hci_request.c 17.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
/*
   BlueZ - Bluetooth protocol stack for Linux

   Copyright (C) 2014 Intel Corporation

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License version 2 as
   published by the Free Software Foundation;

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
   SOFTWARE IS DISCLAIMED.
*/

#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>

#include "smp.h"
#include "hci_request.h"

void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
{
	skb_queue_head_init(&req->cmd_q);
	req->hdev = hdev;
	req->err = 0;
}

37 38
static int req_run(struct hci_request *req, hci_req_complete_t complete,
		   hci_req_complete_skb_t complete_skb)
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;
	unsigned long flags;

	BT_DBG("length %u", skb_queue_len(&req->cmd_q));

	/* If an error occurred during request building, remove all HCI
	 * commands queued on the HCI request queue.
	 */
	if (req->err) {
		skb_queue_purge(&req->cmd_q);
		return req->err;
	}

	/* Do not allow empty requests */
	if (skb_queue_empty(&req->cmd_q))
		return -ENODATA;

	skb = skb_peek_tail(&req->cmd_q);
59 60 61 62 63 64
	if (complete) {
		bt_cb(skb)->hci.req_complete = complete;
	} else if (complete_skb) {
		bt_cb(skb)->hci.req_complete_skb = complete_skb;
		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
	}
65 66 67 68 69 70 71 72 73 74

	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);

	queue_work(hdev->workqueue, &hdev->cmd_work);

	return 0;
}

75 76 77 78 79 80 81 82 83 84
int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
{
	return req_run(req, complete, NULL);
}

int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
{
	return req_run(req, NULL, complete);
}

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
				const void *param)
{
	int len = HCI_COMMAND_HDR_SIZE + plen;
	struct hci_command_hdr *hdr;
	struct sk_buff *skb;

	skb = bt_skb_alloc(len, GFP_ATOMIC);
	if (!skb)
		return NULL;

	hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
	hdr->opcode = cpu_to_le16(opcode);
	hdr->plen   = plen;

	if (plen)
		memcpy(skb_put(skb, plen), param, plen);

	BT_DBG("skb len %d", skb->len);

105 106
	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
	hci_skb_opcode(skb) = opcode;
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

	return skb;
}

/* Queue a command to an asynchronous HCI request */
void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
		    const void *param, u8 event)
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;

	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);

	/* If an error occurred during request building, there is no point in
	 * queueing the HCI command. We can simply return.
	 */
	if (req->err)
		return;

	skb = hci_prepare_cmd(hdev, opcode, plen, param);
	if (!skb) {
		BT_ERR("%s no memory for command (opcode 0x%4.4x)",
		       hdev->name, opcode);
		req->err = -ENOMEM;
		return;
	}

	if (skb_queue_empty(&req->cmd_q))
135
		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
136

137
	bt_cb(skb)->hci.req_event = event;
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

	skb_queue_tail(&req->cmd_q, skb);
}

void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
		 const void *param)
{
	hci_req_add_ev(req, opcode, plen, param, 0);
}

void hci_req_add_le_scan_disable(struct hci_request *req)
{
	struct hci_cp_le_set_scan_enable cp;

	memset(&cp, 0, sizeof(cp));
	cp.enable = LE_SCAN_DISABLE;
	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
}

static void add_to_white_list(struct hci_request *req,
			      struct hci_conn_params *params)
{
	struct hci_cp_le_add_to_white_list cp;

	cp.bdaddr_type = params->addr_type;
	bacpy(&cp.bdaddr, &params->addr);

	hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
}

static u8 update_white_list(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_conn_params *params;
	struct bdaddr_list *b;
	uint8_t white_list_entries = 0;

	/* Go through the current white list programmed into the
	 * controller one by one and check if that address is still
	 * in the list of pending connections or list of devices to
	 * report. If not present in either list, then queue the
	 * command to remove it from the controller.
	 */
	list_for_each_entry(b, &hdev->le_white_list, list) {
		struct hci_cp_le_del_from_white_list cp;

		if (hci_pend_le_action_lookup(&hdev->pend_le_conns,
					      &b->bdaddr, b->bdaddr_type) ||
		    hci_pend_le_action_lookup(&hdev->pend_le_reports,
					      &b->bdaddr, b->bdaddr_type)) {
			white_list_entries++;
			continue;
		}

		cp.bdaddr_type = b->bdaddr_type;
		bacpy(&cp.bdaddr, &b->bdaddr);

		hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
			    sizeof(cp), &cp);
	}

	/* Since all no longer valid white list entries have been
	 * removed, walk through the list of pending connections
	 * and ensure that any new device gets programmed into
	 * the controller.
	 *
	 * If the list of the devices is larger than the list of
	 * available white list entries in the controller, then
	 * just abort and return filer policy value to not use the
	 * white list.
	 */
	list_for_each_entry(params, &hdev->pend_le_conns, action) {
		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
					   &params->addr, params->addr_type))
			continue;

		if (white_list_entries >= hdev->le_white_list_size) {
			/* Select filter policy to accept all advertising */
			return 0x00;
		}

		if (hci_find_irk_by_addr(hdev, &params->addr,
					 params->addr_type)) {
			/* White list can not be used with RPAs */
			return 0x00;
		}

		white_list_entries++;
		add_to_white_list(req, params);
	}

	/* After adding all new pending connections, walk through
	 * the list of pending reports and also add these to the
	 * white list if there is still space.
	 */
	list_for_each_entry(params, &hdev->pend_le_reports, action) {
		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
					   &params->addr, params->addr_type))
			continue;

		if (white_list_entries >= hdev->le_white_list_size) {
			/* Select filter policy to accept all advertising */
			return 0x00;
		}

		if (hci_find_irk_by_addr(hdev, &params->addr,
					 params->addr_type)) {
			/* White list can not be used with RPAs */
			return 0x00;
		}

		white_list_entries++;
		add_to_white_list(req, params);
	}

	/* Select filter policy to use white list */
	return 0x01;
}

void hci_req_add_le_passive_scan(struct hci_request *req)
{
	struct hci_cp_le_set_scan_param param_cp;
	struct hci_cp_le_set_scan_enable enable_cp;
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
	u8 filter_policy;

	/* Set require_privacy to false since no SCAN_REQ are send
	 * during passive scanning. Not using an non-resolvable address
	 * here is important so that peer devices using direct
	 * advertising with our address will be correctly reported
	 * by the controller.
	 */
	if (hci_update_random_address(req, false, &own_addr_type))
		return;

	/* Adding or removing entries from the white list must
	 * happen before enabling scanning. The controller does
	 * not allow white list modification while scanning.
	 */
	filter_policy = update_white_list(req);

	/* When the controller is using random resolvable addresses and
	 * with that having LE privacy enabled, then controllers with
	 * Extended Scanner Filter Policies support can now enable support
	 * for handling directed advertising.
	 *
	 * So instead of using filter polices 0x00 (no whitelist)
	 * and 0x01 (whitelist enabled) use the new filter policies
	 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
	 */
289
	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
		filter_policy |= 0x02;

	memset(&param_cp, 0, sizeof(param_cp));
	param_cp.type = LE_SCAN_PASSIVE;
	param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
	param_cp.window = cpu_to_le16(hdev->le_scan_window);
	param_cp.own_address_type = own_addr_type;
	param_cp.filter_policy = filter_policy;
	hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
		    &param_cp);

	memset(&enable_cp, 0, sizeof(enable_cp));
	enable_cp.enable = LE_SCAN_ENABLE;
	enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
		    &enable_cp);
}

static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
{
	struct hci_dev *hdev = req->hdev;

	/* If we're advertising or initiating an LE connection we can't
	 * go ahead and change the random address at this time. This is
	 * because the eventual initiator address used for the
	 * subsequently created connection will be undefined (some
	 * controllers use the new address and others the one we had
	 * when the operation started).
	 *
	 * In this kind of scenario skip the update and let the random
	 * address be updated at the next cycle.
	 */
323
	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
324
	    hci_lookup_le_connect(hdev)) {
325
		BT_DBG("Deferring random address update");
326
		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
		return;
	}

	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
}

int hci_update_random_address(struct hci_request *req, bool require_privacy,
			      u8 *own_addr_type)
{
	struct hci_dev *hdev = req->hdev;
	int err;

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired or there is something else than
	 * the current RPA in use, then generate a new one.
	 */
343
	if (hci_dev_test_flag(hdev, HCI_PRIVACY)) {
344 345 346 347
		int to;

		*own_addr_type = ADDR_LE_DEV_RANDOM;

348
		if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
		    !bacmp(&hdev->random_addr, &hdev->rpa))
			return 0;

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
			BT_ERR("%s failed to generate new RPA", hdev->name);
			return err;
		}

		set_random_addr(req, &hdev->rpa);

		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for active
	 * scanning and non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		set_random_addr(req, &nrpa);
		return 0;
	}

	/* If forcing static address is in use or there is no public
	 * address use the static address as random address (but skip
	 * the HCI command if the current random address is already the
	 * static one.
397 398 399 400
	 *
	 * In case BR/EDR has been disabled on a dual-mode controller
	 * and a static address has been configured, then use that
	 * address instead of the public BR/EDR address.
401
	 */
402
	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
403
	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
404
	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
405
	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
406 407 408 409 410 411 412 413 414 415 416 417 418 419
		*own_addr_type = ADDR_LE_DEV_RANDOM;
		if (bacmp(&hdev->static_addr, &hdev->random_addr))
			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
				    &hdev->static_addr);
		return 0;
	}

	/* Neither privacy nor static address is being used so use a
	 * public address.
	 */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}
420

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
static bool disconnected_whitelist_entries(struct hci_dev *hdev)
{
	struct bdaddr_list *b;

	list_for_each_entry(b, &hdev->whitelist, list) {
		struct hci_conn *conn;

		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
		if (!conn)
			return true;

		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
			return true;
	}

	return false;
}

void __hci_update_page_scan(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	u8 scan;

444
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
445 446 447 448 449 450 451 452
		return;

	if (!hdev_is_powered(hdev))
		return;

	if (mgmt_powering_down(hdev))
		return;

453
	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
454 455 456 457 458 459 460 461
	    disconnected_whitelist_entries(hdev))
		scan = SCAN_PAGE;
	else
		scan = SCAN_DISABLED;

	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE))
		return;

462
	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
463 464 465 466 467 468 469 470 471 472 473 474 475 476
		scan |= SCAN_INQUIRY;

	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
}

void hci_update_page_scan(struct hci_dev *hdev)
{
	struct hci_request req;

	hci_req_init(&req, hdev);
	__hci_update_page_scan(&req);
	hci_req_run(&req, NULL);
}

477 478 479 480 481 482 483 484 485 486 487 488
/* This function controls the background scanning based on hdev->pend_le_conns
 * list. If there are pending LE connection we start the background scanning,
 * otherwise we stop it.
 *
 * This function requires the caller holds hdev->lock.
 */
void __hci_update_background_scan(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;

	if (!test_bit(HCI_UP, &hdev->flags) ||
	    test_bit(HCI_INIT, &hdev->flags) ||
489 490 491 492
	    hci_dev_test_flag(hdev, HCI_SETUP) ||
	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
493 494 495
		return;

	/* No point in doing scanning if LE support hasn't been enabled */
496
	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
		return;

	/* If discovery is active don't interfere with it */
	if (hdev->discovery.state != DISCOVERY_STOPPED)
		return;

	/* Reset RSSI and UUID filters when starting background scanning
	 * since these filters are meant for service discovery only.
	 *
	 * The Start Discovery and Start Service Discovery operations
	 * ensure to set proper values for RSSI threshold and UUID
	 * filter list. So it is safe to just reset them here.
	 */
	hci_discovery_filter_clear(hdev);

	if (list_empty(&hdev->pend_le_conns) &&
	    list_empty(&hdev->pend_le_reports)) {
		/* If there is no pending LE connections or devices
		 * to be scanned for, we should stop the background
		 * scanning.
		 */

		/* If controller is not scanning we are done. */
520
		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
521 522 523 524 525 526 527 528 529 530 531 532 533 534
			return;

		hci_req_add_le_scan_disable(req);

		BT_DBG("%s stopping background scanning", hdev->name);
	} else {
		/* If there is at least one pending LE connection, we should
		 * keep the background scan running.
		 */

		/* If controller is connecting, we should not start scanning
		 * since some controllers are not able to scan and connect at
		 * the same time.
		 */
535
		if (hci_lookup_le_connect(hdev))
536 537 538 539 540
			return;

		/* If controller is currently scanning, we stop it to ensure we
		 * don't miss any advertising (due to duplicates filter).
		 */
541
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
542 543 544 545 546 547 548 549
			hci_req_add_le_scan_disable(req);

		hci_req_add_le_passive_scan(req);

		BT_DBG("%s starting background scanning", hdev->name);
	}
}

550 551
static void update_background_scan_complete(struct hci_dev *hdev, u8 status,
					    u16 opcode)
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
{
	if (status)
		BT_DBG("HCI request failed to update background scanning: "
		       "status 0x%2.2x", status);
}

void hci_update_background_scan(struct hci_dev *hdev)
{
	int err;
	struct hci_request req;

	hci_req_init(&req, hdev);

	__hci_update_background_scan(&req);

	err = hci_req_run(&req, update_background_scan_complete);
	if (err && err != -ENODATA)
		BT_ERR("Failed to run HCI request: err %d", err);
}
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663

void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
		      u8 reason)
{
	switch (conn->state) {
	case BT_CONNECTED:
	case BT_CONFIG:
		if (conn->type == AMP_LINK) {
			struct hci_cp_disconn_phy_link cp;

			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
			cp.reason = reason;
			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
				    &cp);
		} else {
			struct hci_cp_disconnect dc;

			dc.handle = cpu_to_le16(conn->handle);
			dc.reason = reason;
			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
		}

		conn->state = BT_DISCONN;

		break;
	case BT_CONNECT:
		if (conn->type == LE_LINK) {
			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
				break;
			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
				    0, NULL);
		} else if (conn->type == ACL_LINK) {
			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
				break;
			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
				    6, &conn->dst);
		}
		break;
	case BT_CONNECT2:
		if (conn->type == ACL_LINK) {
			struct hci_cp_reject_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);
			rej.reason = reason;

			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
				    sizeof(rej), &rej);
		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
			struct hci_cp_reject_sync_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);

			/* SCO rejection has its own limited set of
			 * allowed error values (0x0D-0x0F) which isn't
			 * compatible with most values passed to this
			 * function. To be safe hard-code one of the
			 * values that's suitable for SCO.
			 */
			rej.reason = HCI_ERROR_REMOTE_LOW_RESOURCES;

			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
				    sizeof(rej), &rej);
		}
		break;
	default:
		conn->state = BT_CLOSED;
		break;
	}
}

static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	if (status)
		BT_DBG("Failed to abort connection: status 0x%2.2x", status);
}

int hci_abort_conn(struct hci_conn *conn, u8 reason)
{
	struct hci_request req;
	int err;

	hci_req_init(&req, conn->hdev);

	__hci_abort_conn(&req, conn, reason);

	err = hci_req_run(&req, abort_conn_complete);
	if (err && err != -ENODATA) {
		BT_ERR("Failed to run HCI request: err %d", err);
		return err;
	}

	return 0;
}