target_core_transport.c 94.0 KB
Newer Older
1 2 3 4 5
/*******************************************************************************
 * Filename:  target_core_transport.c
 *
 * This file contains the Generic Target Engine Core.
 *
6
 * (c) Copyright 2002-2013 Datera, Inc.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 *
 * Nicholas A. Bellinger <nab@kernel.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 ******************************************************************************/

#include <linux/net.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/in.h>
#include <linux/cdrom.h>
35
#include <linux/module.h>
36
#include <linux/ratelimit.h>
37
#include <linux/vmalloc.h>
38 39 40
#include <asm/unaligned.h>
#include <net/sock.h>
#include <net/tcp.h>
41
#include <scsi/scsi_proto.h>
42
#include <scsi/scsi_common.h>
43 44

#include <target/target_core_base.h>
45 46
#include <target/target_core_backend.h>
#include <target/target_core_fabric.h>
47

C
Christoph Hellwig 已提交
48
#include "target_core_internal.h"
49 50 51 52
#include "target_core_alua.h"
#include "target_core_pr.h"
#include "target_core_ua.h"

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/target.h>

56
static struct workqueue_struct *target_completion_wq;
57 58 59 60 61 62
static struct kmem_cache *se_sess_cache;
struct kmem_cache *se_ua_cache;
struct kmem_cache *t10_pr_reg_cache;
struct kmem_cache *t10_alua_lu_gp_cache;
struct kmem_cache *t10_alua_lu_gp_mem_cache;
struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 64
struct kmem_cache *t10_alua_lba_map_cache;
struct kmem_cache *t10_alua_lba_map_mem_cache;
65 66

static void transport_complete_task_attr(struct se_cmd *cmd);
67
static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
68
static void transport_handle_queue_full(struct se_cmd *cmd,
69
		struct se_device *dev, int err, bool write_pending);
70
static void target_complete_ok_work(struct work_struct *work);
71

72
int init_se_kmem_caches(void)
73 74 75 76
{
	se_sess_cache = kmem_cache_create("se_sess_cache",
			sizeof(struct se_session), __alignof__(struct se_session),
			0, NULL);
77 78
	if (!se_sess_cache) {
		pr_err("kmem_cache_create() for struct se_session"
79
				" failed\n");
80
		goto out;
81 82 83 84
	}
	se_ua_cache = kmem_cache_create("se_ua_cache",
			sizeof(struct se_ua), __alignof__(struct se_ua),
			0, NULL);
85 86
	if (!se_ua_cache) {
		pr_err("kmem_cache_create() for struct se_ua failed\n");
87
		goto out_free_sess_cache;
88 89 90 91
	}
	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
			sizeof(struct t10_pr_registration),
			__alignof__(struct t10_pr_registration), 0, NULL);
92 93
	if (!t10_pr_reg_cache) {
		pr_err("kmem_cache_create() for struct t10_pr_registration"
94
				" failed\n");
95
		goto out_free_ua_cache;
96 97 98 99
	}
	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
			0, NULL);
100 101
	if (!t10_alua_lu_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102
				" failed\n");
103
		goto out_free_pr_reg_cache;
104 105 106 107
	}
	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
			sizeof(struct t10_alua_lu_gp_member),
			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 109
	if (!t10_alua_lu_gp_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110
				"cache failed\n");
111
		goto out_free_lu_gp_cache;
112 113 114 115
	}
	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
			sizeof(struct t10_alua_tg_pt_gp),
			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 117
	if (!t10_alua_tg_pt_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118
				"cache failed\n");
119
		goto out_free_lu_gp_mem_cache;
120
	}
121 122 123 124 125 126 127
	t10_alua_lba_map_cache = kmem_cache_create(
			"t10_alua_lba_map_cache",
			sizeof(struct t10_alua_lba_map),
			__alignof__(struct t10_alua_lba_map), 0, NULL);
	if (!t10_alua_lba_map_cache) {
		pr_err("kmem_cache_create() for t10_alua_lba_map_"
				"cache failed\n");
128
		goto out_free_tg_pt_gp_cache;
129 130 131 132 133 134 135 136 137 138
	}
	t10_alua_lba_map_mem_cache = kmem_cache_create(
			"t10_alua_lba_map_mem_cache",
			sizeof(struct t10_alua_lba_map_member),
			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
	if (!t10_alua_lba_map_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
				"cache failed\n");
		goto out_free_lba_map_cache;
	}
139

140 141 142
	target_completion_wq = alloc_workqueue("target_completion",
					       WQ_MEM_RECLAIM, 0);
	if (!target_completion_wq)
143
		goto out_free_lba_map_mem_cache;
144

145
	return 0;
146

147 148 149 150
out_free_lba_map_mem_cache:
	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
out_free_lba_map_cache:
	kmem_cache_destroy(t10_alua_lba_map_cache);
151 152 153 154 155 156 157 158 159 160 161 162
out_free_tg_pt_gp_cache:
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
out_free_lu_gp_mem_cache:
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
out_free_lu_gp_cache:
	kmem_cache_destroy(t10_alua_lu_gp_cache);
out_free_pr_reg_cache:
	kmem_cache_destroy(t10_pr_reg_cache);
out_free_ua_cache:
	kmem_cache_destroy(se_ua_cache);
out_free_sess_cache:
	kmem_cache_destroy(se_sess_cache);
163
out:
164
	return -ENOMEM;
165 166
}

167
void release_se_kmem_caches(void)
168
{
169
	destroy_workqueue(target_completion_wq);
170 171 172 173 174 175
	kmem_cache_destroy(se_sess_cache);
	kmem_cache_destroy(se_ua_cache);
	kmem_cache_destroy(t10_pr_reg_cache);
	kmem_cache_destroy(t10_alua_lu_gp_cache);
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 177
	kmem_cache_destroy(t10_alua_lba_map_cache);
	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 179
}

180 181 182
/* This code ensures unique mib indexes are handed out. */
static DEFINE_SPINLOCK(scsi_mib_index_lock);
static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183 184 185 186 187 188 189 190

/*
 * Allocate a new row index for the entry type specified
 */
u32 scsi_get_new_index(scsi_index_t type)
{
	u32 new_index;

191
	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192

193 194 195
	spin_lock(&scsi_mib_index_lock);
	new_index = ++scsi_mib_index[type];
	spin_unlock(&scsi_mib_index_lock);
196 197 198 199

	return new_index;
}

200
void transport_subsystem_check_init(void)
201 202
{
	int ret;
203
	static int sub_api_initialized;
204

205 206 207
	if (sub_api_initialized)
		return;

208
	ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
209
	if (ret != 0)
210
		pr_err("Unable to load target_core_iblock\n");
211

212
	ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
213
	if (ret != 0)
214
		pr_err("Unable to load target_core_file\n");
215

216
	ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
217
	if (ret != 0)
218
		pr_err("Unable to load target_core_pscsi\n");
219

220
	ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
221 222 223
	if (ret != 0)
		pr_err("Unable to load target_core_user\n");

224
	sub_api_initialized = 1;
225 226
}

227 228 229 230 231 232 233
static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
{
	struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);

	wake_up(&sess->cmd_list_wq);
}

234 235 236 237 238 239
/**
 * transport_init_session - initialize a session object
 * @se_sess: Session object pointer.
 *
 * The caller must have zero-initialized @se_sess before calling this function.
 */
240
int transport_init_session(struct se_session *se_sess)
241 242 243 244 245
{
	INIT_LIST_HEAD(&se_sess->sess_list);
	INIT_LIST_HEAD(&se_sess->sess_acl_list);
	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
	spin_lock_init(&se_sess->sess_cmd_lock);
246
	init_waitqueue_head(&se_sess->cmd_list_wq);
247 248
	return percpu_ref_init(&se_sess->cmd_count,
			       target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
249 250 251
}
EXPORT_SYMBOL(transport_init_session);

252 253 254 255 256
/**
 * transport_alloc_session - allocate a session object and initialize it
 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
 */
struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
257 258
{
	struct se_session *se_sess;
259
	int ret;
260 261

	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
262 263
	if (!se_sess) {
		pr_err("Unable to allocate struct se_session from"
264 265 266
				" se_sess_cache\n");
		return ERR_PTR(-ENOMEM);
	}
267 268 269 270 271
	ret = transport_init_session(se_sess);
	if (ret < 0) {
		kfree(se_sess);
		return ERR_PTR(ret);
	}
272
	se_sess->sup_prot_ops = sup_prot_ops;
273 274 275

	return se_sess;
}
276 277 278 279 280 281 282 283 284
EXPORT_SYMBOL(transport_alloc_session);

/**
 * transport_alloc_session_tags - allocate target driver private data
 * @se_sess:  Session pointer.
 * @tag_num:  Maximum number of in-flight commands between initiator and target.
 * @tag_size: Size in bytes of the private data a target driver associates with
 *	      each command.
 */
285 286 287 288 289
int transport_alloc_session_tags(struct se_session *se_sess,
			         unsigned int tag_num, unsigned int tag_size)
{
	int rc;

290 291
	se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
					 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
292
	if (!se_sess->sess_cmd_map) {
293 294
		pr_err("Unable to allocate se_sess->sess_cmd_map\n");
		return -ENOMEM;
295 296
	}

297 298
	rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
			false, GFP_KERNEL, NUMA_NO_NODE);
299 300 301
	if (rc < 0) {
		pr_err("Unable to init se_sess->sess_tag_pool,"
			" tag_num: %u\n", tag_num);
302
		kvfree(se_sess->sess_cmd_map);
303 304 305 306 307 308 309 310
		se_sess->sess_cmd_map = NULL;
		return -ENOMEM;
	}

	return 0;
}
EXPORT_SYMBOL(transport_alloc_session_tags);

311 312 313 314 315 316 317
/**
 * transport_init_session_tags - allocate a session and target driver private data
 * @tag_num:  Maximum number of in-flight commands between initiator and target.
 * @tag_size: Size in bytes of the private data a target driver associates with
 *	      each command.
 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
 */
318 319 320
static struct se_session *
transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
			    enum target_prot_op sup_prot_ops)
321 322 323 324
{
	struct se_session *se_sess;
	int rc;

325 326 327 328 329 330 331 332 333 334 335
	if (tag_num != 0 && !tag_size) {
		pr_err("init_session_tags called with percpu-ida tag_num:"
		       " %u, but zero tag_size\n", tag_num);
		return ERR_PTR(-EINVAL);
	}
	if (!tag_num && tag_size) {
		pr_err("init_session_tags called with percpu-ida tag_size:"
		       " %u, but zero tag_num\n", tag_size);
		return ERR_PTR(-EINVAL);
	}

336
	se_sess = transport_alloc_session(sup_prot_ops);
337 338 339 340 341 342 343 344 345 346 347 348
	if (IS_ERR(se_sess))
		return se_sess;

	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
	if (rc < 0) {
		transport_free_session(se_sess);
		return ERR_PTR(-ENOMEM);
	}

	return se_sess;
}

349
/*
350
 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
351 352 353 354 355 356 357
 */
void __transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
358
	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
359
	unsigned char buf[PR_REG_ISID_LEN];
360
	unsigned long flags;
361 362 363 364 365 366 367 368 369 370

	se_sess->se_tpg = se_tpg;
	se_sess->fabric_sess_ptr = fabric_sess_ptr;
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
	 *
	 * Only set for struct se_session's that will actually be moving I/O.
	 * eg: *NOT* discovery sessions.
	 */
	if (se_nacl) {
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
		/*
		 *
		 * Determine if fabric allows for T10-PI feature bits exposed to
		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
		 *
		 * If so, then always save prot_type on a per se_node_acl node
		 * basis and re-instate the previous sess_prot_type to avoid
		 * disabling PI from below any previously initiator side
		 * registered LUNs.
		 */
		if (se_nacl->saved_prot_type)
			se_sess->sess_prot_type = se_nacl->saved_prot_type;
		else if (tfo->tpg_check_prot_fabric_only)
			se_sess->sess_prot_type = se_nacl->saved_prot_type =
					tfo->tpg_check_prot_fabric_only(se_tpg);
386 387 388 389
		/*
		 * If the fabric module supports an ISID based TransportID,
		 * save this value in binary from the fabric I_T Nexus now.
		 */
390
		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
391
			memset(&buf[0], 0, PR_REG_ISID_LEN);
392
			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
393 394 395
					&buf[0], PR_REG_ISID_LEN);
			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
		}
396

397
		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
398 399 400 401 402 403 404 405
		/*
		 * The se_nacl->nacl_sess pointer will be set to the
		 * last active I_T Nexus for each struct se_node_acl.
		 */
		se_nacl->nacl_sess = se_sess;

		list_add_tail(&se_sess->sess_acl_list,
			      &se_nacl->acl_sess_list);
406
		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
407 408 409
	}
	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);

410
	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
411
		se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
412 413 414 415 416 417 418 419 420
}
EXPORT_SYMBOL(__transport_register_session);

void transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
421 422 423
	unsigned long flags;

	spin_lock_irqsave(&se_tpg->session_lock, flags);
424
	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
425
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
426 427 428
}
EXPORT_SYMBOL(transport_register_session);

429
struct se_session *
430
target_setup_session(struct se_portal_group *tpg,
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
		     unsigned int tag_num, unsigned int tag_size,
		     enum target_prot_op prot_op,
		     const char *initiatorname, void *private,
		     int (*callback)(struct se_portal_group *,
				     struct se_session *, void *))
{
	struct se_session *sess;

	/*
	 * If the fabric driver is using percpu-ida based pre allocation
	 * of I/O descriptor tags, go ahead and perform that setup now..
	 */
	if (tag_num != 0)
		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
	else
446
		sess = transport_alloc_session(prot_op);
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

	if (IS_ERR(sess))
		return sess;

	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
					(unsigned char *)initiatorname);
	if (!sess->se_node_acl) {
		transport_free_session(sess);
		return ERR_PTR(-EACCES);
	}
	/*
	 * Go ahead and perform any remaining fabric setup that is
	 * required before transport_register_session().
	 */
	if (callback != NULL) {
		int rc = callback(tpg, sess, private);
		if (rc) {
			transport_free_session(sess);
			return ERR_PTR(rc);
		}
	}

	transport_register_session(tpg, sess->se_node_acl, sess, private);
	return sess;
}
472
EXPORT_SYMBOL(target_setup_session);
473

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
{
	struct se_session *se_sess;
	ssize_t len = 0;

	spin_lock_bh(&se_tpg->session_lock);
	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
		if (!se_sess->se_node_acl)
			continue;
		if (!se_sess->se_node_acl->dynamic_node_acl)
			continue;
		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
			break;

		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
				se_sess->se_node_acl->initiatorname);
		len += 1; /* Include NULL terminator */
	}
	spin_unlock_bh(&se_tpg->session_lock);

	return len;
}
EXPORT_SYMBOL(target_show_dynamic_sessions);

498 499 500 501
static void target_complete_nacl(struct kref *kref)
{
	struct se_node_acl *nacl = container_of(kref,
				struct se_node_acl, acl_kref);
502
	struct se_portal_group *se_tpg = nacl->se_tpg;
503

504 505 506 507 508 509
	if (!nacl->dynamic_stop) {
		complete(&nacl->acl_free_comp);
		return;
	}

	mutex_lock(&se_tpg->acl_node_mutex);
510
	list_del_init(&nacl->acl_list);
511 512 513 514 515
	mutex_unlock(&se_tpg->acl_node_mutex);

	core_tpg_wait_for_nacl_pr_ref(nacl);
	core_free_device_list_for_node(nacl, se_tpg);
	kfree(nacl);
516 517 518 519 520 521
}

void target_put_nacl(struct se_node_acl *nacl)
{
	kref_put(&nacl->acl_kref, target_complete_nacl);
}
522
EXPORT_SYMBOL(target_put_nacl);
523

524 525 526
void transport_deregister_session_configfs(struct se_session *se_sess)
{
	struct se_node_acl *se_nacl;
527
	unsigned long flags;
528 529 530 531
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
	 */
	se_nacl = se_sess->se_node_acl;
532
	if (se_nacl) {
533
		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
C
Christoph Hellwig 已提交
534 535
		if (!list_empty(&se_sess->sess_acl_list))
			list_del_init(&se_sess->sess_acl_list);
536 537 538 539 540 541 542 543 544 545 546 547
		/*
		 * If the session list is empty, then clear the pointer.
		 * Otherwise, set the struct se_session pointer from the tail
		 * element of the per struct se_node_acl active session list.
		 */
		if (list_empty(&se_nacl->acl_sess_list))
			se_nacl->nacl_sess = NULL;
		else {
			se_nacl->nacl_sess = container_of(
					se_nacl->acl_sess_list.prev,
					struct se_session, sess_acl_list);
		}
548
		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
549 550 551 552 553 554
	}
}
EXPORT_SYMBOL(transport_deregister_session_configfs);

void transport_free_session(struct se_session *se_sess)
{
555
	struct se_node_acl *se_nacl = se_sess->se_node_acl;
556

557 558 559 560 561
	/*
	 * Drop the se_node_acl->nacl_kref obtained from within
	 * core_tpg_get_initiator_node_acl().
	 */
	if (se_nacl) {
562 563 564 565
		struct se_portal_group *se_tpg = se_nacl->se_tpg;
		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
		unsigned long flags;

566
		se_sess->se_node_acl = NULL;
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

		/*
		 * Also determine if we need to drop the extra ->cmd_kref if
		 * it had been previously dynamically generated, and
		 * the endpoint is not caching dynamic ACLs.
		 */
		mutex_lock(&se_tpg->acl_node_mutex);
		if (se_nacl->dynamic_node_acl &&
		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
			if (list_empty(&se_nacl->acl_sess_list))
				se_nacl->dynamic_stop = true;
			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);

			if (se_nacl->dynamic_stop)
582
				list_del_init(&se_nacl->acl_list);
583 584 585 586 587 588
		}
		mutex_unlock(&se_tpg->acl_node_mutex);

		if (se_nacl->dynamic_stop)
			target_put_nacl(se_nacl);

589 590
		target_put_nacl(se_nacl);
	}
591
	if (se_sess->sess_cmd_map) {
592
		sbitmap_queue_free(&se_sess->sess_tag_pool);
593
		kvfree(se_sess->sess_cmd_map);
594
	}
595
	percpu_ref_exit(&se_sess->cmd_count);
596 597 598 599 600 601 602
	kmem_cache_free(se_sess_cache, se_sess);
}
EXPORT_SYMBOL(transport_free_session);

void transport_deregister_session(struct se_session *se_sess)
{
	struct se_portal_group *se_tpg = se_sess->se_tpg;
603
	unsigned long flags;
604

605
	if (!se_tpg) {
606 607 608 609
		transport_free_session(se_sess);
		return;
	}

610
	spin_lock_irqsave(&se_tpg->session_lock, flags);
611 612 613
	list_del(&se_sess->sess_list);
	se_sess->se_tpg = NULL;
	se_sess->fabric_sess_ptr = NULL;
614
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
615

616
	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
617
		se_tpg->se_tpg_tfo->fabric_name);
618
	/*
619
	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
620
	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
621
	 * removal context from within transport_free_session() code.
622 623 624
	 *
	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
	 * to release all remaining generate_node_acl=1 created ACL resources.
625 626
	 */

627
	transport_free_session(se_sess);
628 629 630
}
EXPORT_SYMBOL(transport_deregister_session);

631 632 633 634 635 636 637
void target_remove_session(struct se_session *se_sess)
{
	transport_deregister_session_configfs(se_sess);
	transport_deregister_session(se_sess);
}
EXPORT_SYMBOL(target_remove_session);

638
static void target_remove_from_state_list(struct se_cmd *cmd)
639
{
640
	struct se_device *dev = cmd->se_dev;
641 642
	unsigned long flags;

643 644
	if (!dev)
		return;
645

646 647 648 649
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (cmd->state_active) {
		list_del(&cmd->state_list);
		cmd->state_active = false;
650
	}
651
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
652 653
}

654 655 656 657 658 659 660
/*
 * This function is called by the target core after the target core has
 * finished processing a SCSI command or SCSI TMF. Both the regular command
 * processing code and the code for aborting commands can call this
 * function. CMD_T_STOP is set if and only if another thread is waiting
 * inside transport_wait_for_tasks() for t_transport_stop_comp.
 */
661
static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
662 663 664
{
	unsigned long flags;

665
	target_remove_from_state_list(cmd);
666

667 668 669 670
	/*
	 * Clear struct se_cmd->se_lun before the handoff to FE.
	 */
	cmd->se_lun = NULL;
671

672
	spin_lock_irqsave(&cmd->t_state_lock, flags);
673 674
	/*
	 * Determine if frontend context caller is requesting the stopping of
675
	 * this command for frontend exceptions.
676
	 */
677
	if (cmd->transport_state & CMD_T_STOP) {
678 679
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
680

681
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
682

683
		complete_all(&cmd->t_transport_stop_comp);
684 685
		return 1;
	}
686
	cmd->transport_state &= ~CMD_T_ACTIVE;
687
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
688

689 690 691 692 693 694 695
	/*
	 * Some fabric modules like tcm_loop can release their internally
	 * allocated I/O reference and struct se_cmd now.
	 *
	 * Fabric modules are expected to return '1' here if the se_cmd being
	 * passed is released at this point, or zero if not being released.
	 */
696
	return cmd->se_tfo->check_stop_free(cmd);
697 698 699 700
}

static void transport_lun_remove_cmd(struct se_cmd *cmd)
{
701
	struct se_lun *lun = cmd->se_lun;
702

703
	if (!lun)
704 705
		return;

706 707
	if (cmpxchg(&cmd->lun_ref_active, true, false))
		percpu_ref_put(&lun->lun_ref);
708 709
}

710
int transport_cmd_finish_abort(struct se_cmd *cmd)
711
{
712
	bool send_tas = cmd->transport_state & CMD_T_TAS;
713
	bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
714
	int ret = 0;
715

716 717 718
	if (send_tas)
		transport_send_task_abort(cmd);

719 720
	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
		transport_lun_remove_cmd(cmd);
721 722 723 724
	/*
	 * Allow the fabric driver to unmap any resources before
	 * releasing the descriptor via TFO->release_cmd()
	 */
725
	if (!send_tas)
726
		cmd->se_tfo->aborted_task(cmd);
727

728
	if (transport_cmd_check_stop_to_fabric(cmd))
729
		return 1;
730
	if (!send_tas && ack_kref)
731
		ret = target_put_sess_cmd(cmd);
732 733

	return ret;
734 735
}

736 737 738 739
static void target_complete_failure_work(struct work_struct *work)
{
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);

740 741
	transport_generic_request_failure(cmd,
			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
742 743
}

744
/*
745 746
 * Used when asking transport to copy Sense Data from the underlying
 * Linux/SCSI struct scsi_cmnd
747
 */
748
static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
749 750 751 752 753 754
{
	struct se_device *dev = cmd->se_dev;

	WARN_ON(!cmd->se_lun);

	if (!dev)
755
		return NULL;
756

757 758
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
		return NULL;
759

760
	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
761

762
	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
763
		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
764
	return cmd->sense_buffer;
765 766
}

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
{
	unsigned char *cmd_sense_buf;
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	cmd_sense_buf = transport_get_sense_buffer(cmd);
	if (!cmd_sense_buf) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		return;
	}

	cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
	memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}
EXPORT_SYMBOL(transport_copy_sense_to_cmd);

785
void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
786
{
787
	struct se_device *dev = cmd->se_dev;
788
	int success;
789 790
	unsigned long flags;

791 792
	cmd->scsi_status = scsi_status;

793
	spin_lock_irqsave(&cmd->t_state_lock, flags);
794 795
	switch (cmd->scsi_status) {
	case SAM_STAT_CHECK_CONDITION:
796
		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
797
			success = 1;
798 799 800 801
		else
			success = 0;
		break;
	default:
802
		success = 1;
803
		break;
804 805
	}

806
	/*
807
	 * Check for case where an explicit ABORT_TASK has been received
808 809
	 * and transport_wait_for_tasks() will be waiting for completion..
	 */
810
	if (cmd->transport_state & CMD_T_ABORTED ||
811 812
	    cmd->transport_state & CMD_T_STOP) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
813 814 815 816 817 818 819 820 821
		/*
		 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
		 * release se_device->caw_sem obtained by sbc_compare_and_write()
		 * since target_complete_ok_work() or target_complete_failure_work()
		 * won't be called to invoke the normal CAW completion callbacks.
		 */
		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
			up(&dev->caw_sem);
		}
822
		complete_all(&cmd->t_transport_stop_comp);
823
		return;
824
	} else if (!success) {
825
		INIT_WORK(&cmd->work, target_complete_failure_work);
826
	} else {
827
		INIT_WORK(&cmd->work, target_complete_ok_work);
828
	}
829 830

	cmd->t_state = TRANSPORT_COMPLETE;
831
	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
832
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
833

834
	if (cmd->se_cmd_flags & SCF_USE_CPUID)
835
		queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
836 837
	else
		queue_work(target_completion_wq, &cmd->work);
838
}
839 840
EXPORT_SYMBOL(target_complete_cmd);

841 842
void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
{
843 844 845
	if ((scsi_status == SAM_STAT_GOOD ||
	     cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
	    length < cmd->data_length) {
846 847 848 849 850 851 852 853 854 855 856 857 858 859
		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
			cmd->residual_count += cmd->data_length - length;
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = cmd->data_length - length;
		}

		cmd->data_length = length;
	}

	target_complete_cmd(cmd, scsi_status);
}
EXPORT_SYMBOL(target_complete_cmd_with_length);

860
static void target_add_to_state_list(struct se_cmd *cmd)
861
{
862 863
	struct se_device *dev = cmd->se_dev;
	unsigned long flags;
864

865 866 867 868
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (!cmd->state_active) {
		list_add_tail(&cmd->state_list, &dev->state_list);
		cmd->state_active = true;
869
	}
870
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
871 872
}

873
/*
874
 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
875
 */
876 877
static void transport_write_pending_qf(struct se_cmd *cmd);
static void transport_complete_qf(struct se_cmd *cmd);
878

879
void target_qf_do_work(struct work_struct *work)
880 881 882
{
	struct se_device *dev = container_of(work, struct se_device,
					qf_work_queue);
883
	LIST_HEAD(qf_cmd_list);
884 885 886
	struct se_cmd *cmd, *cmd_tmp;

	spin_lock_irq(&dev->qf_cmd_lock);
887 888
	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
	spin_unlock_irq(&dev->qf_cmd_lock);
889

890
	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
891
		list_del(&cmd->se_qf_node);
892
		atomic_dec_mb(&dev->dev_qf_count);
893

894
		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
895
			" context: %s\n", cmd->se_tfo->fabric_name, cmd,
896
			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
897 898
			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
			: "UNKNOWN");
899

900 901
		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
			transport_write_pending_qf(cmd);
902 903
		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
			 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
904
			transport_complete_qf(cmd);
905 906 907
	}
}

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
{
	switch (cmd->data_direction) {
	case DMA_NONE:
		return "NONE";
	case DMA_FROM_DEVICE:
		return "READ";
	case DMA_TO_DEVICE:
		return "WRITE";
	case DMA_BIDIRECTIONAL:
		return "BIDI";
	default:
		break;
	}

	return "UNKNOWN";
}

void transport_dump_dev_state(
	struct se_device *dev,
	char *b,
	int *bl)
{
	*bl += sprintf(b + *bl, "Status: ");
932
	if (dev->export_count)
933
		*bl += sprintf(b + *bl, "ACTIVATED");
934
	else
935 936
		*bl += sprintf(b + *bl, "DEACTIVATED");

937
	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
938
	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
939 940
		dev->dev_attrib.block_size,
		dev->dev_attrib.hw_max_sectors);
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
	*bl += sprintf(b + *bl, "        ");
}

void transport_dump_vpd_proto_id(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int len;

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Protocol Identifier: ");

	switch (vpd->protocol_identifier) {
	case 0x00:
		sprintf(buf+len, "Fibre Channel\n");
		break;
	case 0x10:
		sprintf(buf+len, "Parallel SCSI\n");
		break;
	case 0x20:
		sprintf(buf+len, "SSA\n");
		break;
	case 0x30:
		sprintf(buf+len, "IEEE 1394\n");
		break;
	case 0x40:
		sprintf(buf+len, "SCSI Remote Direct Memory Access"
				" Protocol\n");
		break;
	case 0x50:
		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
		break;
	case 0x60:
		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
		break;
	case 0x70:
		sprintf(buf+len, "Automation/Drive Interface Transport"
				" Protocol\n");
		break;
	case 0x80:
		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n",
				vpd->protocol_identifier);
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
994
		pr_debug("%s", buf);
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
}

void
transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * Check if the Protocol Identifier Valid (PIV) bit is set..
	 *
	 * from spc3r23.pdf section 7.5.1
	 */
	 if (page_83[1] & 0x80) {
		vpd->protocol_identifier = (page_83[0] & 0xf0);
		vpd->protocol_identifier_set = 1;
		transport_dump_vpd_proto_id(vpd, NULL, 0);
	}
}
EXPORT_SYMBOL(transport_set_vpd_proto_id);

int transport_dump_vpd_assoc(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
1019 1020
	int ret = 0;
	int len;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Association: ");

	switch (vpd->association) {
	case 0x00:
		sprintf(buf+len, "addressed logical unit\n");
		break;
	case 0x10:
		sprintf(buf+len, "target port\n");
		break;
	case 0x20:
		sprintf(buf+len, "SCSI target device\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1037
		ret = -EINVAL;
1038 1039 1040 1041 1042 1043
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1044
		pr_debug("%s", buf);
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

	return ret;
}

int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identification association..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 297
	 */
	vpd->association = (page_83[1] & 0x30);
	return transport_dump_vpd_assoc(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_assoc);

int transport_dump_vpd_ident_type(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
1067 1068
	int ret = 0;
	int len;
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Type: ");

	switch (vpd->device_identifier_type) {
	case 0x00:
		sprintf(buf+len, "Vendor specific\n");
		break;
	case 0x01:
		sprintf(buf+len, "T10 Vendor ID based\n");
		break;
	case 0x02:
		sprintf(buf+len, "EUI-64 based\n");
		break;
	case 0x03:
		sprintf(buf+len, "NAA\n");
		break;
	case 0x04:
		sprintf(buf+len, "Relative target port identifier\n");
		break;
	case 0x08:
		sprintf(buf+len, "SCSI name string\n");
		break;
	default:
		sprintf(buf+len, "Unsupported: 0x%02x\n",
				vpd->device_identifier_type);
1095
		ret = -EINVAL;
1096 1097 1098
		break;
	}

1099 1100 1101
	if (p_buf) {
		if (p_buf_len < strlen(buf)+1)
			return -EINVAL;
1102
		strncpy(p_buf, buf, p_buf_len);
1103
	} else {
1104
		pr_debug("%s", buf);
1105
	}
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

	return ret;
}

int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identifier type..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 298
	 */
	vpd->device_identifier_type = (page_83[1] & 0x0f);
	return transport_dump_vpd_ident_type(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident_type);

int transport_dump_vpd_ident(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int ret = 0;

	memset(buf, 0, VPD_TMP_BUF_SIZE);

	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
1134 1135
		snprintf(buf, sizeof(buf),
			"T10 VPD Binary Device Identifier: %s\n",
1136 1137 1138
			&vpd->device_identifier[0]);
		break;
	case 0x02: /* ASCII */
1139 1140
		snprintf(buf, sizeof(buf),
			"T10 VPD ASCII Device Identifier: %s\n",
1141 1142 1143
			&vpd->device_identifier[0]);
		break;
	case 0x03: /* UTF-8 */
1144 1145
		snprintf(buf, sizeof(buf),
			"T10 VPD UTF-8 Device Identifier: %s\n",
1146 1147 1148 1149 1150
			&vpd->device_identifier[0]);
		break;
	default:
		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
			" 0x%02x", vpd->device_identifier_code_set);
1151
		ret = -EINVAL;
1152 1153 1154 1155 1156 1157
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1158
		pr_debug("%s", buf);
1159 1160 1161 1162 1163 1164 1165 1166

	return ret;
}

int
transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
{
	static const char hex_str[] = "0123456789abcdef";
1167
	int j = 0, i = 4; /* offset to start of the identifier */
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

	/*
	 * The VPD Code Set (encoding)
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 296
	 */
	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
		vpd->device_identifier[j++] =
				hex_str[vpd->device_identifier_type];
		while (i < (4 + page_83[3])) {
			vpd->device_identifier[j++] =
				hex_str[(page_83[i] & 0xf0) >> 4];
			vpd->device_identifier[j++] =
				hex_str[page_83[i] & 0x0f];
			i++;
		}
		break;
	case 0x02: /* ASCII */
	case 0x03: /* UTF-8 */
		while (i < (4 + page_83[3]))
			vpd->device_identifier[j++] = page_83[i++];
		break;
	default:
		break;
	}

	return transport_dump_vpd_ident(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident);

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
			       unsigned int size)
{
	u32 mtl;

	if (!cmd->se_tfo->max_data_sg_nents)
		return TCM_NO_SENSE;
	/*
	 * Check if fabric enforced maximum SGL entries per I/O descriptor
	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
	 * residual_count and reduce original cmd->data_length to maximum
	 * length based on single PAGE_SIZE entry scatter-lists.
	 */
	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
	if (cmd->data_length > mtl) {
		/*
		 * If an existing CDB overflow is present, calculate new residual
		 * based on CDB size minus fabric maximum transfer length.
		 *
		 * If an existing CDB underflow is present, calculate new residual
		 * based on original cmd->data_length minus fabric maximum transfer
		 * length.
		 *
		 * Otherwise, set the underflow residual based on cmd->data_length
		 * minus fabric maximum transfer length.
		 */
		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
			cmd->residual_count = (size - mtl);
		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
			u32 orig_dl = size + cmd->residual_count;
			cmd->residual_count = (orig_dl - mtl);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - mtl);
		}
		cmd->data_length = mtl;
		/*
		 * Reset sbc_check_prot() calculated protection payload
		 * length based upon the new smaller MTL.
		 */
		if (cmd->prot_length) {
			u32 sectors = (mtl / dev->dev_attrib.block_size);
			cmd->prot_length = dev->prot_length * sectors;
		}
	}
	return TCM_NO_SENSE;
}

1249 1250
sense_reason_t
target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1251 1252 1253 1254 1255 1256
{
	struct se_device *dev = cmd->se_dev;

	if (cmd->unknown_data_length) {
		cmd->data_length = size;
	} else if (size != cmd->data_length) {
1257
		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1258
			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1259
			" 0x%02x\n", cmd->se_tfo->fabric_name,
1260 1261
				cmd->data_length, size, cmd->t_task_cdb[0]);

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
		if (cmd->data_direction == DMA_TO_DEVICE) {
			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
				pr_err_ratelimited("Rejecting underflow/overflow"
						   " for WRITE data CDB\n");
				return TCM_INVALID_CDB_FIELD;
			}
			/*
			 * Some fabric drivers like iscsi-target still expect to
			 * always reject overflow writes.  Reject this case until
			 * full fabric driver level support for overflow writes
			 * is introduced tree-wide.
			 */
			if (size > cmd->data_length) {
				pr_err_ratelimited("Rejecting overflow for"
						   " WRITE control CDB\n");
				return TCM_INVALID_CDB_FIELD;
			}
1279 1280 1281 1282 1283
		}
		/*
		 * Reject READ_* or WRITE_* with overflow/underflow for
		 * type SCF_SCSI_DATA_CDB.
		 */
1284
		if (dev->dev_attrib.block_size != 512)  {
1285 1286 1287 1288
			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
				" CDB on non 512-byte sector setup subsystem"
				" plugin: %s\n", dev->transport->name);
			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1289
			return TCM_INVALID_CDB_FIELD;
1290
		}
1291 1292 1293 1294 1295 1296
		/*
		 * For the overflow case keep the existing fabric provided
		 * ->data_length.  Otherwise for the underflow case, reset
		 * ->data_length to the smaller SCSI expected data transfer
		 * length.
		 */
1297 1298 1299 1300 1301 1302
		if (size > cmd->data_length) {
			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
			cmd->residual_count = (size - cmd->data_length);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - size);
1303
			cmd->data_length = size;
1304 1305 1306
		}
	}

1307
	return target_check_max_data_sg_nents(cmd, dev, size);
1308 1309 1310

}

1311 1312 1313
/*
 * Used by fabric modules containing a local struct se_cmd within their
 * fabric dependent per I/O descriptor.
1314 1315
 *
 * Preserves the value of @cmd->tag.
1316 1317 1318
 */
void transport_init_se_cmd(
	struct se_cmd *cmd,
1319
	const struct target_core_fabric_ops *tfo,
1320 1321 1322 1323 1324 1325
	struct se_session *se_sess,
	u32 data_length,
	int data_direction,
	int task_attr,
	unsigned char *sense_buffer)
{
1326
	INIT_LIST_HEAD(&cmd->se_delayed_node);
1327
	INIT_LIST_HEAD(&cmd->se_qf_node);
1328
	INIT_LIST_HEAD(&cmd->se_cmd_list);
1329
	INIT_LIST_HEAD(&cmd->state_list);
1330
	init_completion(&cmd->t_transport_stop_comp);
1331
	cmd->compl = NULL;
1332
	spin_lock_init(&cmd->t_state_lock);
1333
	INIT_WORK(&cmd->work, NULL);
1334
	kref_init(&cmd->cmd_kref);
1335 1336 1337 1338 1339 1340 1341

	cmd->se_tfo = tfo;
	cmd->se_sess = se_sess;
	cmd->data_length = data_length;
	cmd->data_direction = data_direction;
	cmd->sam_task_attr = task_attr;
	cmd->sense_buffer = sense_buffer;
1342 1343

	cmd->state_active = false;
1344 1345 1346
}
EXPORT_SYMBOL(transport_init_se_cmd);

1347 1348
static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd *cmd)
1349
{
1350 1351
	struct se_device *dev = cmd->se_dev;

1352 1353 1354 1355
	/*
	 * Check if SAM Task Attribute emulation is enabled for this
	 * struct se_device storage object
	 */
1356
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1357 1358
		return 0;

C
Christoph Hellwig 已提交
1359
	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1360
		pr_debug("SAM Task Attribute ACA"
1361
			" emulation is not supported\n");
1362
		return TCM_INVALID_CDB_FIELD;
1363
	}
1364

1365 1366 1367
	return 0;
}

1368 1369
sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1370
{
1371
	struct se_device *dev = cmd->se_dev;
1372
	sense_reason_t ret;
1373 1374 1375 1376 1377 1378

	/*
	 * Ensure that the received CDB is less than the max (252 + 8) bytes
	 * for VARIABLE_LENGTH_CMD
	 */
	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1379
		pr_err("Received SCSI CDB with command_size: %d that"
1380 1381
			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1382
		return TCM_INVALID_CDB_FIELD;
1383 1384 1385 1386 1387 1388
	}
	/*
	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
	 * allocate the additional extended CDB buffer now..  Otherwise
	 * setup the pointer from __t_task_cdb to t_task_cdb.
	 */
1389 1390
	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1391
						GFP_KERNEL);
1392 1393
		if (!cmd->t_task_cdb) {
			pr_err("Unable to allocate cmd->t_task_cdb"
1394
				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1395
				scsi_command_size(cdb),
1396
				(unsigned long)sizeof(cmd->__t_task_cdb));
1397
			return TCM_OUT_OF_RESOURCES;
1398 1399
		}
	} else
1400
		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1401
	/*
1402
	 * Copy the original CDB into cmd->
1403
	 */
1404
	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1405

1406 1407
	trace_target_sequencer_start(cmd);

1408
	ret = dev->transport->parse_cdb(cmd);
1409 1410
	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
		pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1411
				    cmd->se_tfo->fabric_name,
1412 1413
				    cmd->se_sess->se_node_acl->initiatorname,
				    cmd->t_task_cdb[0]);
1414 1415 1416 1417 1418
	if (ret)
		return ret;

	ret = transport_check_alloc_task_attr(cmd);
	if (ret)
1419
		return ret;
1420 1421

	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1422
	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1423 1424
	return 0;
}
1425
EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1426

1427 1428
/*
 * Used by fabric module frontends to queue tasks directly.
1429
 * May only be used from process context.
1430 1431 1432 1433
 */
int transport_handle_cdb_direct(
	struct se_cmd *cmd)
{
1434
	sense_reason_t ret;
1435

1436 1437
	if (!cmd->se_lun) {
		dump_stack();
1438
		pr_err("cmd->se_lun is NULL\n");
1439 1440 1441 1442
		return -EINVAL;
	}
	if (in_interrupt()) {
		dump_stack();
1443
		pr_err("transport_generic_handle_cdb cannot be called"
1444 1445 1446
				" from interrupt context\n");
		return -EINVAL;
	}
1447
	/*
1448 1449 1450
	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
	 * outstanding descriptors are handled correctly during shutdown via
	 * transport_wait_for_tasks()
1451 1452 1453 1454 1455
	 *
	 * Also, we don't take cmd->t_state_lock here as we only expect
	 * this to be called for initial descriptor submission.
	 */
	cmd->t_state = TRANSPORT_NEW_CMD;
1456 1457
	cmd->transport_state |= CMD_T_ACTIVE;

1458 1459 1460 1461 1462 1463
	/*
	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
	 * so follow TRANSPORT_NEW_CMD processing thread context usage
	 * and call transport_generic_request_failure() if necessary..
	 */
	ret = transport_generic_new_cmd(cmd);
1464 1465
	if (ret)
		transport_generic_request_failure(cmd, ret);
1466
	return 0;
1467 1468 1469
}
EXPORT_SYMBOL(transport_handle_cdb_direct);

1470
sense_reason_t
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
{
	if (!sgl || !sgl_count)
		return 0;

	/*
	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
	 * scatterlists already have been set to follow what the fabric
	 * passes for the original expected data transfer length.
	 */
	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
		pr_warn("Rejecting SCSI DATA overflow for fabric using"
			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
		return TCM_INVALID_CDB_FIELD;
	}

	cmd->t_data_sg = sgl;
	cmd->t_data_nents = sgl_count;
1490 1491
	cmd->t_bidi_data_sg = sgl_bidi;
	cmd->t_bidi_data_nents = sgl_bidi_count;
1492 1493 1494 1495 1496

	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
	return 0;
}

1497
/**
1498 1499
 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
 * 			 se_cmd + use pre-allocated SGL memory.
1500 1501 1502 1503 1504 1505 1506
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
1507
 * @task_attr: SAM task attribute
1508 1509
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
1510 1511 1512 1513
 * @sgl: struct scatterlist memory for unidirectional mapping
 * @sgl_count: scatterlist count for unidirectional mapping
 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1514 1515
 * @sgl_prot: struct scatterlist memory protection information
 * @sgl_prot_count: scatterlist count for protection information
1516
 *
1517 1518
 * Task tags are supported if the caller has set @se_cmd->tag.
 *
1519 1520 1521 1522
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
1523 1524
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
1525 1526
 */
int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1527
		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1528 1529
		u32 data_length, int task_attr, int data_dir, int flags,
		struct scatterlist *sgl, u32 sgl_count,
1530 1531
		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1532 1533
{
	struct se_portal_group *se_tpg;
1534 1535
	sense_reason_t rc;
	int ret;
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);
	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
	BUG_ON(in_interrupt());
	/*
	 * Initialize se_cmd for target operation.  From this point
	 * exceptions are handled by sending exception status via
	 * target_core_fabric_ops->queue_status() callback
	 */
	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
				data_length, data_dir, task_attr, sense);
1548 1549 1550 1551 1552 1553

	if (flags & TARGET_SCF_USE_CPUID)
		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
	else
		se_cmd->cpuid = WORK_CPU_UNBOUND;

1554 1555
	if (flags & TARGET_SCF_UNKNOWN_SIZE)
		se_cmd->unknown_data_length = 1;
1556 1557 1558 1559 1560 1561
	/*
	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
	 * kref_put() to happen during fabric packet acknowledgement.
	 */
1562
	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1563 1564
	if (ret)
		return ret;
1565 1566 1567 1568 1569 1570 1571 1572
	/*
	 * Signal bidirectional data payloads to target-core
	 */
	if (flags & TARGET_SCF_BIDI_OP)
		se_cmd->se_cmd_flags |= SCF_BIDI;
	/*
	 * Locate se_lun pointer and attach it to struct se_cmd
	 */
1573 1574 1575
	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
	if (rc) {
		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1576
		target_put_sess_cmd(se_cmd);
1577
		return 0;
1578
	}
1579 1580 1581 1582 1583 1584 1585

	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
	if (rc != 0) {
		transport_generic_request_failure(se_cmd, rc);
		return 0;
	}

1586 1587 1588 1589 1590 1591 1592
	/*
	 * Save pointers for SGLs containing protection information,
	 * if present.
	 */
	if (sgl_prot_count) {
		se_cmd->t_prot_sg = sgl_prot;
		se_cmd->t_prot_nents = sgl_prot_count;
1593
		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1594
	}
1595

1596 1597 1598 1599 1600 1601 1602 1603
	/*
	 * When a non zero sgl_count has been passed perform SGL passthrough
	 * mapping for pre-allocated fabric memory instead of having target
	 * core perform an internal SGL allocation..
	 */
	if (sgl_count != 0) {
		BUG_ON(!sgl);

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
		/*
		 * A work-around for tcm_loop as some userspace code via
		 * scsi-generic do not memset their associated read buffers,
		 * so go ahead and do that here for type non-data CDBs.  Also
		 * note that this is currently guaranteed to be a single SGL
		 * for this case by target core in target_setup_cmd_from_cdb()
		 * -> transport_generic_cmd_sequencer().
		 */
		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
		     se_cmd->data_direction == DMA_FROM_DEVICE) {
			unsigned char *buf = NULL;

			if (sgl)
				buf = kmap(sg_page(sgl)) + sgl->offset;

			if (buf) {
				memset(buf, 0, sgl->length);
				kunmap(sg_page(sgl));
			}
		}

1625 1626 1627
		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
				sgl_bidi, sgl_bidi_count);
		if (rc != 0) {
1628
			transport_generic_request_failure(se_cmd, rc);
1629 1630 1631
			return 0;
		}
	}
1632

1633 1634 1635 1636 1637 1638
	/*
	 * Check if we need to delay processing because of ALUA
	 * Active/NonOptimized primary access state..
	 */
	core_alua_check_nonop_delay(se_cmd);

1639
	transport_handle_cdb_direct(se_cmd);
1640
	return 0;
1641
}
1642 1643
EXPORT_SYMBOL(target_submit_cmd_map_sgls);

1644
/**
1645 1646 1647 1648 1649 1650 1651 1652
 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
1653
 * @task_attr: SAM task attribute
1654 1655 1656
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
 *
1657 1658
 * Task tags are supported if the caller has set @se_cmd->tag.
 *
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
 *
 * It also assumes interal target core SGL memory allocation.
 */
int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1669
		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1670 1671 1672 1673
		u32 data_length, int task_attr, int data_dir, int flags)
{
	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
			unpacked_lun, data_length, task_attr, data_dir,
1674
			flags, NULL, 0, NULL, 0, NULL, 0);
1675
}
1676 1677
EXPORT_SYMBOL(target_submit_cmd);

1678 1679 1680 1681 1682 1683
static void target_complete_tmr_failure(struct work_struct *work)
{
	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);

	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1684

1685
	transport_lun_remove_cmd(se_cmd);
1686
	transport_cmd_check_stop_to_fabric(se_cmd);
1687 1688
}

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
				       u64 *unpacked_lun)
{
	struct se_cmd *se_cmd;
	unsigned long flags;
	bool ret = false;

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
	list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
		if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
			continue;

		if (se_cmd->tag == tag) {
			*unpacked_lun = se_cmd->orig_fe_lun;
			ret = true;
			break;
		}
	}
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);

	return ret;
}

1712 1713 1714 1715 1716 1717 1718 1719
/**
 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
 *                     for TMR CDBs
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1720
 * @fabric_tmr_ptr: fabric context for TMR req
1721
 * @tm_type: Type of TM request
1722 1723
 * @gfp: gfp type for caller
 * @tag: referenced task tag for TMR_ABORT_TASK
1724
 * @flags: submit cmd flags
1725 1726 1727 1728
 *
 * Callable from all contexts.
 **/

1729
int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1730
		unsigned char *sense, u64 unpacked_lun,
1731
		void *fabric_tmr_ptr, unsigned char tm_type,
1732
		gfp_t gfp, u64 tag, int flags)
1733 1734 1735 1736 1737 1738 1739 1740
{
	struct se_portal_group *se_tpg;
	int ret;

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);

	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
C
Christoph Hellwig 已提交
1741
			      0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1742 1743 1744 1745
	/*
	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
	 * allocation failure.
	 */
1746
	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1747 1748
	if (ret < 0)
		return -ENOMEM;
1749

1750 1751 1752
	if (tm_type == TMR_ABORT_TASK)
		se_cmd->se_tmr_req->ref_task_tag = tag;

1753
	/* See target_submit_cmd for commentary */
1754
	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1755 1756 1757 1758
	if (ret) {
		core_tmr_release_req(se_cmd->se_tmr_req);
		return ret;
	}
1759 1760 1761 1762 1763 1764 1765 1766 1767
	/*
	 * If this is ABORT_TASK with no explicit fabric provided LUN,
	 * go ahead and search active session tags for a match to figure
	 * out unpacked_lun for the original se_cmd.
	 */
	if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
		if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun))
			goto failure;
	}
1768 1769

	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1770 1771 1772
	if (ret)
		goto failure;

1773
	transport_generic_handle_tmr(se_cmd);
1774
	return 0;
1775 1776 1777 1778 1779 1780 1781 1782 1783

	/*
	 * For callback during failure handling, push this work off
	 * to process context with TMR_LUN_DOES_NOT_EXIST status.
	 */
failure:
	INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
	schedule_work(&se_cmd->work);
	return 0;
1784 1785 1786
}
EXPORT_SYMBOL(target_submit_tmr);

1787 1788 1789
/*
 * Handle SAM-esque emulation for generic transport request failures.
 */
1790 1791
void transport_generic_request_failure(struct se_cmd *cmd,
		sense_reason_t sense_reason)
1792
{
1793
	int ret = 0;
1794

1795 1796 1797
	pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
		 sense_reason);
	target_show_cmd("-----[ ", cmd);
1798 1799 1800 1801

	/*
	 * For SAM Task Attribute emulation for failed struct se_cmd
	 */
1802
	transport_complete_task_attr(cmd);
1803

1804 1805
	if (cmd->transport_complete_callback)
		cmd->transport_complete_callback(cmd, false, NULL);
1806

1807 1808 1809
	if (transport_check_aborted_status(cmd, 1))
		return;

1810
	switch (sense_reason) {
1811 1812 1813 1814
	case TCM_NON_EXISTENT_LUN:
	case TCM_UNSUPPORTED_SCSI_OPCODE:
	case TCM_INVALID_CDB_FIELD:
	case TCM_INVALID_PARAMETER_LIST:
1815
	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1816 1817 1818
	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
	case TCM_UNKNOWN_MODE_PAGE:
	case TCM_WRITE_PROTECTED:
1819
	case TCM_ADDRESS_OUT_OF_RANGE:
1820 1821 1822
	case TCM_CHECK_CONDITION_ABORT_CMD:
	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
	case TCM_CHECK_CONDITION_NOT_READY:
1823 1824 1825
	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1826
	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1827 1828 1829 1830
	case TCM_TOO_MANY_TARGET_DESCS:
	case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
	case TCM_TOO_MANY_SEGMENT_DESCS:
	case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1831
		break;
1832
	case TCM_OUT_OF_RESOURCES:
1833 1834
		cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
		goto queue_status;
1835 1836 1837
	case TCM_LUN_BUSY:
		cmd->scsi_status = SAM_STAT_BUSY;
		goto queue_status;
1838
	case TCM_RESERVATION_CONFLICT:
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
		/*
		 * No SENSE Data payload for this case, set SCSI Status
		 * and queue the response to $FABRIC_MOD.
		 *
		 * Uses linux/include/scsi/scsi.h SAM status codes defs
		 */
		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
		/*
		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
		 * CONFLICT STATUS.
		 *
		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
		 */
1853
		if (cmd->se_sess &&
1854 1855 1856 1857 1858
		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
					       cmd->orig_fe_lun, 0x2C,
					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
		}
1859 1860

		goto queue_status;
1861
	default:
1862
		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1863 1864
			cmd->t_task_cdb[0], sense_reason);
		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1865 1866
		break;
	}
1867

1868
	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1869
	if (ret)
1870
		goto queue_full;
1871

1872 1873
check_stop:
	transport_lun_remove_cmd(cmd);
A
Andy Grover 已提交
1874
	transport_cmd_check_stop_to_fabric(cmd);
1875 1876
	return;

1877 1878 1879 1880 1881
queue_status:
	trace_target_cmd_complete(cmd);
	ret = cmd->se_tfo->queue_status(cmd);
	if (!ret)
		goto check_stop;
1882
queue_full:
1883
	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1884
}
1885
EXPORT_SYMBOL(transport_generic_request_failure);
1886

1887
void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1888
{
1889
	sense_reason_t ret;
1890

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
	if (!cmd->execute_cmd) {
		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		goto err;
	}
	if (do_checks) {
		/*
		 * Check for an existing UNIT ATTENTION condition after
		 * target_handle_task_attr() has done SAM task attr
		 * checking, and possibly have already defered execution
		 * out to target_restart_delayed_cmds() context.
		 */
		ret = target_scsi3_ua_check(cmd);
		if (ret)
			goto err;

		ret = target_alua_state_check(cmd);
		if (ret)
			goto err;
1909

1910 1911 1912 1913
		ret = target_check_reservation(cmd);
		if (ret) {
			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
			goto err;
1914
		}
1915
	}
1916 1917 1918 1919 1920 1921

	ret = cmd->execute_cmd(cmd);
	if (!ret)
		return;
err:
	spin_lock_irq(&cmd->t_state_lock);
1922
	cmd->transport_state &= ~CMD_T_SENT;
1923 1924 1925
	spin_unlock_irq(&cmd->t_state_lock);

	transport_generic_request_failure(cmd, ret);
1926 1927
}

1928 1929
static int target_write_prot_action(struct se_cmd *cmd)
{
1930
	u32 sectors;
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	/*
	 * Perform WRITE_INSERT of PI using software emulation when backend
	 * device has PI enabled, if the transport has not already generated
	 * PI using hardware WRITE_INSERT offload.
	 */
	switch (cmd->prot_op) {
	case TARGET_PROT_DOUT_INSERT:
		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
			sbc_dif_generate(cmd);
		break;
1941 1942 1943 1944 1945
	case TARGET_PROT_DOUT_STRIP:
		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
			break;

		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1946 1947
		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
					     sectors, 0, cmd->t_prot_sg, 0);
1948 1949
		if (unlikely(cmd->pi_err)) {
			spin_lock_irq(&cmd->t_state_lock);
1950
			cmd->transport_state &= ~CMD_T_SENT;
1951 1952 1953 1954 1955
			spin_unlock_irq(&cmd->t_state_lock);
			transport_generic_request_failure(cmd, cmd->pi_err);
			return -1;
		}
		break;
1956 1957 1958 1959 1960 1961 1962
	default:
		break;
	}

	return 0;
}

1963
static bool target_handle_task_attr(struct se_cmd *cmd)
1964 1965 1966
{
	struct se_device *dev = cmd->se_dev;

1967
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1968
		return false;
1969

1970 1971
	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;

1972
	/*
L
Lucas De Marchi 已提交
1973
	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1974 1975
	 * to allow the passed struct se_cmd list of tasks to the front of the list.
	 */
1976
	switch (cmd->sam_task_attr) {
C
Christoph Hellwig 已提交
1977
	case TCM_HEAD_TAG:
1978 1979
		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
			 cmd->t_task_cdb[0]);
1980
		return false;
C
Christoph Hellwig 已提交
1981
	case TCM_ORDERED_TAG:
1982
		atomic_inc_mb(&dev->dev_ordered_sync);
1983

1984 1985
		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
			 cmd->t_task_cdb[0]);
1986

1987
		/*
1988 1989
		 * Execute an ORDERED command if no other older commands
		 * exist that need to be completed first.
1990
		 */
1991
		if (!atomic_read(&dev->simple_cmds))
1992
			return false;
1993 1994
		break;
	default:
1995 1996 1997
		/*
		 * For SIMPLE and UNTAGGED Task Attribute commands
		 */
1998
		atomic_inc_mb(&dev->simple_cmds);
1999
		break;
2000
	}
2001

2002 2003
	if (atomic_read(&dev->dev_ordered_sync) == 0)
		return false;
2004

2005 2006 2007 2008
	spin_lock(&dev->delayed_cmd_lock);
	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
	spin_unlock(&dev->delayed_cmd_lock);

2009 2010
	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
		cmd->t_task_cdb[0], cmd->sam_task_attr);
2011 2012 2013
	return true;
}

2014 2015
static int __transport_check_aborted_status(struct se_cmd *, int);

2016 2017 2018 2019 2020
void target_execute_cmd(struct se_cmd *cmd)
{
	/*
	 * Determine if frontend context caller is requesting the stopping of
	 * this command for frontend exceptions.
2021
	 *
2022
	 * If the received CDB has already been aborted stop processing it here.
2023
	 */
2024
	spin_lock_irq(&cmd->t_state_lock);
2025 2026 2027 2028
	if (__transport_check_aborted_status(cmd, 1)) {
		spin_unlock_irq(&cmd->t_state_lock);
		return;
	}
2029
	if (cmd->transport_state & CMD_T_STOP) {
2030 2031
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
2032 2033

		spin_unlock_irq(&cmd->t_state_lock);
2034
		complete_all(&cmd->t_transport_stop_comp);
2035 2036 2037 2038
		return;
	}

	cmd->t_state = TRANSPORT_PROCESSING;
2039
	cmd->transport_state &= ~CMD_T_PRE_EXECUTE;
2040
	cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2041
	spin_unlock_irq(&cmd->t_state_lock);
2042 2043 2044

	if (target_write_prot_action(cmd))
		return;
2045

2046 2047
	if (target_handle_task_attr(cmd)) {
		spin_lock_irq(&cmd->t_state_lock);
2048
		cmd->transport_state &= ~CMD_T_SENT;
2049 2050 2051 2052
		spin_unlock_irq(&cmd->t_state_lock);
		return;
	}

2053
	__target_execute_cmd(cmd, true);
2054
}
2055
EXPORT_SYMBOL(target_execute_cmd);
2056

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
/*
 * Process all commands up to the last received ORDERED task attribute which
 * requires another blocking boundary
 */
static void target_restart_delayed_cmds(struct se_device *dev)
{
	for (;;) {
		struct se_cmd *cmd;

		spin_lock(&dev->delayed_cmd_lock);
		if (list_empty(&dev->delayed_cmd_list)) {
			spin_unlock(&dev->delayed_cmd_lock);
			break;
		}

		cmd = list_entry(dev->delayed_cmd_list.next,
				 struct se_cmd, se_delayed_node);
		list_del(&cmd->se_delayed_node);
		spin_unlock(&dev->delayed_cmd_lock);

2077 2078
		cmd->transport_state |= CMD_T_SENT;

2079
		__target_execute_cmd(cmd, true);
2080

C
Christoph Hellwig 已提交
2081
		if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2082 2083 2084 2085
			break;
	}
}

2086
/*
2087
 * Called from I/O completion to determine which dormant/delayed
2088 2089 2090 2091
 * and ordered cmds need to have their tasks added to the execution queue.
 */
static void transport_complete_task_attr(struct se_cmd *cmd)
{
2092
	struct se_device *dev = cmd->se_dev;
2093

2094
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2095 2096
		return;

2097 2098 2099
	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
		goto restart;

C
Christoph Hellwig 已提交
2100
	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2101
		atomic_dec_mb(&dev->simple_cmds);
2102
		dev->dev_cur_ordered_id++;
C
Christoph Hellwig 已提交
2103
	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2104
		dev->dev_cur_ordered_id++;
2105 2106
		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
			 dev->dev_cur_ordered_id);
C
Christoph Hellwig 已提交
2107
	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2108
		atomic_dec_mb(&dev->dev_ordered_sync);
2109 2110

		dev->dev_cur_ordered_id++;
2111 2112
		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
			 dev->dev_cur_ordered_id);
2113
	}
2114 2115
	cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;

2116
restart:
2117
	target_restart_delayed_cmds(dev);
2118 2119
}

2120
static void transport_complete_qf(struct se_cmd *cmd)
2121 2122 2123
{
	int ret = 0;

2124
	transport_complete_task_attr(cmd);
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
	/*
	 * If a fabric driver ->write_pending() or ->queue_data_in() callback
	 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
	 * the same callbacks should not be retried.  Return CHECK_CONDITION
	 * if a scsi_status is not already set.
	 *
	 * If a fabric driver ->queue_status() has returned non zero, always
	 * keep retrying no matter what..
	 */
	if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
		if (cmd->scsi_status)
			goto queue_status;
2137

2138 2139
		translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
		goto queue_status;
2140
	}
2141

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
	/*
	 * Check if we need to send a sense buffer from
	 * the struct se_cmd in question. We do NOT want
	 * to take this path of the IO has been marked as
	 * needing to be treated like a "normal read". This
	 * is the case if it's a tape read, and either the
	 * FM, EOM, or ILI bits are set, but there is no
	 * sense data.
	 */
	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2153 2154
		goto queue_status;

2155 2156
	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
2157 2158 2159
		/* queue status if not treating this as a normal read */
		if (cmd->scsi_status &&
		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2160 2161
			goto queue_status;

2162
		trace_target_cmd_complete(cmd);
2163 2164 2165
		ret = cmd->se_tfo->queue_data_in(cmd);
		break;
	case DMA_TO_DEVICE:
2166
		if (cmd->se_cmd_flags & SCF_BIDI) {
2167
			ret = cmd->se_tfo->queue_data_in(cmd);
2168
			break;
2169
		}
2170
		/* fall through */
2171
	case DMA_NONE:
2172
queue_status:
2173
		trace_target_cmd_complete(cmd);
2174 2175 2176 2177 2178 2179
		ret = cmd->se_tfo->queue_status(cmd);
		break;
	default:
		break;
	}

2180
	if (ret < 0) {
2181
		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2182 2183 2184 2185
		return;
	}
	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
2186 2187
}

2188 2189
static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
					int err, bool write_pending)
2190
{
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
	/*
	 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
	 * ->queue_data_in() callbacks from new process context.
	 *
	 * Otherwise for other errors, transport_complete_qf() will send
	 * CHECK_CONDITION via ->queue_status() instead of attempting to
	 * retry associated fabric driver data-transfer callbacks.
	 */
	if (err == -EAGAIN || err == -ENOMEM) {
		cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
						 TRANSPORT_COMPLETE_QF_OK;
	} else {
		pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
		cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
	}

2207 2208
	spin_lock_irq(&dev->qf_cmd_lock);
	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2209
	atomic_inc_mb(&dev->dev_qf_count);
2210 2211 2212 2213 2214
	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);

	schedule_work(&cmd->se_dev->qf_work_queue);
}

2215
static bool target_read_prot_action(struct se_cmd *cmd)
2216
{
2217 2218 2219
	switch (cmd->prot_op) {
	case TARGET_PROT_DIN_STRIP:
		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2220 2221 2222 2223 2224 2225 2226
			u32 sectors = cmd->data_length >>
				  ilog2(cmd->se_dev->dev_attrib.block_size);

			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
						     sectors, 0, cmd->t_prot_sg,
						     0);
			if (cmd->pi_err)
2227
				return true;
2228
		}
2229
		break;
2230 2231 2232 2233 2234 2235
	case TARGET_PROT_DIN_INSERT:
		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
			break;

		sbc_dif_generate(cmd);
		break;
2236 2237
	default:
		break;
2238 2239 2240 2241 2242
	}

	return false;
}

2243
static void target_complete_ok_work(struct work_struct *work)
2244
{
2245
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2246
	int ret;
2247

2248 2249 2250 2251 2252
	/*
	 * Check if we need to move delayed/dormant tasks from cmds on the
	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
	 * Attribute.
	 */
2253 2254
	transport_complete_task_attr(cmd);

2255 2256 2257 2258 2259 2260 2261
	/*
	 * Check to schedule QUEUE_FULL work, or execute an existing
	 * cmd->transport_qf_callback()
	 */
	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
		schedule_work(&cmd->se_dev->qf_work_queue);

2262
	/*
2263
	 * Check if we need to send a sense buffer from
2264 2265 2266 2267 2268 2269
	 * the struct se_cmd in question. We do NOT want
	 * to take this path of the IO has been marked as
	 * needing to be treated like a "normal read". This
	 * is the case if it's a tape read, and either the
	 * FM, EOM, or ILI bits are set, but there is no
	 * sense data.
2270
	 */
2271 2272
	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2273 2274 2275
		WARN_ON(!cmd->scsi_status);
		ret = transport_send_check_condition_and_sense(
					cmd, 0, 1);
2276
		if (ret)
2277 2278 2279 2280 2281
			goto queue_full;

		transport_lun_remove_cmd(cmd);
		transport_cmd_check_stop_to_fabric(cmd);
		return;
2282 2283
	}
	/*
L
Lucas De Marchi 已提交
2284
	 * Check for a callback, used by amongst other things
2285
	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2286
	 */
2287 2288
	if (cmd->transport_complete_callback) {
		sense_reason_t rc;
2289 2290 2291
		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
		bool zero_dl = !(cmd->data_length);
		int post_ret = 0;
2292

2293 2294 2295
		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
		if (!rc && !post_ret) {
			if (caw && zero_dl)
2296 2297
				goto queue_rsp;

2298
			return;
2299 2300 2301
		} else if (rc) {
			ret = transport_send_check_condition_and_sense(cmd,
						rc, 0);
2302
			if (ret)
2303
				goto queue_full;
2304

2305 2306 2307 2308
			transport_lun_remove_cmd(cmd);
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
2309
	}
2310

2311
queue_rsp:
2312 2313
	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
		/*
		 * if this is a READ-type IO, but SCSI status
		 * is set, then skip returning data and just
		 * return the status -- unless this IO is marked
		 * as needing to be treated as a normal read,
		 * in which case we want to go ahead and return
		 * the data. This happens, for example, for tape
		 * reads with the FM, EOM, or ILI bits set, with
		 * no sense data.
		 */
		if (cmd->scsi_status &&
		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2326 2327
			goto queue_status;

2328 2329
		atomic_long_add(cmd->data_length,
				&cmd->se_lun->lun_stats.tx_data_octets);
2330 2331 2332 2333 2334
		/*
		 * Perform READ_STRIP of PI using software emulation when
		 * backend had PI enabled, if the transport will not be
		 * performing hardware READ_STRIP offload.
		 */
2335
		if (target_read_prot_action(cmd)) {
2336 2337
			ret = transport_send_check_condition_and_sense(cmd,
						cmd->pi_err, 0);
2338
			if (ret)
2339 2340 2341 2342 2343 2344
				goto queue_full;

			transport_lun_remove_cmd(cmd);
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
2345

2346
		trace_target_cmd_complete(cmd);
2347
		ret = cmd->se_tfo->queue_data_in(cmd);
2348
		if (ret)
2349
			goto queue_full;
2350 2351
		break;
	case DMA_TO_DEVICE:
2352 2353
		atomic_long_add(cmd->data_length,
				&cmd->se_lun->lun_stats.rx_data_octets);
2354 2355 2356
		/*
		 * Check if we need to send READ payload for BIDI-COMMAND
		 */
2357
		if (cmd->se_cmd_flags & SCF_BIDI) {
2358 2359
			atomic_long_add(cmd->data_length,
					&cmd->se_lun->lun_stats.tx_data_octets);
2360
			ret = cmd->se_tfo->queue_data_in(cmd);
2361
			if (ret)
2362
				goto queue_full;
2363 2364
			break;
		}
2365
		/* fall through */
2366
	case DMA_NONE:
2367
queue_status:
2368
		trace_target_cmd_complete(cmd);
2369
		ret = cmd->se_tfo->queue_status(cmd);
2370
		if (ret)
2371
			goto queue_full;
2372 2373 2374 2375 2376 2377 2378
		break;
	default:
		break;
	}

	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
2379 2380 2381
	return;

queue_full:
2382
	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2383
		" data_direction: %d\n", cmd, cmd->data_direction);
2384 2385

	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2386 2387
}

2388
void target_free_sgl(struct scatterlist *sgl, int nents)
2389
{
2390
	sgl_free_n_order(sgl, nents, 0);
2391
}
2392
EXPORT_SYMBOL(target_free_sgl);
2393

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
{
	/*
	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
	 * emulation, and free + reset pointers if necessary..
	 */
	if (!cmd->t_data_sg_orig)
		return;

	kfree(cmd->t_data_sg);
	cmd->t_data_sg = cmd->t_data_sg_orig;
	cmd->t_data_sg_orig = NULL;
	cmd->t_data_nents = cmd->t_data_nents_orig;
	cmd->t_data_nents_orig = 0;
}

2410 2411
static inline void transport_free_pages(struct se_cmd *cmd)
{
2412
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2413
		target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2414 2415 2416 2417
		cmd->t_prot_sg = NULL;
		cmd->t_prot_nents = 0;
	}

2418
	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2419 2420 2421 2422 2423
		/*
		 * Release special case READ buffer payload required for
		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
		 */
		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2424
			target_free_sgl(cmd->t_bidi_data_sg,
2425 2426 2427 2428
					   cmd->t_bidi_data_nents);
			cmd->t_bidi_data_sg = NULL;
			cmd->t_bidi_data_nents = 0;
		}
2429
		transport_reset_sgl_orig(cmd);
2430
		return;
2431 2432
	}
	transport_reset_sgl_orig(cmd);
2433

2434
	target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2435 2436
	cmd->t_data_sg = NULL;
	cmd->t_data_nents = 0;
2437

2438
	target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2439 2440
	cmd->t_bidi_data_sg = NULL;
	cmd->t_bidi_data_nents = 0;
2441 2442
}

2443
void *transport_kmap_data_sg(struct se_cmd *cmd)
2444
{
2445
	struct scatterlist *sg = cmd->t_data_sg;
2446 2447
	struct page **pages;
	int i;
2448 2449

	/*
2450 2451 2452
	 * We need to take into account a possible offset here for fabrics like
	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2453
	 */
2454 2455
	if (!cmd->t_data_nents)
		return NULL;
2456 2457 2458

	BUG_ON(!sg);
	if (cmd->t_data_nents == 1)
2459 2460 2461
		return kmap(sg_page(sg)) + sg->offset;

	/* >1 page. use vmap */
2462
	pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2463
	if (!pages)
2464 2465 2466 2467 2468 2469 2470 2471 2472
		return NULL;

	/* convert sg[] to pages[] */
	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
		pages[i] = sg_page(sg);
	}

	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
	kfree(pages);
2473
	if (!cmd->t_data_vmap)
2474 2475 2476
		return NULL;

	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2477
}
2478
EXPORT_SYMBOL(transport_kmap_data_sg);
2479

2480
void transport_kunmap_data_sg(struct se_cmd *cmd)
2481
{
2482
	if (!cmd->t_data_nents) {
2483
		return;
2484
	} else if (cmd->t_data_nents == 1) {
2485
		kunmap(sg_page(cmd->t_data_sg));
2486 2487
		return;
	}
2488 2489 2490

	vunmap(cmd->t_data_vmap);
	cmd->t_data_vmap = NULL;
2491
}
2492
EXPORT_SYMBOL(transport_kunmap_data_sg);
2493

2494
int
2495
target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2496
		 bool zero_page, bool chainable)
2497
{
2498
	gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2499

2500 2501
	*sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
	return *sgl ? 0 : -ENOMEM;
2502
}
2503
EXPORT_SYMBOL(target_alloc_sgl);
2504

2505
/*
2506 2507 2508
 * Allocate any required resources to execute the command.  For writes we
 * might not have the payload yet, so notify the fabric via a call to
 * ->write_pending instead. Otherwise place it on the execution queue.
2509
 */
2510 2511
sense_reason_t
transport_generic_new_cmd(struct se_cmd *cmd)
2512
{
2513
	unsigned long flags;
2514
	int ret = 0;
2515
	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2516

2517 2518 2519
	if (cmd->prot_op != TARGET_PROT_NORMAL &&
	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2520
				       cmd->prot_length, true, false);
2521 2522 2523 2524
		if (ret < 0)
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
	}

2525
	/*
2526
	 * Determine if the TCM fabric module has already allocated physical
2527
	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2528
	 * beforehand.
2529
	 */
2530 2531
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
	    cmd->data_length) {
2532

2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
		if ((cmd->se_cmd_flags & SCF_BIDI) ||
		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
			u32 bidi_length;

			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
				bidi_length = cmd->t_task_nolb *
					      cmd->se_dev->dev_attrib.block_size;
			else
				bidi_length = cmd->data_length;

			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
					       &cmd->t_bidi_data_nents,
2545
					       bidi_length, zero_flag, false);
2546 2547 2548 2549
			if (ret < 0)
				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		}

2550
		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2551
				       cmd->data_length, zero_flag, false);
2552
		if (ret < 0)
2553
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
		    cmd->data_length) {
		/*
		 * Special case for COMPARE_AND_WRITE with fabrics
		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
		 */
		u32 caw_length = cmd->t_task_nolb *
				 cmd->se_dev->dev_attrib.block_size;

		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
				       &cmd->t_bidi_data_nents,
2565
				       caw_length, zero_flag, false);
2566 2567
		if (ret < 0)
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2568 2569
	}
	/*
2570 2571 2572
	 * If this command is not a write we can execute it right here,
	 * for write buffers we need to notify the fabric driver first
	 * and let it call back once the write buffers are ready.
2573
	 */
2574
	target_add_to_state_list(cmd);
2575
	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2576 2577 2578
		target_execute_cmd(cmd);
		return 0;
	}
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	cmd->t_state = TRANSPORT_WRITE_PENDING;
	/*
	 * Determine if frontend context caller is requesting the stopping of
	 * this command for frontend exceptions.
	 */
	if (cmd->transport_state & CMD_T_STOP) {
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			 __func__, __LINE__, cmd->tag);

		spin_unlock_irqrestore(&cmd->t_state_lock, flags);

		complete_all(&cmd->t_transport_stop_comp);
2593
		return 0;
2594 2595 2596
	}
	cmd->transport_state &= ~CMD_T_ACTIVE;
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2597 2598

	ret = cmd->se_tfo->write_pending(cmd);
2599
	if (ret)
2600 2601
		goto queue_full;

2602
	return 0;
2603

2604 2605
queue_full:
	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2606
	transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2607
	return 0;
2608
}
2609
EXPORT_SYMBOL(transport_generic_new_cmd);
2610

2611
static void transport_write_pending_qf(struct se_cmd *cmd)
2612
{
2613
	unsigned long flags;
2614
	int ret;
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
	bool stop;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

	if (stop) {
		pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
		complete_all(&cmd->t_transport_stop_comp);
		return;
	}
2627 2628

	ret = cmd->se_tfo->write_pending(cmd);
2629
	if (ret) {
2630 2631
		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
			 cmd);
2632
		transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2633
	}
2634 2635
}

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
static bool
__transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
			   unsigned long *flags);

static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
{
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
/*
 * This function is called by frontend drivers after processing of a command
 * has finished.
 *
 * The protocol for ensuring that either the regular flow or the TMF
 * code drops one reference is as follows:
 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
 *   the frontend driver to drop one reference, synchronously or asynchronously.
 * - During regular command processing the target core sets CMD_T_COMPLETE
 *   before invoking one of the .queue_*() functions.
 * - The code that aborts commands skips commands and TMFs for which
 *   CMD_T_COMPLETE has been set.
 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
 *   commands that will be aborted.
 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
 *   transport_generic_free_cmd() skips its call to target_put_sess_cmd().
 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
 *   be called and will drop a reference.
 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
 *   will be called. transport_cmd_finish_abort() will drop the final reference.
 */
2670
int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2671
{
2672
	DECLARE_COMPLETION_ONSTACK(compl);
2673
	int ret = 0;
2674
	bool aborted = false, tas = false;
2675

2676 2677 2678 2679
	if (wait_for_tasks)
		target_wait_free_cmd(cmd, &aborted, &tas);

	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2680 2681 2682 2683 2684
		/*
		 * Handle WRITE failure case where transport_generic_new_cmd()
		 * has already added se_cmd to state_list, but fabric has
		 * failed command before I/O submission.
		 */
2685
		if (cmd->state_active)
2686
			target_remove_from_state_list(cmd);
2687

2688
		if (cmd->se_lun)
2689
			transport_lun_remove_cmd(cmd);
2690
	}
2691 2692
	if (aborted)
		cmd->compl = &compl;
2693 2694
	if (!aborted || tas)
		ret = target_put_sess_cmd(cmd);
2695 2696
	if (aborted) {
		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2697
		wait_for_completion(&compl);
2698
		ret = 1;
2699
	}
2700
	return ret;
2701 2702 2703
}
EXPORT_SYMBOL(transport_generic_free_cmd);

2704 2705
/**
 * target_get_sess_cmd - Add command to active ->sess_cmd_list
2706
 * @se_cmd:	command descriptor to add
2707
 * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2708
 */
2709
int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2710
{
2711
	struct se_session *se_sess = se_cmd->se_sess;
2712
	unsigned long flags;
2713
	int ret = 0;
2714

2715 2716 2717 2718 2719
	/*
	 * Add a second kref if the fabric caller is expecting to handle
	 * fabric acknowledgement that requires two target_put_sess_cmd()
	 * invocations before se_cmd descriptor release.
	 */
2720
	if (ack_kref) {
2721 2722 2723
		if (!kref_get_unless_zero(&se_cmd->cmd_kref))
			return -EINVAL;

2724 2725
		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
	}
2726

2727
	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2728 2729 2730 2731
	if (se_sess->sess_tearing_down) {
		ret = -ESHUTDOWN;
		goto out;
	}
2732
	se_cmd->transport_state |= CMD_T_PRE_EXECUTE;
2733
	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2734
	percpu_ref_get(&se_sess->cmd_count);
2735
out:
2736
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2737 2738

	if (ret && ack_kref)
2739
		target_put_sess_cmd(se_cmd);
2740

2741
	return ret;
2742
}
2743
EXPORT_SYMBOL(target_get_sess_cmd);
2744

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
static void target_free_cmd_mem(struct se_cmd *cmd)
{
	transport_free_pages(cmd);

	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
		core_tmr_release_req(cmd->se_tmr_req);
	if (cmd->t_task_cdb != cmd->__t_task_cdb)
		kfree(cmd->t_task_cdb);
}

2755
static void target_release_cmd_kref(struct kref *kref)
2756
{
2757 2758
	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
	struct se_session *se_sess = se_cmd->se_sess;
2759
	struct completion *compl = se_cmd->compl;
2760
	unsigned long flags;
2761

2762 2763
	if (se_sess) {
		spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2764
		list_del_init(&se_cmd->se_cmd_list);
2765
		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2766 2767
	}

2768
	target_free_cmd_mem(se_cmd);
2769
	se_cmd->se_tfo->release_cmd(se_cmd);
2770 2771
	if (compl)
		complete(compl);
2772 2773

	percpu_ref_put(&se_sess->cmd_count);
2774 2775
}

2776 2777 2778 2779 2780 2781
/**
 * target_put_sess_cmd - decrease the command reference count
 * @se_cmd:	command to drop a reference from
 *
 * Returns 1 if and only if this target_put_sess_cmd() call caused the
 * refcount to drop to zero. Returns zero otherwise.
2782
 */
2783
int target_put_sess_cmd(struct se_cmd *se_cmd)
2784
{
2785
	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2786 2787 2788
}
EXPORT_SYMBOL(target_put_sess_cmd);

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
static const char *data_dir_name(enum dma_data_direction d)
{
	switch (d) {
	case DMA_BIDIRECTIONAL:	return "BIDI";
	case DMA_TO_DEVICE:	return "WRITE";
	case DMA_FROM_DEVICE:	return "READ";
	case DMA_NONE:		return "NONE";
	}

	return "(?)";
}

static const char *cmd_state_name(enum transport_state_table t)
{
	switch (t) {
	case TRANSPORT_NO_STATE:	return "NO_STATE";
	case TRANSPORT_NEW_CMD:		return "NEW_CMD";
	case TRANSPORT_WRITE_PENDING:	return "WRITE_PENDING";
	case TRANSPORT_PROCESSING:	return "PROCESSING";
	case TRANSPORT_COMPLETE:	return "COMPLETE";
	case TRANSPORT_ISTATE_PROCESSING:
					return "ISTATE_PROCESSING";
	case TRANSPORT_COMPLETE_QF_WP:	return "COMPLETE_QF_WP";
	case TRANSPORT_COMPLETE_QF_OK:	return "COMPLETE_QF_OK";
	case TRANSPORT_COMPLETE_QF_ERR:	return "COMPLETE_QF_ERR";
	}

	return "(?)";
}

static void target_append_str(char **str, const char *txt)
{
	char *prev = *str;

	*str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
		kstrdup(txt, GFP_ATOMIC);
	kfree(prev);
}

/*
 * Convert a transport state bitmask into a string. The caller is
 * responsible for freeing the returned pointer.
 */
static char *target_ts_to_str(u32 ts)
{
	char *str = NULL;

	if (ts & CMD_T_ABORTED)
		target_append_str(&str, "aborted");
	if (ts & CMD_T_ACTIVE)
		target_append_str(&str, "active");
	if (ts & CMD_T_COMPLETE)
		target_append_str(&str, "complete");
	if (ts & CMD_T_SENT)
		target_append_str(&str, "sent");
	if (ts & CMD_T_STOP)
		target_append_str(&str, "stop");
	if (ts & CMD_T_FABRIC_STOP)
		target_append_str(&str, "fabric_stop");

	return str;
}

static const char *target_tmf_name(enum tcm_tmreq_table tmf)
{
	switch (tmf) {
	case TMR_ABORT_TASK:		return "ABORT_TASK";
	case TMR_ABORT_TASK_SET:	return "ABORT_TASK_SET";
	case TMR_CLEAR_ACA:		return "CLEAR_ACA";
	case TMR_CLEAR_TASK_SET:	return "CLEAR_TASK_SET";
	case TMR_LUN_RESET:		return "LUN_RESET";
	case TMR_TARGET_WARM_RESET:	return "TARGET_WARM_RESET";
	case TMR_TARGET_COLD_RESET:	return "TARGET_COLD_RESET";
	case TMR_UNKNOWN:		break;
	}
	return "(?)";
}

void target_show_cmd(const char *pfx, struct se_cmd *cmd)
{
	char *ts_str = target_ts_to_str(cmd->transport_state);
	const u8 *cdb = cmd->t_task_cdb;
	struct se_tmr_req *tmf = cmd->se_tmr_req;

	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
		pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
			 pfx, cdb[0], cdb[1], cmd->tag,
			 data_dir_name(cmd->data_direction),
			 cmd->se_tfo->get_cmd_state(cmd),
			 cmd_state_name(cmd->t_state), cmd->data_length,
			 kref_read(&cmd->cmd_kref), ts_str);
	} else {
		pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
			 pfx, target_tmf_name(tmf->function), cmd->tag,
			 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
			 cmd_state_name(cmd->t_state),
			 kref_read(&cmd->cmd_kref), ts_str);
	}
	kfree(ts_str);
}
EXPORT_SYMBOL(target_show_cmd);

2891
/**
2892
 * target_sess_cmd_list_set_waiting - Set sess_tearing_down so no new commands are queued.
2893
 * @se_sess:	session to flag
2894
 */
2895
void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2896 2897 2898 2899
{
	unsigned long flags;

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2900
	se_sess->sess_tearing_down = 1;
2901
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2902 2903

	percpu_ref_kill(&se_sess->cmd_count);
2904
}
2905
EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2906

2907
/**
2908
 * target_wait_for_sess_cmds - Wait for outstanding commands
2909 2910
 * @se_sess:    session to wait for active I/O
 */
2911
void target_wait_for_sess_cmds(struct se_session *se_sess)
2912
{
2913 2914
	struct se_cmd *cmd;
	int ret;
2915

2916 2917 2918
	WARN_ON_ONCE(!se_sess->sess_tearing_down);

	do {
2919 2920 2921
		ret = wait_event_timeout(se_sess->cmd_list_wq,
				percpu_ref_is_zero(&se_sess->cmd_count),
				180 * HZ);
2922 2923 2924 2925
		list_for_each_entry(cmd, &se_sess->sess_cmd_list, se_cmd_list)
			target_show_cmd("session shutdown: still waiting for ",
					cmd);
	} while (ret <= 0);
2926 2927 2928
}
EXPORT_SYMBOL(target_wait_for_sess_cmds);

2929 2930 2931 2932
/*
 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
 * all references to the LUN have been released. Called during LUN shutdown.
 */
2933
void transport_clear_lun_ref(struct se_lun *lun)
2934
{
2935
	percpu_ref_kill(&lun->lun_ref);
2936
	wait_for_completion(&lun->lun_shutdown_comp);
2937 2938
}

2939 2940 2941 2942 2943
static bool
__transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
			   bool *aborted, bool *tas, unsigned long *flags)
	__releases(&cmd->t_state_lock)
	__acquires(&cmd->t_state_lock)
2944 2945
{

2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
	assert_spin_locked(&cmd->t_state_lock);
	WARN_ON_ONCE(!irqs_disabled());

	if (fabric_stop)
		cmd->transport_state |= CMD_T_FABRIC_STOP;

	if (cmd->transport_state & CMD_T_ABORTED)
		*aborted = true;

	if (cmd->transport_state & CMD_T_TAS)
		*tas = true;

2958
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2959
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2960
		return false;
2961

2962
	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2963
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2964
		return false;
2965

2966 2967 2968 2969
	if (!(cmd->transport_state & CMD_T_ACTIVE))
		return false;

	if (fabric_stop && *aborted)
2970
		return false;
2971

2972
	cmd->transport_state |= CMD_T_STOP;
2973

2974
	target_show_cmd("wait_for_tasks: Stopping ", cmd);
2975

2976
	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2977

2978 2979 2980
	while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
					    180 * HZ))
		target_show_cmd("wait for tasks: ", cmd);
2981

2982
	spin_lock_irqsave(&cmd->t_state_lock, *flags);
2983
	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2984

2985 2986
	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2987

2988 2989 2990 2991
	return true;
}

/**
2992 2993
 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
 * @cmd: command to wait on
2994 2995 2996 2997 2998 2999 3000 3001
 */
bool transport_wait_for_tasks(struct se_cmd *cmd)
{
	unsigned long flags;
	bool ret, aborted = false, tas = false;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3002
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3003

3004
	return ret;
3005
}
3006
EXPORT_SYMBOL(transport_wait_for_tasks);
3007

3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
struct sense_info {
	u8 key;
	u8 asc;
	u8 ascq;
	bool add_sector_info;
};

static const struct sense_info sense_info_table[] = {
	[TCM_NO_SENSE] = {
		.key = NOT_READY
	},
	[TCM_NON_EXISTENT_LUN] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
	},
	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
	},
	[TCM_SECTOR_COUNT_TOO_MANY] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
	},
	[TCM_UNKNOWN_MODE_PAGE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x24, /* INVALID FIELD IN CDB */
	},
	[TCM_CHECK_CONDITION_ABORT_CMD] = {
		.key = ABORTED_COMMAND,
		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
		.ascq = 0x03,
	},
	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
		.key = ABORTED_COMMAND,
		.asc = 0x0c, /* WRITE ERROR */
		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
	},
	[TCM_INVALID_CDB_FIELD] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x24, /* INVALID FIELD IN CDB */
	},
	[TCM_INVALID_PARAMETER_LIST] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
	},
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
	[TCM_TOO_MANY_TARGET_DESCS] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
	},
	[TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
	},
	[TCM_TOO_MANY_SEGMENT_DESCS] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
	},
	[TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
	},
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
	},
	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x0c, /* WRITE ERROR */
		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
	},
	[TCM_SERVICE_CRC_ERROR] = {
		.key = ABORTED_COMMAND,
		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
		.ascq = 0x05, /* N/A */
	},
	[TCM_SNACK_REJECTED] = {
		.key = ABORTED_COMMAND,
		.asc = 0x11, /* READ ERROR */
		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
	},
	[TCM_WRITE_PROTECTED] = {
		.key = DATA_PROTECT,
		.asc = 0x27, /* WRITE PROTECTED */
	},
	[TCM_ADDRESS_OUT_OF_RANGE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
	},
	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
		.key = UNIT_ATTENTION,
	},
	[TCM_CHECK_CONDITION_NOT_READY] = {
		.key = NOT_READY,
	},
	[TCM_MISCOMPARE_VERIFY] = {
		.key = MISCOMPARE,
		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
		.ascq = 0x00,
	},
	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3112
		.key = ABORTED_COMMAND,
3113 3114 3115 3116 3117
		.asc = 0x10,
		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
		.add_sector_info = true,
	},
	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3118
		.key = ABORTED_COMMAND,
3119 3120 3121 3122 3123
		.asc = 0x10,
		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
		.add_sector_info = true,
	},
	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3124
		.key = ABORTED_COMMAND,
3125 3126 3127 3128
		.asc = 0x10,
		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
		.add_sector_info = true,
	},
3129 3130 3131 3132 3133 3134
	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
		.key = COPY_ABORTED,
		.asc = 0x0d,
		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */

	},
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
		/*
		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
		 * Solaris initiators.  Returning NOT READY instead means the
		 * operations will be retried a finite number of times and we
		 * can survive intermittent errors.
		 */
		.key = NOT_READY,
		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
	},
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
	[TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
		/*
		 * From spc4r22 section5.7.7,5.7.8
		 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
		 * or a REGISTER AND IGNORE EXISTING KEY service action or
		 * REGISTER AND MOVE service actionis attempted,
		 * but there are insufficient device server resources to complete the
		 * operation, then the command shall be terminated with CHECK CONDITION
		 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
		 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
		 */
		.key = ILLEGAL_REQUEST,
		.asc = 0x55,
		.ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
	},
3160 3161
};

3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
/**
 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
 *   be stored.
 * @reason: LIO sense reason code. If this argument has the value
 *   TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
 *   dequeuing a unit attention fails due to multiple commands being processed
 *   concurrently, set the command status to BUSY.
 *
 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
 */
3173
static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3174 3175 3176 3177
{
	const struct sense_info *si;
	u8 *buffer = cmd->sense_buffer;
	int r = (__force int)reason;
3178
	u8 key, asc, ascq;
3179
	bool desc_format = target_sense_desc_format(cmd->se_dev);
3180 3181 3182 3183 3184 3185 3186

	if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
		si = &sense_info_table[r];
	else
		si = &sense_info_table[(__force int)
				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];

3187
	key = si->key;
3188
	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3189 3190 3191 3192 3193
		if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
						       &ascq)) {
			cmd->scsi_status = SAM_STAT_BUSY;
			return;
		}
3194 3195 3196 3197 3198 3199 3200 3201
	} else if (si->asc == 0) {
		WARN_ON_ONCE(cmd->scsi_asc == 0);
		asc = cmd->scsi_asc;
		ascq = cmd->scsi_ascq;
	} else {
		asc = si->asc;
		ascq = si->ascq;
	}
3202

3203 3204 3205
	cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3206
	scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3207
	if (si->add_sector_info)
3208 3209 3210
		WARN_ON_ONCE(scsi_set_sense_information(buffer,
							cmd->scsi_sense_length,
							cmd->bad_sector) < 0);
3211 3212
}

3213 3214 3215
int
transport_send_check_condition_and_sense(struct se_cmd *cmd,
		sense_reason_t reason, int from_transport)
3216 3217 3218
{
	unsigned long flags;

3219
	spin_lock_irqsave(&cmd->t_state_lock, flags);
3220
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3221
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3222 3223 3224
		return 0;
	}
	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3225
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3226

3227 3228
	if (!from_transport)
		translate_sense_reason(cmd, reason);
3229

3230
	trace_target_cmd_complete(cmd);
3231
	return cmd->se_tfo->queue_status(cmd);
3232 3233 3234
}
EXPORT_SYMBOL(transport_send_check_condition_and_sense);

3235 3236 3237
static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
	__releases(&cmd->t_state_lock)
	__acquires(&cmd->t_state_lock)
3238
{
3239 3240
	int ret;

3241 3242 3243
	assert_spin_locked(&cmd->t_state_lock);
	WARN_ON_ONCE(!irqs_disabled());

3244 3245
	if (!(cmd->transport_state & CMD_T_ABORTED))
		return 0;
3246 3247 3248 3249
	/*
	 * If cmd has been aborted but either no status is to be sent or it has
	 * already been sent, just return
	 */
3250 3251 3252
	if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
		if (send_status)
			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3253
		return 1;
3254
	}
3255

3256 3257
	pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
		" 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3258

3259
	cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3260
	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3261
	trace_target_cmd_complete(cmd);
3262 3263

	spin_unlock_irq(&cmd->t_state_lock);
3264 3265 3266
	ret = cmd->se_tfo->queue_status(cmd);
	if (ret)
		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3267
	spin_lock_irq(&cmd->t_state_lock);
3268 3269

	return 1;
3270
}
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281

int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
{
	int ret;

	spin_lock_irq(&cmd->t_state_lock);
	ret = __transport_check_aborted_status(cmd, send_status);
	spin_unlock_irq(&cmd->t_state_lock);

	return ret;
}
3282 3283 3284 3285
EXPORT_SYMBOL(transport_check_aborted_status);

void transport_send_task_abort(struct se_cmd *cmd)
{
3286
	unsigned long flags;
3287
	int ret;
3288 3289

	spin_lock_irqsave(&cmd->t_state_lock, flags);
3290
	if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3291 3292 3293 3294 3295
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		return;
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3296 3297 3298 3299 3300 3301 3302
	/*
	 * If there are still expected incoming fabric WRITEs, we wait
	 * until until they have completed before sending a TASK_ABORTED
	 * response.  This response with TASK_ABORTED status will be
	 * queued back to fabric module by transport_check_aborted_status().
	 */
	if (cmd->data_direction == DMA_TO_DEVICE) {
3303
		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3304 3305 3306 3307 3308
			spin_lock_irqsave(&cmd->t_state_lock, flags);
			if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
				spin_unlock_irqrestore(&cmd->t_state_lock, flags);
				goto send_abort;
			}
3309
			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3310
			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3311
			return;
3312 3313
		}
	}
3314
send_abort:
3315
	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3316

3317 3318
	transport_lun_remove_cmd(cmd);

3319 3320
	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
		 cmd->t_task_cdb[0], cmd->tag);
3321

3322
	trace_target_cmd_complete(cmd);
3323 3324 3325
	ret = cmd->se_tfo->queue_status(cmd);
	if (ret)
		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3326 3327
}

3328
static void target_tmr_work(struct work_struct *work)
3329
{
3330
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3331
	struct se_device *dev = cmd->se_dev;
3332
	struct se_tmr_req *tmr = cmd->se_tmr_req;
3333
	unsigned long flags;
3334 3335
	int ret;

3336 3337 3338 3339 3340 3341 3342 3343
	spin_lock_irqsave(&cmd->t_state_lock, flags);
	if (cmd->transport_state & CMD_T_ABORTED) {
		tmr->response = TMR_FUNCTION_REJECTED;
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		goto check_stop;
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3344
	switch (tmr->function) {
3345
	case TMR_ABORT_TASK:
3346
		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3347
		break;
3348 3349 3350
	case TMR_ABORT_TASK_SET:
	case TMR_CLEAR_ACA:
	case TMR_CLEAR_TASK_SET:
3351 3352
		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
		break;
3353
	case TMR_LUN_RESET:
3354 3355 3356
		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
					 TMR_FUNCTION_REJECTED;
3357 3358 3359 3360 3361
		if (tmr->response == TMR_FUNCTION_COMPLETE) {
			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
					       cmd->orig_fe_lun, 0x29,
					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
		}
3362
		break;
3363
	case TMR_TARGET_WARM_RESET:
3364 3365
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
3366
	case TMR_TARGET_COLD_RESET:
3367 3368 3369
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	default:
3370
		pr_err("Unknown TMR function: 0x%02x.\n",
3371 3372 3373 3374 3375
				tmr->function);
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	}

3376 3377 3378 3379 3380 3381 3382
	spin_lock_irqsave(&cmd->t_state_lock, flags);
	if (cmd->transport_state & CMD_T_ABORTED) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		goto check_stop;
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3383
	cmd->se_tfo->queue_tm_rsp(cmd);
3384

3385
check_stop:
3386
	transport_lun_remove_cmd(cmd);
3387
	transport_cmd_check_stop_to_fabric(cmd);
3388 3389
}

3390 3391
int transport_generic_handle_tmr(
	struct se_cmd *cmd)
3392
{
3393
	unsigned long flags;
3394
	bool aborted = false;
3395 3396

	spin_lock_irqsave(&cmd->t_state_lock, flags);
3397 3398 3399 3400 3401 3402
	if (cmd->transport_state & CMD_T_ABORTED) {
		aborted = true;
	} else {
		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
		cmd->transport_state |= CMD_T_ACTIVE;
	}
3403 3404
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3405 3406 3407 3408
	if (aborted) {
		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
			"ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
			cmd->se_tmr_req->ref_task_tag, cmd->tag);
3409
		transport_lun_remove_cmd(cmd);
3410 3411 3412 3413
		transport_cmd_check_stop_to_fabric(cmd);
		return 0;
	}

3414
	INIT_WORK(&cmd->work, target_tmr_work);
3415
	schedule_work(&cmd->work);
3416 3417
	return 0;
}
3418
EXPORT_SYMBOL(transport_generic_handle_tmr);
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437

bool
target_check_wce(struct se_device *dev)
{
	bool wce = false;

	if (dev->transport->get_write_cache)
		wce = dev->transport->get_write_cache(dev);
	else if (dev->dev_attrib.emulate_write_cache > 0)
		wce = true;

	return wce;
}

bool
target_check_fua(struct se_device *dev)
{
	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
}