_cur_ordered_id++;
2039 2040
		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
			 dev->dev_cur_ordered_id);
C
Christoph Hellwig 已提交
2041
	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2042
		atomic_dec_mb(&dev->dev_ordered_sync);
2043 2044

		dev->dev_cur_ordered_id++;
2045 2046
		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
			 dev->dev_cur_ordered_id);
2047
	}
2048
restart:
2049
	target_restart_delayed_cmds(dev);
2050 2051
}

2052
static void transport_complete_qf(struct se_cmd *cmd)
2053 2054 2055
{
	int ret = 0;

2056
	transport_complete_task_attr(cmd);
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	/*
	 * If a fabric driver ->write_pending() or ->queue_data_in() callback
	 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
	 * the same callbacks should not be retried.  Return CHECK_CONDITION
	 * if a scsi_status is not already set.
	 *
	 * If a fabric driver ->queue_status() has returned non zero, always
	 * keep retrying no matter what..
	 */
	if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
		if (cmd->scsi_status)
			goto queue_status;
2069

2070 2071 2072 2073 2074
		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
		cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
		cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
		translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
		goto queue_status;
2075
	}
2076

2077 2078 2079
	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
		goto queue_status;

2080 2081
	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
2082 2083 2084
		if (cmd->scsi_status)
			goto queue_status;

2085
		trace_target_cmd_complete(cmd);
2086 2087 2088
		ret = cmd->se_tfo->queue_data_in(cmd);
		break;
	case DMA_TO_DEVICE:
2089
		if (cmd->se_cmd_flags & SCF_BIDI) {
2090
			ret = cmd->se_tfo->queue_data_in(cmd);
2091
			break;
2092 2093 2094
		}
		/* Fall through for DMA_TO_DEVICE */
	case DMA_NONE:
2095
queue_status:
2096
		trace_target_cmd_complete(cmd);
2097 2098 2099 2100 2101 2102
		ret = cmd->se_tfo->queue_status(cmd);
		break;
	default:
		break;
	}

2103
	if (ret < 0) {
2104
		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2105 2106 2107 2108
		return;
	}
	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
2109 2110
}

2111 2112
static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
					int err, bool write_pending)
2113
{
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	/*
	 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
	 * ->queue_data_in() callbacks from new process context.
	 *
	 * Otherwise for other errors, transport_complete_qf() will send
	 * CHECK_CONDITION via ->queue_status() instead of attempting to
	 * retry associated fabric driver data-transfer callbacks.
	 */
	if (err == -EAGAIN || err == -ENOMEM) {
		cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
						 TRANSPORT_COMPLETE_QF_OK;
	} else {
		pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
		cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
	}

2130 2131
	spin_lock_irq(&dev->qf_cmd_lock);
	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2132
	atomic_inc_mb(&dev->dev_qf_count);
2133 2134 2135 2136 2137
	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);

	schedule_work(&cmd->se_dev->qf_work_queue);
}

2138
static bool target_read_prot_action(struct se_cmd *cmd)
2139
{
2140 2141 2142
	switch (cmd->prot_op) {
	case TARGET_PROT_DIN_STRIP:
		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2143 2144 2145 2146 2147 2148 2149
			u32 sectors = cmd->data_length >>
				  ilog2(cmd->se_dev->dev_attrib.block_size);

			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
						     sectors, 0, cmd->t_prot_sg,
						     0);
			if (cmd->pi_err)
2150
				return true;
2151
		}
2152
		break;
2153 2154 2155 2156 2157 2158
	case TARGET_PROT_DIN_INSERT:
		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
			break;

		sbc_dif_generate(cmd);
		break;
2159 2160
	default:
		break;
2161 2162 2163 2164 2165
	}

	return false;
}

2166
static void target_complete_ok_work(struct work_struct *work)
2167
{
2168
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2169
	int ret;
2170

2171 2172 2173 2174 2175
	/*
	 * Check if we need to move delayed/dormant tasks from cmds on the
	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
	 * Attribute.
	 */
2176 2177
	transport_complete_task_attr(cmd);

2178 2179 2180 2181 2182 2183 2184
	/*
	 * Check to schedule QUEUE_FULL work, or execute an existing
	 * cmd->transport_qf_callback()
	 */
	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
		schedule_work(&cmd->se_dev->qf_work_queue);

2185
	/*
2186
	 * Check if we need to send a sense buffer from
2187 2188 2189
	 * the struct se_cmd in question.
	 */
	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2190 2191 2192
		WARN_ON(!cmd->scsi_status);
		ret = transport_send_check_condition_and_sense(
					cmd, 0, 1);
2193
		if (ret)
2194 2195 2196 2197 2198
			goto queue_full;

		transport_lun_remove_cmd(cmd);
		transport_cmd_check_stop_to_fabric(cmd);
		return;
2199 2200
	}
	/*
L
Lucas De Marchi 已提交
2201
	 * Check for a callback, used by amongst other things
2202
	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2203
	 */
2204 2205
	if (cmd->transport_complete_callback) {
		sense_reason_t rc;
2206 2207 2208
		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
		bool zero_dl = !(cmd->data_length);
		int post_ret = 0;
2209

2210 2211 2212
		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
		if (!rc && !post_ret) {
			if (caw && zero_dl)
2213 2214
				goto queue_rsp;

2215
			return;
2216 2217 2218
		} else if (rc) {
			ret = transport_send_check_condition_and_sense(cmd,
						rc, 0);
2219
			if (ret)
2220
				goto queue_full;
2221

2222 2223 2224 2225
			transport_lun_remove_cmd(cmd);
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
2226
	}
2227

2228
queue_rsp:
2229 2230
	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
2231 2232 2233
		if (cmd->scsi_status)
			goto queue_status;

2234 2235
		atomic_long_add(cmd->data_length,
				&cmd->se_lun->lun_stats.tx_data_octets);
2236 2237 2238 2239 2240
		/*
		 * Perform READ_STRIP of PI using software emulation when
		 * backend had PI enabled, if the transport will not be
		 * performing hardware READ_STRIP offload.
		 */
2241
		if (target_read_prot_action(cmd)) {
2242 2243
			ret = transport_send_check_condition_and_sense(cmd,
						cmd->pi_err, 0);
2244
			if (ret)
2245 2246 2247 2248 2249 2250
				goto queue_full;

			transport_lun_remove_cmd(cmd);
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
2251

2252
		trace_target_cmd_complete(cmd);
2253
		ret = cmd->se_tfo->queue_data_in(cmd);
2254
		if (ret)
2255
			goto queue_full;
2256 2257
		break;
	case DMA_TO_DEVICE:
2258 2259
		atomic_long_add(cmd->data_length,
				&cmd->se_lun->lun_stats.rx_data_octets);
2260 2261 2262
		/*
		 * Check if we need to send READ payload for BIDI-COMMAND
		 */
2263
		if (cmd->se_cmd_flags & SCF_BIDI) {
2264 2265
			atomic_long_add(cmd->data_length,
					&cmd->se_lun->lun_stats.tx_data_octets);
2266
			ret = cmd->se_tfo->queue_data_in(cmd);
2267
			if (ret)
2268
				goto queue_full;
2269 2270 2271 2272
			break;
		}
		/* Fall through for DMA_TO_DEVICE */
	case DMA_NONE:
2273
queue_status:
2274
		trace_target_cmd_complete(cmd);
2275
		ret = cmd->se_tfo->queue_status(cmd);
2276
		if (ret)
2277
			goto queue_full;
2278 2279 2280 2281 2282 2283 2284
		break;
	default:
		break;
	}

	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
2285 2286 2287
	return;

queue_full:
2288
	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2289
		" data_direction: %d\n", cmd, cmd->data_direction);
2290 2291

	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2292 2293
}

2294
void target_free_sgl(struct scatterlist *sgl, int nents)
2295
{
2296 2297
	struct scatterlist *sg;
	int count;
2298

2299 2300
	for_each_sg(sgl, sg, nents, count)
		__free_page(sg_page(sg));
2301

2302 2303
	kfree(sgl);
}
2304
EXPORT_SYMBOL(target_free_sgl);
2305

2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
{
	/*
	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
	 * emulation, and free + reset pointers if necessary..
	 */
	if (!cmd->t_data_sg_orig)
		return;

	kfree(cmd->t_data_sg);
	cmd->t_data_sg = cmd->t_data_sg_orig;
	cmd->t_data_sg_orig = NULL;
	cmd->t_data_nents = cmd->t_data_nents_orig;
	cmd->t_data_nents_orig = 0;
}

2322 2323
static inline void transport_free_pages(struct se_cmd *cmd)
{
2324
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2325
		target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2326 2327 2328 2329
		cmd->t_prot_sg = NULL;
		cmd->t_prot_nents = 0;
	}

2330
	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2331 2332 2333 2334 2335
		/*
		 * Release special case READ buffer payload required for
		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
		 */
		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2336
			target_free_sgl(cmd->t_bidi_data_sg,
2337 2338 2339 2340
					   cmd->t_bidi_data_nents);
			cmd->t_bidi_data_sg = NULL;
			cmd->t_bidi_data_nents = 0;
		}
2341
		transport_reset_sgl_orig(cmd);
2342
		return;
2343 2344
	}
	transport_reset_sgl_orig(cmd);
2345

2346
	target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2347 2348
	cmd->t_data_sg = NULL;
	cmd->t_data_nents = 0;
2349

2350
	target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2351 2352
	cmd->t_bidi_data_sg = NULL;
	cmd->t_bidi_data_nents = 0;
2353 2354
}

C
Christoph Hellwig 已提交
2355
/**
2356 2357
 * transport_put_cmd - release a reference to a command
 * @cmd:       command to release
C
Christoph Hellwig 已提交
2358
 *
2359
 * This routine releases our reference to the command and frees it if possible.
C
Christoph Hellwig 已提交
2360
 */
2361
static int transport_put_cmd(struct se_cmd *cmd)
C
Christoph Hellwig 已提交
2362 2363 2364
{
	BUG_ON(!cmd->se_tfo);
	/*
2365 2366
	 * If this cmd has been setup with target_get_sess_cmd(), drop
	 * the kref and call ->release_cmd() in kref callback.
C
Christoph Hellwig 已提交
2367
	 */
2368
	return target_put_sess_cmd(cmd);
C
Christoph Hellwig 已提交
2369 2370
}

2371
void *transport_kmap_data_sg(struct se_cmd *cmd)
2372
{
2373
	struct scatterlist *sg = cmd->t_data_sg;
2374 2375
	struct page **pages;
	int i;
2376 2377

	/*
2378 2379 2380
	 * We need to take into account a possible offset here for fabrics like
	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2381
	 */
2382 2383
	if (!cmd->t_data_nents)
		return NULL;
2384 2385 2386

	BUG_ON(!sg);
	if (cmd->t_data_nents == 1)
2387 2388 2389
		return kmap(sg_page(sg)) + sg->offset;

	/* >1 page. use vmap */
2390
	pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2391
	if (!pages)
2392 2393 2394 2395 2396 2397 2398 2399 2400
		return NULL;

	/* convert sg[] to pages[] */
	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
		pages[i] = sg_page(sg);
	}

	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
	kfree(pages);
2401
	if (!cmd->t_data_vmap)
2402 2403 2404
		return NULL;

	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2405
}
2406
EXPORT_SYMBOL(transport_kmap_data_sg);
2407

2408
void transport_kunmap_data_sg(struct se_cmd *cmd)
2409
{
2410
	if (!cmd->t_data_nents) {
2411
		return;
2412
	} else if (cmd->t_data_nents == 1) {
2413
		kunmap(sg_page(cmd->t_data_sg));
2414 2415
		return;
	}
2416 2417 2418

	vunmap(cmd->t_data_vmap);
	cmd->t_data_vmap = NULL;
2419
}
2420
EXPORT_SYMBOL(transport_kunmap_data_sg);
2421

2422
int
2423
target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2424
		 bool zero_page, bool chainable)
2425
{
2426
	struct scatterlist *sg;
2427
	struct page *page;
2428
	gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2429
	unsigned int nalloc, nent;
2430
	int i = 0;
2431

2432 2433 2434 2435
	nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE);
	if (chainable)
		nalloc++;
	sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL);
2436
	if (!sg)
2437
		return -ENOMEM;
2438

2439
	sg_init_table(sg, nalloc);
2440

2441 2442
	while (length) {
		u32 page_len = min_t(u32, length, PAGE_SIZE);
2443
		page = alloc_page(GFP_KERNEL | zero_flag);
2444 2445
		if (!page)
			goto out;
2446

2447
		sg_set_page(&sg[i], page, page_len, 0);
2448 2449
		length -= page_len;
		i++;
2450
	}
2451 2452
	*sgl = sg;
	*nents = nent;
2453 2454
	return 0;

2455
out:
2456
	while (i > 0) {
2457
		i--;
2458
		__free_page(sg_page(&sg[i]));
2459
	}
2460
	kfree(sg);
2461
	return -ENOMEM;
2462
}
2463
EXPORT_SYMBOL(target_alloc_sgl);
2464

2465
/*
2466 2467 2468
 * Allocate any required resources to execute the command.  For writes we
 * might not have the payload yet, so notify the fabric via a call to
 * ->write_pending instead. Otherwise place it on the execution queue.
2469
 */
2470 2471
sense_reason_t
transport_generic_new_cmd(struct se_cmd *cmd)
2472
{
2473
	unsigned long flags;
2474
	int ret = 0;
2475
	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2476

2477 2478 2479
	if (cmd->prot_op != TARGET_PROT_NORMAL &&
	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2480
				       cmd->prot_length, true, false);
2481 2482 2483 2484
		if (ret < 0)
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
	}

2485 2486 2487
	/*
	 * Determine is the TCM fabric module has already allocated physical
	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2488
	 * beforehand.
2489
	 */
2490 2491
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
	    cmd->data_length) {
2492

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
		if ((cmd->se_cmd_flags & SCF_BIDI) ||
		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
			u32 bidi_length;

			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
				bidi_length = cmd->t_task_nolb *
					      cmd->se_dev->dev_attrib.block_size;
			else
				bidi_length = cmd->data_length;

			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
					       &cmd->t_bidi_data_nents,
2505
					       bidi_length, zero_flag, false);
2506 2507 2508 2509
			if (ret < 0)
				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		}

2510
		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2511
				       cmd->data_length, zero_flag, false);
2512
		if (ret < 0)
2513
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
		    cmd->data_length) {
		/*
		 * Special case for COMPARE_AND_WRITE with fabrics
		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
		 */
		u32 caw_length = cmd->t_task_nolb *
				 cmd->se_dev->dev_attrib.block_size;

		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
				       &cmd->t_bidi_data_nents,
2525
				       caw_length, zero_flag, false);
2526 2527
		if (ret < 0)
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2528 2529
	}
	/*
2530 2531 2532
	 * If this command is not a write we can execute it right here,
	 * for write buffers we need to notify the fabric driver first
	 * and let it call back once the write buffers are ready.
2533
	 */
2534
	target_add_to_state_list(cmd);
2535
	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2536 2537 2538
		target_execute_cmd(cmd);
		return 0;
	}
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	cmd->t_state = TRANSPORT_WRITE_PENDING;
	/*
	 * Determine if frontend context caller is requesting the stopping of
	 * this command for frontend exceptions.
	 */
	if (cmd->transport_state & CMD_T_STOP) {
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			 __func__, __LINE__, cmd->tag);

		spin_unlock_irqrestore(&cmd->t_state_lock, flags);

		complete_all(&cmd->t_transport_stop_comp);
2553
		return 0;
2554 2555 2556
	}
	cmd->transport_state &= ~CMD_T_ACTIVE;
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2557 2558

	ret = cmd->se_tfo->write_pending(cmd);
2559
	if (ret)
2560 2561
		goto queue_full;

2562
	return 0;
2563

2564 2565
queue_full:
	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2566
	transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2567
	return 0;
2568
}
2569
EXPORT_SYMBOL(transport_generic_new_cmd);
2570

2571
static void transport_write_pending_qf(struct se_cmd *cmd)
2572
{
2573 2574 2575
	int ret;

	ret = cmd->se_tfo->write_pending(cmd);
2576
	if (ret) {
2577 2578
		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
			 cmd);
2579
		transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2580
	}
2581 2582
}

2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
static bool
__transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
			   unsigned long *flags);

static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
{
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}

2596
int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2597
{
2598
	int ret = 0;
2599
	bool aborted = false, tas = false;
2600

2601
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2602
		if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2603
			target_wait_free_cmd(cmd, &aborted, &tas);
2604

2605 2606
		if (!aborted || tas)
			ret = transport_put_cmd(cmd);
2607 2608
	} else {
		if (wait_for_tasks)
2609
			target_wait_free_cmd(cmd, &aborted, &tas);
2610 2611 2612 2613 2614
		/*
		 * Handle WRITE failure case where transport_generic_new_cmd()
		 * has already added se_cmd to state_list, but fabric has
		 * failed command before I/O submission.
		 */
2615
		if (cmd->state_active)
2616
			target_remove_from_state_list(cmd);
2617

2618
		if (cmd->se_lun)
2619 2620
			transport_lun_remove_cmd(cmd);

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
		if (!aborted || tas)
			ret = transport_put_cmd(cmd);
	}
	/*
	 * If the task has been internally aborted due to TMR ABORT_TASK
	 * or LUN_RESET, target_core_tmr.c is responsible for performing
	 * the remaining calls to target_put_sess_cmd(), and not the
	 * callers of this function.
	 */
	if (aborted) {
		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
		wait_for_completion(&cmd->cmd_wait_comp);
		cmd->se_tfo->release_cmd(cmd);
		ret = 1;
2635
	}
2636
	return ret;
2637 2638 2639
}
EXPORT_SYMBOL(transport_generic_free_cmd);

2640 2641
/* target_get_sess_cmd - Add command to active ->sess_cmd_list
 * @se_cmd:	command descriptor to add
2642
 * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2643
 */
2644
int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2645
{
2646
	struct se_session *se_sess = se_cmd->se_sess;
2647
	unsigned long flags;
2648
	int ret = 0;
2649

2650 2651 2652 2653 2654
	/*
	 * Add a second kref if the fabric caller is expecting to handle
	 * fabric acknowledgement that requires two target_put_sess_cmd()
	 * invocations before se_cmd descriptor release.
	 */
2655
	if (ack_kref) {
2656 2657 2658
		if (!kref_get_unless_zero(&se_cmd->cmd_kref))
			return -EINVAL;

2659 2660
		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
	}
2661

2662
	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2663 2664 2665 2666
	if (se_sess->sess_tearing_down) {
		ret = -ESHUTDOWN;
		goto out;
	}
2667
	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2668
out:
2669
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2670 2671

	if (ret && ack_kref)
2672
		target_put_sess_cmd(se_cmd);
2673

2674
	return ret;
2675
}
2676
EXPORT_SYMBOL(target_get_sess_cmd);
2677

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
static void target_free_cmd_mem(struct se_cmd *cmd)
{
	transport_free_pages(cmd);

	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
		core_tmr_release_req(cmd->se_tmr_req);
	if (cmd->t_task_cdb != cmd->__t_task_cdb)
		kfree(cmd->t_task_cdb);
}

2688
static void target_release_cmd_kref(struct kref *kref)
2689
{
2690 2691
	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
	struct se_session *se_sess = se_cmd->se_sess;
2692
	unsigned long flags;
2693
	bool fabric_stop;
2694

2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
	if (se_sess) {
		spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);

		spin_lock(&se_cmd->t_state_lock);
		fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
			      (se_cmd->transport_state & CMD_T_ABORTED);
		spin_unlock(&se_cmd->t_state_lock);

		if (se_cmd->cmd_wait_set || fabric_stop) {
			list_del_init(&se_cmd->se_cmd_list);
			spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
			target_free_cmd_mem(se_cmd);
			complete(&se_cmd->cmd_wait_comp);
			return;
		}
2710
		list_del_init(&se_cmd->se_cmd_list);
2711
		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2712 2713
	}

2714
	target_free_cmd_mem(se_cmd);
2715 2716 2717
	se_cmd->se_tfo->release_cmd(se_cmd);
}

2718 2719 2720 2721 2722 2723
/**
 * target_put_sess_cmd - decrease the command reference count
 * @se_cmd:	command to drop a reference from
 *
 * Returns 1 if and only if this target_put_sess_cmd() call caused the
 * refcount to drop to zero. Returns zero otherwise.
2724
 */
2725
int target_put_sess_cmd(struct se_cmd *se_cmd)
2726
{
2727
	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2728 2729 2730
}
EXPORT_SYMBOL(target_put_sess_cmd);

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
static const char *data_dir_name(enum dma_data_direction d)
{
	switch (d) {
	case DMA_BIDIRECTIONAL:	return "BIDI";
	case DMA_TO_DEVICE:	return "WRITE";
	case DMA_FROM_DEVICE:	return "READ";
	case DMA_NONE:		return "NONE";
	}

	return "(?)";
}

static const char *cmd_state_name(enum transport_state_table t)
{
	switch (t) {
	case TRANSPORT_NO_STATE:	return "NO_STATE";
	case TRANSPORT_NEW_CMD:		return "NEW_CMD";
	case TRANSPORT_WRITE_PENDING:	return "WRITE_PENDING";
	case TRANSPORT_PROCESSING:	return "PROCESSING";
	case TRANSPORT_COMPLETE:	return "COMPLETE";
	case TRANSPORT_ISTATE_PROCESSING:
					return "ISTATE_PROCESSING";
	case TRANSPORT_COMPLETE_QF_WP:	return "COMPLETE_QF_WP";
	case TRANSPORT_COMPLETE_QF_OK:	return "COMPLETE_QF_OK";
	case TRANSPORT_COMPLETE_QF_ERR:	return "COMPLETE_QF_ERR";
	}

	return "(?)";
}

static void target_append_str(char **str, const char *txt)
{
	char *prev = *str;

	*str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
		kstrdup(txt, GFP_ATOMIC);
	kfree(prev);
}

/*
 * Convert a transport state bitmask into a string. The caller is
 * responsible for freeing the returned pointer.
 */
static char *target_ts_to_str(u32 ts)
{
	char *str = NULL;

	if (ts & CMD_T_ABORTED)
		target_append_str(&str, "aborted");
	if (ts & CMD_T_ACTIVE)
		target_append_str(&str, "active");
	if (ts & CMD_T_COMPLETE)
		target_append_str(&str, "complete");
	if (ts & CMD_T_SENT)
		target_append_str(&str, "sent");
	if (ts & CMD_T_STOP)
		target_append_str(&str, "stop");
	if (ts & CMD_T_FABRIC_STOP)
		target_append_str(&str, "fabric_stop");

	return str;
}

static const char *target_tmf_name(enum tcm_tmreq_table tmf)
{
	switch (tmf) {
	case TMR_ABORT_TASK:		return "ABORT_TASK";
	case TMR_ABORT_TASK_SET:	return "ABORT_TASK_SET";
	case TMR_CLEAR_ACA:		return "CLEAR_ACA";
	case TMR_CLEAR_TASK_SET:	return "CLEAR_TASK_SET";
	case TMR_LUN_RESET:		return "LUN_RESET";
	case TMR_TARGET_WARM_RESET:	return "TARGET_WARM_RESET";
	case TMR_TARGET_COLD_RESET:	return "TARGET_COLD_RESET";
	case TMR_UNKNOWN:		break;
	}
	return "(?)";
}

void target_show_cmd(const char *pfx, struct se_cmd *cmd)
{
	char *ts_str = target_ts_to_str(cmd->transport_state);
	const u8 *cdb = cmd->t_task_cdb;
	struct se_tmr_req *tmf = cmd->se_tmr_req;

	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
		pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
			 pfx, cdb[0], cdb[1], cmd->tag,
			 data_dir_name(cmd->data_direction),
			 cmd->se_tfo->get_cmd_state(cmd),
			 cmd_state_name(cmd->t_state), cmd->data_length,
			 kref_read(&cmd->cmd_kref), ts_str);
	} else {
		pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
			 pfx, target_tmf_name(tmf->function), cmd->tag,
			 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
			 cmd_state_name(cmd->t_state),
			 kref_read(&cmd->cmd_kref), ts_str);
	}
	kfree(ts_str);
}
EXPORT_SYMBOL(target_show_cmd);

2833 2834 2835 2836
/* target_sess_cmd_list_set_waiting - Flag all commands in
 *         sess_cmd_list to complete cmd_wait_comp.  Set
 *         sess_tearing_down so no more commands are queued.
 * @se_sess:	session to flag
2837
 */
2838
void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2839
{
2840
	struct se_cmd *se_cmd, *tmp_cmd;
2841
	unsigned long flags;
2842
	int rc;
2843 2844

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2845 2846 2847 2848
	if (se_sess->sess_tearing_down) {
		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
		return;
	}
2849
	se_sess->sess_tearing_down = 1;
2850
	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2851

2852 2853
	list_for_each_entry_safe(se_cmd, tmp_cmd,
				 &se_sess->sess_wait_list, se_cmd_list) {
2854 2855 2856 2857 2858 2859
		rc = kref_get_unless_zero(&se_cmd->cmd_kref);
		if (rc) {
			se_cmd->cmd_wait_set = 1;
			spin_lock(&se_cmd->t_state_lock);
			se_cmd->transport_state |= CMD_T_FABRIC_STOP;
			spin_unlock(&se_cmd->t_state_lock);
2860 2861
		} else
			list_del_init(&se_cmd->se_cmd_list);
2862
	}
2863 2864 2865

	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
}
2866
EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2867 2868 2869 2870

/* target_wait_for_sess_cmds - Wait for outstanding descriptors
 * @se_sess:    session to wait for active I/O
 */
2871
void target_wait_for_sess_cmds(struct se_session *se_sess)
2872 2873
{
	struct se_cmd *se_cmd, *tmp_cmd;
2874
	unsigned long flags;
2875
	bool tas;
2876 2877

	list_for_each_entry_safe(se_cmd, tmp_cmd,
2878
				&se_sess->sess_wait_list, se_cmd_list) {
2879 2880 2881 2882
		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
			" %d\n", se_cmd, se_cmd->t_state,
			se_cmd->se_tfo->get_cmd_state(se_cmd));

2883 2884 2885 2886 2887 2888 2889 2890 2891
		spin_lock_irqsave(&se_cmd->t_state_lock, flags);
		tas = (se_cmd->transport_state & CMD_T_TAS);
		spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);

		if (!target_put_sess_cmd(se_cmd)) {
			if (tas)
				target_put_sess_cmd(se_cmd);
		}

2892 2893 2894 2895
		wait_for_completion(&se_cmd->cmd_wait_comp);
		pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
			" fabric state: %d\n", se_cmd, se_cmd->t_state,
			se_cmd->se_tfo->get_cmd_state(se_cmd));
2896 2897 2898

		se_cmd->se_tfo->release_cmd(se_cmd);
	}
2899 2900 2901 2902 2903

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
	WARN_ON(!list_empty(&se_sess->sess_cmd_list));
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);

2904 2905 2906
}
EXPORT_SYMBOL(target_wait_for_sess_cmds);

2907 2908 2909 2910 2911 2912 2913
static void target_lun_confirm(struct percpu_ref *ref)
{
	struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);

	complete(&lun->lun_ref_comp);
}

2914
void transport_clear_lun_ref(struct se_lun *lun)
2915
{
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	/*
	 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
	 * the initial reference and schedule confirm kill to be
	 * executed after one full RCU grace period has completed.
	 */
	percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
	/*
	 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
	 * to call target_lun_confirm after lun->lun_ref has been marked
	 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
	 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
	 * fails for all new incoming I/O.
	 */
2929
	wait_for_completion(&lun->lun_ref_comp);
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939
	/*
	 * The second completion waits for percpu_ref_put_many() to
	 * invoke ->release() after lun->lun_ref has switched to
	 * atomic_t mode, and lun->lun_ref.count has reached zero.
	 *
	 * At this point all target-core lun->lun_ref references have
	 * been dropped via transport_lun_remove_cmd(), and it's safe
	 * to proceed with the remaining LUN shutdown.
	 */
	wait_for_completion(&lun->lun_shutdown_comp);
2940 2941
}

2942 2943 2944 2945 2946
static bool
__transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
			   bool *aborted, bool *tas, unsigned long *flags)
	__releases(&cmd->t_state_lock)
	__acquires(&cmd->t_state_lock)
2947 2948
{

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
	assert_spin_locked(&cmd->t_state_lock);
	WARN_ON_ONCE(!irqs_disabled());

	if (fabric_stop)
		cmd->transport_state |= CMD_T_FABRIC_STOP;

	if (cmd->transport_state & CMD_T_ABORTED)
		*aborted = true;

	if (cmd->transport_state & CMD_T_TAS)
		*tas = true;

2961
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2962
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2963
		return false;
2964

2965
	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2966
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2967
		return false;
2968

2969 2970 2971 2972
	if (!(cmd->transport_state & CMD_T_ACTIVE))
		return false;

	if (fabric_stop && *aborted)
2973
		return false;
2974

2975
	cmd->transport_state |= CMD_T_STOP;
2976

2977
	target_show_cmd("wait_for_tasks: Stopping ", cmd);
2978

2979
	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2980

2981 2982 2983
	while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
					    180 * HZ))
		target_show_cmd("wait for tasks: ", cmd);
2984

2985
	spin_lock_irqsave(&cmd->t_state_lock, *flags);
2986
	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2987

2988 2989
	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2990

2991 2992 2993 2994
	return true;
}

/**
2995 2996
 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
 * @cmd: command to wait on
2997 2998 2999 3000 3001 3002 3003 3004
 */
bool transport_wait_for_tasks(struct se_cmd *cmd)
{
	unsigned long flags;
	bool ret, aborted = false, tas = false;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3005
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3006

3007
	return ret;
3008
}
3009
EXPORT_SYMBOL(transport_wait_for_tasks);
3010

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
struct sense_info {
	u8 key;
	u8 asc;
	u8 ascq;
	bool add_sector_info;
};

static const struct sense_info sense_info_table[] = {
	[TCM_NO_SENSE] = {
		.key = NOT_READY
	},
	[TCM_NON_EXISTENT_LUN] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
	},
	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
	},
	[TCM_SECTOR_COUNT_TOO_MANY] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
	},
	[TCM_UNKNOWN_MODE_PAGE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x24, /* INVALID FIELD IN CDB */
	},
	[TCM_CHECK_CONDITION_ABORT_CMD] = {
		.key = ABORTED_COMMAND,
		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
		.ascq = 0x03,
	},
	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
		.key = ABORTED_COMMAND,
		.asc = 0x0c, /* WRITE ERROR */
		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
	},
	[TCM_INVALID_CDB_FIELD] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x24, /* INVALID FIELD IN CDB */
	},
	[TCM_INVALID_PARAMETER_LIST] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
	},
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
	[TCM_TOO_MANY_TARGET_DESCS] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
	},
	[TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
	},
	[TCM_TOO_MANY_SEGMENT_DESCS] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
	},
	[TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
	},
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
	},
	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x0c, /* WRITE ERROR */
		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
	},
	[TCM_SERVICE_CRC_ERROR] = {
		.key = ABORTED_COMMAND,
		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
		.ascq = 0x05, /* N/A */
	},
	[TCM_SNACK_REJECTED] = {
		.key = ABORTED_COMMAND,
		.asc = 0x11, /* READ ERROR */
		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
	},
	[TCM_WRITE_PROTECTED] = {
		.key = DATA_PROTECT,
		.asc = 0x27, /* WRITE PROTECTED */
	},
	[TCM_ADDRESS_OUT_OF_RANGE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
	},
	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
		.key = UNIT_ATTENTION,
	},
	[TCM_CHECK_CONDITION_NOT_READY] = {
		.key = NOT_READY,
	},
	[TCM_MISCOMPARE_VERIFY] = {
		.key = MISCOMPARE,
		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
		.ascq = 0x00,
	},
	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3115
		.key = ABORTED_COMMAND,
3116 3117 3118 3119 3120
		.asc = 0x10,
		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
		.add_sector_info = true,
	},
	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3121
		.key = ABORTED_COMMAND,
3122 3123 3124 3125 3126
		.asc = 0x10,
		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
		.add_sector_info = true,
	},
	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3127
		.key = ABORTED_COMMAND,
3128 3129 3130 3131
		.asc = 0x10,
		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
		.add_sector_info = true,
	},
3132 3133 3134 3135 3136 3137
	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
		.key = COPY_ABORTED,
		.asc = 0x0d,
		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */

	},
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149
	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
		/*
		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
		 * Solaris initiators.  Returning NOT READY instead means the
		 * operations will be retried a finite number of times and we
		 * can survive intermittent errors.
		 */
		.key = NOT_READY,
		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
	},
};

3150
static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3151 3152 3153 3154 3155
{
	const struct sense_info *si;
	u8 *buffer = cmd->sense_buffer;
	int r = (__force int)reason;
	u8 asc, ascq;
3156
	bool desc_format = target_sense_desc_format(cmd->se_dev);
3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174

	if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
		si = &sense_info_table[r];
	else
		si = &sense_info_table[(__force int)
				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];

	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
		WARN_ON_ONCE(asc == 0);
	} else if (si->asc == 0) {
		WARN_ON_ONCE(cmd->scsi_asc == 0);
		asc = cmd->scsi_asc;
		ascq = cmd->scsi_ascq;
	} else {
		asc = si->asc;
		ascq = si->ascq;
	}
3175

3176
	scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
3177
	if (si->add_sector_info)
3178 3179 3180 3181 3182
		return scsi_set_sense_information(buffer,
						  cmd->scsi_sense_length,
						  cmd->bad_sector);

	return 0;
3183 3184
}

3185 3186 3187
int
transport_send_check_condition_and_sense(struct se_cmd *cmd,
		sense_reason_t reason, int from_transport)
3188 3189 3190
{
	unsigned long flags;

3191
	spin_lock_irqsave(&cmd->t_state_lock, flags);
3192
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3193
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3194 3195 3196
		return 0;
	}
	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3197
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3198

3199
	if (!from_transport) {
3200 3201
		int rc;

3202
		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3203 3204
		cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
		cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3205 3206 3207
		rc = translate_sense_reason(cmd, reason);
		if (rc)
			return rc;
3208 3209
	}

3210
	trace_target_cmd_complete(cmd);
3211
	return cmd->se_tfo->queue_status(cmd);
3212 3213 3214
}
EXPORT_SYMBOL(transport_send_check_condition_and_sense);

3215 3216 3217
static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
	__releases(&cmd->t_state_lock)
	__acquires(&cmd->t_state_lock)
3218
{
3219 3220
	int ret;

3221 3222 3223
	assert_spin_locked(&cmd->t_state_lock);
	WARN_ON_ONCE(!irqs_disabled());

3224 3225
	if (!(cmd->transport_state & CMD_T_ABORTED))
		return 0;
3226 3227 3228 3229
	/*
	 * If cmd has been aborted but either no status is to be sent or it has
	 * already been sent, just return
	 */
3230 3231 3232
	if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
		if (send_status)
			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3233
		return 1;
3234
	}
3235

3236 3237
	pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
		" 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3238

3239
	cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3240
	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3241
	trace_target_cmd_complete(cmd);
3242 3243

	spin_unlock_irq(&cmd->t_state_lock);
3244 3245 3246
	ret = cmd->se_tfo->queue_status(cmd);
	if (ret)
		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3247
	spin_lock_irq(&cmd->t_state_lock);
3248 3249

	return 1;
3250
}
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261

int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
{
	int ret;

	spin_lock_irq(&cmd->t_state_lock);
	ret = __transport_check_aborted_status(cmd, send_status);
	spin_unlock_irq(&cmd->t_state_lock);

	return ret;
}
3262 3263 3264 3265
EXPORT_SYMBOL(transport_check_aborted_status);

void transport_send_task_abort(struct se_cmd *cmd)
{
3266
	unsigned long flags;
3267
	int ret;
3268 3269

	spin_lock_irqsave(&cmd->t_state_lock, flags);
3270
	if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3271 3272 3273 3274 3275
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		return;
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3276 3277 3278 3279 3280 3281 3282
	/*
	 * If there are still expected incoming fabric WRITEs, we wait
	 * until until they have completed before sending a TASK_ABORTED
	 * response.  This response with TASK_ABORTED status will be
	 * queued back to fabric module by transport_check_aborted_status().
	 */
	if (cmd->data_direction == DMA_TO_DEVICE) {
3283
		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3284 3285 3286 3287 3288
			spin_lock_irqsave(&cmd->t_state_lock, flags);
			if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
				spin_unlock_irqrestore(&cmd->t_state_lock, flags);
				goto send_abort;
			}
3289
			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3290
			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3291
			return;
3292 3293
		}
	}
3294
send_abort:
3295
	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3296

3297 3298
	transport_lun_remove_cmd(cmd);

3299 3300
	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
		 cmd->t_task_cdb[0], cmd->tag);
3301

3302
	trace_target_cmd_complete(cmd);
3303 3304 3305
	ret = cmd->se_tfo->queue_status(cmd);
	if (ret)
		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3306 3307
}

3308
static void target_tmr_work(struct work_struct *work)
3309
{
3310
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3311
	struct se_device *dev = cmd->se_dev;
3312
	struct se_tmr_req *tmr = cmd->se_tmr_req;
3313
	unsigned long flags;
3314 3315
	int ret;

3316 3317 3318 3319 3320 3321 3322 3323
	spin_lock_irqsave(&cmd->t_state_lock, flags);
	if (cmd->transport_state & CMD_T_ABORTED) {
		tmr->response = TMR_FUNCTION_REJECTED;
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		goto check_stop;
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3324
	switch (tmr->function) {
3325
	case TMR_ABORT_TASK:
3326
		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3327
		break;
3328 3329 3330
	case TMR_ABORT_TASK_SET:
	case TMR_CLEAR_ACA:
	case TMR_CLEAR_TASK_SET:
3331 3332
		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
		break;
3333
	case TMR_LUN_RESET:
3334 3335 3336
		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
					 TMR_FUNCTION_REJECTED;
3337 3338 3339 3340 3341
		if (tmr->response == TMR_FUNCTION_COMPLETE) {
			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
					       cmd->orig_fe_lun, 0x29,
					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
		}
3342
		break;
3343
	case TMR_TARGET_WARM_RESET:
3344 3345
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
3346
	case TMR_TARGET_COLD_RESET:
3347 3348 3349
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	default:
3350
		pr_err("Uknown TMR function: 0x%02x.\n",
3351 3352 3353 3354 3355
				tmr->function);
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	}

3356 3357 3358 3359 3360 3361 3362
	spin_lock_irqsave(&cmd->t_state_lock, flags);
	if (cmd->transport_state & CMD_T_ABORTED) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		goto check_stop;
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3363
	cmd->se_tfo->queue_tm_rsp(cmd);
3364

3365
check_stop:
3366
	transport_lun_remove_cmd(cmd);
3367
	transport_cmd_check_stop_to_fabric(cmd);
3368 3369
}

3370 3371
int transport_generic_handle_tmr(
	struct se_cmd *cmd)
3372
{
3373
	unsigned long flags;
3374
	bool aborted = false;
3375 3376

	spin_lock_irqsave(&cmd->t_state_lock, flags);
3377 3378 3379 3380 3381 3382
	if (cmd->transport_state & CMD_T_ABORTED) {
		aborted = true;
	} else {
		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
		cmd->transport_state |= CMD_T_ACTIVE;
	}
3383 3384
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3385 3386 3387 3388
	if (aborted) {
		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
			"ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
			cmd->se_tmr_req->ref_task_tag, cmd->tag);
3389
		transport_lun_remove_cmd(cmd);
3390 3391 3392 3393
		transport_cmd_check_stop_to_fabric(cmd);
		return 0;
	}

3394 3395
	INIT_WORK(&cmd->work, target_tmr_work);
	queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3396 3397
	return 0;
}
3398
EXPORT_SYMBOL(transport_generic_handle_tmr);
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417

bool
target_check_wce(struct se_device *dev)
{
	bool wce = false;

	if (dev->transport->get_write_cache)
		wce = dev->transport->get_write_cache(dev);
	else if (dev->dev_attrib.emulate_write_cache > 0)
		wce = true;

	return wce;
}

bool
target_check_fua(struct se_device *dev)
{
	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
}