hci_request.c 82.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
   BlueZ - Bluetooth protocol stack for Linux

   Copyright (C) 2014 Intel Corporation

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License version 2 as
   published by the Free Software Foundation;

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
   SOFTWARE IS DISCLAIMED.
*/

24 25
#include <linux/sched/signal.h>

26 27
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
28
#include <net/bluetooth/mgmt.h>
29 30 31

#include "smp.h"
#include "hci_request.h"
32
#include "msft.h"
33
#include "eir.h"
34 35 36 37 38 39 40 41

void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
{
	skb_queue_head_init(&req->cmd_q);
	req->hdev = hdev;
	req->err = 0;
}

42 43 44 45 46
void hci_req_purge(struct hci_request *req)
{
	skb_queue_purge(&req->cmd_q);
}

47 48 49 50 51
bool hci_req_status_pend(struct hci_dev *hdev)
{
	return hdev->req_status == HCI_REQ_PEND;
}

52 53
static int req_run(struct hci_request *req, hci_req_complete_t complete,
		   hci_req_complete_skb_t complete_skb)
54 55 56 57 58
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;
	unsigned long flags;

59
	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
60 61 62 63 64 65 66 67 68 69 70 71 72 73

	/* If an error occurred during request building, remove all HCI
	 * commands queued on the HCI request queue.
	 */
	if (req->err) {
		skb_queue_purge(&req->cmd_q);
		return req->err;
	}

	/* Do not allow empty requests */
	if (skb_queue_empty(&req->cmd_q))
		return -ENODATA;

	skb = skb_peek_tail(&req->cmd_q);
74 75 76 77 78 79
	if (complete) {
		bt_cb(skb)->hci.req_complete = complete;
	} else if (complete_skb) {
		bt_cb(skb)->hci.req_complete_skb = complete_skb;
		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
	}
80 81 82 83 84 85 86 87 88 89

	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);

	queue_work(hdev->workqueue, &hdev->cmd_work);

	return 0;
}

90 91 92 93 94 95 96 97 98 99
int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
{
	return req_run(req, complete, NULL);
}

int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
{
	return req_run(req, NULL, complete);
}

100 101 102
static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
				  struct sk_buff *skb)
{
103
	bt_dev_dbg(hdev, "result 0x%2.2x", result);
104 105 106 107 108 109 110 111 112 113

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = result;
		hdev->req_status = HCI_REQ_DONE;
		if (skb)
			hdev->req_skb = skb_get(skb);
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

114
void hci_req_sync_cancel(struct hci_dev *hdev, int err)
115
{
116
	bt_dev_dbg(hdev, "err 0x%2.2x", err);
117 118 119 120 121 122 123 124 125

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = err;
		hdev->req_status = HCI_REQ_CANCELED;
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

/* Execute request and wait for completion. */
126 127
int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
						     unsigned long opt),
128
		   unsigned long opt, u32 timeout, u8 *hci_status)
129 130 131 132
{
	struct hci_request req;
	int err = 0;

133
	bt_dev_dbg(hdev, "start");
134 135 136 137 138

	hci_req_init(&req, hdev);

	hdev->req_status = HCI_REQ_PEND;

139 140 141 142 143 144
	err = func(&req, opt);
	if (err) {
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
		return err;
	}
145 146 147 148 149 150 151 152 153 154

	err = hci_req_run_skb(&req, hci_req_sync_complete);
	if (err < 0) {
		hdev->req_status = 0;

		/* ENODATA means the HCI request command queue is empty.
		 * This can happen when a request with conditionals doesn't
		 * trigger any commands to be sent. This is normal behavior
		 * and should not trigger an error return.
		 */
155 156 157
		if (err == -ENODATA) {
			if (hci_status)
				*hci_status = 0;
158
			return 0;
159 160 161 162
		}

		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
163 164 165 166

		return err;
	}

167 168
	err = wait_event_interruptible_timeout(hdev->req_wait_q,
			hdev->req_status != HCI_REQ_PEND, timeout);
169

170
	if (err == -ERESTARTSYS)
171 172 173 174 175
		return -EINTR;

	switch (hdev->req_status) {
	case HCI_REQ_DONE:
		err = -bt_to_errno(hdev->req_result);
176 177
		if (hci_status)
			*hci_status = hdev->req_result;
178 179 180 181
		break;

	case HCI_REQ_CANCELED:
		err = -hdev->req_result;
182 183
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
184 185 186 187
		break;

	default:
		err = -ETIMEDOUT;
188 189
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
190 191 192
		break;
	}

193 194
	kfree_skb(hdev->req_skb);
	hdev->req_skb = NULL;
195 196
	hdev->req_status = hdev->req_result = 0;

197
	bt_dev_dbg(hdev, "end: err %d", err);
198 199 200 201

	return err;
}

202 203
int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
						  unsigned long opt),
204
		 unsigned long opt, u32 timeout, u8 *hci_status)
205 206 207 208
{
	int ret;

	/* Serialize all requests */
209
	hci_req_sync_lock(hdev);
210 211 212 213 214 215 216 217
	/* check the state after obtaing the lock to protect the HCI_UP
	 * against any races from hci_dev_do_close when the controller
	 * gets removed.
	 */
	if (test_bit(HCI_UP, &hdev->flags))
		ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
	else
		ret = -ENETDOWN;
218
	hci_req_sync_unlock(hdev);
219 220 221 222

	return ret;
}

223 224 225 226 227 228 229 230 231 232 233
struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
				const void *param)
{
	int len = HCI_COMMAND_HDR_SIZE + plen;
	struct hci_command_hdr *hdr;
	struct sk_buff *skb;

	skb = bt_skb_alloc(len, GFP_ATOMIC);
	if (!skb)
		return NULL;

234
	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
235 236 237 238
	hdr->opcode = cpu_to_le16(opcode);
	hdr->plen   = plen;

	if (plen)
239
		skb_put_data(skb, param, plen);
240

241
	bt_dev_dbg(hdev, "skb len %d", skb->len);
242

243 244
	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
	hci_skb_opcode(skb) = opcode;
245 246 247 248 249 250 251 252 253 254 255

	return skb;
}

/* Queue a command to an asynchronous HCI request */
void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
		    const void *param, u8 event)
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;

256
	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
257 258 259 260 261 262 263 264 265

	/* If an error occurred during request building, there is no point in
	 * queueing the HCI command. We can simply return.
	 */
	if (req->err)
		return;

	skb = hci_prepare_cmd(hdev, opcode, plen, param);
	if (!skb) {
266 267
		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
			   opcode);
268 269 270 271 272
		req->err = -ENOMEM;
		return;
	}

	if (skb_queue_empty(&req->cmd_q))
273
		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
274

275
	bt_cb(skb)->hci.req_event = event;
276 277 278 279 280 281 282 283 284 285

	skb_queue_tail(&req->cmd_q, skb);
}

void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
		 const void *param)
{
	hci_req_add_ev(req, opcode, plen, param, 0);
}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_page_scan_activity acp;
	u8 type;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
		return;

	if (enable) {
		type = PAGE_SCAN_TYPE_INTERLACED;

		/* 160 msec page scan interval */
		acp.interval = cpu_to_le16(0x0100);
	} else {
304 305
		type = hdev->def_page_scan_type;
		acp.interval = cpu_to_le16(hdev->def_page_scan_int);
306 307
	}

308
	acp.window = cpu_to_le16(hdev->def_page_scan_window);
309 310 311 312 313 314 315 316 317 318

	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
			    sizeof(acp), &acp);

	if (hdev->page_scan_type != type)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
}

319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
static void start_interleave_scan(struct hci_dev *hdev)
{
	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
	queue_delayed_work(hdev->req_workqueue,
			   &hdev->interleave_scan, 0);
}

static bool is_interleave_scanning(struct hci_dev *hdev)
{
	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
}

static void cancel_interleave_scan(struct hci_dev *hdev)
{
	bt_dev_dbg(hdev, "cancelling interleave scan");

	cancel_delayed_work_sync(&hdev->interleave_scan);

	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
}

/* Return true if interleave_scan wasn't started until exiting this function,
 * otherwise, return false
 */
static bool __hci_update_interleaved_scan(struct hci_dev *hdev)
{
345 346 347 348 349 350
	/* Do interleaved scan only if all of the following are true:
	 * - There is at least one ADV monitor
	 * - At least one pending LE connection or one device to be scanned for
	 * - Monitor offloading is not supported
	 * If so, we should alternate between allowlist scan and one without
	 * any filters to save power.
351 352 353
	 */
	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
				!(list_empty(&hdev->pend_le_conns) &&
354 355 356
				  list_empty(&hdev->pend_le_reports)) &&
				hci_get_adv_monitor_offload_ext(hdev) ==
				    HCI_ADV_MONITOR_EXT_NONE;
357 358 359 360 361 362 363 364 365 366 367 368 369 370
	bool is_interleaving = is_interleave_scanning(hdev);

	if (use_interleaving && !is_interleaving) {
		start_interleave_scan(hdev);
		bt_dev_dbg(hdev, "starting interleave scan");
		return true;
	}

	if (!use_interleaving && is_interleaving)
		cancel_interleave_scan(hdev);

	return false;
}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
/* This function controls the background scanning based on hdev->pend_le_conns
 * list. If there are pending LE connection we start the background scanning,
 * otherwise we stop it.
 *
 * This function requires the caller holds hdev->lock.
 */
static void __hci_update_background_scan(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;

	if (!test_bit(HCI_UP, &hdev->flags) ||
	    test_bit(HCI_INIT, &hdev->flags) ||
	    hci_dev_test_flag(hdev, HCI_SETUP) ||
	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
		return;

	/* No point in doing scanning if LE support hasn't been enabled */
	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

	/* If discovery is active don't interfere with it */
	if (hdev->discovery.state != DISCOVERY_STOPPED)
		return;

	/* Reset RSSI and UUID filters when starting background scanning
	 * since these filters are meant for service discovery only.
	 *
	 * The Start Discovery and Start Service Discovery operations
	 * ensure to set proper values for RSSI threshold and UUID
	 * filter list. So it is safe to just reset them here.
	 */
	hci_discovery_filter_clear(hdev);

406 407
	bt_dev_dbg(hdev, "ADV monitoring is %s",
		   hci_is_adv_monitoring(hdev) ? "on" : "off");
408

409
	if (list_empty(&hdev->pend_le_conns) &&
410 411
	    list_empty(&hdev->pend_le_reports) &&
	    !hci_is_adv_monitoring(hdev)) {
412
		/* If there is no pending LE connections or devices
413 414
		 * to be scanned for or no ADV monitors, we should stop the
		 * background scanning.
415 416 417 418 419 420
		 */

		/* If controller is not scanning we are done. */
		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
			return;

421
		hci_req_add_le_scan_disable(req, false);
422

423
		bt_dev_dbg(hdev, "stopping background scanning");
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
	} else {
		/* If there is at least one pending LE connection, we should
		 * keep the background scan running.
		 */

		/* If controller is connecting, we should not start scanning
		 * since some controllers are not able to scan and connect at
		 * the same time.
		 */
		if (hci_lookup_le_connect(hdev))
			return;

		/* If controller is currently scanning, we stop it to ensure we
		 * don't miss any advertising (due to duplicates filter).
		 */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
440
			hci_req_add_le_scan_disable(req, false);
441 442

		hci_req_add_le_passive_scan(req);
443
		bt_dev_dbg(hdev, "starting background scanning");
444 445 446
	}
}

447 448 449 450 451 452 453 454 455 456
void __hci_req_update_name(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_local_name cp;

	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));

	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
void __hci_req_update_eir(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_eir cp;

	if (!hdev_is_powered(hdev))
		return;

	if (!lmp_ext_inq_capable(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	memset(&cp, 0, sizeof(cp));

476
	eir_create(hdev, cp.data);
477 478 479 480 481 482 483 484 485

	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
		return;

	memcpy(hdev->eir, cp.data, sizeof(cp.data));

	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
}

486
void hci_req_add_le_scan_disable(struct hci_request *req, bool rpa_le_conn)
487
{
488
	struct hci_dev *hdev = req->hdev;
489

490 491 492 493 494
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}

495 496 497
	if (hdev->suspended)
		set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);

498 499 500 501 502 503 504 505 506 507 508 509 510 511
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_DISABLE;
		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
			    &cp);
	} else {
		struct hci_cp_le_set_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_DISABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
	}
512

513
	/* Disable address resolution */
514
	if (use_ll_privacy(hdev) &&
515
	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
516
	    hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION) && !rpa_le_conn) {
517
		__u8 enable = 0x00;
518

519 520
		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
	}
521 522
}

523 524
static void del_from_accept_list(struct hci_request *req, bdaddr_t *bdaddr,
				 u8 bdaddr_type)
525
{
526
	struct hci_cp_le_del_from_accept_list cp;
527 528 529 530

	cp.bdaddr_type = bdaddr_type;
	bacpy(&cp.bdaddr, bdaddr);

531
	bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from accept list", &cp.bdaddr,
532
		   cp.bdaddr_type);
533
	hci_req_add(req, HCI_OP_LE_DEL_FROM_ACCEPT_LIST, sizeof(cp), &cp);
534

535 536
	if (use_ll_privacy(req->hdev) &&
	    hci_dev_test_flag(req->hdev, HCI_ENABLE_LL_PRIVACY)) {
537 538 539 540 541 542 543 544 545 546 547 548 549
		struct smp_irk *irk;

		irk = hci_find_irk_by_addr(req->hdev, bdaddr, bdaddr_type);
		if (irk) {
			struct hci_cp_le_del_from_resolv_list cp;

			cp.bdaddr_type = bdaddr_type;
			bacpy(&cp.bdaddr, bdaddr);

			hci_req_add(req, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
				    sizeof(cp), &cp);
		}
	}
550 551
}

552 553 554 555
/* Adds connection to accept list if needed. On error, returns -1. */
static int add_to_accept_list(struct hci_request *req,
			      struct hci_conn_params *params, u8 *num_entries,
			      bool allow_rpa)
556
{
557
	struct hci_cp_le_add_to_accept_list cp;
558 559
	struct hci_dev *hdev = req->hdev;

560 561
	/* Already in accept list */
	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
562 563
				   params->addr_type))
		return 0;
564

565
	/* Select filter policy to accept all advertising */
566
	if (*num_entries >= hdev->le_accept_list_size)
567 568
		return -1;

569
	/* Accept list can not be used with RPAs */
570 571
	if (!allow_rpa &&
	    !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
572 573 574 575
	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type)) {
		return -1;
	}

576
	/* During suspend, only wakeable devices can be in accept list */
577 578
	if (hdev->suspended && !hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
						   params->current_flags))
579 580 581
		return 0;

	*num_entries += 1;
582 583 584
	cp.bdaddr_type = params->addr_type;
	bacpy(&cp.bdaddr, &params->addr);

585
	bt_dev_dbg(hdev, "Add %pMR (0x%x) to accept list", &cp.bdaddr,
586
		   cp.bdaddr_type);
587
	hci_req_add(req, HCI_OP_LE_ADD_TO_ACCEPT_LIST, sizeof(cp), &cp);
588

589 590
	if (use_ll_privacy(hdev) &&
	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY)) {
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
		struct smp_irk *irk;

		irk = hci_find_irk_by_addr(hdev, &params->addr,
					   params->addr_type);
		if (irk) {
			struct hci_cp_le_add_to_resolv_list cp;

			cp.bdaddr_type = params->addr_type;
			bacpy(&cp.bdaddr, &params->addr);
			memcpy(cp.peer_irk, irk->val, 16);

			if (hci_dev_test_flag(hdev, HCI_PRIVACY))
				memcpy(cp.local_irk, hdev->irk, 16);
			else
				memset(cp.local_irk, 0, 16);

			hci_req_add(req, HCI_OP_LE_ADD_TO_RESOLV_LIST,
				    sizeof(cp), &cp);
		}
	}

612
	return 0;
613 614
}

615
static u8 update_accept_list(struct hci_request *req)
616 617 618 619
{
	struct hci_dev *hdev = req->hdev;
	struct hci_conn_params *params;
	struct bdaddr_list *b;
620 621
	u8 num_entries = 0;
	bool pend_conn, pend_report;
622 623
	/* We allow usage of accept list even with RPAs in suspend. In the worst
	 * case, we won't be able to wake from devices that use the privacy1.2
624 625 626 627
	 * features. Additionally, once we support privacy1.2 and IRK
	 * offloading, we can update this to also check for those conditions.
	 */
	bool allow_rpa = hdev->suspended;
628

629 630 631 632
	if (use_ll_privacy(hdev) &&
	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY))
		allow_rpa = true;

633
	/* Go through the current accept list programmed into the
634 635 636 637 638
	 * controller one by one and check if that address is still
	 * in the list of pending connections or list of devices to
	 * report. If not present in either list, then queue the
	 * command to remove it from the controller.
	 */
639
	list_for_each_entry(b, &hdev->le_accept_list, list) {
640 641 642 643 644 645 646 647
		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
						      &b->bdaddr,
						      b->bdaddr_type);
		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
							&b->bdaddr,
							b->bdaddr_type);

		/* If the device is not likely to connect or report,
648
		 * remove it from the accept list.
649
		 */
650
		if (!pend_conn && !pend_report) {
651
			del_from_accept_list(req, &b->bdaddr, b->bdaddr_type);
652 653 654
			continue;
		}

655
		/* Accept list can not be used with RPAs */
656 657
		if (!allow_rpa &&
		    !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
658
		    hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
659 660
			return 0x00;
		}
661

662
		num_entries++;
663 664
	}

665
	/* Since all no longer valid accept list entries have been
666 667 668 669 670
	 * removed, walk through the list of pending connections
	 * and ensure that any new device gets programmed into
	 * the controller.
	 *
	 * If the list of the devices is larger than the list of
671
	 * available accept list entries in the controller, then
672
	 * just abort and return filer policy value to not use the
673
	 * accept list.
674 675
	 */
	list_for_each_entry(params, &hdev->pend_le_conns, action) {
676
		if (add_to_accept_list(req, params, &num_entries, allow_rpa))
677 678 679 680 681
			return 0x00;
	}

	/* After adding all new pending connections, walk through
	 * the list of pending reports and also add these to the
682
	 * accept list if there is still space. Abort if space runs out.
683 684
	 */
	list_for_each_entry(params, &hdev->pend_le_reports, action) {
685
		if (add_to_accept_list(req, params, &num_entries, allow_rpa))
686 687 688
			return 0x00;
	}

689 690
	/* Use the allowlist unless the following conditions are all true:
	 * - We are not currently suspending
691
	 * - There are 1 or more ADV monitors registered and it's not offloaded
692
	 * - Interleaved scanning is not currently using the allowlist
693
	 */
694
	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
695
	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
696
	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
697 698
		return 0x00;

699
	/* Select filter policy to use accept list */
700 701 702
	return 0x01;
}

703 704 705 706 707
static bool scan_use_rpa(struct hci_dev *hdev)
{
	return hci_dev_test_flag(hdev, HCI_PRIVACY);
}

708
static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
709
			       u16 window, u8 own_addr_type, u8 filter_policy,
710
			       bool filter_dup, bool addr_resolv)
711
{
712
	struct hci_dev *hdev = req->hdev;
713

714 715 716 717 718
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}

719 720 721
	if (use_ll_privacy(hdev) &&
	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
	    addr_resolv) {
722
		u8 enable = 0x01;
723

724 725 726
		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
	}

727 728 729 730 731 732 733
	/* Use ext scanning if set ext scan param and ext scan enable is
	 * supported
	 */
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_params *ext_param_cp;
		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
		struct hci_cp_le_scan_phy_params *phy_params;
734 735
		u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
		u32 plen;
736 737 738 739 740 741 742 743

		ext_param_cp = (void *)data;
		phy_params = (void *)ext_param_cp->data;

		memset(ext_param_cp, 0, sizeof(*ext_param_cp));
		ext_param_cp->own_addr_type = own_addr_type;
		ext_param_cp->filter_policy = filter_policy;

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
		plen = sizeof(*ext_param_cp);

		if (scan_1m(hdev) || scan_2m(hdev)) {
			ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;

			memset(phy_params, 0, sizeof(*phy_params));
			phy_params->type = type;
			phy_params->interval = cpu_to_le16(interval);
			phy_params->window = cpu_to_le16(window);

			plen += sizeof(*phy_params);
			phy_params++;
		}

		if (scan_coded(hdev)) {
			ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;

			memset(phy_params, 0, sizeof(*phy_params));
			phy_params->type = type;
			phy_params->interval = cpu_to_le16(interval);
			phy_params->window = cpu_to_le16(window);

			plen += sizeof(*phy_params);
			phy_params++;
		}
769 770

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
771
			    plen, ext_param_cp);
772 773 774

		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
		ext_enable_cp.enable = LE_SCAN_ENABLE;
775
		ext_enable_cp.filter_dup = filter_dup;
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
			    sizeof(ext_enable_cp), &ext_enable_cp);
	} else {
		struct hci_cp_le_set_scan_param param_cp;
		struct hci_cp_le_set_scan_enable enable_cp;

		memset(&param_cp, 0, sizeof(param_cp));
		param_cp.type = type;
		param_cp.interval = cpu_to_le16(interval);
		param_cp.window = cpu_to_le16(window);
		param_cp.own_address_type = own_addr_type;
		param_cp.filter_policy = filter_policy;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
			    &param_cp);

		memset(&enable_cp, 0, sizeof(enable_cp));
		enable_cp.enable = LE_SCAN_ENABLE;
794
		enable_cp.filter_dup = filter_dup;
795 796 797
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
			    &enable_cp);
	}
798 799
}

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
/* Returns true if an le connection is in the scanning state */
static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
{
	struct hci_conn_hash *h = &hdev->conn_hash;
	struct hci_conn  *c;

	rcu_read_lock();

	list_for_each_entry_rcu(c, &h->list, list) {
		if (c->type == LE_LINK && c->state == BT_CONNECT &&
		    test_bit(HCI_CONN_SCANNING, &c->flags)) {
			rcu_read_unlock();
			return true;
		}
	}

	rcu_read_unlock();

	return false;
}

821 822 823 824
/* Ensure to call hci_req_add_le_scan_disable() first to disable the
 * controller based address resolution to be able to reconfigure
 * resolving list.
 */
825 826
void hci_req_add_le_passive_scan(struct hci_request *req)
{
827 828 829
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
	u8 filter_policy;
830
	u16 window, interval;
831 832
	/* Default is to enable duplicates filter */
	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
833 834
	/* Background scanning should run with address resolution */
	bool addr_resolv = true;
835 836 837 838 839

	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}
840 841 842 843 844 845 846

	/* Set require_privacy to false since no SCAN_REQ are send
	 * during passive scanning. Not using an non-resolvable address
	 * here is important so that peer devices using direct
	 * advertising with our address will be correctly reported
	 * by the controller.
	 */
847 848
	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
				      &own_addr_type))
849 850
		return;

851 852
	if (hdev->enable_advmon_interleave_scan &&
	    __hci_update_interleaved_scan(hdev))
853 854 855
		return;

	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
856
	/* Adding or removing entries from the accept list must
857
	 * happen before enabling scanning. The controller does
858
	 * not allow accept list modification while scanning.
859
	 */
860
	filter_policy = update_accept_list(req);
861 862 863 864 865 866

	/* When the controller is using random resolvable addresses and
	 * with that having LE privacy enabled, then controllers with
	 * Extended Scanner Filter Policies support can now enable support
	 * for handling directed advertising.
	 *
867 868 869
	 * So instead of using filter polices 0x00 (no accept list)
	 * and 0x01 (accept list enabled) use the new filter policies
	 * 0x02 (no accept list) and 0x03 (accept list enabled).
870
	 */
871
	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
872 873 874
	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
		filter_policy |= 0x02;

875
	if (hdev->suspended) {
876 877
		window = hdev->le_scan_window_suspend;
		interval = hdev->le_scan_int_suspend;
878 879

		set_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks);
880 881 882
	} else if (hci_is_le_conn_scanning(hdev)) {
		window = hdev->le_scan_window_connect;
		interval = hdev->le_scan_int_connect;
883 884 885
	} else if (hci_is_adv_monitoring(hdev)) {
		window = hdev->le_scan_window_adv_monitor;
		interval = hdev->le_scan_int_adv_monitor;
886 887 888 889 890 891 892 893 894 895 896 897 898 899

		/* Disable duplicates filter when scanning for advertisement
		 * monitor for the following reasons.
		 *
		 * For HW pattern filtering (ex. MSFT), Realtek and Qualcomm
		 * controllers ignore RSSI_Sampling_Period when the duplicates
		 * filter is enabled.
		 *
		 * For SW pattern filtering, when we're not doing interleaved
		 * scanning, it is necessary to disable duplicates filter,
		 * otherwise hosts can only receive one advertisement and it's
		 * impossible to know if a peer is still in range.
		 */
		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
900 901 902 903 904
	} else {
		window = hdev->le_scan_window;
		interval = hdev->le_scan_interval;
	}

905 906
	bt_dev_dbg(hdev, "LE passive scan with accept list = %d",
		   filter_policy);
907
	hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window,
908 909
			   own_addr_type, filter_policy, filter_dup,
			   addr_resolv);
910 911
}

912 913 914 915
static void hci_req_clear_event_filter(struct hci_request *req)
{
	struct hci_cp_set_event_filter f;

916 917
	if (!hci_dev_test_flag(req->hdev, HCI_BREDR_ENABLED))
		return;
918

919 920 921 922 923
	if (hci_dev_test_flag(req->hdev, HCI_EVENT_FILTER_CONFIGURED)) {
		memset(&f, 0, sizeof(f));
		f.flt_type = HCI_FLT_CLEAR_ALL;
		hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &f);
	}
924 925 926 927
}

static void hci_req_set_event_filter(struct hci_request *req)
{
928
	struct bdaddr_list_with_flags *b;
929 930
	struct hci_cp_set_event_filter f;
	struct hci_dev *hdev = req->hdev;
931
	u8 scan = SCAN_DISABLED;
932 933 934 935
	bool scanning = test_bit(HCI_PSCAN, &hdev->flags);

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;
936 937 938 939

	/* Always clear event filter when starting */
	hci_req_clear_event_filter(req);

940
	list_for_each_entry(b, &hdev->accept_list, list) {
941 942 943 944
		if (!hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
					b->current_flags))
			continue;

945 946 947 948 949 950 951 952
		memset(&f, 0, sizeof(f));
		bacpy(&f.addr_conn_flt.bdaddr, &b->bdaddr);
		f.flt_type = HCI_FLT_CONN_SETUP;
		f.cond_type = HCI_CONN_SETUP_ALLOW_BDADDR;
		f.addr_conn_flt.auto_accept = HCI_CONN_SETUP_AUTO_ON;

		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
		hci_req_add(req, HCI_OP_SET_EVENT_FLT, sizeof(f), &f);
953
		scan = SCAN_PAGE;
954 955
	}

956
	if (scan && !scanning) {
957
		set_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks);
958 959
		hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
	} else if (!scan && scanning) {
960
		set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
961 962
		hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
	}
963 964
}

965 966 967 968 969 970 971 972 973
static void cancel_adv_timeout(struct hci_dev *hdev)
{
	if (hdev->adv_instance_timeout) {
		hdev->adv_instance_timeout = 0;
		cancel_delayed_work(&hdev->adv_instance_expire);
	}
}

/* This function requires the caller holds hdev->lock */
974
void __hci_req_pause_adv_instances(struct hci_request *req)
975
{
976
	bt_dev_dbg(req->hdev, "Pausing advertising instances");
977 978 979 980 981 982 983 984 985 986 987 988

	/* Call to disable any advertisements active on the controller.
	 * This will succeed even if no advertisements are configured.
	 */
	__hci_req_disable_advertising(req);

	/* If we are using software rotation, pause the loop */
	if (!ext_adv_capable(req->hdev))
		cancel_adv_timeout(req->hdev);
}

/* This function requires the caller holds hdev->lock */
989
static void __hci_req_resume_adv_instances(struct hci_request *req)
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
{
	struct adv_info *adv;

	bt_dev_dbg(req->hdev, "Resuming advertising instances");

	if (ext_adv_capable(req->hdev)) {
		/* Call for each tracked instance to be re-enabled */
		list_for_each_entry(adv, &req->hdev->adv_instances, list) {
			__hci_req_enable_ext_advertising(req,
							 adv->instance);
		}

	} else {
		/* Schedule for most recent instance to be restarted and begin
		 * the software rotation loop
		 */
		__hci_req_schedule_adv_instance(req,
						req->hdev->cur_adv_instance,
						true);
	}
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
/* This function requires the caller holds hdev->lock */
int hci_req_resume_adv_instances(struct hci_dev *hdev)
{
	struct hci_request req;

	hci_req_init(&req, hdev);
	__hci_req_resume_adv_instances(&req);

	return hci_req_run(&req, NULL);
}

1023 1024 1025 1026
static void suspend_req_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	bt_dev_dbg(hdev, "Request complete opcode=0x%x, status=0x%x", opcode,
		   status);
1027 1028 1029 1030
	if (test_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks) ||
	    test_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks)) {
		clear_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks);
		clear_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
1031 1032
		wake_up(&hdev->suspend_wait_q);
	}
1033 1034 1035 1036 1037 1038 1039

	if (test_bit(SUSPEND_SET_ADV_FILTER, hdev->suspend_tasks)) {
		clear_bit(SUSPEND_SET_ADV_FILTER, hdev->suspend_tasks);
		wake_up(&hdev->suspend_wait_q);
	}
}

1040 1041
static void hci_req_prepare_adv_monitor_suspend(struct hci_request *req,
						bool suspending)
1042 1043 1044 1045 1046
{
	struct hci_dev *hdev = req->hdev;

	switch (hci_get_adv_monitor_offload_ext(hdev)) {
	case HCI_ADV_MONITOR_EXT_MSFT:
1047 1048 1049 1050
		if (suspending)
			msft_suspend(hdev);
		else
			msft_resume(hdev);
1051 1052 1053 1054 1055 1056
		break;
	default:
		return;
	}

	/* No need to block when enabling since it's on resume path */
1057
	if (hdev->suspended && suspending)
1058
		set_bit(SUSPEND_SET_ADV_FILTER, hdev->suspend_tasks);
1059 1060
}

1061 1062 1063
/* Call with hci_dev_lock */
void hci_req_prepare_suspend(struct hci_dev *hdev, enum suspended_state next)
{
1064
	int old_state;
1065 1066 1067 1068 1069
	struct hci_conn *conn;
	struct hci_request req;
	u8 page_scan;
	int disconnect_counter;

1070 1071 1072 1073 1074 1075
	if (next == hdev->suspend_state) {
		bt_dev_dbg(hdev, "Same state before and after: %d", next);
		goto done;
	}

	hdev->suspend_state = next;
1076 1077 1078 1079 1080 1081
	hci_req_init(&req, hdev);

	if (next == BT_SUSPEND_DISCONNECT) {
		/* Mark device as suspended */
		hdev->suspended = true;

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
		/* Pause discovery if not already stopped */
		old_state = hdev->discovery.state;
		if (old_state != DISCOVERY_STOPPED) {
			set_bit(SUSPEND_PAUSE_DISCOVERY, hdev->suspend_tasks);
			hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
			queue_work(hdev->req_workqueue, &hdev->discov_update);
		}

		hdev->discovery_paused = true;
		hdev->discovery_old_state = old_state;

1093
		/* Stop directed advertising */
1094 1095 1096 1097 1098 1099 1100 1101
		old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
		if (old_state) {
			set_bit(SUSPEND_PAUSE_ADVERTISING, hdev->suspend_tasks);
			cancel_delayed_work(&hdev->discov_off);
			queue_delayed_work(hdev->req_workqueue,
					   &hdev->discov_off, 0);
		}

1102 1103
		/* Pause other advertisements */
		if (hdev->adv_instance_cnt)
1104
			__hci_req_pause_adv_instances(&req);
1105

1106 1107
		hdev->advertising_paused = true;
		hdev->advertising_old_state = old_state;
1108 1109 1110 1111 1112 1113 1114 1115

		/* Disable page scan if enabled */
		if (test_bit(HCI_PSCAN, &hdev->flags)) {
			page_scan = SCAN_DISABLED;
			hci_req_add(&req, HCI_OP_WRITE_SCAN_ENABLE, 1,
				    &page_scan);
			set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
		}
1116

1117
		/* Disable LE passive scan if enabled */
1118 1119
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			cancel_interleave_scan(hdev);
1120
			hci_req_add_le_scan_disable(&req, false);
1121
		}
1122

1123
		/* Disable advertisement filters */
1124
		hci_req_prepare_adv_monitor_suspend(&req, true);
1125

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
		/* Prevent disconnects from causing scanning to be re-enabled */
		hdev->scanning_paused = true;

		/* Run commands before disconnecting */
		hci_req_run(&req, suspend_req_complete);

		disconnect_counter = 0;
		/* Soft disconnect everything (power off) */
		list_for_each_entry(conn, &hdev->conn_hash.list, list) {
			hci_disconnect(conn, HCI_ERROR_REMOTE_POWER_OFF);
			disconnect_counter++;
		}

		if (disconnect_counter > 0) {
			bt_dev_dbg(hdev,
				   "Had %d disconnects. Will wait on them",
				   disconnect_counter);
			set_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks);
		}
1145
	} else if (next == BT_SUSPEND_CONFIGURE_WAKE) {
1146 1147 1148 1149
		/* Unpause to take care of updating scanning params */
		hdev->scanning_paused = false;
		/* Enable event filter for paired devices */
		hci_req_set_event_filter(&req);
1150
		/* Enable passive scan at lower duty cycle */
1151
		__hci_update_background_scan(&req);
1152 1153 1154 1155 1156 1157 1158
		/* Pause scan changes again. */
		hdev->scanning_paused = true;
		hci_req_run(&req, suspend_req_complete);
	} else {
		hdev->suspended = false;
		hdev->scanning_paused = false;

1159
		/* Clear any event filters and restore scan state */
1160
		hci_req_clear_event_filter(&req);
1161 1162
		__hci_req_update_scan(&req);

1163
		/* Reset passive/background scanning to normal */
1164
		__hci_update_background_scan(&req);
1165
		/* Enable all of the advertisement filters */
1166
		hci_req_prepare_adv_monitor_suspend(&req, false);
1167

1168
		/* Unpause directed advertising */
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
		hdev->advertising_paused = false;
		if (hdev->advertising_old_state) {
			set_bit(SUSPEND_UNPAUSE_ADVERTISING,
				hdev->suspend_tasks);
			hci_dev_set_flag(hdev, HCI_ADVERTISING);
			queue_work(hdev->req_workqueue,
				   &hdev->discoverable_update);
			hdev->advertising_old_state = 0;
		}

1179 1180
		/* Resume other advertisements */
		if (hdev->adv_instance_cnt)
1181
			__hci_req_resume_adv_instances(&req);
1182

1183 1184 1185 1186 1187 1188 1189 1190 1191
		/* Unpause discovery */
		hdev->discovery_paused = false;
		if (hdev->discovery_old_state != DISCOVERY_STOPPED &&
		    hdev->discovery_old_state != DISCOVERY_STOPPING) {
			set_bit(SUSPEND_UNPAUSE_DISCOVERY, hdev->suspend_tasks);
			hci_discovery_set_state(hdev, DISCOVERY_STARTING);
			queue_work(hdev->req_workqueue, &hdev->discov_update);
		}

1192 1193 1194 1195
		hci_req_run(&req, suspend_req_complete);
	}

	hdev->suspend_state = next;
1196 1197 1198 1199 1200 1201

done:
	clear_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
	wake_up(&hdev->suspend_wait_q);
}

1202
static bool adv_cur_instance_is_scannable(struct hci_dev *hdev)
1203
{
1204
	return hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance);
1205 1206 1207 1208
}

void __hci_req_disable_advertising(struct hci_request *req)
{
1209
	if (ext_adv_capable(req->hdev)) {
1210
		__hci_req_disable_ext_adv_instance(req, 0x00);
1211

1212 1213 1214 1215 1216
	} else {
		u8 enable = 0x00;

		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
	}
1217 1218
}

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
{
	/* If privacy is not enabled don't use RPA */
	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
		return false;

	/* If basic privacy mode is enabled use RPA */
	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
		return true;

	/* If limited privacy mode is enabled don't use RPA if we're
	 * both discoverable and bondable.
	 */
	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
	    hci_dev_test_flag(hdev, HCI_BONDABLE))
		return false;

	/* We're neither bondable nor discoverable in the limited
	 * privacy mode, therefore use RPA.
	 */
	return true;
}

1242 1243 1244 1245 1246 1247
static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
{
	/* If there is no connection we are OK to advertise. */
	if (hci_conn_num(hdev, LE_LINK) == 0)
		return true;

1248 1249 1250 1251
	/* Check le_states if there is any connection in peripheral role. */
	if (hdev->conn_hash.le_num_peripheral > 0) {
		/* Peripheral connection state and non connectable mode bit 20.
		 */
1252 1253 1254
		if (!connectable && !(hdev->le_states[2] & 0x10))
			return false;

1255
		/* Peripheral connection state and connectable mode bit 38
1256 1257
		 * and scannable bit 21.
		 */
1258 1259
		if (connectable && (!(hdev->le_states[4] & 0x40) ||
				    !(hdev->le_states[2] & 0x20)))
1260 1261 1262
			return false;
	}

1263 1264 1265
	/* Check le_states if there is any connection in central role. */
	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
		/* Central connection state and non connectable mode bit 18. */
1266 1267 1268
		if (!connectable && !(hdev->le_states[2] & 0x02))
			return false;

1269
		/* Central connection state and connectable mode bit 35 and
1270 1271
		 * scannable 19.
		 */
1272
		if (connectable && (!(hdev->le_states[4] & 0x08) ||
1273 1274 1275 1276 1277 1278 1279
				    !(hdev->le_states[2] & 0x08)))
			return false;
	}

	return true;
}

1280 1281 1282
void __hci_req_enable_advertising(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
1283
	struct adv_info *adv;
1284 1285 1286
	struct hci_cp_le_set_adv_param cp;
	u8 own_addr_type, enable = 0x01;
	bool connectable;
1287
	u16 adv_min_interval, adv_max_interval;
1288 1289
	u32 flags;

1290 1291
	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
	adv = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1292 1293 1294 1295 1296 1297 1298 1299

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

	if (!is_advertising_allowed(hdev, connectable))
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
		return;

	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
		__hci_req_disable_advertising(req);

	/* Clear the HCI_LE_ADV bit temporarily so that the
	 * hci_update_random_address knows that it's safe to go ahead
	 * and write a new random address. The flag will be set back on
	 * as soon as the SET_ADV_ENABLE HCI command completes.
	 */
	hci_dev_clear_flag(hdev, HCI_LE_ADV);

	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
1316 1317 1318
	if (hci_update_random_address(req, !connectable,
				      adv_use_rpa(hdev, flags),
				      &own_addr_type) < 0)
1319 1320 1321 1322
		return;

	memset(&cp, 0, sizeof(cp));

1323 1324 1325
	if (adv) {
		adv_min_interval = adv->min_interval;
		adv_max_interval = adv->max_interval;
1326
	} else {
1327 1328
		adv_min_interval = hdev->le_adv_min_interval;
		adv_max_interval = hdev->le_adv_max_interval;
1329 1330 1331 1332
	}

	if (connectable) {
		cp.type = LE_ADV_IND;
1333
	} else {
1334
		if (adv_cur_instance_is_scannable(hdev))
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
			cp.type = LE_ADV_SCAN_IND;
		else
			cp.type = LE_ADV_NONCONN_IND;

		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
		}
	}

	cp.min_interval = cpu_to_le16(adv_min_interval);
	cp.max_interval = cpu_to_le16(adv_max_interval);
1348 1349 1350 1351 1352 1353 1354 1355
	cp.own_address_type = own_addr_type;
	cp.channel_map = hdev->le_adv_channel_map;

	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);

	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
}

1356
void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1357 1358 1359 1360 1361 1362 1363
{
	struct hci_dev *hdev = req->hdev;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

1364
	if (ext_adv_capable(hdev)) {
1365 1366 1367 1368
		struct {
			struct hci_cp_le_set_ext_scan_rsp_data cp;
			u8 data[HCI_MAX_EXT_AD_LENGTH];
		} pdu;
1369

1370
		memset(&pdu, 0, sizeof(pdu));
1371

1372
		len = eir_create_scan_rsp(hdev, instance, pdu.data);
1373 1374

		if (hdev->scan_rsp_data_len == len &&
1375
		    !memcmp(pdu.data, hdev->scan_rsp_data, len))
1376 1377
			return;

1378
		memcpy(hdev->scan_rsp_data, pdu.data, len);
1379 1380
		hdev->scan_rsp_data_len = len;

1381 1382 1383 1384
		pdu.cp.handle = instance;
		pdu.cp.length = len;
		pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
		pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1385

1386 1387
		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
			    sizeof(pdu.cp) + len, &pdu.cp);
1388 1389 1390 1391 1392
	} else {
		struct hci_cp_le_set_scan_rsp_data cp;

		memset(&cp, 0, sizeof(cp));

1393
		len = eir_create_scan_rsp(hdev, instance, cp.data);
1394 1395 1396 1397

		if (hdev->scan_rsp_data_len == len &&
		    !memcmp(cp.data, hdev->scan_rsp_data, len))
			return;
1398

1399 1400
		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
		hdev->scan_rsp_data_len = len;
1401

1402
		cp.length = len;
1403

1404 1405
		hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
	}
1406 1407
}

1408
void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1409 1410 1411 1412 1413 1414 1415
{
	struct hci_dev *hdev = req->hdev;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

1416
	if (ext_adv_capable(hdev)) {
1417 1418 1419 1420
		struct {
			struct hci_cp_le_set_ext_adv_data cp;
			u8 data[HCI_MAX_EXT_AD_LENGTH];
		} pdu;
1421

1422
		memset(&pdu, 0, sizeof(pdu));
1423

1424
		len = eir_create_adv_data(hdev, instance, pdu.data);
1425 1426 1427

		/* There's nothing to do if the data hasn't changed */
		if (hdev->adv_data_len == len &&
1428
		    memcmp(pdu.data, hdev->adv_data, len) == 0)
1429 1430
			return;

1431
		memcpy(hdev->adv_data, pdu.data, len);
1432 1433
		hdev->adv_data_len = len;

1434 1435 1436 1437
		pdu.cp.length = len;
		pdu.cp.handle = instance;
		pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
		pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1438

1439 1440
		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA,
			    sizeof(pdu.cp) + len, &pdu.cp);
1441 1442 1443 1444
	} else {
		struct hci_cp_le_set_adv_data cp;

		memset(&cp, 0, sizeof(cp));
1445

1446
		len = eir_create_adv_data(hdev, instance, cp.data);
1447 1448 1449 1450 1451

		/* There's nothing to do if the data hasn't changed */
		if (hdev->adv_data_len == len &&
		    memcmp(cp.data, hdev->adv_data, len) == 0)
			return;
1452

1453 1454 1455 1456 1457 1458 1459
		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
		hdev->adv_data_len = len;

		cp.length = len;

		hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
	}
1460 1461
}

1462
int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1463 1464 1465 1466 1467 1468 1469 1470 1471
{
	struct hci_request req;

	hci_req_init(&req, hdev);
	__hci_req_update_adv_data(&req, instance);

	return hci_req_run(&req, NULL);
}

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
static void enable_addr_resolution_complete(struct hci_dev *hdev, u8 status,
					    u16 opcode)
{
	BT_DBG("%s status %u", hdev->name, status);
}

void hci_req_disable_address_resolution(struct hci_dev *hdev)
{
	struct hci_request req;
	__u8 enable = 0x00;

	if (!use_ll_privacy(hdev) &&
	    !hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
		return;

	hci_req_init(&req, hdev);

	hci_req_add(&req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);

	hci_req_run(&req, enable_addr_resolution_complete);
}

1494 1495
static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
1496
	bt_dev_dbg(hdev, "status %u", status);
1497 1498 1499 1500 1501 1502 1503
}

void hci_req_reenable_advertising(struct hci_dev *hdev)
{
	struct hci_request req;

	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1504
	    list_empty(&hdev->adv_instances))
1505 1506 1507 1508
		return;

	hci_req_init(&req, hdev);

1509 1510 1511
	if (hdev->cur_adv_instance) {
		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
						true);
1512
	} else {
1513 1514 1515 1516 1517 1518 1519
		if (ext_adv_capable(hdev)) {
			__hci_req_start_ext_adv(&req, 0x00);
		} else {
			__hci_req_update_adv_data(&req, 0x00);
			__hci_req_update_scan_rsp_data(&req, 0x00);
			__hci_req_enable_advertising(&req);
		}
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	}

	hci_req_run(&req, adv_enable_complete);
}

static void adv_timeout_expire(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    adv_instance_expire.work);

	struct hci_request req;
	u8 instance;

1533
	bt_dev_dbg(hdev, "");
1534 1535 1536 1537 1538

	hci_dev_lock(hdev);

	hdev->adv_instance_timeout = 0;

1539
	instance = hdev->cur_adv_instance;
1540 1541 1542 1543 1544
	if (instance == 0x00)
		goto unlock;

	hci_req_init(&req, hdev);

1545
	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1546 1547 1548 1549

	if (list_empty(&hdev->adv_instances))
		__hci_req_disable_advertising(&req);

1550
	hci_req_run(&req, NULL);
1551 1552 1553 1554 1555

unlock:
	hci_dev_unlock(hdev);
}

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
static int hci_req_add_le_interleaved_scan(struct hci_request *req,
					   unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	int ret = 0;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
		hci_req_add_le_scan_disable(req, false);
	hci_req_add_le_passive_scan(req);

	switch (hdev->interleave_scan_state) {
	case INTERLEAVE_SCAN_ALLOWLIST:
		bt_dev_dbg(hdev, "next state: allowlist");
		hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
		break;
	case INTERLEAVE_SCAN_NO_FILTER:
		bt_dev_dbg(hdev, "next state: no filter");
		hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST;
		break;
	case INTERLEAVE_SCAN_NONE:
		BT_ERR("unexpected error");
		ret = -1;
	}

	hci_dev_unlock(hdev);

	return ret;
}

static void interleave_scan_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    interleave_scan.work);
	u8 status;
	unsigned long timeout;

	if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) {
		timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration);
	} else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) {
		timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration);
	} else {
		bt_dev_err(hdev, "unexpected error");
		return;
	}

	hci_req_sync(hdev, hci_req_add_le_interleaved_scan, 0,
		     HCI_CMD_TIMEOUT, &status);

	/* Don't continue interleaving if it was canceled */
	if (is_interleave_scanning(hdev))
		queue_delayed_work(hdev->req_workqueue,
				   &hdev->interleave_scan, timeout);
}

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
			   bool use_rpa, struct adv_info *adv_instance,
			   u8 *own_addr_type, bdaddr_t *rand_addr)
{
	int err;

	bacpy(rand_addr, BDADDR_ANY);

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired then generate a new one.
	 */
	if (use_rpa) {
1624 1625 1626
		/* If Controller supports LL Privacy use own address type is
		 * 0x03
		 */
1627 1628
		if (use_ll_privacy(hdev) &&
		    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY))
1629 1630 1631
			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
		else
			*own_addr_type = ADDR_LE_DEV_RANDOM;
1632 1633

		if (adv_instance) {
1634
			if (adv_rpa_valid(adv_instance))
1635 1636
				return 0;
		} else {
1637
			if (rpa_valid(hdev))
1638 1639 1640 1641 1642
				return 0;
		}

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
1643
			bt_dev_err(hdev, "failed to generate new RPA");
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
			return err;
		}

		bacpy(rand_addr, &hdev->rpa);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for
	 * non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		bacpy(rand_addr, &nrpa);

		return 0;
	}

	/* No privacy so use a public address. */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}

1686 1687 1688 1689 1690
void __hci_req_clear_ext_adv_sets(struct hci_request *req)
{
	hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
}

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
{
	struct hci_dev *hdev = req->hdev;

	/* If we're advertising or initiating an LE connection we can't
	 * go ahead and change the random address at this time. This is
	 * because the eventual initiator address used for the
	 * subsequently created connection will be undefined (some
	 * controllers use the new address and others the one we had
	 * when the operation started).
	 *
	 * In this kind of scenario skip the update and let the random
	 * address be updated at the next cycle.
	 */
	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
	    hci_lookup_le_connect(hdev)) {
		bt_dev_dbg(hdev, "Deferring random address update");
		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
		return;
	}

	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
}

1715
int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1716 1717 1718 1719 1720
{
	struct hci_cp_le_set_ext_adv_params cp;
	struct hci_dev *hdev = req->hdev;
	bool connectable;
	u32 flags;
1721 1722 1723 1724
	bdaddr_t random_addr;
	u8 own_addr_type;
	int err;
	struct adv_info *adv_instance;
1725
	bool secondary_adv;
1726

1727 1728 1729 1730 1731 1732 1733 1734
	if (instance > 0) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return -EINVAL;
	} else {
		adv_instance = NULL;
	}

1735
	flags = hci_adv_instance_flags(hdev, instance);
1736 1737 1738 1739 1740 1741 1742

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

1743
	if (!is_advertising_allowed(hdev, connectable))
1744 1745
		return -EPERM;

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
	err = hci_get_random_address(hdev, !connectable,
				     adv_use_rpa(hdev, flags), adv_instance,
				     &own_addr_type, &random_addr);
	if (err < 0)
		return err;

1756 1757
	memset(&cp, 0, sizeof(cp));

1758 1759 1760 1761 1762 1763 1764 1765 1766
	if (adv_instance) {
		hci_cpu_to_le24(adv_instance->min_interval, cp.min_interval);
		hci_cpu_to_le24(adv_instance->max_interval, cp.max_interval);
		cp.tx_power = adv_instance->tx_power;
	} else {
		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
	}
1767

1768 1769 1770 1771 1772 1773 1774
	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);

	if (connectable) {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1775
	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
1776
		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
	} else {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
	}
1787

1788
	cp.own_addr_type = own_addr_type;
1789
	cp.channel_map = hdev->le_adv_channel_map;
1790
	cp.handle = instance;
1791

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	if (flags & MGMT_ADV_FLAG_SEC_2M) {
		cp.primary_phy = HCI_ADV_PHY_1M;
		cp.secondary_phy = HCI_ADV_PHY_2M;
	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
		cp.primary_phy = HCI_ADV_PHY_CODED;
		cp.secondary_phy = HCI_ADV_PHY_CODED;
	} else {
		/* In all other cases use 1M */
		cp.primary_phy = HCI_ADV_PHY_1M;
		cp.secondary_phy = HCI_ADV_PHY_1M;
	}

1804 1805
	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
	    bacmp(&random_addr, BDADDR_ANY)) {
		struct hci_cp_le_set_adv_set_rand_addr cp;

		/* Check if random address need to be updated */
		if (adv_instance) {
			if (!bacmp(&random_addr, &adv_instance->random_addr))
				return 0;
		} else {
			if (!bacmp(&random_addr, &hdev->random_addr))
				return 0;
1817 1818 1819 1820 1821 1822 1823
			/* Instance 0x00 doesn't have an adv_info, instead it
			 * uses hdev->random_addr to track its address so
			 * whenever it needs to be updated this also set the
			 * random address since hdev->random_addr is shared with
			 * scan state machine.
			 */
			set_random_addr(req, &random_addr);
1824 1825 1826 1827
		}

		memset(&cp, 0, sizeof(cp));

1828
		cp.handle = instance;
1829 1830 1831 1832 1833 1834 1835
		bacpy(&cp.bdaddr, &random_addr);

		hci_req_add(req,
			    HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
			    sizeof(cp), &cp);
	}

1836 1837 1838
	return 0;
}

1839
int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
1840
{
1841
	struct hci_dev *hdev = req->hdev;
1842 1843 1844
	struct hci_cp_le_set_ext_adv_enable *cp;
	struct hci_cp_ext_adv_set *adv_set;
	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
1845 1846 1847 1848 1849 1850 1851 1852 1853
	struct adv_info *adv_instance;

	if (instance > 0) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return -EINVAL;
	} else {
		adv_instance = NULL;
	}
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

	cp = (void *) data;
	adv_set = (void *) cp->data;

	memset(cp, 0, sizeof(*cp));

	cp->enable = 0x01;
	cp->num_of_sets = 0x01;

	memset(adv_set, 0, sizeof(*adv_set));

1865 1866 1867 1868 1869 1870
	adv_set->handle = instance;

	/* Set duration per instance since controller is responsible for
	 * scheduling it.
	 */
	if (adv_instance && adv_instance->duration) {
1871
		u16 duration = adv_instance->timeout * MSEC_PER_SEC;
1872 1873 1874 1875

		/* Time = N * 10 ms */
		adv_set->duration = cpu_to_le16(duration / 10);
	}
1876 1877 1878 1879

	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
		    sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
		    data);
1880 1881

	return 0;
1882 1883
}

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
int __hci_req_disable_ext_adv_instance(struct hci_request *req, u8 instance)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_le_set_ext_adv_enable *cp;
	struct hci_cp_ext_adv_set *adv_set;
	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
	u8 req_size;

	/* If request specifies an instance that doesn't exist, fail */
	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
		return -EINVAL;

	memset(data, 0, sizeof(data));

	cp = (void *)data;
	adv_set = (void *)cp->data;

	/* Instance 0x00 indicates all advertising instances will be disabled */
	cp->num_of_sets = !!instance;
	cp->enable = 0x00;

	adv_set->handle = instance;

	req_size = sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets;
	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, req_size, data);

	return 0;
}

int __hci_req_remove_ext_adv_instance(struct hci_request *req, u8 instance)
{
	struct hci_dev *hdev = req->hdev;

	/* If request specifies an instance that doesn't exist, fail */
	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
		return -EINVAL;

	hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(instance), &instance);

	return 0;
}

1926 1927
int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
{
1928
	struct hci_dev *hdev = req->hdev;
1929
	struct adv_info *adv_instance = hci_find_adv_instance(hdev, instance);
1930 1931
	int err;

1932 1933 1934 1935 1936
	/* If instance isn't pending, the chip knows about it, and it's safe to
	 * disable
	 */
	if (adv_instance && !adv_instance->pending)
		__hci_req_disable_ext_adv_instance(req, instance);
1937

1938 1939 1940 1941
	err = __hci_req_setup_ext_adv_instance(req, instance);
	if (err < 0)
		return err;

1942
	__hci_req_update_scan_rsp_data(req, instance);
1943
	__hci_req_enable_ext_advertising(req, instance);
1944 1945 1946 1947

	return 0;
}

1948 1949 1950 1951 1952 1953 1954 1955
int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
				    bool force)
{
	struct hci_dev *hdev = req->hdev;
	struct adv_info *adv_instance = NULL;
	u16 timeout;

	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1956
	    list_empty(&hdev->adv_instances))
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
		return -EPERM;

	if (hdev->adv_instance_timeout)
		return -EBUSY;

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return -ENOENT;

	/* A zero timeout means unlimited advertising. As long as there is
	 * only one instance, duration should be ignored. We still set a timeout
	 * in case further instances are being added later on.
	 *
	 * If the remaining lifetime of the instance is more than the duration
	 * then the timeout corresponds to the duration, otherwise it will be
	 * reduced to the remaining instance lifetime.
	 */
	if (adv_instance->timeout == 0 ||
	    adv_instance->duration <= adv_instance->remaining_time)
		timeout = adv_instance->duration;
	else
		timeout = adv_instance->remaining_time;

	/* The remaining time is being reduced unless the instance is being
	 * advertised without time limit.
	 */
	if (adv_instance->timeout)
		adv_instance->remaining_time =
				adv_instance->remaining_time - timeout;

1987 1988 1989 1990
	/* Only use work for scheduling instances with legacy advertising */
	if (!ext_adv_capable(hdev)) {
		hdev->adv_instance_timeout = timeout;
		queue_delayed_work(hdev->req_workqueue,
1991 1992
			   &hdev->adv_instance_expire,
			   msecs_to_jiffies(timeout * 1000));
1993
	}
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

	/* If we're just re-scheduling the same instance again then do not
	 * execute any HCI commands. This happens when a single instance is
	 * being advertised.
	 */
	if (!force && hdev->cur_adv_instance == instance &&
	    hci_dev_test_flag(hdev, HCI_LE_ADV))
		return 0;

	hdev->cur_adv_instance = instance;
2004 2005 2006 2007 2008 2009 2010
	if (ext_adv_capable(hdev)) {
		__hci_req_start_ext_adv(req, instance);
	} else {
		__hci_req_update_adv_data(req, instance);
		__hci_req_update_scan_rsp_data(req, instance);
		__hci_req_enable_advertising(req);
	}
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

	return 0;
}

/* For a single instance:
 * - force == true: The instance will be removed even when its remaining
 *   lifetime is not zero.
 * - force == false: the instance will be deactivated but kept stored unless
 *   the remaining lifetime is zero.
 *
 * For instance == 0x00:
 * - force == true: All instances will be removed regardless of their timeout
 *   setting.
 * - force == false: Only instances that have a timeout will be removed.
 */
2026 2027 2028
void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
				struct hci_request *req, u8 instance,
				bool force)
2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
{
	struct adv_info *adv_instance, *n, *next_instance = NULL;
	int err;
	u8 rem_inst;

	/* Cancel any timeout concerning the removed instance(s). */
	if (!instance || hdev->cur_adv_instance == instance)
		cancel_adv_timeout(hdev);

	/* Get the next instance to advertise BEFORE we remove
	 * the current one. This can be the same instance again
	 * if there is only one instance.
	 */
	if (instance && hdev->cur_adv_instance == instance)
		next_instance = hci_get_next_instance(hdev, instance);

	if (instance == 0x00) {
		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
					 list) {
			if (!(force || adv_instance->timeout))
				continue;

			rem_inst = adv_instance->instance;
			err = hci_remove_adv_instance(hdev, rem_inst);
			if (!err)
2054
				mgmt_advertising_removed(sk, hdev, rem_inst);
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
		}
	} else {
		adv_instance = hci_find_adv_instance(hdev, instance);

		if (force || (adv_instance && adv_instance->timeout &&
			      !adv_instance->remaining_time)) {
			/* Don't advertise a removed instance. */
			if (next_instance &&
			    next_instance->instance == instance)
				next_instance = NULL;

			err = hci_remove_adv_instance(hdev, instance);
			if (!err)
2068
				mgmt_advertising_removed(sk, hdev, instance);
2069 2070 2071 2072 2073 2074 2075
		}
	}

	if (!req || !hdev_is_powered(hdev) ||
	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
		return;

2076
	if (next_instance && !ext_adv_capable(hdev))
2077 2078 2079 2080
		__hci_req_schedule_adv_instance(req, next_instance->instance,
						false);
}

2081
int hci_update_random_address(struct hci_request *req, bool require_privacy,
2082
			      bool use_rpa, u8 *own_addr_type)
2083 2084 2085 2086 2087 2088 2089 2090
{
	struct hci_dev *hdev = req->hdev;
	int err;

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired or there is something else than
	 * the current RPA in use, then generate a new one.
	 */
2091
	if (use_rpa) {
2092 2093 2094
		/* If Controller supports LL Privacy use own address type is
		 * 0x03
		 */
2095 2096
		if (use_ll_privacy(hdev) &&
		    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY))
2097 2098 2099
			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
		else
			*own_addr_type = ADDR_LE_DEV_RANDOM;
2100

2101
		if (rpa_valid(hdev))
2102 2103 2104 2105
			return 0;

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
2106
			bt_dev_err(hdev, "failed to generate new RPA");
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
			return err;
		}

		set_random_addr(req, &hdev->rpa);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for active
	 * scanning and non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		set_random_addr(req, &nrpa);
		return 0;
	}

	/* If forcing static address is in use or there is no public
	 * address use the static address as random address (but skip
	 * the HCI command if the current random address is already the
	 * static one.
2146 2147 2148 2149
	 *
	 * In case BR/EDR has been disabled on a dual-mode controller
	 * and a static address has been configured, then use that
	 * address instead of the public BR/EDR address.
2150
	 */
2151
	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2152
	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2153
	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2154
	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
		*own_addr_type = ADDR_LE_DEV_RANDOM;
		if (bacmp(&hdev->static_addr, &hdev->random_addr))
			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
				    &hdev->static_addr);
		return 0;
	}

	/* Neither privacy nor static address is being used so use a
	 * public address.
	 */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}
2169

2170
static bool disconnected_accept_list_entries(struct hci_dev *hdev)
2171 2172 2173
{
	struct bdaddr_list *b;

2174
	list_for_each_entry(b, &hdev->accept_list, list) {
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
		struct hci_conn *conn;

		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
		if (!conn)
			return true;

		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
			return true;
	}

	return false;
}

2188
void __hci_req_update_scan(struct hci_request *req)
2189 2190 2191 2192
{
	struct hci_dev *hdev = req->hdev;
	u8 scan;

2193
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2194 2195 2196 2197 2198 2199 2200 2201
		return;

	if (!hdev_is_powered(hdev))
		return;

	if (mgmt_powering_down(hdev))
		return;

2202 2203 2204
	if (hdev->scanning_paused)
		return;

2205
	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2206
	    disconnected_accept_list_entries(hdev))
2207 2208 2209 2210
		scan = SCAN_PAGE;
	else
		scan = SCAN_DISABLED;

2211
	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2212 2213
		scan |= SCAN_INQUIRY;

2214 2215 2216 2217
	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
		return;

2218 2219 2220
	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
}

2221
static int update_scan(struct hci_request *req, unsigned long opt)
2222
{
2223 2224 2225 2226 2227
	hci_dev_lock(req->hdev);
	__hci_req_update_scan(req);
	hci_dev_unlock(req->hdev);
	return 0;
}
2228

2229 2230 2231 2232 2233
static void scan_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);

	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
2234 2235
}

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
static int connectable_update(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	hci_dev_lock(hdev);

	__hci_req_update_scan(req);

	/* If BR/EDR is not enabled and we disable advertising as a
	 * by-product of disabling connectable, we need to update the
	 * advertising flags.
	 */
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2249
		__hci_req_update_adv_data(req, hdev->cur_adv_instance);
2250 2251 2252

	/* Update the advertising parameters if necessary */
	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2253 2254 2255 2256 2257 2258
	    !list_empty(&hdev->adv_instances)) {
		if (ext_adv_capable(hdev))
			__hci_req_start_ext_adv(req, hdev->cur_adv_instance);
		else
			__hci_req_enable_advertising(req);
	}
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276

	__hci_update_background_scan(req);

	hci_dev_unlock(hdev);

	return 0;
}

static void connectable_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    connectable_update);
	u8 status;

	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
	mgmt_set_connectable_complete(hdev, status);
}

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
static u8 get_service_classes(struct hci_dev *hdev)
{
	struct bt_uuid *uuid;
	u8 val = 0;

	list_for_each_entry(uuid, &hdev->uuids, list)
		val |= uuid->svc_hint;

	return val;
}

void __hci_req_update_class(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	u8 cod[3];

2293
	bt_dev_dbg(hdev, "");
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316

	if (!hdev_is_powered(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	cod[0] = hdev->minor_class;
	cod[1] = hdev->major_class;
	cod[2] = get_service_classes(hdev);

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
		cod[1] |= 0x20;

	if (memcmp(cod, hdev->dev_class, 3) == 0)
		return;

	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
}

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
static void write_iac(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_current_iac_lap cp;

	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
		return;

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
		/* Limited discoverable mode */
		cp.num_iac = min_t(u8, hdev->num_iac, 2);
		cp.iac_lap[0] = 0x00;	/* LIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
		cp.iac_lap[3] = 0x33;	/* GIAC */
		cp.iac_lap[4] = 0x8b;
		cp.iac_lap[5] = 0x9e;
	} else {
		/* General discoverable mode */
		cp.num_iac = 1;
		cp.iac_lap[0] = 0x33;	/* GIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
	}

	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
		    (cp.num_iac * 3) + 1, &cp);
}

static int discoverable_update(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
		write_iac(req);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
	}

	/* Advertising instances don't use the global discoverable setting, so
	 * only update AD if advertising was enabled using Set Advertising.
	 */
2361
	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2362
		__hci_req_update_adv_data(req, 0x00);
2363

2364 2365 2366
		/* Discoverable mode affects the local advertising
		 * address in limited privacy mode.
		 */
2367 2368 2369 2370 2371 2372
		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
			if (ext_adv_capable(hdev))
				__hci_req_start_ext_adv(req, 0x00);
			else
				__hci_req_enable_advertising(req);
		}
2373 2374
	}

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
	hci_dev_unlock(hdev);

	return 0;
}

static void discoverable_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discoverable_update);
	u8 status;

	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
	mgmt_set_discoverable_complete(hdev, status);
}

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
		      u8 reason)
{
	switch (conn->state) {
	case BT_CONNECTED:
	case BT_CONFIG:
		if (conn->type == AMP_LINK) {
			struct hci_cp_disconn_phy_link cp;

			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
			cp.reason = reason;
			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
				    &cp);
		} else {
			struct hci_cp_disconnect dc;

			dc.handle = cpu_to_le16(conn->handle);
			dc.reason = reason;
			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
		}

		conn->state = BT_DISCONN;

		break;
	case BT_CONNECT:
		if (conn->type == LE_LINK) {
			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
				break;
			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
				    0, NULL);
		} else if (conn->type == ACL_LINK) {
			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
				break;
			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
				    6, &conn->dst);
		}
		break;
	case BT_CONNECT2:
		if (conn->type == ACL_LINK) {
			struct hci_cp_reject_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);
			rej.reason = reason;

			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
				    sizeof(rej), &rej);
		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
			struct hci_cp_reject_sync_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);

			/* SCO rejection has its own limited set of
			 * allowed error values (0x0D-0x0F) which isn't
			 * compatible with most values passed to this
			 * function. To be safe hard-code one of the
			 * values that's suitable for SCO.
			 */
2447
			rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461

			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
				    sizeof(rej), &rej);
		}
		break;
	default:
		conn->state = BT_CLOSED;
		break;
	}
}

static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	if (status)
2462
		bt_dev_dbg(hdev, "Failed to abort connection: status 0x%2.2x", status);
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
}

int hci_abort_conn(struct hci_conn *conn, u8 reason)
{
	struct hci_request req;
	int err;

	hci_req_init(&req, conn->hdev);

	__hci_abort_conn(&req, conn, reason);

	err = hci_req_run(&req, abort_conn_complete);
	if (err && err != -ENODATA) {
2476
		bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2477 2478 2479 2480 2481
		return err;
	}

	return 0;
}
2482

2483
static int update_bg_scan(struct hci_request *req, unsigned long opt)
2484 2485 2486 2487
{
	hci_dev_lock(req->hdev);
	__hci_update_background_scan(req);
	hci_dev_unlock(req->hdev);
2488
	return 0;
2489 2490 2491 2492 2493 2494
}

static void bg_scan_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    bg_scan_update);
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
	struct hci_conn *conn;
	u8 status;
	int err;

	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
	if (!err)
		return;

	hci_dev_lock(hdev);

	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
	if (conn)
		hci_le_conn_failed(conn, status);
2508

2509
	hci_dev_unlock(hdev);
2510 2511
}

2512
static int le_scan_disable(struct hci_request *req, unsigned long opt)
2513
{
2514
	hci_req_add_le_scan_disable(req, false);
2515
	return 0;
2516 2517
}

2518
static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2519
{
2520
	u8 length = opt;
2521 2522
	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2523 2524
	struct hci_cp_inquiry cp;

2525 2526 2527
	if (test_bit(HCI_INQUIRY, &req->hdev->flags))
		return 0;

2528
	bt_dev_dbg(req->hdev, "");
2529

2530 2531 2532
	hci_dev_lock(req->hdev);
	hci_inquiry_cache_flush(req->hdev);
	hci_dev_unlock(req->hdev);
2533

2534
	memset(&cp, 0, sizeof(cp));
2535 2536 2537 2538 2539 2540

	if (req->hdev->discovery.limited)
		memcpy(&cp.lap, liac, sizeof(cp.lap));
	else
		memcpy(&cp.lap, giac, sizeof(cp.lap));

2541
	cp.length = length;
2542

2543
	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2544

2545
	return 0;
2546 2547 2548 2549 2550 2551 2552 2553
}

static void le_scan_disable_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_disable.work);
	u8 status;

2554
	bt_dev_dbg(hdev, "");
2555

2556 2557 2558
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return;

2559 2560
	cancel_delayed_work(&hdev->le_scan_restart);

2561 2562
	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
	if (status) {
2563 2564
		bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
			   status);
2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
		return;
	}

	hdev->discovery.scan_start = 0;

	/* If we were running LE only scan, change discovery state. If
	 * we were running both LE and BR/EDR inquiry simultaneously,
	 * and BR/EDR inquiry is already finished, stop discovery,
	 * otherwise BR/EDR inquiry will stop discovery when finished.
	 * If we will resolve remote device name, do not change
	 * discovery state.
	 */

	if (hdev->discovery.type == DISCOV_TYPE_LE)
		goto discov_stopped;

	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2582 2583
		return;

2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
		    hdev->discovery.state != DISCOVERY_RESOLVING)
			goto discov_stopped;

		return;
	}

	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
		     HCI_CMD_TIMEOUT, &status);
	if (status) {
2595
		bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2596 2597 2598 2599 2600 2601 2602 2603 2604
		goto discov_stopped;
	}

	return;

discov_stopped:
	hci_dev_lock(hdev);
	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
	hci_dev_unlock(hdev);
2605 2606
}

2607 2608 2609 2610 2611 2612 2613 2614
static int le_scan_restart(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	/* If controller is not scanning we are done. */
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return 0;

2615 2616 2617 2618 2619
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return 0;
	}

2620
	hci_req_add_le_scan_disable(req, false);
2621

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;

		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
		ext_enable_cp.enable = LE_SCAN_ENABLE;
		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
			    sizeof(ext_enable_cp), &ext_enable_cp);
	} else {
		struct hci_cp_le_set_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_ENABLE;
		cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
	}
2639 2640 2641 2642 2643

	return 0;
}

static void le_scan_restart_work(struct work_struct *work)
2644
{
2645 2646
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_restart.work);
2647
	unsigned long timeout, duration, scan_start, now;
2648
	u8 status;
2649

2650
	bt_dev_dbg(hdev, "");
2651

2652
	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2653
	if (status) {
2654 2655
		bt_dev_err(hdev, "failed to restart LE scan: status %d",
			   status);
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
		return;
	}

	hci_dev_lock(hdev);

	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
	    !hdev->discovery.scan_start)
		goto unlock;

	/* When the scan was started, hdev->le_scan_disable has been queued
	 * after duration from scan_start. During scan restart this job
	 * has been canceled, and we need to queue it again after proper
	 * timeout, to make sure that scan does not run indefinitely.
	 */
	duration = hdev->discovery.scan_duration;
	scan_start = hdev->discovery.scan_start;
	now = jiffies;
	if (now - scan_start <= duration) {
		int elapsed;

		if (now >= scan_start)
			elapsed = now - scan_start;
		else
			elapsed = ULONG_MAX - scan_start + now;

		timeout = duration - elapsed;
	} else {
		timeout = 0;
	}

	queue_delayed_work(hdev->req_workqueue,
			   &hdev->le_scan_disable, timeout);

unlock:
	hci_dev_unlock(hdev);
}

2693 2694 2695 2696 2697
static int active_scan(struct hci_request *req, unsigned long opt)
{
	uint16_t interval = opt;
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
2698
	/* Accept list is not used for discovery */
2699
	u8 filter_policy = 0x00;
2700 2701
	/* Default is to enable duplicates filter */
	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2702 2703
	/* Discovery doesn't require controller address resolution */
	bool addr_resolv = false;
2704 2705
	int err;

2706
	bt_dev_dbg(hdev, "");
2707 2708 2709 2710 2711

	/* If controller is scanning, it means the background scanning is
	 * running. Thus, we should temporarily stop it in order to set the
	 * discovery scanning parameters.
	 */
H
Howard Chung 已提交
2712
	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2713
		hci_req_add_le_scan_disable(req, false);
H
Howard Chung 已提交
2714 2715
		cancel_interleave_scan(hdev);
	}
2716 2717 2718 2719 2720

	/* All active scans will be done with either a resolvable private
	 * address (when privacy feature has been enabled) or non-resolvable
	 * private address.
	 */
2721 2722
	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
					&own_addr_type);
2723 2724 2725
	if (err < 0)
		own_addr_type = ADDR_LE_DEV_PUBLIC;

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
	if (hci_is_adv_monitoring(hdev)) {
		/* Duplicate filter should be disabled when some advertisement
		 * monitor is activated, otherwise AdvMon can only receive one
		 * advertisement for one peer(*) during active scanning, and
		 * might report loss to these peers.
		 *
		 * Note that different controllers have different meanings of
		 * |duplicate|. Some of them consider packets with the same
		 * address as duplicate, and others consider packets with the
		 * same address and the same RSSI as duplicate. Although in the
		 * latter case we don't need to disable duplicate filter, but
		 * it is common to have active scanning for a short period of
		 * time, the power impact should be neglectable.
		 */
		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
	}

2743 2744
	hci_req_start_scan(req, LE_SCAN_ACTIVE, interval,
			   hdev->le_scan_window_discovery, own_addr_type,
2745
			   filter_policy, filter_dup, addr_resolv);
2746 2747 2748 2749 2750 2751 2752
	return 0;
}

static int interleaved_discov(struct hci_request *req, unsigned long opt)
{
	int err;

2753
	bt_dev_dbg(req->hdev, "");
2754 2755 2756 2757 2758

	err = active_scan(req, opt);
	if (err)
		return err;

2759
	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2760 2761 2762 2763 2764 2765
}

static void start_discovery(struct hci_dev *hdev, u8 *status)
{
	unsigned long timeout;

2766
	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
2767 2768 2769 2770

	switch (hdev->discovery.type) {
	case DISCOV_TYPE_BREDR:
		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2771 2772
			hci_req_sync(hdev, bredr_inquiry,
				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
				     status);
		return;
	case DISCOV_TYPE_INTERLEAVED:
		/* When running simultaneous discovery, the LE scanning time
		 * should occupy the whole discovery time sine BR/EDR inquiry
		 * and LE scanning are scheduled by the controller.
		 *
		 * For interleaving discovery in comparison, BR/EDR inquiry
		 * and LE scanning are done sequentially with separate
		 * timeouts.
		 */
		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
			     &hdev->quirks)) {
			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
			/* During simultaneous discovery, we double LE scan
			 * interval. We must leave some time for the controller
			 * to do BR/EDR inquiry.
			 */
			hci_req_sync(hdev, interleaved_discov,
2792
				     hdev->le_scan_int_discovery * 2, HCI_CMD_TIMEOUT,
2793 2794 2795 2796 2797
				     status);
			break;
		}

		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2798
		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
2799 2800 2801 2802
			     HCI_CMD_TIMEOUT, status);
		break;
	case DISCOV_TYPE_LE:
		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2803
		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
			     HCI_CMD_TIMEOUT, status);
		break;
	default:
		*status = HCI_ERROR_UNSPECIFIED;
		return;
	}

	if (*status)
		return;

2814
	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830

	/* When service discovery is used and the controller has a
	 * strict duplicate filter, it is important to remember the
	 * start and duration of the scan. This is required for
	 * restarting scanning during the discovery phase.
	 */
	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
		     hdev->discovery.result_filtering) {
		hdev->discovery.scan_start = jiffies;
		hdev->discovery.scan_duration = timeout;
	}

	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
			   timeout);
}

2831 2832 2833 2834 2835 2836 2837 2838
bool hci_req_stop_discovery(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct discovery_state *d = &hdev->discovery;
	struct hci_cp_remote_name_req_cancel cp;
	struct inquiry_entry *e;
	bool ret = false;

2839
	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
2840 2841 2842 2843 2844 2845 2846

	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
		if (test_bit(HCI_INQUIRY, &hdev->flags))
			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);

		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			cancel_delayed_work(&hdev->le_scan_disable);
2847
			cancel_delayed_work(&hdev->le_scan_restart);
2848
			hci_req_add_le_scan_disable(req, false);
2849 2850 2851 2852 2853 2854
		}

		ret = true;
	} else {
		/* Passive scanning */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2855
			hci_req_add_le_scan_disable(req, false);
2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878
			ret = true;
		}
	}

	/* No further actions needed for LE-only discovery */
	if (d->type == DISCOV_TYPE_LE)
		return ret;

	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
						     NAME_PENDING);
		if (!e)
			return ret;

		bacpy(&cp.bdaddr, &e->data.bdaddr);
		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
			    &cp);
		ret = true;
	}

	return ret;
}

2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
static void config_data_path_complete(struct hci_dev *hdev, u8 status,
				      u16 opcode)
{
	bt_dev_dbg(hdev, "status %u", status);
}

int hci_req_configure_datapath(struct hci_dev *hdev, struct bt_codec *codec)
{
	struct hci_request req;
	int err;
	__u8 vnd_len, *vnd_data = NULL;
	struct hci_op_configure_data_path *cmd = NULL;

	hci_req_init(&req, hdev);

	err = hdev->get_codec_config_data(hdev, ESCO_LINK, codec, &vnd_len,
					  &vnd_data);
	if (err < 0)
		goto error;

	cmd = kzalloc(sizeof(*cmd) + vnd_len, GFP_KERNEL);
	if (!cmd) {
		err = -ENOMEM;
		goto error;
	}

	err = hdev->get_data_path_id(hdev, &cmd->data_path_id);
	if (err < 0)
		goto error;

	cmd->vnd_len = vnd_len;
	memcpy(cmd->vnd_data, vnd_data, vnd_len);

	cmd->direction = 0x00;
	hci_req_add(&req, HCI_CONFIGURE_DATA_PATH, sizeof(*cmd) + vnd_len, cmd);

	cmd->direction = 0x01;
	hci_req_add(&req, HCI_CONFIGURE_DATA_PATH, sizeof(*cmd) + vnd_len, cmd);

	err = hci_req_run(&req, config_data_path_complete);
error:

	kfree(cmd);
	kfree(vnd_data);
	return err;
}

2926 2927 2928 2929 2930 2931 2932 2933 2934
static int stop_discovery(struct hci_request *req, unsigned long opt)
{
	hci_dev_lock(req->hdev);
	hci_req_stop_discovery(req);
	hci_dev_unlock(req->hdev);

	return 0;
}

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
static void discov_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_update);
	u8 status = 0;

	switch (hdev->discovery.state) {
	case DISCOVERY_STARTING:
		start_discovery(hdev, &status);
		mgmt_start_discovery_complete(hdev, status);
		if (status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		else
			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
		break;
2950 2951 2952 2953 2954 2955
	case DISCOVERY_STOPPING:
		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
		mgmt_stop_discovery_complete(hdev, status);
		if (!status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		break;
2956 2957 2958 2959 2960 2961
	case DISCOVERY_STOPPED:
	default:
		return;
	}
}

2962 2963 2964 2965 2966
static void discov_off(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_off.work);

2967
	bt_dev_dbg(hdev, "");
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985

	hci_dev_lock(hdev);

	/* When discoverable timeout triggers, then just make sure
	 * the limited discoverable flag is cleared. Even in the case
	 * of a timeout triggered from general discoverable, it is
	 * safe to unconditionally clear the flag.
	 */
	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
	hdev->discov_timeout = 0;

	hci_dev_unlock(hdev);

	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
	mgmt_new_settings(hdev);
}

2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
static int powered_update_hci(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	u8 link_sec;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
	    !lmp_host_ssp_capable(hdev)) {
		u8 mode = 0x01;

		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);

		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
			u8 support = 0x01;

			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
				    sizeof(support), &support);
		}
	}

	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
	    lmp_bredr_capable(hdev)) {
		struct hci_cp_write_le_host_supported cp;

		cp.le = 0x01;
		cp.simul = 0x00;

		/* Check first if we already have the right
		 * host state (host features set)
		 */
		if (cp.le != lmp_host_le_capable(hdev) ||
		    cp.simul != lmp_host_le_br_capable(hdev))
			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
				    sizeof(cp), &cp);
	}

3023
	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
3024 3025 3026 3027
		/* Make sure the controller has a good default for
		 * advertising data. This also applies to the case
		 * where BR/EDR was toggled during the AUTO_OFF phase.
		 */
3028 3029
		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
		    list_empty(&hdev->adv_instances)) {
3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
			int err;

			if (ext_adv_capable(hdev)) {
				err = __hci_req_setup_ext_adv_instance(req,
								       0x00);
				if (!err)
					__hci_req_update_scan_rsp_data(req,
								       0x00);
			} else {
				err = 0;
				__hci_req_update_adv_data(req, 0x00);
				__hci_req_update_scan_rsp_data(req, 0x00);
			}
3043

3044
			if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
3045
				if (!ext_adv_capable(hdev))
3046
					__hci_req_enable_advertising(req);
3047
				else if (!err)
3048 3049
					__hci_req_enable_ext_advertising(req,
									 0x00);
3050
			}
3051 3052
		} else if (!list_empty(&hdev->adv_instances)) {
			struct adv_info *adv_instance;
3053 3054 3055 3056

			adv_instance = list_first_entry(&hdev->adv_instances,
							struct adv_info, list);
			__hci_req_schedule_adv_instance(req,
3057
							adv_instance->instance,
3058
							true);
3059
		}
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094
	}

	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
			    sizeof(link_sec), &link_sec);

	if (lmp_bredr_capable(hdev)) {
		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
			__hci_req_write_fast_connectable(req, true);
		else
			__hci_req_write_fast_connectable(req, false);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
		__hci_req_update_name(req);
		__hci_req_update_eir(req);
	}

	hci_dev_unlock(hdev);
	return 0;
}

int __hci_req_hci_power_on(struct hci_dev *hdev)
{
	/* Register the available SMP channels (BR/EDR and LE) only when
	 * successfully powering on the controller. This late
	 * registration is required so that LE SMP can clearly decide if
	 * the public address or static address is used.
	 */
	smp_register(hdev);

	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
			      NULL);
}

3095 3096
void hci_request_setup(struct hci_dev *hdev)
{
3097
	INIT_WORK(&hdev->discov_update, discov_update);
3098
	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
3099
	INIT_WORK(&hdev->scan_update, scan_update_work);
3100
	INIT_WORK(&hdev->connectable_update, connectable_update_work);
3101
	INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
3102
	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
3103 3104
	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
3105
	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
3106
	INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work);
3107 3108 3109 3110
}

void hci_request_cancel_all(struct hci_dev *hdev)
{
3111 3112
	hci_req_sync_cancel(hdev, ENODEV);

3113
	cancel_work_sync(&hdev->discov_update);
3114
	cancel_work_sync(&hdev->bg_scan_update);
3115
	cancel_work_sync(&hdev->scan_update);
3116
	cancel_work_sync(&hdev->connectable_update);
3117
	cancel_work_sync(&hdev->discoverable_update);
3118
	cancel_delayed_work_sync(&hdev->discov_off);
3119 3120
	cancel_delayed_work_sync(&hdev->le_scan_disable);
	cancel_delayed_work_sync(&hdev->le_scan_restart);
3121 3122 3123 3124 3125

	if (hdev->adv_instance_timeout) {
		cancel_delayed_work_sync(&hdev->adv_instance_expire);
		hdev->adv_instance_timeout = 0;
	}
3126 3127

	cancel_interleave_scan(hdev);
3128
}