hci_request.c 32.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/*
   BlueZ - Bluetooth protocol stack for Linux

   Copyright (C) 2014 Intel Corporation

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License version 2 as
   published by the Free Software Foundation;

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
   SOFTWARE IS DISCLAIMED.
*/

#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>

#include "smp.h"
#include "hci_request.h"

30 31 32 33
#define HCI_REQ_DONE	  0
#define HCI_REQ_PEND	  1
#define HCI_REQ_CANCELED  2

34 35 36 37 38 39 40
void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
{
	skb_queue_head_init(&req->cmd_q);
	req->hdev = hdev;
	req->err = 0;
}

41 42
static int req_run(struct hci_request *req, hci_req_complete_t complete,
		   hci_req_complete_skb_t complete_skb)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;
	unsigned long flags;

	BT_DBG("length %u", skb_queue_len(&req->cmd_q));

	/* If an error occurred during request building, remove all HCI
	 * commands queued on the HCI request queue.
	 */
	if (req->err) {
		skb_queue_purge(&req->cmd_q);
		return req->err;
	}

	/* Do not allow empty requests */
	if (skb_queue_empty(&req->cmd_q))
		return -ENODATA;

	skb = skb_peek_tail(&req->cmd_q);
63 64 65 66 67 68
	if (complete) {
		bt_cb(skb)->hci.req_complete = complete;
	} else if (complete_skb) {
		bt_cb(skb)->hci.req_complete_skb = complete_skb;
		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
	}
69 70 71 72 73 74 75 76 77 78

	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);

	queue_work(hdev->workqueue, &hdev->cmd_work);

	return 0;
}

79 80 81 82 83 84 85 86 87 88
int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
{
	return req_run(req, complete, NULL);
}

int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
{
	return req_run(req, NULL, complete);
}

89 90 91 92 93 94 95 96 97 98 99 100 101 102
static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
				  struct sk_buff *skb)
{
	BT_DBG("%s result 0x%2.2x", hdev->name, result);

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = result;
		hdev->req_status = HCI_REQ_DONE;
		if (skb)
			hdev->req_skb = skb_get(skb);
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

103
void hci_req_sync_cancel(struct hci_dev *hdev, int err)
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
{
	BT_DBG("%s err 0x%2.2x", hdev->name, err);

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = err;
		hdev->req_status = HCI_REQ_CANCELED;
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
				  const void *param, u8 event, u32 timeout)
{
	DECLARE_WAITQUEUE(wait, current);
	struct hci_request req;
	struct sk_buff *skb;
	int err = 0;

	BT_DBG("%s", hdev->name);

	hci_req_init(&req, hdev);

	hci_req_add_ev(&req, opcode, plen, param, event);

	hdev->req_status = HCI_REQ_PEND;

	add_wait_queue(&hdev->req_wait_q, &wait);
	set_current_state(TASK_INTERRUPTIBLE);

	err = hci_req_run_skb(&req, hci_req_sync_complete);
	if (err < 0) {
		remove_wait_queue(&hdev->req_wait_q, &wait);
		set_current_state(TASK_RUNNING);
		return ERR_PTR(err);
	}

	schedule_timeout(timeout);

	remove_wait_queue(&hdev->req_wait_q, &wait);

	if (signal_pending(current))
		return ERR_PTR(-EINTR);

	switch (hdev->req_status) {
	case HCI_REQ_DONE:
		err = -bt_to_errno(hdev->req_result);
		break;

	case HCI_REQ_CANCELED:
		err = -hdev->req_result;
		break;

	default:
		err = -ETIMEDOUT;
		break;
	}

	hdev->req_status = hdev->req_result = 0;
	skb = hdev->req_skb;
	hdev->req_skb = NULL;

	BT_DBG("%s end: err %d", hdev->name, err);

	if (err < 0) {
		kfree_skb(skb);
		return ERR_PTR(err);
	}

	if (!skb)
		return ERR_PTR(-ENODATA);

	return skb;
}
EXPORT_SYMBOL(__hci_cmd_sync_ev);

struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
			       const void *param, u32 timeout)
{
	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
}
EXPORT_SYMBOL(__hci_cmd_sync);

/* Execute request and wait for completion. */
187 188
int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
						     unsigned long opt),
189
		   unsigned long opt, u32 timeout, u8 *hci_status)
190 191 192 193 194 195 196 197 198 199 200
{
	struct hci_request req;
	DECLARE_WAITQUEUE(wait, current);
	int err = 0;

	BT_DBG("%s start", hdev->name);

	hci_req_init(&req, hdev);

	hdev->req_status = HCI_REQ_PEND;

201 202 203 204 205 206
	err = func(&req, opt);
	if (err) {
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
		return err;
	}
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238

	add_wait_queue(&hdev->req_wait_q, &wait);
	set_current_state(TASK_INTERRUPTIBLE);

	err = hci_req_run_skb(&req, hci_req_sync_complete);
	if (err < 0) {
		hdev->req_status = 0;

		remove_wait_queue(&hdev->req_wait_q, &wait);
		set_current_state(TASK_RUNNING);

		/* ENODATA means the HCI request command queue is empty.
		 * This can happen when a request with conditionals doesn't
		 * trigger any commands to be sent. This is normal behavior
		 * and should not trigger an error return.
		 */
		if (err == -ENODATA)
			return 0;

		return err;
	}

	schedule_timeout(timeout);

	remove_wait_queue(&hdev->req_wait_q, &wait);

	if (signal_pending(current))
		return -EINTR;

	switch (hdev->req_status) {
	case HCI_REQ_DONE:
		err = -bt_to_errno(hdev->req_result);
239 240
		if (hci_status)
			*hci_status = hdev->req_result;
241 242 243 244
		break;

	case HCI_REQ_CANCELED:
		err = -hdev->req_result;
245 246
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
247 248 249 250
		break;

	default:
		err = -ETIMEDOUT;
251 252
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
253 254 255 256 257 258 259 260 261 262
		break;
	}

	hdev->req_status = hdev->req_result = 0;

	BT_DBG("%s end: err %d", hdev->name, err);

	return err;
}

263 264
int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
						  unsigned long opt),
265
		 unsigned long opt, u32 timeout, u8 *hci_status)
266 267 268 269 270 271 272
{
	int ret;

	if (!test_bit(HCI_UP, &hdev->flags))
		return -ENETDOWN;

	/* Serialize all requests */
273
	hci_req_sync_lock(hdev);
274
	ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
275
	hci_req_sync_unlock(hdev);
276 277 278 279

	return ret;
}

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
				const void *param)
{
	int len = HCI_COMMAND_HDR_SIZE + plen;
	struct hci_command_hdr *hdr;
	struct sk_buff *skb;

	skb = bt_skb_alloc(len, GFP_ATOMIC);
	if (!skb)
		return NULL;

	hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
	hdr->opcode = cpu_to_le16(opcode);
	hdr->plen   = plen;

	if (plen)
		memcpy(skb_put(skb, plen), param, plen);

	BT_DBG("skb len %d", skb->len);

300 301
	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
	hci_skb_opcode(skb) = opcode;
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329

	return skb;
}

/* Queue a command to an asynchronous HCI request */
void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
		    const void *param, u8 event)
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;

	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);

	/* If an error occurred during request building, there is no point in
	 * queueing the HCI command. We can simply return.
	 */
	if (req->err)
		return;

	skb = hci_prepare_cmd(hdev, opcode, plen, param);
	if (!skb) {
		BT_ERR("%s no memory for command (opcode 0x%4.4x)",
		       hdev->name, opcode);
		req->err = -ENOMEM;
		return;
	}

	if (skb_queue_empty(&req->cmd_q))
330
		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
331

332
	bt_cb(skb)->hci.req_event = event;
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

	skb_queue_tail(&req->cmd_q, skb);
}

void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
		 const void *param)
{
	hci_req_add_ev(req, opcode, plen, param, 0);
}

void hci_req_add_le_scan_disable(struct hci_request *req)
{
	struct hci_cp_le_set_scan_enable cp;

	memset(&cp, 0, sizeof(cp));
	cp.enable = LE_SCAN_DISABLE;
	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
}

static void add_to_white_list(struct hci_request *req,
			      struct hci_conn_params *params)
{
	struct hci_cp_le_add_to_white_list cp;

	cp.bdaddr_type = params->addr_type;
	bacpy(&cp.bdaddr, &params->addr);

	hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
}

static u8 update_white_list(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_conn_params *params;
	struct bdaddr_list *b;
	uint8_t white_list_entries = 0;

	/* Go through the current white list programmed into the
	 * controller one by one and check if that address is still
	 * in the list of pending connections or list of devices to
	 * report. If not present in either list, then queue the
	 * command to remove it from the controller.
	 */
	list_for_each_entry(b, &hdev->le_white_list, list) {
		struct hci_cp_le_del_from_white_list cp;

		if (hci_pend_le_action_lookup(&hdev->pend_le_conns,
					      &b->bdaddr, b->bdaddr_type) ||
		    hci_pend_le_action_lookup(&hdev->pend_le_reports,
					      &b->bdaddr, b->bdaddr_type)) {
			white_list_entries++;
			continue;
		}

		cp.bdaddr_type = b->bdaddr_type;
		bacpy(&cp.bdaddr, &b->bdaddr);

		hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
			    sizeof(cp), &cp);
	}

	/* Since all no longer valid white list entries have been
	 * removed, walk through the list of pending connections
	 * and ensure that any new device gets programmed into
	 * the controller.
	 *
	 * If the list of the devices is larger than the list of
	 * available white list entries in the controller, then
	 * just abort and return filer policy value to not use the
	 * white list.
	 */
	list_for_each_entry(params, &hdev->pend_le_conns, action) {
		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
					   &params->addr, params->addr_type))
			continue;

		if (white_list_entries >= hdev->le_white_list_size) {
			/* Select filter policy to accept all advertising */
			return 0x00;
		}

		if (hci_find_irk_by_addr(hdev, &params->addr,
					 params->addr_type)) {
			/* White list can not be used with RPAs */
			return 0x00;
		}

		white_list_entries++;
		add_to_white_list(req, params);
	}

	/* After adding all new pending connections, walk through
	 * the list of pending reports and also add these to the
	 * white list if there is still space.
	 */
	list_for_each_entry(params, &hdev->pend_le_reports, action) {
		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
					   &params->addr, params->addr_type))
			continue;

		if (white_list_entries >= hdev->le_white_list_size) {
			/* Select filter policy to accept all advertising */
			return 0x00;
		}

		if (hci_find_irk_by_addr(hdev, &params->addr,
					 params->addr_type)) {
			/* White list can not be used with RPAs */
			return 0x00;
		}

		white_list_entries++;
		add_to_white_list(req, params);
	}

	/* Select filter policy to use white list */
	return 0x01;
}

void hci_req_add_le_passive_scan(struct hci_request *req)
{
	struct hci_cp_le_set_scan_param param_cp;
	struct hci_cp_le_set_scan_enable enable_cp;
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
	u8 filter_policy;

	/* Set require_privacy to false since no SCAN_REQ are send
	 * during passive scanning. Not using an non-resolvable address
	 * here is important so that peer devices using direct
	 * advertising with our address will be correctly reported
	 * by the controller.
	 */
	if (hci_update_random_address(req, false, &own_addr_type))
		return;

	/* Adding or removing entries from the white list must
	 * happen before enabling scanning. The controller does
	 * not allow white list modification while scanning.
	 */
	filter_policy = update_white_list(req);

	/* When the controller is using random resolvable addresses and
	 * with that having LE privacy enabled, then controllers with
	 * Extended Scanner Filter Policies support can now enable support
	 * for handling directed advertising.
	 *
	 * So instead of using filter polices 0x00 (no whitelist)
	 * and 0x01 (whitelist enabled) use the new filter policies
	 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
	 */
484
	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
		filter_policy |= 0x02;

	memset(&param_cp, 0, sizeof(param_cp));
	param_cp.type = LE_SCAN_PASSIVE;
	param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
	param_cp.window = cpu_to_le16(hdev->le_scan_window);
	param_cp.own_address_type = own_addr_type;
	param_cp.filter_policy = filter_policy;
	hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
		    &param_cp);

	memset(&enable_cp, 0, sizeof(enable_cp));
	enable_cp.enable = LE_SCAN_ENABLE;
	enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
		    &enable_cp);
}

static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
{
	struct hci_dev *hdev = req->hdev;

	/* If we're advertising or initiating an LE connection we can't
	 * go ahead and change the random address at this time. This is
	 * because the eventual initiator address used for the
	 * subsequently created connection will be undefined (some
	 * controllers use the new address and others the one we had
	 * when the operation started).
	 *
	 * In this kind of scenario skip the update and let the random
	 * address be updated at the next cycle.
	 */
518
	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
519
	    hci_lookup_le_connect(hdev)) {
520
		BT_DBG("Deferring random address update");
521
		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
		return;
	}

	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
}

int hci_update_random_address(struct hci_request *req, bool require_privacy,
			      u8 *own_addr_type)
{
	struct hci_dev *hdev = req->hdev;
	int err;

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired or there is something else than
	 * the current RPA in use, then generate a new one.
	 */
538
	if (hci_dev_test_flag(hdev, HCI_PRIVACY)) {
539 540 541 542
		int to;

		*own_addr_type = ADDR_LE_DEV_RANDOM;

543
		if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
		    !bacmp(&hdev->random_addr, &hdev->rpa))
			return 0;

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
			BT_ERR("%s failed to generate new RPA", hdev->name);
			return err;
		}

		set_random_addr(req, &hdev->rpa);

		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for active
	 * scanning and non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		set_random_addr(req, &nrpa);
		return 0;
	}

	/* If forcing static address is in use or there is no public
	 * address use the static address as random address (but skip
	 * the HCI command if the current random address is already the
	 * static one.
592 593 594 595
	 *
	 * In case BR/EDR has been disabled on a dual-mode controller
	 * and a static address has been configured, then use that
	 * address instead of the public BR/EDR address.
596
	 */
597
	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
598
	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
599
	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
600
	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
601 602 603 604 605 606 607 608 609 610 611 612 613 614
		*own_addr_type = ADDR_LE_DEV_RANDOM;
		if (bacmp(&hdev->static_addr, &hdev->random_addr))
			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
				    &hdev->static_addr);
		return 0;
	}

	/* Neither privacy nor static address is being used so use a
	 * public address.
	 */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}
615

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
static bool disconnected_whitelist_entries(struct hci_dev *hdev)
{
	struct bdaddr_list *b;

	list_for_each_entry(b, &hdev->whitelist, list) {
		struct hci_conn *conn;

		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
		if (!conn)
			return true;

		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
			return true;
	}

	return false;
}

void __hci_update_page_scan(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	u8 scan;

639
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
640 641 642 643 644 645 646 647
		return;

	if (!hdev_is_powered(hdev))
		return;

	if (mgmt_powering_down(hdev))
		return;

648
	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
649 650 651 652 653 654 655 656
	    disconnected_whitelist_entries(hdev))
		scan = SCAN_PAGE;
	else
		scan = SCAN_DISABLED;

	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE))
		return;

657
	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
658 659 660 661 662 663 664 665 666 667 668 669 670 671
		scan |= SCAN_INQUIRY;

	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
}

void hci_update_page_scan(struct hci_dev *hdev)
{
	struct hci_request req;

	hci_req_init(&req, hdev);
	__hci_update_page_scan(&req);
	hci_req_run(&req, NULL);
}

672 673 674 675 676 677
/* This function controls the background scanning based on hdev->pend_le_conns
 * list. If there are pending LE connection we start the background scanning,
 * otherwise we stop it.
 *
 * This function requires the caller holds hdev->lock.
 */
678
static void __hci_update_background_scan(struct hci_request *req)
679 680 681 682 683
{
	struct hci_dev *hdev = req->hdev;

	if (!test_bit(HCI_UP, &hdev->flags) ||
	    test_bit(HCI_INIT, &hdev->flags) ||
684 685 686 687
	    hci_dev_test_flag(hdev, HCI_SETUP) ||
	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
688 689 690
		return;

	/* No point in doing scanning if LE support hasn't been enabled */
691
	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
		return;

	/* If discovery is active don't interfere with it */
	if (hdev->discovery.state != DISCOVERY_STOPPED)
		return;

	/* Reset RSSI and UUID filters when starting background scanning
	 * since these filters are meant for service discovery only.
	 *
	 * The Start Discovery and Start Service Discovery operations
	 * ensure to set proper values for RSSI threshold and UUID
	 * filter list. So it is safe to just reset them here.
	 */
	hci_discovery_filter_clear(hdev);

	if (list_empty(&hdev->pend_le_conns) &&
	    list_empty(&hdev->pend_le_reports)) {
		/* If there is no pending LE connections or devices
		 * to be scanned for, we should stop the background
		 * scanning.
		 */

		/* If controller is not scanning we are done. */
715
		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
716 717 718 719 720 721 722 723 724 725 726 727 728 729
			return;

		hci_req_add_le_scan_disable(req);

		BT_DBG("%s stopping background scanning", hdev->name);
	} else {
		/* If there is at least one pending LE connection, we should
		 * keep the background scan running.
		 */

		/* If controller is connecting, we should not start scanning
		 * since some controllers are not able to scan and connect at
		 * the same time.
		 */
730
		if (hci_lookup_le_connect(hdev))
731 732 733 734 735
			return;

		/* If controller is currently scanning, we stop it to ensure we
		 * don't miss any advertising (due to duplicates filter).
		 */
736
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
737 738 739 740 741 742 743 744
			hci_req_add_le_scan_disable(req);

		hci_req_add_le_passive_scan(req);

		BT_DBG("%s starting background scanning", hdev->name);
	}
}

745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
		      u8 reason)
{
	switch (conn->state) {
	case BT_CONNECTED:
	case BT_CONFIG:
		if (conn->type == AMP_LINK) {
			struct hci_cp_disconn_phy_link cp;

			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
			cp.reason = reason;
			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
				    &cp);
		} else {
			struct hci_cp_disconnect dc;

			dc.handle = cpu_to_le16(conn->handle);
			dc.reason = reason;
			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
		}

		conn->state = BT_DISCONN;

		break;
	case BT_CONNECT:
		if (conn->type == LE_LINK) {
			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
				break;
			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
				    0, NULL);
		} else if (conn->type == ACL_LINK) {
			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
				break;
			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
				    6, &conn->dst);
		}
		break;
	case BT_CONNECT2:
		if (conn->type == ACL_LINK) {
			struct hci_cp_reject_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);
			rej.reason = reason;

			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
				    sizeof(rej), &rej);
		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
			struct hci_cp_reject_sync_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);

			/* SCO rejection has its own limited set of
			 * allowed error values (0x0D-0x0F) which isn't
			 * compatible with most values passed to this
			 * function. To be safe hard-code one of the
			 * values that's suitable for SCO.
			 */
			rej.reason = HCI_ERROR_REMOTE_LOW_RESOURCES;

			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
				    sizeof(rej), &rej);
		}
		break;
	default:
		conn->state = BT_CLOSED;
		break;
	}
}

static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	if (status)
		BT_DBG("Failed to abort connection: status 0x%2.2x", status);
}

int hci_abort_conn(struct hci_conn *conn, u8 reason)
{
	struct hci_request req;
	int err;

	hci_req_init(&req, conn->hdev);

	__hci_abort_conn(&req, conn, reason);

	err = hci_req_run(&req, abort_conn_complete);
	if (err && err != -ENODATA) {
		BT_ERR("Failed to run HCI request: err %d", err);
		return err;
	}

	return 0;
}
837

838
static int update_bg_scan(struct hci_request *req, unsigned long opt)
839 840 841 842
{
	hci_dev_lock(req->hdev);
	__hci_update_background_scan(req);
	hci_dev_unlock(req->hdev);
843
	return 0;
844 845 846 847 848 849
}

static void bg_scan_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    bg_scan_update);
850 851 852 853 854 855 856 857 858 859 860 861 862
	struct hci_conn *conn;
	u8 status;
	int err;

	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
	if (!err)
		return;

	hci_dev_lock(hdev);

	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
	if (conn)
		hci_le_conn_failed(conn, status);
863

864
	hci_dev_unlock(hdev);
865 866
}

867
static int le_scan_disable(struct hci_request *req, unsigned long opt)
868
{
869 870
	hci_req_add_le_scan_disable(req);
	return 0;
871 872
}

873
static int bredr_inquiry(struct hci_request *req, unsigned long opt)
874
{
875
	u8 length = opt;
876 877 878 879
	/* General inquiry access code (GIAC) */
	u8 lap[3] = { 0x33, 0x8b, 0x9e };
	struct hci_cp_inquiry cp;

880
	BT_DBG("%s", req->hdev->name);
881

882 883 884
	hci_dev_lock(req->hdev);
	hci_inquiry_cache_flush(req->hdev);
	hci_dev_unlock(req->hdev);
885

886 887 888
	memset(&cp, 0, sizeof(cp));
	memcpy(&cp.lap, lap, sizeof(cp.lap));
	cp.length = length;
889

890
	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
891

892
	return 0;
893 894 895 896 897 898 899 900 901 902
}

static void le_scan_disable_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_disable.work);
	u8 status;

	BT_DBG("%s", hdev->name);

903 904 905
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return;

906 907
	cancel_delayed_work(&hdev->le_scan_restart);

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
	if (status) {
		BT_ERR("Failed to disable LE scan: status 0x%02x", status);
		return;
	}

	hdev->discovery.scan_start = 0;

	/* If we were running LE only scan, change discovery state. If
	 * we were running both LE and BR/EDR inquiry simultaneously,
	 * and BR/EDR inquiry is already finished, stop discovery,
	 * otherwise BR/EDR inquiry will stop discovery when finished.
	 * If we will resolve remote device name, do not change
	 * discovery state.
	 */

	if (hdev->discovery.type == DISCOV_TYPE_LE)
		goto discov_stopped;

	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
928 929
		return;

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
		    hdev->discovery.state != DISCOVERY_RESOLVING)
			goto discov_stopped;

		return;
	}

	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
		     HCI_CMD_TIMEOUT, &status);
	if (status) {
		BT_ERR("Inquiry failed: status 0x%02x", status);
		goto discov_stopped;
	}

	return;

discov_stopped:
	hci_dev_lock(hdev);
	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
	hci_dev_unlock(hdev);
951 952
}

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
static int le_scan_restart(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_le_set_scan_enable cp;

	/* If controller is not scanning we are done. */
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return 0;

	hci_req_add_le_scan_disable(req);

	memset(&cp, 0, sizeof(cp));
	cp.enable = LE_SCAN_ENABLE;
	cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);

	return 0;
}

static void le_scan_restart_work(struct work_struct *work)
973
{
974 975
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_restart.work);
976
	unsigned long timeout, duration, scan_start, now;
977
	u8 status;
978 979 980

	BT_DBG("%s", hdev->name);

981
	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	if (status) {
		BT_ERR("Failed to restart LE scan: status %d", status);
		return;
	}

	hci_dev_lock(hdev);

	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
	    !hdev->discovery.scan_start)
		goto unlock;

	/* When the scan was started, hdev->le_scan_disable has been queued
	 * after duration from scan_start. During scan restart this job
	 * has been canceled, and we need to queue it again after proper
	 * timeout, to make sure that scan does not run indefinitely.
	 */
	duration = hdev->discovery.scan_duration;
	scan_start = hdev->discovery.scan_start;
	now = jiffies;
	if (now - scan_start <= duration) {
		int elapsed;

		if (now >= scan_start)
			elapsed = now - scan_start;
		else
			elapsed = ULONG_MAX - scan_start + now;

		timeout = duration - elapsed;
	} else {
		timeout = 0;
	}

	queue_delayed_work(hdev->req_workqueue,
			   &hdev->le_scan_disable, timeout);

unlock:
	hci_dev_unlock(hdev);
}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
static void cancel_adv_timeout(struct hci_dev *hdev)
{
	if (hdev->adv_instance_timeout) {
		hdev->adv_instance_timeout = 0;
		cancel_delayed_work(&hdev->adv_instance_expire);
	}
}

static void disable_advertising(struct hci_request *req)
{
	u8 enable = 0x00;

	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
}

static int active_scan(struct hci_request *req, unsigned long opt)
{
	uint16_t interval = opt;
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_le_set_scan_param param_cp;
	struct hci_cp_le_set_scan_enable enable_cp;
	u8 own_addr_type;
	int err;

	BT_DBG("%s", hdev->name);

	if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
		hci_dev_lock(hdev);

		/* Don't let discovery abort an outgoing connection attempt
		 * that's using directed advertising.
		 */
		if (hci_lookup_le_connect(hdev)) {
			hci_dev_unlock(hdev);
			return -EBUSY;
		}

		cancel_adv_timeout(hdev);
		hci_dev_unlock(hdev);

		disable_advertising(req);
	}

	/* If controller is scanning, it means the background scanning is
	 * running. Thus, we should temporarily stop it in order to set the
	 * discovery scanning parameters.
	 */
	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
		hci_req_add_le_scan_disable(req);

	/* All active scans will be done with either a resolvable private
	 * address (when privacy feature has been enabled) or non-resolvable
	 * private address.
	 */
	err = hci_update_random_address(req, true, &own_addr_type);
	if (err < 0)
		own_addr_type = ADDR_LE_DEV_PUBLIC;

	memset(&param_cp, 0, sizeof(param_cp));
	param_cp.type = LE_SCAN_ACTIVE;
	param_cp.interval = cpu_to_le16(interval);
	param_cp.window = cpu_to_le16(DISCOV_LE_SCAN_WIN);
	param_cp.own_address_type = own_addr_type;

	hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
		    &param_cp);

	memset(&enable_cp, 0, sizeof(enable_cp));
	enable_cp.enable = LE_SCAN_ENABLE;
	enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;

	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
		    &enable_cp);

	return 0;
}

static int interleaved_discov(struct hci_request *req, unsigned long opt)
{
	int err;

	BT_DBG("%s", req->hdev->name);

	err = active_scan(req, opt);
	if (err)
		return err;

1108
	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
}

static void start_discovery(struct hci_dev *hdev, u8 *status)
{
	unsigned long timeout;

	BT_DBG("%s type %u", hdev->name, hdev->discovery.type);

	switch (hdev->discovery.type) {
	case DISCOV_TYPE_BREDR:
		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
1120 1121
			hci_req_sync(hdev, bredr_inquiry,
				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
				     status);
		return;
	case DISCOV_TYPE_INTERLEAVED:
		/* When running simultaneous discovery, the LE scanning time
		 * should occupy the whole discovery time sine BR/EDR inquiry
		 * and LE scanning are scheduled by the controller.
		 *
		 * For interleaving discovery in comparison, BR/EDR inquiry
		 * and LE scanning are done sequentially with separate
		 * timeouts.
		 */
		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
			     &hdev->quirks)) {
			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
			/* During simultaneous discovery, we double LE scan
			 * interval. We must leave some time for the controller
			 * to do BR/EDR inquiry.
			 */
			hci_req_sync(hdev, interleaved_discov,
				     DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
				     status);
			break;
		}

		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
			     HCI_CMD_TIMEOUT, status);
		break;
	case DISCOV_TYPE_LE:
		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
			     HCI_CMD_TIMEOUT, status);
		break;
	default:
		*status = HCI_ERROR_UNSPECIFIED;
		return;
	}

	if (*status)
		return;

	BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));

	/* When service discovery is used and the controller has a
	 * strict duplicate filter, it is important to remember the
	 * start and duration of the scan. This is required for
	 * restarting scanning during the discovery phase.
	 */
	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
		     hdev->discovery.result_filtering) {
		hdev->discovery.scan_start = jiffies;
		hdev->discovery.scan_duration = timeout;
	}

	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
			   timeout);
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
bool hci_req_stop_discovery(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct discovery_state *d = &hdev->discovery;
	struct hci_cp_remote_name_req_cancel cp;
	struct inquiry_entry *e;
	bool ret = false;

	BT_DBG("%s state %u", hdev->name, hdev->discovery.state);

	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
		if (test_bit(HCI_INQUIRY, &hdev->flags))
			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);

		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			cancel_delayed_work(&hdev->le_scan_disable);
			hci_req_add_le_scan_disable(req);
		}

		ret = true;
	} else {
		/* Passive scanning */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			hci_req_add_le_scan_disable(req);
			ret = true;
		}
	}

	/* No further actions needed for LE-only discovery */
	if (d->type == DISCOV_TYPE_LE)
		return ret;

	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
						     NAME_PENDING);
		if (!e)
			return ret;

		bacpy(&cp.bdaddr, &e->data.bdaddr);
		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
			    &cp);
		ret = true;
	}

	return ret;
}

static int stop_discovery(struct hci_request *req, unsigned long opt)
{
	hci_dev_lock(req->hdev);
	hci_req_stop_discovery(req);
	hci_dev_unlock(req->hdev);

	return 0;
}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
static void discov_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_update);
	u8 status = 0;

	switch (hdev->discovery.state) {
	case DISCOVERY_STARTING:
		start_discovery(hdev, &status);
		mgmt_start_discovery_complete(hdev, status);
		if (status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		else
			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
		break;
1251 1252 1253 1254 1255 1256
	case DISCOVERY_STOPPING:
		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
		mgmt_stop_discovery_complete(hdev, status);
		if (!status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		break;
1257 1258 1259 1260 1261 1262
	case DISCOVERY_STOPPED:
	default:
		return;
	}
}

1263 1264
void hci_request_setup(struct hci_dev *hdev)
{
1265
	INIT_WORK(&hdev->discov_update, discov_update);
1266
	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
1267 1268
	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
1269 1270 1271 1272
}

void hci_request_cancel_all(struct hci_dev *hdev)
{
1273
	cancel_work_sync(&hdev->discov_update);
1274
	cancel_work_sync(&hdev->bg_scan_update);
1275 1276
	cancel_delayed_work_sync(&hdev->le_scan_disable);
	cancel_delayed_work_sync(&hdev->le_scan_restart);
1277
}