hci_request.c 82.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
   BlueZ - Bluetooth protocol stack for Linux

   Copyright (C) 2014 Intel Corporation

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License version 2 as
   published by the Free Software Foundation;

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
   SOFTWARE IS DISCLAIMED.
*/

24 25
#include <linux/sched/signal.h>

26 27
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
28
#include <net/bluetooth/mgmt.h>
29 30 31

#include "smp.h"
#include "hci_request.h"
32
#include "msft.h"
33
#include "eir.h"
34 35 36 37 38 39 40 41

void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
{
	skb_queue_head_init(&req->cmd_q);
	req->hdev = hdev;
	req->err = 0;
}

42 43 44 45 46
void hci_req_purge(struct hci_request *req)
{
	skb_queue_purge(&req->cmd_q);
}

47 48 49 50 51
bool hci_req_status_pend(struct hci_dev *hdev)
{
	return hdev->req_status == HCI_REQ_PEND;
}

52 53
static int req_run(struct hci_request *req, hci_req_complete_t complete,
		   hci_req_complete_skb_t complete_skb)
54 55 56 57 58
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;
	unsigned long flags;

59
	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
60 61 62 63 64 65 66 67 68 69 70 71 72 73

	/* If an error occurred during request building, remove all HCI
	 * commands queued on the HCI request queue.
	 */
	if (req->err) {
		skb_queue_purge(&req->cmd_q);
		return req->err;
	}

	/* Do not allow empty requests */
	if (skb_queue_empty(&req->cmd_q))
		return -ENODATA;

	skb = skb_peek_tail(&req->cmd_q);
74 75 76 77 78 79
	if (complete) {
		bt_cb(skb)->hci.req_complete = complete;
	} else if (complete_skb) {
		bt_cb(skb)->hci.req_complete_skb = complete_skb;
		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
	}
80 81 82 83 84 85 86 87 88 89

	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);

	queue_work(hdev->workqueue, &hdev->cmd_work);

	return 0;
}

90 91 92 93 94 95 96 97 98 99
int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
{
	return req_run(req, complete, NULL);
}

int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
{
	return req_run(req, NULL, complete);
}

100 101
void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
			   struct sk_buff *skb)
102
{
103
	bt_dev_dbg(hdev, "result 0x%2.2x", result);
104 105 106 107 108 109 110 111 112 113

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = result;
		hdev->req_status = HCI_REQ_DONE;
		if (skb)
			hdev->req_skb = skb_get(skb);
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

114
void hci_req_sync_cancel(struct hci_dev *hdev, int err)
115
{
116
	bt_dev_dbg(hdev, "err 0x%2.2x", err);
117 118 119 120 121 122 123 124 125

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = err;
		hdev->req_status = HCI_REQ_CANCELED;
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

/* Execute request and wait for completion. */
126 127
int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
						     unsigned long opt),
128
		   unsigned long opt, u32 timeout, u8 *hci_status)
129 130 131 132
{
	struct hci_request req;
	int err = 0;

133
	bt_dev_dbg(hdev, "start");
134 135 136 137 138

	hci_req_init(&req, hdev);

	hdev->req_status = HCI_REQ_PEND;

139 140 141 142 143 144
	err = func(&req, opt);
	if (err) {
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
		return err;
	}
145 146 147 148 149 150 151 152 153 154

	err = hci_req_run_skb(&req, hci_req_sync_complete);
	if (err < 0) {
		hdev->req_status = 0;

		/* ENODATA means the HCI request command queue is empty.
		 * This can happen when a request with conditionals doesn't
		 * trigger any commands to be sent. This is normal behavior
		 * and should not trigger an error return.
		 */
155 156 157
		if (err == -ENODATA) {
			if (hci_status)
				*hci_status = 0;
158
			return 0;
159 160 161 162
		}

		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
163 164 165 166

		return err;
	}

167 168
	err = wait_event_interruptible_timeout(hdev->req_wait_q,
			hdev->req_status != HCI_REQ_PEND, timeout);
169

170
	if (err == -ERESTARTSYS)
171 172 173 174 175
		return -EINTR;

	switch (hdev->req_status) {
	case HCI_REQ_DONE:
		err = -bt_to_errno(hdev->req_result);
176 177
		if (hci_status)
			*hci_status = hdev->req_result;
178 179 180 181
		break;

	case HCI_REQ_CANCELED:
		err = -hdev->req_result;
182 183
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
184 185 186 187
		break;

	default:
		err = -ETIMEDOUT;
188 189
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
190 191 192
		break;
	}

193 194
	kfree_skb(hdev->req_skb);
	hdev->req_skb = NULL;
195 196
	hdev->req_status = hdev->req_result = 0;

197
	bt_dev_dbg(hdev, "end: err %d", err);
198 199 200 201

	return err;
}

202 203
int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
						  unsigned long opt),
204
		 unsigned long opt, u32 timeout, u8 *hci_status)
205 206 207 208
{
	int ret;

	/* Serialize all requests */
209
	hci_req_sync_lock(hdev);
210 211 212 213 214 215 216 217
	/* check the state after obtaing the lock to protect the HCI_UP
	 * against any races from hci_dev_do_close when the controller
	 * gets removed.
	 */
	if (test_bit(HCI_UP, &hdev->flags))
		ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
	else
		ret = -ENETDOWN;
218
	hci_req_sync_unlock(hdev);
219 220 221 222

	return ret;
}

223 224 225 226 227 228 229 230 231 232 233
struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
				const void *param)
{
	int len = HCI_COMMAND_HDR_SIZE + plen;
	struct hci_command_hdr *hdr;
	struct sk_buff *skb;

	skb = bt_skb_alloc(len, GFP_ATOMIC);
	if (!skb)
		return NULL;

234
	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
235 236 237 238
	hdr->opcode = cpu_to_le16(opcode);
	hdr->plen   = plen;

	if (plen)
239
		skb_put_data(skb, param, plen);
240

241
	bt_dev_dbg(hdev, "skb len %d", skb->len);
242

243 244
	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
	hci_skb_opcode(skb) = opcode;
245 246 247 248 249 250 251 252 253 254 255

	return skb;
}

/* Queue a command to an asynchronous HCI request */
void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
		    const void *param, u8 event)
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;

256
	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
257 258 259 260 261 262 263 264 265

	/* If an error occurred during request building, there is no point in
	 * queueing the HCI command. We can simply return.
	 */
	if (req->err)
		return;

	skb = hci_prepare_cmd(hdev, opcode, plen, param);
	if (!skb) {
266 267
		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
			   opcode);
268 269 270 271 272
		req->err = -ENOMEM;
		return;
	}

	if (skb_queue_empty(&req->cmd_q))
273
		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
274

275
	bt_cb(skb)->hci.req_event = event;
276 277 278 279 280 281 282 283 284 285

	skb_queue_tail(&req->cmd_q, skb);
}

void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
		 const void *param)
{
	hci_req_add_ev(req, opcode, plen, param, 0);
}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_page_scan_activity acp;
	u8 type;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
		return;

	if (enable) {
		type = PAGE_SCAN_TYPE_INTERLACED;

		/* 160 msec page scan interval */
		acp.interval = cpu_to_le16(0x0100);
	} else {
304 305
		type = hdev->def_page_scan_type;
		acp.interval = cpu_to_le16(hdev->def_page_scan_int);
306 307
	}

308
	acp.window = cpu_to_le16(hdev->def_page_scan_window);
309 310 311 312 313 314 315 316 317 318

	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
			    sizeof(acp), &acp);

	if (hdev->page_scan_type != type)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
static void start_interleave_scan(struct hci_dev *hdev)
{
	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
	queue_delayed_work(hdev->req_workqueue,
			   &hdev->interleave_scan, 0);
}

static bool is_interleave_scanning(struct hci_dev *hdev)
{
	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
}

static void cancel_interleave_scan(struct hci_dev *hdev)
{
	bt_dev_dbg(hdev, "cancelling interleave scan");

	cancel_delayed_work_sync(&hdev->interleave_scan);

	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
}

/* Return true if interleave_scan wasn't started until exiting this function,
 * otherwise, return false
 */
static bool __hci_update_interleaved_scan(struct hci_dev *hdev)
{
345 346 347 348 349 350
	/* Do interleaved scan only if all of the following are true:
	 * - There is at least one ADV monitor
	 * - At least one pending LE connection or one device to be scanned for
	 * - Monitor offloading is not supported
	 * If so, we should alternate between allowlist scan and one without
	 * any filters to save power.
351 352 353
	 */
	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
				!(list_empty(&hdev->pend_le_conns) &&
354 355 356
				  list_empty(&hdev->pend_le_reports)) &&
				hci_get_adv_monitor_offload_ext(hdev) ==
				    HCI_ADV_MONITOR_EXT_NONE;
357 358 359 360 361 362 363 364 365 366 367 368 369 370
	bool is_interleaving = is_interleave_scanning(hdev);

	if (use_interleaving && !is_interleaving) {
		start_interleave_scan(hdev);
		bt_dev_dbg(hdev, "starting interleave scan");
		return true;
	}

	if (!use_interleaving && is_interleaving)
		cancel_interleave_scan(hdev);

	return false;
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
/* This function controls the background scanning based on hdev->pend_le_conns
 * list. If there are pending LE connection we start the background scanning,
 * otherwise we stop it.
 *
 * This function requires the caller holds hdev->lock.
 */
static void __hci_update_background_scan(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;

	if (!test_bit(HCI_UP, &hdev->flags) ||
	    test_bit(HCI_INIT, &hdev->flags) ||
	    hci_dev_test_flag(hdev, HCI_SETUP) ||
	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
		return;

	/* No point in doing scanning if LE support hasn't been enabled */
	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

	/* If discovery is active don't interfere with it */
	if (hdev->discovery.state != DISCOVERY_STOPPED)
		return;

	/* Reset RSSI and UUID filters when starting background scanning
	 * since these filters are meant for service discovery only.
	 *
	 * The Start Discovery and Start Service Discovery operations
	 * ensure to set proper values for RSSI threshold and UUID
	 * filter list. So it is safe to just reset them here.
	 */
	hci_discovery_filter_clear(hdev);

406 407
	bt_dev_dbg(hdev, "ADV monitoring is %s",
		   hci_is_adv_monitoring(hdev) ? "on" : "off");
408

409
	if (list_empty(&hdev->pend_le_conns) &&
410 411
	    list_empty(&hdev->pend_le_reports) &&
	    !hci_is_adv_monitoring(hdev)) {
412
		/* If there is no pending LE connections or devices
413 414
		 * to be scanned for or no ADV monitors, we should stop the
		 * background scanning.
415 416 417 418 419 420
		 */

		/* If controller is not scanning we are done. */
		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
			return;

421
		hci_req_add_le_scan_disable(req, false);
422

423
		bt_dev_dbg(hdev, "stopping background scanning");
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
	} else {
		/* If there is at least one pending LE connection, we should
		 * keep the background scan running.
		 */

		/* If controller is connecting, we should not start scanning
		 * since some controllers are not able to scan and connect at
		 * the same time.
		 */
		if (hci_lookup_le_connect(hdev))
			return;

		/* If controller is currently scanning, we stop it to ensure we
		 * don't miss any advertising (due to duplicates filter).
		 */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
440
			hci_req_add_le_scan_disable(req, false);
441 442

		hci_req_add_le_passive_scan(req);
443
		bt_dev_dbg(hdev, "starting background scanning");
444 445 446
	}
}

447 448 449 450 451 452 453 454 455 456
void __hci_req_update_name(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_local_name cp;

	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));

	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
void __hci_req_update_eir(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_eir cp;

	if (!hdev_is_powered(hdev))
		return;

	if (!lmp_ext_inq_capable(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	memset(&cp, 0, sizeof(cp));

476
	eir_create(hdev, cp.data);
477 478 479 480 481 482 483 484 485

	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
		return;

	memcpy(hdev->eir, cp.data, sizeof(cp.data));

	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
}

486
void hci_req_add_le_scan_disable(struct hci_request *req, bool rpa_le_conn)
487
{
488
	struct hci_dev *hdev = req->hdev;
489

490 491 492 493 494
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}

495 496 497
	if (hdev->suspended)
		set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);

498 499 500 501 502 503 504 505 506 507 508 509 510 511
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_DISABLE;
		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
			    &cp);
	} else {
		struct hci_cp_le_set_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_DISABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
	}
512

513
	/* Disable address resolution */
514
	if (hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION) && !rpa_le_conn) {
515
		__u8 enable = 0x00;
516

517 518
		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
	}
519 520
}

521 522
static void del_from_accept_list(struct hci_request *req, bdaddr_t *bdaddr,
				 u8 bdaddr_type)
523
{
524
	struct hci_cp_le_del_from_accept_list cp;
525 526 527 528

	cp.bdaddr_type = bdaddr_type;
	bacpy(&cp.bdaddr, bdaddr);

529
	bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from accept list", &cp.bdaddr,
530
		   cp.bdaddr_type);
531
	hci_req_add(req, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, sizeof(cp), &cp);
532

533
	if (use_ll_privacy(req->hdev)) {
534 535 536 537 538 539 540 541 542 543 544 545 546
		struct smp_irk *irk;

		irk = hci_find_irk_by_addr(req->hdev, bdaddr, bdaddr_type);
		if (irk) {
			struct hci_cp_le_del_from_resolv_list cp;

			cp.bdaddr_type = bdaddr_type;
			bacpy(&cp.bdaddr, bdaddr);

			hci_req_add(req, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
				    sizeof(cp), &cp);
		}
	}
547 548
}

549 550 551 552
/* Adds connection to accept list if needed. On error, returns -1. */
static int add_to_accept_list(struct hci_request *req,
			      struct hci_conn_params *params, u8 *num_entries,
			      bool allow_rpa)
553
{
554
	struct hci_cp_le_add_to_accept_list cp;
555 556
	struct hci_dev *hdev = req->hdev;

557 558
	/* Already in accept list */
	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
559 560
				   params->addr_type))
		return 0;
561

562
	/* Select filter policy to accept all advertising */
563
	if (*num_entries >= hdev->le_accept_list_size)
564 565
		return -1;

566
	/* Accept list can not be used with RPAs */
567 568
	if (!allow_rpa &&
	    !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
569 570 571 572
	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type)) {
		return -1;
	}

573
	/* During suspend, only wakeable devices can be in accept list */
574 575
	if (hdev->suspended && !hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
						   params->current_flags))
576 577 578
		return 0;

	*num_entries += 1;
579 580 581
	cp.bdaddr_type = params->addr_type;
	bacpy(&cp.bdaddr, &params->addr);

582
	bt_dev_dbg(hdev, "Add %pMR (0x%x) to accept list", &cp.bdaddr,
583
		   cp.bdaddr_type);
584
	hci_req_add(req, HCI_OP_LE_ADD_TO_ACCEPT_LIST, sizeof(cp), &cp);
585

586
	if (use_ll_privacy(hdev)) {
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
		struct smp_irk *irk;

		irk = hci_find_irk_by_addr(hdev, &params->addr,
					   params->addr_type);
		if (irk) {
			struct hci_cp_le_add_to_resolv_list cp;

			cp.bdaddr_type = params->addr_type;
			bacpy(&cp.bdaddr, &params->addr);
			memcpy(cp.peer_irk, irk->val, 16);

			if (hci_dev_test_flag(hdev, HCI_PRIVACY))
				memcpy(cp.local_irk, hdev->irk, 16);
			else
				memset(cp.local_irk, 0, 16);

			hci_req_add(req, HCI_OP_LE_ADD_TO_RESOLV_LIST,
				    sizeof(cp), &cp);
		}
	}

608
	return 0;
609 610
}

611
static u8 update_accept_list(struct hci_request *req)
612 613 614 615
{
	struct hci_dev *hdev = req->hdev;
	struct hci_conn_params *params;
	struct bdaddr_list *b;
616 617
	u8 num_entries = 0;
	bool pend_conn, pend_report;
618 619
	/* We allow usage of accept list even with RPAs in suspend. In the worst
	 * case, we won't be able to wake from devices that use the privacy1.2
620 621 622 623
	 * features. Additionally, once we support privacy1.2 and IRK
	 * offloading, we can update this to also check for those conditions.
	 */
	bool allow_rpa = hdev->suspended;
624

625
	if (use_ll_privacy(hdev))
626 627
		allow_rpa = true;

628
	/* Go through the current accept list programmed into the
629 630 631 632 633
	 * controller one by one and check if that address is still
	 * in the list of pending connections or list of devices to
	 * report. If not present in either list, then queue the
	 * command to remove it from the controller.
	 */
634
	list_for_each_entry(b, &hdev->le_accept_list, list) {
635 636 637 638 639 640 641 642
		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
						      &b->bdaddr,
						      b->bdaddr_type);
		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
							&b->bdaddr,
							b->bdaddr_type);

		/* If the device is not likely to connect or report,
643
		 * remove it from the accept list.
644
		 */
645
		if (!pend_conn && !pend_report) {
646
			del_from_accept_list(req, &b->bdaddr, b->bdaddr_type);
647 648 649
			continue;
		}

650
		/* Accept list can not be used with RPAs */
651 652
		if (!allow_rpa &&
		    !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
653
		    hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
654 655
			return 0x00;
		}
656

657
		num_entries++;
658 659
	}

660
	/* Since all no longer valid accept list entries have been
661 662 663 664 665
	 * removed, walk through the list of pending connections
	 * and ensure that any new device gets programmed into
	 * the controller.
	 *
	 * If the list of the devices is larger than the list of
666
	 * available accept list entries in the controller, then
667
	 * just abort and return filer policy value to not use the
668
	 * accept list.
669 670
	 */
	list_for_each_entry(params, &hdev->pend_le_conns, action) {
671
		if (add_to_accept_list(req, params, &num_entries, allow_rpa))
672 673 674 675 676
			return 0x00;
	}

	/* After adding all new pending connections, walk through
	 * the list of pending reports and also add these to the
677
	 * accept list if there is still space. Abort if space runs out.
678 679
	 */
	list_for_each_entry(params, &hdev->pend_le_reports, action) {
680
		if (add_to_accept_list(req, params, &num_entries, allow_rpa))
681 682 683
			return 0x00;
	}

684 685
	/* Use the allowlist unless the following conditions are all true:
	 * - We are not currently suspending
686
	 * - There are 1 or more ADV monitors registered and it's not offloaded
687
	 * - Interleaved scanning is not currently using the allowlist
688
	 */
689
	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
690
	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
691
	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
692 693
		return 0x00;

694
	/* Select filter policy to use accept list */
695 696 697
	return 0x01;
}

698 699 700 701 702
static bool scan_use_rpa(struct hci_dev *hdev)
{
	return hci_dev_test_flag(hdev, HCI_PRIVACY);
}

703
static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
704
			       u16 window, u8 own_addr_type, u8 filter_policy,
705
			       bool filter_dup, bool addr_resolv)
706
{
707
	struct hci_dev *hdev = req->hdev;
708

709 710 711 712 713
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}

714
	if (use_ll_privacy(hdev) && addr_resolv) {
715
		u8 enable = 0x01;
716

717 718 719
		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
	}

720 721 722 723 724 725 726
	/* Use ext scanning if set ext scan param and ext scan enable is
	 * supported
	 */
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_params *ext_param_cp;
		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
		struct hci_cp_le_scan_phy_params *phy_params;
727 728
		u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
		u32 plen;
729 730 731 732 733 734 735 736

		ext_param_cp = (void *)data;
		phy_params = (void *)ext_param_cp->data;

		memset(ext_param_cp, 0, sizeof(*ext_param_cp));
		ext_param_cp->own_addr_type = own_addr_type;
		ext_param_cp->filter_policy = filter_policy;

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
		plen = sizeof(*ext_param_cp);

		if (scan_1m(hdev) || scan_2m(hdev)) {
			ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;

			memset(phy_params, 0, sizeof(*phy_params));
			phy_params->type = type;
			phy_params->interval = cpu_to_le16(interval);
			phy_params->window = cpu_to_le16(window);

			plen += sizeof(*phy_params);
			phy_params++;
		}

		if (scan_coded(hdev)) {
			ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;

			memset(phy_params, 0, sizeof(*phy_params));
			phy_params->type = type;
			phy_params->interval = cpu_to_le16(interval);
			phy_params->window = cpu_to_le16(window);

			plen += sizeof(*phy_params);
			phy_params++;
		}
762 763

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
764
			    plen, ext_param_cp);
765 766 767

		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
		ext_enable_cp.enable = LE_SCAN_ENABLE;
768
		ext_enable_cp.filter_dup = filter_dup;
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
			    sizeof(ext_enable_cp), &ext_enable_cp);
	} else {
		struct hci_cp_le_set_scan_param param_cp;
		struct hci_cp_le_set_scan_enable enable_cp;

		memset(&param_cp, 0, sizeof(param_cp));
		param_cp.type = type;
		param_cp.interval = cpu_to_le16(interval);
		param_cp.window = cpu_to_le16(window);
		param_cp.own_address_type = own_addr_type;
		param_cp.filter_policy = filter_policy;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
			    &param_cp);

		memset(&enable_cp, 0, sizeof(enable_cp));
		enable_cp.enable = LE_SCAN_ENABLE;
787
		enable_cp.filter_dup = filter_dup;
788 789 790
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
			    &enable_cp);
	}
791 792
}

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
/* Returns true if an le connection is in the scanning state */
static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
{
	struct hci_conn_hash *h = &hdev->conn_hash;
	struct hci_conn  *c;

	rcu_read_lock();

	list_for_each_entry_rcu(c, &h->list, list) {
		if (c->type == LE_LINK && c->state == BT_CONNECT &&
		    test_bit(HCI_CONN_SCANNING, &c->flags)) {
			rcu_read_unlock();
			return true;
		}
	}

	rcu_read_unlock();

	return false;
}

814 815 816 817
/* Ensure to call hci_req_add_le_scan_disable() first to disable the
 * controller based address resolution to be able to reconfigure
 * resolving list.
 */
818 819
void hci_req_add_le_passive_scan(struct hci_request *req)
{
820 821 822
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
	u8 filter_policy;
823
	u16 window, interval;
824 825
	/* Default is to enable duplicates filter */
	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
826 827
	/* Background scanning should run with address resolution */
	bool addr_resolv = true;
828 829 830 831 832

	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}
833 834 835 836 837 838 839

	/* Set require_privacy to false since no SCAN_REQ are send
	 * during passive scanning. Not using an non-resolvable address
	 * here is important so that peer devices using direct
	 * advertising with our address will be correctly reported
	 * by the controller.
	 */
840 841
	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
				      &own_addr_type))
842 843
		return;

844 845
	if (hdev->enable_advmon_interleave_scan &&
	    __hci_update_interleaved_scan(hdev))
846 847 848
		return;

	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
849
	/* Adding or removing entries from the accept list must
850
	 * happen before enabling scanning. The controller does
851
	 * not allow accept list modification while scanning.
852
	 */
853
	filter_policy = update_accept_list(req);
854 855 856 857 858 859

	/* When the controller is using random resolvable addresses and
	 * with that having LE privacy enabled, then controllers with
	 * Extended Scanner Filter Policies support can now enable support
	 * for handling directed advertising.
	 *
860 861 862
	 * So instead of using filter polices 0x00 (no accept list)
	 * and 0x01 (accept list enabled) use the new filter policies
	 * 0x02 (no accept list) and 0x03 (accept list enabled).
863
	 */
864
	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
865 866 867
	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
		filter_policy |= 0x02;

868
	if (hdev->suspended) {
869 870
		window = hdev->le_scan_window_suspend;
		interval = hdev->le_scan_int_suspend;
871 872

		set_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks);
873 874 875
	} else if (hci_is_le_conn_scanning(hdev)) {
		window = hdev->le_scan_window_connect;
		interval = hdev->le_scan_int_connect;
876 877 878
	} else if (hci_is_adv_monitoring(hdev)) {
		window = hdev->le_scan_window_adv_monitor;
		interval = hdev->le_scan_int_adv_monitor;
879 880 881 882 883 884 885 886 887 888 889 890 891 892

		/* Disable duplicates filter when scanning for advertisement
		 * monitor for the following reasons.
		 *
		 * For HW pattern filtering (ex. MSFT), Realtek and Qualcomm
		 * controllers ignore RSSI_Sampling_Period when the duplicates
		 * filter is enabled.
		 *
		 * For SW pattern filtering, when we're not doing interleaved
		 * scanning, it is necessary to disable duplicates filter,
		 * otherwise hosts can only receive one advertisement and it's
		 * impossible to know if a peer is still in range.
		 */
		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
893 894 895 896 897
	} else {
		window = hdev->le_scan_window;
		interval = hdev->le_scan_interval;
	}

898 899
	bt_dev_dbg(hdev, "LE passive scan with accept list = %d",
		   filter_policy);
900
	hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window,
901 902
			   own_addr_type, filter_policy, filter_dup,
			   addr_resolv);
903 904
}

905 906 907 908
static void hci_req_clear_event_filter(struct hci_request *req)
{
	struct hci_cp_set_event_filter f;

909 910
	if (!hci_dev_test_flag(req->hdev, HCI_BREDR_ENABLED))
		return;
911

912 913 914 915 916
	if (hci_dev_test_flag(req->hdev, HCI_EVENT_FILTER_CONFIGURED)) {
		memset(&f, 0, sizeof(f));
		f.flt_type = HCI_FLT_CLEAR_ALL;
		hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &f);
	}
917 918 919 920
}

static void hci_req_set_event_filter(struct hci_request *req)
{
921
	struct bdaddr_list_with_flags *b;
922 923
	struct hci_cp_set_event_filter f;
	struct hci_dev *hdev = req->hdev;
924
	u8 scan = SCAN_DISABLED;
925 926 927 928
	bool scanning = test_bit(HCI_PSCAN, &hdev->flags);

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;
929 930 931 932

	/* Always clear event filter when starting */
	hci_req_clear_event_filter(req);

933
	list_for_each_entry(b, &hdev->accept_list, list) {
934 935 936 937
		if (!hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
					b->current_flags))
			continue;

938 939 940 941 942 943 944 945
		memset(&f, 0, sizeof(f));
		bacpy(&f.addr_conn_flt.bdaddr, &b->bdaddr);
		f.flt_type = HCI_FLT_CONN_SETUP;
		f.cond_type = HCI_CONN_SETUP_ALLOW_BDADDR;
		f.addr_conn_flt.auto_accept = HCI_CONN_SETUP_AUTO_ON;

		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
		hci_req_add(req, HCI_OP_SET_EVENT_FLT, sizeof(f), &f);
946
		scan = SCAN_PAGE;
947 948
	}

949
	if (scan && !scanning) {
950
		set_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks);
951 952
		hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
	} else if (!scan && scanning) {
953
		set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
954 955
		hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
	}
956 957
}

958 959 960 961 962 963 964 965 966
static void cancel_adv_timeout(struct hci_dev *hdev)
{
	if (hdev->adv_instance_timeout) {
		hdev->adv_instance_timeout = 0;
		cancel_delayed_work(&hdev->adv_instance_expire);
	}
}

/* This function requires the caller holds hdev->lock */
967
void __hci_req_pause_adv_instances(struct hci_request *req)
968
{
969
	bt_dev_dbg(req->hdev, "Pausing advertising instances");
970 971 972 973 974 975 976 977 978 979 980 981

	/* Call to disable any advertisements active on the controller.
	 * This will succeed even if no advertisements are configured.
	 */
	__hci_req_disable_advertising(req);

	/* If we are using software rotation, pause the loop */
	if (!ext_adv_capable(req->hdev))
		cancel_adv_timeout(req->hdev);
}

/* This function requires the caller holds hdev->lock */
982
static void __hci_req_resume_adv_instances(struct hci_request *req)
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
{
	struct adv_info *adv;

	bt_dev_dbg(req->hdev, "Resuming advertising instances");

	if (ext_adv_capable(req->hdev)) {
		/* Call for each tracked instance to be re-enabled */
		list_for_each_entry(adv, &req->hdev->adv_instances, list) {
			__hci_req_enable_ext_advertising(req,
							 adv->instance);
		}

	} else {
		/* Schedule for most recent instance to be restarted and begin
		 * the software rotation loop
		 */
		__hci_req_schedule_adv_instance(req,
						req->hdev->cur_adv_instance,
						true);
	}
}

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
/* This function requires the caller holds hdev->lock */
int hci_req_resume_adv_instances(struct hci_dev *hdev)
{
	struct hci_request req;

	hci_req_init(&req, hdev);
	__hci_req_resume_adv_instances(&req);

	return hci_req_run(&req, NULL);
}

1016 1017 1018 1019
static void suspend_req_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	bt_dev_dbg(hdev, "Request complete opcode=0x%x, status=0x%x", opcode,
		   status);
1020 1021 1022 1023
	if (test_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks) ||
	    test_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks)) {
		clear_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks);
		clear_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
1024 1025
		wake_up(&hdev->suspend_wait_q);
	}
1026 1027 1028 1029 1030 1031 1032

	if (test_bit(SUSPEND_SET_ADV_FILTER, hdev->suspend_tasks)) {
		clear_bit(SUSPEND_SET_ADV_FILTER, hdev->suspend_tasks);
		wake_up(&hdev->suspend_wait_q);
	}
}

1033 1034
static void hci_req_prepare_adv_monitor_suspend(struct hci_request *req,
						bool suspending)
1035 1036 1037 1038 1039
{
	struct hci_dev *hdev = req->hdev;

	switch (hci_get_adv_monitor_offload_ext(hdev)) {
	case HCI_ADV_MONITOR_EXT_MSFT:
1040 1041 1042 1043
		if (suspending)
			msft_suspend(hdev);
		else
			msft_resume(hdev);
1044 1045 1046 1047 1048 1049
		break;
	default:
		return;
	}

	/* No need to block when enabling since it's on resume path */
1050
	if (hdev->suspended && suspending)
1051
		set_bit(SUSPEND_SET_ADV_FILTER, hdev->suspend_tasks);
1052 1053
}

1054 1055 1056
/* Call with hci_dev_lock */
void hci_req_prepare_suspend(struct hci_dev *hdev, enum suspended_state next)
{
1057
	int old_state;
1058 1059 1060 1061 1062
	struct hci_conn *conn;
	struct hci_request req;
	u8 page_scan;
	int disconnect_counter;

1063 1064 1065 1066 1067 1068
	if (next == hdev->suspend_state) {
		bt_dev_dbg(hdev, "Same state before and after: %d", next);
		goto done;
	}

	hdev->suspend_state = next;
1069 1070 1071 1072 1073 1074
	hci_req_init(&req, hdev);

	if (next == BT_SUSPEND_DISCONNECT) {
		/* Mark device as suspended */
		hdev->suspended = true;

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
		/* Pause discovery if not already stopped */
		old_state = hdev->discovery.state;
		if (old_state != DISCOVERY_STOPPED) {
			set_bit(SUSPEND_PAUSE_DISCOVERY, hdev->suspend_tasks);
			hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
			queue_work(hdev->req_workqueue, &hdev->discov_update);
		}

		hdev->discovery_paused = true;
		hdev->discovery_old_state = old_state;

1086
		/* Stop directed advertising */
1087 1088 1089 1090 1091 1092 1093 1094
		old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
		if (old_state) {
			set_bit(SUSPEND_PAUSE_ADVERTISING, hdev->suspend_tasks);
			cancel_delayed_work(&hdev->discov_off);
			queue_delayed_work(hdev->req_workqueue,
					   &hdev->discov_off, 0);
		}

1095 1096
		/* Pause other advertisements */
		if (hdev->adv_instance_cnt)
1097
			__hci_req_pause_adv_instances(&req);
1098

1099 1100
		hdev->advertising_paused = true;
		hdev->advertising_old_state = old_state;
1101 1102 1103 1104 1105 1106 1107 1108

		/* Disable page scan if enabled */
		if (test_bit(HCI_PSCAN, &hdev->flags)) {
			page_scan = SCAN_DISABLED;
			hci_req_add(&req, HCI_OP_WRITE_SCAN_ENABLE, 1,
				    &page_scan);
			set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
		}
1109

1110
		/* Disable LE passive scan if enabled */
1111 1112
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			cancel_interleave_scan(hdev);
1113
			hci_req_add_le_scan_disable(&req, false);
1114
		}
1115

1116
		/* Disable advertisement filters */
1117
		hci_req_prepare_adv_monitor_suspend(&req, true);
1118

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
		/* Prevent disconnects from causing scanning to be re-enabled */
		hdev->scanning_paused = true;

		/* Run commands before disconnecting */
		hci_req_run(&req, suspend_req_complete);

		disconnect_counter = 0;
		/* Soft disconnect everything (power off) */
		list_for_each_entry(conn, &hdev->conn_hash.list, list) {
			hci_disconnect(conn, HCI_ERROR_REMOTE_POWER_OFF);
			disconnect_counter++;
		}

		if (disconnect_counter > 0) {
			bt_dev_dbg(hdev,
				   "Had %d disconnects. Will wait on them",
				   disconnect_counter);
			set_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks);
		}
1138
	} else if (next == BT_SUSPEND_CONFIGURE_WAKE) {
1139 1140 1141 1142
		/* Unpause to take care of updating scanning params */
		hdev->scanning_paused = false;
		/* Enable event filter for paired devices */
		hci_req_set_event_filter(&req);
1143
		/* Enable passive scan at lower duty cycle */
1144
		__hci_update_background_scan(&req);
1145 1146 1147 1148 1149 1150 1151
		/* Pause scan changes again. */
		hdev->scanning_paused = true;
		hci_req_run(&req, suspend_req_complete);
	} else {
		hdev->suspended = false;
		hdev->scanning_paused = false;

1152
		/* Clear any event filters and restore scan state */
1153
		hci_req_clear_event_filter(&req);
1154 1155
		__hci_req_update_scan(&req);

1156
		/* Reset passive/background scanning to normal */
1157
		__hci_update_background_scan(&req);
1158
		/* Enable all of the advertisement filters */
1159
		hci_req_prepare_adv_monitor_suspend(&req, false);
1160

1161
		/* Unpause directed advertising */
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
		hdev->advertising_paused = false;
		if (hdev->advertising_old_state) {
			set_bit(SUSPEND_UNPAUSE_ADVERTISING,
				hdev->suspend_tasks);
			hci_dev_set_flag(hdev, HCI_ADVERTISING);
			queue_work(hdev->req_workqueue,
				   &hdev->discoverable_update);
			hdev->advertising_old_state = 0;
		}

1172 1173
		/* Resume other advertisements */
		if (hdev->adv_instance_cnt)
1174
			__hci_req_resume_adv_instances(&req);
1175

1176 1177 1178 1179 1180 1181 1182 1183 1184
		/* Unpause discovery */
		hdev->discovery_paused = false;
		if (hdev->discovery_old_state != DISCOVERY_STOPPED &&
		    hdev->discovery_old_state != DISCOVERY_STOPPING) {
			set_bit(SUSPEND_UNPAUSE_DISCOVERY, hdev->suspend_tasks);
			hci_discovery_set_state(hdev, DISCOVERY_STARTING);
			queue_work(hdev->req_workqueue, &hdev->discov_update);
		}

1185 1186 1187 1188
		hci_req_run(&req, suspend_req_complete);
	}

	hdev->suspend_state = next;
1189 1190 1191 1192 1193 1194

done:
	clear_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
	wake_up(&hdev->suspend_wait_q);
}

1195
static bool adv_cur_instance_is_scannable(struct hci_dev *hdev)
1196
{
1197
	return hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance);
1198 1199 1200 1201
}

void __hci_req_disable_advertising(struct hci_request *req)
{
1202
	if (ext_adv_capable(req->hdev)) {
1203
		__hci_req_disable_ext_adv_instance(req, 0x00);
1204

1205 1206 1207 1208 1209
	} else {
		u8 enable = 0x00;

		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
	}
1210 1211
}

1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
{
	/* If privacy is not enabled don't use RPA */
	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
		return false;

	/* If basic privacy mode is enabled use RPA */
	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
		return true;

	/* If limited privacy mode is enabled don't use RPA if we're
	 * both discoverable and bondable.
	 */
	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
	    hci_dev_test_flag(hdev, HCI_BONDABLE))
		return false;

	/* We're neither bondable nor discoverable in the limited
	 * privacy mode, therefore use RPA.
	 */
	return true;
}

1235 1236 1237 1238 1239 1240
static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
{
	/* If there is no connection we are OK to advertise. */
	if (hci_conn_num(hdev, LE_LINK) == 0)
		return true;

1241 1242 1243 1244
	/* Check le_states if there is any connection in peripheral role. */
	if (hdev->conn_hash.le_num_peripheral > 0) {
		/* Peripheral connection state and non connectable mode bit 20.
		 */
1245 1246 1247
		if (!connectable && !(hdev->le_states[2] & 0x10))
			return false;

1248
		/* Peripheral connection state and connectable mode bit 38
1249 1250
		 * and scannable bit 21.
		 */
1251 1252
		if (connectable && (!(hdev->le_states[4] & 0x40) ||
				    !(hdev->le_states[2] & 0x20)))
1253 1254 1255
			return false;
	}

1256 1257 1258
	/* Check le_states if there is any connection in central role. */
	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
		/* Central connection state and non connectable mode bit 18. */
1259 1260 1261
		if (!connectable && !(hdev->le_states[2] & 0x02))
			return false;

1262
		/* Central connection state and connectable mode bit 35 and
1263 1264
		 * scannable 19.
		 */
1265
		if (connectable && (!(hdev->le_states[4] & 0x08) ||
1266 1267 1268 1269 1270 1271 1272
				    !(hdev->le_states[2] & 0x08)))
			return false;
	}

	return true;
}

1273 1274 1275
void __hci_req_enable_advertising(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
1276
	struct adv_info *adv;
1277 1278 1279
	struct hci_cp_le_set_adv_param cp;
	u8 own_addr_type, enable = 0x01;
	bool connectable;
1280
	u16 adv_min_interval, adv_max_interval;
1281 1282
	u32 flags;

1283 1284
	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
	adv = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1285 1286 1287 1288 1289 1290 1291 1292

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

	if (!is_advertising_allowed(hdev, connectable))
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
		return;

	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
		__hci_req_disable_advertising(req);

	/* Clear the HCI_LE_ADV bit temporarily so that the
	 * hci_update_random_address knows that it's safe to go ahead
	 * and write a new random address. The flag will be set back on
	 * as soon as the SET_ADV_ENABLE HCI command completes.
	 */
	hci_dev_clear_flag(hdev, HCI_LE_ADV);

	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
1309 1310 1311
	if (hci_update_random_address(req, !connectable,
				      adv_use_rpa(hdev, flags),
				      &own_addr_type) < 0)
1312 1313 1314 1315
		return;

	memset(&cp, 0, sizeof(cp));

1316 1317 1318
	if (adv) {
		adv_min_interval = adv->min_interval;
		adv_max_interval = adv->max_interval;
1319
	} else {
1320 1321
		adv_min_interval = hdev->le_adv_min_interval;
		adv_max_interval = hdev->le_adv_max_interval;
1322 1323 1324 1325
	}

	if (connectable) {
		cp.type = LE_ADV_IND;
1326
	} else {
1327
		if (adv_cur_instance_is_scannable(hdev))
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
			cp.type = LE_ADV_SCAN_IND;
		else
			cp.type = LE_ADV_NONCONN_IND;

		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
		}
	}

	cp.min_interval = cpu_to_le16(adv_min_interval);
	cp.max_interval = cpu_to_le16(adv_max_interval);
1341 1342 1343 1344 1345 1346 1347 1348
	cp.own_address_type = own_addr_type;
	cp.channel_map = hdev->le_adv_channel_map;

	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);

	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
}

1349
void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1350 1351 1352 1353 1354 1355 1356
{
	struct hci_dev *hdev = req->hdev;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

1357
	if (ext_adv_capable(hdev)) {
1358 1359 1360 1361
		struct {
			struct hci_cp_le_set_ext_scan_rsp_data cp;
			u8 data[HCI_MAX_EXT_AD_LENGTH];
		} pdu;
1362

1363
		memset(&pdu, 0, sizeof(pdu));
1364

1365
		len = eir_create_scan_rsp(hdev, instance, pdu.data);
1366 1367

		if (hdev->scan_rsp_data_len == len &&
1368
		    !memcmp(pdu.data, hdev->scan_rsp_data, len))
1369 1370
			return;

1371
		memcpy(hdev->scan_rsp_data, pdu.data, len);
1372 1373
		hdev->scan_rsp_data_len = len;

1374 1375 1376 1377
		pdu.cp.handle = instance;
		pdu.cp.length = len;
		pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
		pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1378

1379 1380
		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
			    sizeof(pdu.cp) + len, &pdu.cp);
1381 1382 1383 1384 1385
	} else {
		struct hci_cp_le_set_scan_rsp_data cp;

		memset(&cp, 0, sizeof(cp));

1386
		len = eir_create_scan_rsp(hdev, instance, cp.data);
1387 1388 1389 1390

		if (hdev->scan_rsp_data_len == len &&
		    !memcmp(cp.data, hdev->scan_rsp_data, len))
			return;
1391

1392 1393
		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
		hdev->scan_rsp_data_len = len;
1394

1395
		cp.length = len;
1396

1397 1398
		hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
	}
1399 1400
}

1401
void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1402 1403 1404 1405 1406 1407 1408
{
	struct hci_dev *hdev = req->hdev;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

1409
	if (ext_adv_capable(hdev)) {
1410 1411 1412 1413
		struct {
			struct hci_cp_le_set_ext_adv_data cp;
			u8 data[HCI_MAX_EXT_AD_LENGTH];
		} pdu;
1414

1415
		memset(&pdu, 0, sizeof(pdu));
1416

1417
		len = eir_create_adv_data(hdev, instance, pdu.data);
1418 1419 1420

		/* There's nothing to do if the data hasn't changed */
		if (hdev->adv_data_len == len &&
1421
		    memcmp(pdu.data, hdev->adv_data, len) == 0)
1422 1423
			return;

1424
		memcpy(hdev->adv_data, pdu.data, len);
1425 1426
		hdev->adv_data_len = len;

1427 1428 1429 1430
		pdu.cp.length = len;
		pdu.cp.handle = instance;
		pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
		pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1431

1432 1433
		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA,
			    sizeof(pdu.cp) + len, &pdu.cp);
1434 1435 1436 1437
	} else {
		struct hci_cp_le_set_adv_data cp;

		memset(&cp, 0, sizeof(cp));
1438

1439
		len = eir_create_adv_data(hdev, instance, cp.data);
1440 1441 1442 1443 1444

		/* There's nothing to do if the data hasn't changed */
		if (hdev->adv_data_len == len &&
		    memcmp(cp.data, hdev->adv_data, len) == 0)
			return;
1445

1446 1447 1448 1449 1450 1451 1452
		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
		hdev->adv_data_len = len;

		cp.length = len;

		hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
	}
1453 1454
}

1455
int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1456 1457 1458 1459 1460 1461 1462 1463 1464
{
	struct hci_request req;

	hci_req_init(&req, hdev);
	__hci_req_update_adv_data(&req, instance);

	return hci_req_run(&req, NULL);
}

1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
static void enable_addr_resolution_complete(struct hci_dev *hdev, u8 status,
					    u16 opcode)
{
	BT_DBG("%s status %u", hdev->name, status);
}

void hci_req_disable_address_resolution(struct hci_dev *hdev)
{
	struct hci_request req;
	__u8 enable = 0x00;

1476
	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
1477 1478 1479 1480 1481 1482 1483 1484 1485
		return;

	hci_req_init(&req, hdev);

	hci_req_add(&req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);

	hci_req_run(&req, enable_addr_resolution_complete);
}

1486 1487
static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
1488
	bt_dev_dbg(hdev, "status %u", status);
1489 1490 1491 1492 1493 1494 1495
}

void hci_req_reenable_advertising(struct hci_dev *hdev)
{
	struct hci_request req;

	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1496
	    list_empty(&hdev->adv_instances))
1497 1498 1499 1500
		return;

	hci_req_init(&req, hdev);

1501 1502 1503
	if (hdev->cur_adv_instance) {
		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
						true);
1504
	} else {
1505 1506 1507 1508 1509 1510 1511
		if (ext_adv_capable(hdev)) {
			__hci_req_start_ext_adv(&req, 0x00);
		} else {
			__hci_req_update_adv_data(&req, 0x00);
			__hci_req_update_scan_rsp_data(&req, 0x00);
			__hci_req_enable_advertising(&req);
		}
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	}

	hci_req_run(&req, adv_enable_complete);
}

static void adv_timeout_expire(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    adv_instance_expire.work);

	struct hci_request req;
	u8 instance;

1525
	bt_dev_dbg(hdev, "");
1526 1527 1528 1529 1530

	hci_dev_lock(hdev);

	hdev->adv_instance_timeout = 0;

1531
	instance = hdev->cur_adv_instance;
1532 1533 1534 1535 1536
	if (instance == 0x00)
		goto unlock;

	hci_req_init(&req, hdev);

1537
	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1538 1539 1540 1541

	if (list_empty(&hdev->adv_instances))
		__hci_req_disable_advertising(&req);

1542
	hci_req_run(&req, NULL);
1543 1544 1545 1546 1547

unlock:
	hci_dev_unlock(hdev);
}

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
static int hci_req_add_le_interleaved_scan(struct hci_request *req,
					   unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	int ret = 0;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
		hci_req_add_le_scan_disable(req, false);
	hci_req_add_le_passive_scan(req);

	switch (hdev->interleave_scan_state) {
	case INTERLEAVE_SCAN_ALLOWLIST:
		bt_dev_dbg(hdev, "next state: allowlist");
		hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
		break;
	case INTERLEAVE_SCAN_NO_FILTER:
		bt_dev_dbg(hdev, "next state: no filter");
		hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST;
		break;
	case INTERLEAVE_SCAN_NONE:
		BT_ERR("unexpected error");
		ret = -1;
	}

	hci_dev_unlock(hdev);

	return ret;
}

static void interleave_scan_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    interleave_scan.work);
	u8 status;
	unsigned long timeout;

	if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) {
		timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration);
	} else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) {
		timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration);
	} else {
		bt_dev_err(hdev, "unexpected error");
		return;
	}

	hci_req_sync(hdev, hci_req_add_le_interleaved_scan, 0,
		     HCI_CMD_TIMEOUT, &status);

	/* Don't continue interleaving if it was canceled */
	if (is_interleave_scanning(hdev))
		queue_delayed_work(hdev->req_workqueue,
				   &hdev->interleave_scan, timeout);
}

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
			   bool use_rpa, struct adv_info *adv_instance,
			   u8 *own_addr_type, bdaddr_t *rand_addr)
{
	int err;

	bacpy(rand_addr, BDADDR_ANY);

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired then generate a new one.
	 */
	if (use_rpa) {
1616 1617 1618
		/* If Controller supports LL Privacy use own address type is
		 * 0x03
		 */
1619
		if (use_ll_privacy(hdev))
1620 1621 1622
			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
		else
			*own_addr_type = ADDR_LE_DEV_RANDOM;
1623 1624

		if (adv_instance) {
1625
			if (adv_rpa_valid(adv_instance))
1626 1627
				return 0;
		} else {
1628
			if (rpa_valid(hdev))
1629 1630 1631 1632 1633
				return 0;
		}

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
1634
			bt_dev_err(hdev, "failed to generate new RPA");
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
			return err;
		}

		bacpy(rand_addr, &hdev->rpa);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for
	 * non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		bacpy(rand_addr, &nrpa);

		return 0;
	}

	/* No privacy so use a public address. */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}

1677 1678 1679 1680 1681
void __hci_req_clear_ext_adv_sets(struct hci_request *req)
{
	hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
}

1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
{
	struct hci_dev *hdev = req->hdev;

	/* If we're advertising or initiating an LE connection we can't
	 * go ahead and change the random address at this time. This is
	 * because the eventual initiator address used for the
	 * subsequently created connection will be undefined (some
	 * controllers use the new address and others the one we had
	 * when the operation started).
	 *
	 * In this kind of scenario skip the update and let the random
	 * address be updated at the next cycle.
	 */
	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
	    hci_lookup_le_connect(hdev)) {
		bt_dev_dbg(hdev, "Deferring random address update");
		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
		return;
	}

	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
}

1706
int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1707 1708 1709 1710 1711
{
	struct hci_cp_le_set_ext_adv_params cp;
	struct hci_dev *hdev = req->hdev;
	bool connectable;
	u32 flags;
1712 1713 1714 1715
	bdaddr_t random_addr;
	u8 own_addr_type;
	int err;
	struct adv_info *adv_instance;
1716
	bool secondary_adv;
1717

1718 1719 1720 1721 1722 1723 1724 1725
	if (instance > 0) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return -EINVAL;
	} else {
		adv_instance = NULL;
	}

1726
	flags = hci_adv_instance_flags(hdev, instance);
1727 1728 1729 1730 1731 1732 1733

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

1734
	if (!is_advertising_allowed(hdev, connectable))
1735 1736
		return -EPERM;

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
	err = hci_get_random_address(hdev, !connectable,
				     adv_use_rpa(hdev, flags), adv_instance,
				     &own_addr_type, &random_addr);
	if (err < 0)
		return err;

1747 1748
	memset(&cp, 0, sizeof(cp));

1749 1750 1751 1752 1753 1754 1755 1756 1757
	if (adv_instance) {
		hci_cpu_to_le24(adv_instance->min_interval, cp.min_interval);
		hci_cpu_to_le24(adv_instance->max_interval, cp.max_interval);
		cp.tx_power = adv_instance->tx_power;
	} else {
		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
	}
1758

1759 1760 1761 1762 1763 1764 1765
	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);

	if (connectable) {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1766
	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
1767
		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
	} else {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
	}
1778

1779
	cp.own_addr_type = own_addr_type;
1780
	cp.channel_map = hdev->le_adv_channel_map;
1781
	cp.handle = instance;
1782

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	if (flags & MGMT_ADV_FLAG_SEC_2M) {
		cp.primary_phy = HCI_ADV_PHY_1M;
		cp.secondary_phy = HCI_ADV_PHY_2M;
	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
		cp.primary_phy = HCI_ADV_PHY_CODED;
		cp.secondary_phy = HCI_ADV_PHY_CODED;
	} else {
		/* In all other cases use 1M */
		cp.primary_phy = HCI_ADV_PHY_1M;
		cp.secondary_phy = HCI_ADV_PHY_1M;
	}

1795 1796
	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);

1797 1798
	if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
	    bacmp(&random_addr, BDADDR_ANY)) {
		struct hci_cp_le_set_adv_set_rand_addr cp;

		/* Check if random address need to be updated */
		if (adv_instance) {
			if (!bacmp(&random_addr, &adv_instance->random_addr))
				return 0;
		} else {
			if (!bacmp(&random_addr, &hdev->random_addr))
				return 0;
1809 1810 1811 1812 1813 1814 1815
			/* Instance 0x00 doesn't have an adv_info, instead it
			 * uses hdev->random_addr to track its address so
			 * whenever it needs to be updated this also set the
			 * random address since hdev->random_addr is shared with
			 * scan state machine.
			 */
			set_random_addr(req, &random_addr);
1816 1817 1818 1819
		}

		memset(&cp, 0, sizeof(cp));

1820
		cp.handle = instance;
1821 1822 1823 1824 1825 1826 1827
		bacpy(&cp.bdaddr, &random_addr);

		hci_req_add(req,
			    HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
			    sizeof(cp), &cp);
	}

1828 1829 1830
	return 0;
}

1831
int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
1832
{
1833
	struct hci_dev *hdev = req->hdev;
1834 1835 1836
	struct hci_cp_le_set_ext_adv_enable *cp;
	struct hci_cp_ext_adv_set *adv_set;
	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
1837 1838 1839 1840 1841 1842 1843 1844 1845
	struct adv_info *adv_instance;

	if (instance > 0) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return -EINVAL;
	} else {
		adv_instance = NULL;
	}
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856

	cp = (void *) data;
	adv_set = (void *) cp->data;

	memset(cp, 0, sizeof(*cp));

	cp->enable = 0x01;
	cp->num_of_sets = 0x01;

	memset(adv_set, 0, sizeof(*adv_set));

1857 1858 1859 1860 1861 1862
	adv_set->handle = instance;

	/* Set duration per instance since controller is responsible for
	 * scheduling it.
	 */
	if (adv_instance && adv_instance->duration) {
1863
		u16 duration = adv_instance->timeout * MSEC_PER_SEC;
1864 1865 1866 1867

		/* Time = N * 10 ms */
		adv_set->duration = cpu_to_le16(duration / 10);
	}
1868 1869 1870 1871

	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
		    sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
		    data);
1872 1873

	return 0;
1874 1875
}

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
int __hci_req_disable_ext_adv_instance(struct hci_request *req, u8 instance)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_le_set_ext_adv_enable *cp;
	struct hci_cp_ext_adv_set *adv_set;
	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
	u8 req_size;

	/* If request specifies an instance that doesn't exist, fail */
	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
		return -EINVAL;

	memset(data, 0, sizeof(data));

	cp = (void *)data;
	adv_set = (void *)cp->data;

	/* Instance 0x00 indicates all advertising instances will be disabled */
	cp->num_of_sets = !!instance;
	cp->enable = 0x00;

	adv_set->handle = instance;

	req_size = sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets;
	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, req_size, data);

	return 0;
}

int __hci_req_remove_ext_adv_instance(struct hci_request *req, u8 instance)
{
	struct hci_dev *hdev = req->hdev;

	/* If request specifies an instance that doesn't exist, fail */
	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
		return -EINVAL;

	hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(instance), &instance);

	return 0;
}

1918 1919
int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
{
1920
	struct hci_dev *hdev = req->hdev;
1921
	struct adv_info *adv_instance = hci_find_adv_instance(hdev, instance);
1922 1923
	int err;

1924 1925 1926 1927 1928
	/* If instance isn't pending, the chip knows about it, and it's safe to
	 * disable
	 */
	if (adv_instance && !adv_instance->pending)
		__hci_req_disable_ext_adv_instance(req, instance);
1929

1930 1931 1932 1933
	err = __hci_req_setup_ext_adv_instance(req, instance);
	if (err < 0)
		return err;

1934
	__hci_req_update_scan_rsp_data(req, instance);
1935
	__hci_req_enable_ext_advertising(req, instance);
1936 1937 1938 1939

	return 0;
}

1940 1941 1942 1943 1944 1945 1946 1947
int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
				    bool force)
{
	struct hci_dev *hdev = req->hdev;
	struct adv_info *adv_instance = NULL;
	u16 timeout;

	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1948
	    list_empty(&hdev->adv_instances))
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
		return -EPERM;

	if (hdev->adv_instance_timeout)
		return -EBUSY;

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return -ENOENT;

	/* A zero timeout means unlimited advertising. As long as there is
	 * only one instance, duration should be ignored. We still set a timeout
	 * in case further instances are being added later on.
	 *
	 * If the remaining lifetime of the instance is more than the duration
	 * then the timeout corresponds to the duration, otherwise it will be
	 * reduced to the remaining instance lifetime.
	 */
	if (adv_instance->timeout == 0 ||
	    adv_instance->duration <= adv_instance->remaining_time)
		timeout = adv_instance->duration;
	else
		timeout = adv_instance->remaining_time;

	/* The remaining time is being reduced unless the instance is being
	 * advertised without time limit.
	 */
	if (adv_instance->timeout)
		adv_instance->remaining_time =
				adv_instance->remaining_time - timeout;

1979 1980 1981 1982
	/* Only use work for scheduling instances with legacy advertising */
	if (!ext_adv_capable(hdev)) {
		hdev->adv_instance_timeout = timeout;
		queue_delayed_work(hdev->req_workqueue,
1983 1984
			   &hdev->adv_instance_expire,
			   msecs_to_jiffies(timeout * 1000));
1985
	}
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

	/* If we're just re-scheduling the same instance again then do not
	 * execute any HCI commands. This happens when a single instance is
	 * being advertised.
	 */
	if (!force && hdev->cur_adv_instance == instance &&
	    hci_dev_test_flag(hdev, HCI_LE_ADV))
		return 0;

	hdev->cur_adv_instance = instance;
1996 1997 1998 1999 2000 2001 2002
	if (ext_adv_capable(hdev)) {
		__hci_req_start_ext_adv(req, instance);
	} else {
		__hci_req_update_adv_data(req, instance);
		__hci_req_update_scan_rsp_data(req, instance);
		__hci_req_enable_advertising(req);
	}
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

	return 0;
}

/* For a single instance:
 * - force == true: The instance will be removed even when its remaining
 *   lifetime is not zero.
 * - force == false: the instance will be deactivated but kept stored unless
 *   the remaining lifetime is zero.
 *
 * For instance == 0x00:
 * - force == true: All instances will be removed regardless of their timeout
 *   setting.
 * - force == false: Only instances that have a timeout will be removed.
 */
2018 2019 2020
void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
				struct hci_request *req, u8 instance,
				bool force)
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
{
	struct adv_info *adv_instance, *n, *next_instance = NULL;
	int err;
	u8 rem_inst;

	/* Cancel any timeout concerning the removed instance(s). */
	if (!instance || hdev->cur_adv_instance == instance)
		cancel_adv_timeout(hdev);

	/* Get the next instance to advertise BEFORE we remove
	 * the current one. This can be the same instance again
	 * if there is only one instance.
	 */
	if (instance && hdev->cur_adv_instance == instance)
		next_instance = hci_get_next_instance(hdev, instance);

	if (instance == 0x00) {
		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
					 list) {
			if (!(force || adv_instance->timeout))
				continue;

			rem_inst = adv_instance->instance;
			err = hci_remove_adv_instance(hdev, rem_inst);
			if (!err)
2046
				mgmt_advertising_removed(sk, hdev, rem_inst);
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
		}
	} else {
		adv_instance = hci_find_adv_instance(hdev, instance);

		if (force || (adv_instance && adv_instance->timeout &&
			      !adv_instance->remaining_time)) {
			/* Don't advertise a removed instance. */
			if (next_instance &&
			    next_instance->instance == instance)
				next_instance = NULL;

			err = hci_remove_adv_instance(hdev, instance);
			if (!err)
2060
				mgmt_advertising_removed(sk, hdev, instance);
2061 2062 2063 2064 2065 2066 2067
		}
	}

	if (!req || !hdev_is_powered(hdev) ||
	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
		return;

2068
	if (next_instance && !ext_adv_capable(hdev))
2069 2070 2071 2072
		__hci_req_schedule_adv_instance(req, next_instance->instance,
						false);
}

2073
int hci_update_random_address(struct hci_request *req, bool require_privacy,
2074
			      bool use_rpa, u8 *own_addr_type)
2075 2076 2077 2078 2079 2080 2081 2082
{
	struct hci_dev *hdev = req->hdev;
	int err;

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired or there is something else than
	 * the current RPA in use, then generate a new one.
	 */
2083
	if (use_rpa) {
2084 2085 2086
		/* If Controller supports LL Privacy use own address type is
		 * 0x03
		 */
2087
		if (use_ll_privacy(hdev))
2088 2089 2090
			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
		else
			*own_addr_type = ADDR_LE_DEV_RANDOM;
2091

2092
		if (rpa_valid(hdev))
2093 2094 2095 2096
			return 0;

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
2097
			bt_dev_err(hdev, "failed to generate new RPA");
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
			return err;
		}

		set_random_addr(req, &hdev->rpa);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for active
	 * scanning and non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		set_random_addr(req, &nrpa);
		return 0;
	}

	/* If forcing static address is in use or there is no public
	 * address use the static address as random address (but skip
	 * the HCI command if the current random address is already the
	 * static one.
2137 2138 2139 2140
	 *
	 * In case BR/EDR has been disabled on a dual-mode controller
	 * and a static address has been configured, then use that
	 * address instead of the public BR/EDR address.
2141
	 */
2142
	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2143
	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2144
	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2145
	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
		*own_addr_type = ADDR_LE_DEV_RANDOM;
		if (bacmp(&hdev->static_addr, &hdev->random_addr))
			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
				    &hdev->static_addr);
		return 0;
	}

	/* Neither privacy nor static address is being used so use a
	 * public address.
	 */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}
2160

2161
static bool disconnected_accept_list_entries(struct hci_dev *hdev)
2162 2163 2164
{
	struct bdaddr_list *b;

2165
	list_for_each_entry(b, &hdev->accept_list, list) {
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
		struct hci_conn *conn;

		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
		if (!conn)
			return true;

		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
			return true;
	}

	return false;
}

2179
void __hci_req_update_scan(struct hci_request *req)
2180 2181 2182 2183
{
	struct hci_dev *hdev = req->hdev;
	u8 scan;

2184
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2185 2186 2187 2188 2189 2190 2191 2192
		return;

	if (!hdev_is_powered(hdev))
		return;

	if (mgmt_powering_down(hdev))
		return;

2193 2194 2195
	if (hdev->scanning_paused)
		return;

2196
	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2197
	    disconnected_accept_list_entries(hdev))
2198 2199 2200 2201
		scan = SCAN_PAGE;
	else
		scan = SCAN_DISABLED;

2202
	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2203 2204
		scan |= SCAN_INQUIRY;

2205 2206 2207 2208
	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
		return;

2209 2210 2211
	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
}

2212
static int update_scan(struct hci_request *req, unsigned long opt)
2213
{
2214 2215 2216 2217 2218
	hci_dev_lock(req->hdev);
	__hci_req_update_scan(req);
	hci_dev_unlock(req->hdev);
	return 0;
}
2219

2220 2221 2222 2223 2224
static void scan_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);

	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
2225 2226
}

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
static int connectable_update(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	hci_dev_lock(hdev);

	__hci_req_update_scan(req);

	/* If BR/EDR is not enabled and we disable advertising as a
	 * by-product of disabling connectable, we need to update the
	 * advertising flags.
	 */
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2240
		__hci_req_update_adv_data(req, hdev->cur_adv_instance);
2241 2242 2243

	/* Update the advertising parameters if necessary */
	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2244 2245 2246 2247 2248 2249
	    !list_empty(&hdev->adv_instances)) {
		if (ext_adv_capable(hdev))
			__hci_req_start_ext_adv(req, hdev->cur_adv_instance);
		else
			__hci_req_enable_advertising(req);
	}
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267

	__hci_update_background_scan(req);

	hci_dev_unlock(hdev);

	return 0;
}

static void connectable_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    connectable_update);
	u8 status;

	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
	mgmt_set_connectable_complete(hdev, status);
}

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
static u8 get_service_classes(struct hci_dev *hdev)
{
	struct bt_uuid *uuid;
	u8 val = 0;

	list_for_each_entry(uuid, &hdev->uuids, list)
		val |= uuid->svc_hint;

	return val;
}

void __hci_req_update_class(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	u8 cod[3];

2284
	bt_dev_dbg(hdev, "");
2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307

	if (!hdev_is_powered(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	cod[0] = hdev->minor_class;
	cod[1] = hdev->major_class;
	cod[2] = get_service_classes(hdev);

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
		cod[1] |= 0x20;

	if (memcmp(cod, hdev->dev_class, 3) == 0)
		return;

	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
}

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
static void write_iac(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_current_iac_lap cp;

	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
		return;

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
		/* Limited discoverable mode */
		cp.num_iac = min_t(u8, hdev->num_iac, 2);
		cp.iac_lap[0] = 0x00;	/* LIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
		cp.iac_lap[3] = 0x33;	/* GIAC */
		cp.iac_lap[4] = 0x8b;
		cp.iac_lap[5] = 0x9e;
	} else {
		/* General discoverable mode */
		cp.num_iac = 1;
		cp.iac_lap[0] = 0x33;	/* GIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
	}

	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
		    (cp.num_iac * 3) + 1, &cp);
}

static int discoverable_update(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
		write_iac(req);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
	}

	/* Advertising instances don't use the global discoverable setting, so
	 * only update AD if advertising was enabled using Set Advertising.
	 */
2352
	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2353
		__hci_req_update_adv_data(req, 0x00);
2354

2355 2356 2357
		/* Discoverable mode affects the local advertising
		 * address in limited privacy mode.
		 */
2358 2359 2360 2361 2362 2363
		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
			if (ext_adv_capable(hdev))
				__hci_req_start_ext_adv(req, 0x00);
			else
				__hci_req_enable_advertising(req);
		}
2364 2365
	}

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
	hci_dev_unlock(hdev);

	return 0;
}

static void discoverable_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discoverable_update);
	u8 status;

	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
	mgmt_set_discoverable_complete(hdev, status);
}

2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
		      u8 reason)
{
	switch (conn->state) {
	case BT_CONNECTED:
	case BT_CONFIG:
		if (conn->type == AMP_LINK) {
			struct hci_cp_disconn_phy_link cp;

			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
			cp.reason = reason;
			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
				    &cp);
		} else {
			struct hci_cp_disconnect dc;

			dc.handle = cpu_to_le16(conn->handle);
			dc.reason = reason;
			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
		}

		conn->state = BT_DISCONN;

		break;
	case BT_CONNECT:
		if (conn->type == LE_LINK) {
			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
				break;
			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
				    0, NULL);
		} else if (conn->type == ACL_LINK) {
			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
				break;
			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
				    6, &conn->dst);
		}
		break;
	case BT_CONNECT2:
		if (conn->type == ACL_LINK) {
			struct hci_cp_reject_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);
			rej.reason = reason;

			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
				    sizeof(rej), &rej);
		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
			struct hci_cp_reject_sync_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);

			/* SCO rejection has its own limited set of
			 * allowed error values (0x0D-0x0F) which isn't
			 * compatible with most values passed to this
			 * function. To be safe hard-code one of the
			 * values that's suitable for SCO.
			 */
2438
			rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452

			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
				    sizeof(rej), &rej);
		}
		break;
	default:
		conn->state = BT_CLOSED;
		break;
	}
}

static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	if (status)
2453
		bt_dev_dbg(hdev, "Failed to abort connection: status 0x%2.2x", status);
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
}

int hci_abort_conn(struct hci_conn *conn, u8 reason)
{
	struct hci_request req;
	int err;

	hci_req_init(&req, conn->hdev);

	__hci_abort_conn(&req, conn, reason);

	err = hci_req_run(&req, abort_conn_complete);
	if (err && err != -ENODATA) {
2467
		bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2468 2469 2470 2471 2472
		return err;
	}

	return 0;
}
2473

2474
static int update_bg_scan(struct hci_request *req, unsigned long opt)
2475 2476 2477 2478
{
	hci_dev_lock(req->hdev);
	__hci_update_background_scan(req);
	hci_dev_unlock(req->hdev);
2479
	return 0;
2480 2481 2482 2483 2484 2485
}

static void bg_scan_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    bg_scan_update);
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
	struct hci_conn *conn;
	u8 status;
	int err;

	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
	if (!err)
		return;

	hci_dev_lock(hdev);

	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
	if (conn)
		hci_le_conn_failed(conn, status);
2499

2500
	hci_dev_unlock(hdev);
2501 2502
}

2503
static int le_scan_disable(struct hci_request *req, unsigned long opt)
2504
{
2505
	hci_req_add_le_scan_disable(req, false);
2506
	return 0;
2507 2508
}

2509
static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2510
{
2511
	u8 length = opt;
2512 2513
	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2514 2515
	struct hci_cp_inquiry cp;

2516 2517 2518
	if (test_bit(HCI_INQUIRY, &req->hdev->flags))
		return 0;

2519
	bt_dev_dbg(req->hdev, "");
2520

2521 2522 2523
	hci_dev_lock(req->hdev);
	hci_inquiry_cache_flush(req->hdev);
	hci_dev_unlock(req->hdev);
2524

2525
	memset(&cp, 0, sizeof(cp));
2526 2527 2528 2529 2530 2531

	if (req->hdev->discovery.limited)
		memcpy(&cp.lap, liac, sizeof(cp.lap));
	else
		memcpy(&cp.lap, giac, sizeof(cp.lap));

2532
	cp.length = length;
2533

2534
	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2535

2536
	return 0;
2537 2538 2539 2540 2541 2542 2543 2544
}

static void le_scan_disable_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_disable.work);
	u8 status;

2545
	bt_dev_dbg(hdev, "");
2546

2547 2548 2549
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return;

2550 2551
	cancel_delayed_work(&hdev->le_scan_restart);

2552 2553
	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
	if (status) {
2554 2555
		bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
			   status);
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
		return;
	}

	hdev->discovery.scan_start = 0;

	/* If we were running LE only scan, change discovery state. If
	 * we were running both LE and BR/EDR inquiry simultaneously,
	 * and BR/EDR inquiry is already finished, stop discovery,
	 * otherwise BR/EDR inquiry will stop discovery when finished.
	 * If we will resolve remote device name, do not change
	 * discovery state.
	 */

	if (hdev->discovery.type == DISCOV_TYPE_LE)
		goto discov_stopped;

	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2573 2574
		return;

2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585
	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
		    hdev->discovery.state != DISCOVERY_RESOLVING)
			goto discov_stopped;

		return;
	}

	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
		     HCI_CMD_TIMEOUT, &status);
	if (status) {
2586
		bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2587 2588 2589 2590 2591 2592 2593 2594 2595
		goto discov_stopped;
	}

	return;

discov_stopped:
	hci_dev_lock(hdev);
	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
	hci_dev_unlock(hdev);
2596 2597
}

2598 2599 2600 2601 2602 2603 2604 2605
static int le_scan_restart(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	/* If controller is not scanning we are done. */
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return 0;

2606 2607 2608 2609 2610
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return 0;
	}

2611
	hci_req_add_le_scan_disable(req, false);
2612

2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;

		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
		ext_enable_cp.enable = LE_SCAN_ENABLE;
		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
			    sizeof(ext_enable_cp), &ext_enable_cp);
	} else {
		struct hci_cp_le_set_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_ENABLE;
		cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
	}
2630 2631 2632 2633 2634

	return 0;
}

static void le_scan_restart_work(struct work_struct *work)
2635
{
2636 2637
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_restart.work);
2638
	unsigned long timeout, duration, scan_start, now;
2639
	u8 status;
2640

2641
	bt_dev_dbg(hdev, "");
2642

2643
	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2644
	if (status) {
2645 2646
		bt_dev_err(hdev, "failed to restart LE scan: status %d",
			   status);
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
		return;
	}

	hci_dev_lock(hdev);

	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
	    !hdev->discovery.scan_start)
		goto unlock;

	/* When the scan was started, hdev->le_scan_disable has been queued
	 * after duration from scan_start. During scan restart this job
	 * has been canceled, and we need to queue it again after proper
	 * timeout, to make sure that scan does not run indefinitely.
	 */
	duration = hdev->discovery.scan_duration;
	scan_start = hdev->discovery.scan_start;
	now = jiffies;
	if (now - scan_start <= duration) {
		int elapsed;

		if (now >= scan_start)
			elapsed = now - scan_start;
		else
			elapsed = ULONG_MAX - scan_start + now;

		timeout = duration - elapsed;
	} else {
		timeout = 0;
	}

	queue_delayed_work(hdev->req_workqueue,
			   &hdev->le_scan_disable, timeout);

unlock:
	hci_dev_unlock(hdev);
}

2684 2685 2686 2687 2688
static int active_scan(struct hci_request *req, unsigned long opt)
{
	uint16_t interval = opt;
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
2689
	/* Accept list is not used for discovery */
2690
	u8 filter_policy = 0x00;
2691 2692
	/* Default is to enable duplicates filter */
	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2693 2694
	/* Discovery doesn't require controller address resolution */
	bool addr_resolv = false;
2695 2696
	int err;

2697
	bt_dev_dbg(hdev, "");
2698 2699 2700 2701 2702

	/* If controller is scanning, it means the background scanning is
	 * running. Thus, we should temporarily stop it in order to set the
	 * discovery scanning parameters.
	 */
H
Howard Chung 已提交
2703
	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2704
		hci_req_add_le_scan_disable(req, false);
H
Howard Chung 已提交
2705 2706
		cancel_interleave_scan(hdev);
	}
2707 2708 2709 2710 2711

	/* All active scans will be done with either a resolvable private
	 * address (when privacy feature has been enabled) or non-resolvable
	 * private address.
	 */
2712 2713
	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
					&own_addr_type);
2714 2715 2716
	if (err < 0)
		own_addr_type = ADDR_LE_DEV_PUBLIC;

2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
	if (hci_is_adv_monitoring(hdev)) {
		/* Duplicate filter should be disabled when some advertisement
		 * monitor is activated, otherwise AdvMon can only receive one
		 * advertisement for one peer(*) during active scanning, and
		 * might report loss to these peers.
		 *
		 * Note that different controllers have different meanings of
		 * |duplicate|. Some of them consider packets with the same
		 * address as duplicate, and others consider packets with the
		 * same address and the same RSSI as duplicate. Although in the
		 * latter case we don't need to disable duplicate filter, but
		 * it is common to have active scanning for a short period of
		 * time, the power impact should be neglectable.
		 */
		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
	}

2734 2735
	hci_req_start_scan(req, LE_SCAN_ACTIVE, interval,
			   hdev->le_scan_window_discovery, own_addr_type,
2736
			   filter_policy, filter_dup, addr_resolv);
2737 2738 2739 2740 2741 2742 2743
	return 0;
}

static int interleaved_discov(struct hci_request *req, unsigned long opt)
{
	int err;

2744
	bt_dev_dbg(req->hdev, "");
2745 2746 2747 2748 2749

	err = active_scan(req, opt);
	if (err)
		return err;

2750
	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2751 2752 2753 2754 2755 2756
}

static void start_discovery(struct hci_dev *hdev, u8 *status)
{
	unsigned long timeout;

2757
	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
2758 2759 2760 2761

	switch (hdev->discovery.type) {
	case DISCOV_TYPE_BREDR:
		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2762 2763
			hci_req_sync(hdev, bredr_inquiry,
				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
				     status);
		return;
	case DISCOV_TYPE_INTERLEAVED:
		/* When running simultaneous discovery, the LE scanning time
		 * should occupy the whole discovery time sine BR/EDR inquiry
		 * and LE scanning are scheduled by the controller.
		 *
		 * For interleaving discovery in comparison, BR/EDR inquiry
		 * and LE scanning are done sequentially with separate
		 * timeouts.
		 */
		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
			     &hdev->quirks)) {
			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
			/* During simultaneous discovery, we double LE scan
			 * interval. We must leave some time for the controller
			 * to do BR/EDR inquiry.
			 */
			hci_req_sync(hdev, interleaved_discov,
2783
				     hdev->le_scan_int_discovery * 2, HCI_CMD_TIMEOUT,
2784 2785 2786 2787 2788
				     status);
			break;
		}

		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2789
		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
2790 2791 2792 2793
			     HCI_CMD_TIMEOUT, status);
		break;
	case DISCOV_TYPE_LE:
		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2794
		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
			     HCI_CMD_TIMEOUT, status);
		break;
	default:
		*status = HCI_ERROR_UNSPECIFIED;
		return;
	}

	if (*status)
		return;

2805
	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821

	/* When service discovery is used and the controller has a
	 * strict duplicate filter, it is important to remember the
	 * start and duration of the scan. This is required for
	 * restarting scanning during the discovery phase.
	 */
	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
		     hdev->discovery.result_filtering) {
		hdev->discovery.scan_start = jiffies;
		hdev->discovery.scan_duration = timeout;
	}

	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
			   timeout);
}

2822 2823 2824 2825 2826 2827 2828 2829
bool hci_req_stop_discovery(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct discovery_state *d = &hdev->discovery;
	struct hci_cp_remote_name_req_cancel cp;
	struct inquiry_entry *e;
	bool ret = false;

2830
	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
2831 2832 2833 2834 2835 2836 2837

	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
		if (test_bit(HCI_INQUIRY, &hdev->flags))
			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);

		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			cancel_delayed_work(&hdev->le_scan_disable);
2838
			cancel_delayed_work(&hdev->le_scan_restart);
2839
			hci_req_add_le_scan_disable(req, false);
2840 2841 2842 2843 2844 2845
		}

		ret = true;
	} else {
		/* Passive scanning */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2846
			hci_req_add_le_scan_disable(req, false);
2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
			ret = true;
		}
	}

	/* No further actions needed for LE-only discovery */
	if (d->type == DISCOV_TYPE_LE)
		return ret;

	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
						     NAME_PENDING);
		if (!e)
			return ret;

		bacpy(&cp.bdaddr, &e->data.bdaddr);
		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
			    &cp);
		ret = true;
	}

	return ret;
}

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
static void config_data_path_complete(struct hci_dev *hdev, u8 status,
				      u16 opcode)
{
	bt_dev_dbg(hdev, "status %u", status);
}

int hci_req_configure_datapath(struct hci_dev *hdev, struct bt_codec *codec)
{
	struct hci_request req;
	int err;
	__u8 vnd_len, *vnd_data = NULL;
	struct hci_op_configure_data_path *cmd = NULL;

	hci_req_init(&req, hdev);

	err = hdev->get_codec_config_data(hdev, ESCO_LINK, codec, &vnd_len,
					  &vnd_data);
	if (err < 0)
		goto error;

	cmd = kzalloc(sizeof(*cmd) + vnd_len, GFP_KERNEL);
	if (!cmd) {
		err = -ENOMEM;
		goto error;
	}

	err = hdev->get_data_path_id(hdev, &cmd->data_path_id);
	if (err < 0)
		goto error;

	cmd->vnd_len = vnd_len;
	memcpy(cmd->vnd_data, vnd_data, vnd_len);

	cmd->direction = 0x00;
	hci_req_add(&req, HCI_CONFIGURE_DATA_PATH, sizeof(*cmd) + vnd_len, cmd);

	cmd->direction = 0x01;
	hci_req_add(&req, HCI_CONFIGURE_DATA_PATH, sizeof(*cmd) + vnd_len, cmd);

	err = hci_req_run(&req, config_data_path_complete);
error:

	kfree(cmd);
	kfree(vnd_data);
	return err;
}

2917 2918 2919 2920 2921 2922 2923 2924 2925
static int stop_discovery(struct hci_request *req, unsigned long opt)
{
	hci_dev_lock(req->hdev);
	hci_req_stop_discovery(req);
	hci_dev_unlock(req->hdev);

	return 0;
}

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
static void discov_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_update);
	u8 status = 0;

	switch (hdev->discovery.state) {
	case DISCOVERY_STARTING:
		start_discovery(hdev, &status);
		mgmt_start_discovery_complete(hdev, status);
		if (status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		else
			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
		break;
2941 2942 2943 2944 2945 2946
	case DISCOVERY_STOPPING:
		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
		mgmt_stop_discovery_complete(hdev, status);
		if (!status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		break;
2947 2948 2949 2950 2951 2952
	case DISCOVERY_STOPPED:
	default:
		return;
	}
}

2953 2954 2955 2956 2957
static void discov_off(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_off.work);

2958
	bt_dev_dbg(hdev, "");
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976

	hci_dev_lock(hdev);

	/* When discoverable timeout triggers, then just make sure
	 * the limited discoverable flag is cleared. Even in the case
	 * of a timeout triggered from general discoverable, it is
	 * safe to unconditionally clear the flag.
	 */
	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
	hdev->discov_timeout = 0;

	hci_dev_unlock(hdev);

	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
	mgmt_new_settings(hdev);
}

2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
static int powered_update_hci(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	u8 link_sec;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
	    !lmp_host_ssp_capable(hdev)) {
		u8 mode = 0x01;

		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);

		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
			u8 support = 0x01;

			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
				    sizeof(support), &support);
		}
	}

	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
	    lmp_bredr_capable(hdev)) {
		struct hci_cp_write_le_host_supported cp;

		cp.le = 0x01;
		cp.simul = 0x00;

		/* Check first if we already have the right
		 * host state (host features set)
		 */
		if (cp.le != lmp_host_le_capable(hdev) ||
		    cp.simul != lmp_host_le_br_capable(hdev))
			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
				    sizeof(cp), &cp);
	}

3014
	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
3015 3016 3017 3018
		/* Make sure the controller has a good default for
		 * advertising data. This also applies to the case
		 * where BR/EDR was toggled during the AUTO_OFF phase.
		 */
3019 3020
		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
		    list_empty(&hdev->adv_instances)) {
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
			int err;

			if (ext_adv_capable(hdev)) {
				err = __hci_req_setup_ext_adv_instance(req,
								       0x00);
				if (!err)
					__hci_req_update_scan_rsp_data(req,
								       0x00);
			} else {
				err = 0;
				__hci_req_update_adv_data(req, 0x00);
				__hci_req_update_scan_rsp_data(req, 0x00);
			}
3034

3035
			if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
3036
				if (!ext_adv_capable(hdev))
3037
					__hci_req_enable_advertising(req);
3038
				else if (!err)
3039 3040
					__hci_req_enable_ext_advertising(req,
									 0x00);
3041
			}
3042 3043
		} else if (!list_empty(&hdev->adv_instances)) {
			struct adv_info *adv_instance;
3044 3045 3046 3047

			adv_instance = list_first_entry(&hdev->adv_instances,
							struct adv_info, list);
			__hci_req_schedule_adv_instance(req,
3048
							adv_instance->instance,
3049
							true);
3050
		}
3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
	}

	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
			    sizeof(link_sec), &link_sec);

	if (lmp_bredr_capable(hdev)) {
		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
			__hci_req_write_fast_connectable(req, true);
		else
			__hci_req_write_fast_connectable(req, false);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
		__hci_req_update_name(req);
		__hci_req_update_eir(req);
	}

	hci_dev_unlock(hdev);
	return 0;
}

int __hci_req_hci_power_on(struct hci_dev *hdev)
{
	/* Register the available SMP channels (BR/EDR and LE) only when
	 * successfully powering on the controller. This late
	 * registration is required so that LE SMP can clearly decide if
	 * the public address or static address is used.
	 */
	smp_register(hdev);

	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
			      NULL);
}

3086 3087
void hci_request_setup(struct hci_dev *hdev)
{
3088
	INIT_WORK(&hdev->discov_update, discov_update);
3089
	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
3090
	INIT_WORK(&hdev->scan_update, scan_update_work);
3091
	INIT_WORK(&hdev->connectable_update, connectable_update_work);
3092
	INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
3093
	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
3094 3095
	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
3096
	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
3097
	INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work);
3098 3099 3100 3101
}

void hci_request_cancel_all(struct hci_dev *hdev)
{
3102 3103
	hci_req_sync_cancel(hdev, ENODEV);

3104
	cancel_work_sync(&hdev->discov_update);
3105
	cancel_work_sync(&hdev->bg_scan_update);
3106
	cancel_work_sync(&hdev->scan_update);
3107
	cancel_work_sync(&hdev->connectable_update);
3108
	cancel_work_sync(&hdev->discoverable_update);
3109
	cancel_delayed_work_sync(&hdev->discov_off);
3110 3111
	cancel_delayed_work_sync(&hdev->le_scan_disable);
	cancel_delayed_work_sync(&hdev->le_scan_restart);
3112 3113 3114 3115 3116

	if (hdev->adv_instance_timeout) {
		cancel_delayed_work_sync(&hdev->adv_instance_expire);
		hdev->adv_instance_timeout = 0;
	}
3117 3118

	cancel_interleave_scan(hdev);
3119
}