hci_request.c 58.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
   BlueZ - Bluetooth protocol stack for Linux

   Copyright (C) 2014 Intel Corporation

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License version 2 as
   published by the Free Software Foundation;

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
   SOFTWARE IS DISCLAIMED.
*/

24 25
#include <asm/unaligned.h>

26 27
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
28
#include <net/bluetooth/mgmt.h>
29 30 31 32

#include "smp.h"
#include "hci_request.h"

33 34 35 36
#define HCI_REQ_DONE	  0
#define HCI_REQ_PEND	  1
#define HCI_REQ_CANCELED  2

37 38 39 40 41 42 43
void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
{
	skb_queue_head_init(&req->cmd_q);
	req->hdev = hdev;
	req->err = 0;
}

44 45
static int req_run(struct hci_request *req, hci_req_complete_t complete,
		   hci_req_complete_skb_t complete_skb)
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;
	unsigned long flags;

	BT_DBG("length %u", skb_queue_len(&req->cmd_q));

	/* If an error occurred during request building, remove all HCI
	 * commands queued on the HCI request queue.
	 */
	if (req->err) {
		skb_queue_purge(&req->cmd_q);
		return req->err;
	}

	/* Do not allow empty requests */
	if (skb_queue_empty(&req->cmd_q))
		return -ENODATA;

	skb = skb_peek_tail(&req->cmd_q);
66 67 68 69 70 71
	if (complete) {
		bt_cb(skb)->hci.req_complete = complete;
	} else if (complete_skb) {
		bt_cb(skb)->hci.req_complete_skb = complete_skb;
		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
	}
72 73 74 75 76 77 78 79 80 81

	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);

	queue_work(hdev->workqueue, &hdev->cmd_work);

	return 0;
}

82 83 84 85 86 87 88 89 90 91
int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
{
	return req_run(req, complete, NULL);
}

int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
{
	return req_run(req, NULL, complete);
}

92 93 94 95 96 97 98 99 100 101 102 103 104 105
static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
				  struct sk_buff *skb)
{
	BT_DBG("%s result 0x%2.2x", hdev->name, result);

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = result;
		hdev->req_status = HCI_REQ_DONE;
		if (skb)
			hdev->req_skb = skb_get(skb);
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

106
void hci_req_sync_cancel(struct hci_dev *hdev, int err)
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
{
	BT_DBG("%s err 0x%2.2x", hdev->name, err);

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = err;
		hdev->req_status = HCI_REQ_CANCELED;
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
				  const void *param, u8 event, u32 timeout)
{
	DECLARE_WAITQUEUE(wait, current);
	struct hci_request req;
	struct sk_buff *skb;
	int err = 0;

	BT_DBG("%s", hdev->name);

	hci_req_init(&req, hdev);

	hci_req_add_ev(&req, opcode, plen, param, event);

	hdev->req_status = HCI_REQ_PEND;

	add_wait_queue(&hdev->req_wait_q, &wait);
	set_current_state(TASK_INTERRUPTIBLE);

	err = hci_req_run_skb(&req, hci_req_sync_complete);
	if (err < 0) {
		remove_wait_queue(&hdev->req_wait_q, &wait);
		set_current_state(TASK_RUNNING);
		return ERR_PTR(err);
	}

	schedule_timeout(timeout);

	remove_wait_queue(&hdev->req_wait_q, &wait);

	if (signal_pending(current))
		return ERR_PTR(-EINTR);

	switch (hdev->req_status) {
	case HCI_REQ_DONE:
		err = -bt_to_errno(hdev->req_result);
		break;

	case HCI_REQ_CANCELED:
		err = -hdev->req_result;
		break;

	default:
		err = -ETIMEDOUT;
		break;
	}

	hdev->req_status = hdev->req_result = 0;
	skb = hdev->req_skb;
	hdev->req_skb = NULL;

	BT_DBG("%s end: err %d", hdev->name, err);

	if (err < 0) {
		kfree_skb(skb);
		return ERR_PTR(err);
	}

	if (!skb)
		return ERR_PTR(-ENODATA);

	return skb;
}
EXPORT_SYMBOL(__hci_cmd_sync_ev);

struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
			       const void *param, u32 timeout)
{
	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
}
EXPORT_SYMBOL(__hci_cmd_sync);

/* Execute request and wait for completion. */
190 191
int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
						     unsigned long opt),
192
		   unsigned long opt, u32 timeout, u8 *hci_status)
193 194 195 196 197 198 199 200 201 202 203
{
	struct hci_request req;
	DECLARE_WAITQUEUE(wait, current);
	int err = 0;

	BT_DBG("%s start", hdev->name);

	hci_req_init(&req, hdev);

	hdev->req_status = HCI_REQ_PEND;

204 205 206 207 208 209
	err = func(&req, opt);
	if (err) {
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
		return err;
	}
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

	add_wait_queue(&hdev->req_wait_q, &wait);
	set_current_state(TASK_INTERRUPTIBLE);

	err = hci_req_run_skb(&req, hci_req_sync_complete);
	if (err < 0) {
		hdev->req_status = 0;

		remove_wait_queue(&hdev->req_wait_q, &wait);
		set_current_state(TASK_RUNNING);

		/* ENODATA means the HCI request command queue is empty.
		 * This can happen when a request with conditionals doesn't
		 * trigger any commands to be sent. This is normal behavior
		 * and should not trigger an error return.
		 */
226 227 228
		if (err == -ENODATA) {
			if (hci_status)
				*hci_status = 0;
229
			return 0;
230 231 232 233
		}

		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
234 235 236 237 238 239 240 241 242 243 244 245 246 247

		return err;
	}

	schedule_timeout(timeout);

	remove_wait_queue(&hdev->req_wait_q, &wait);

	if (signal_pending(current))
		return -EINTR;

	switch (hdev->req_status) {
	case HCI_REQ_DONE:
		err = -bt_to_errno(hdev->req_result);
248 249
		if (hci_status)
			*hci_status = hdev->req_result;
250 251 252 253
		break;

	case HCI_REQ_CANCELED:
		err = -hdev->req_result;
254 255
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
256 257 258 259
		break;

	default:
		err = -ETIMEDOUT;
260 261
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
262 263 264
		break;
	}

265 266
	kfree_skb(hdev->req_skb);
	hdev->req_skb = NULL;
267 268 269 270 271 272 273
	hdev->req_status = hdev->req_result = 0;

	BT_DBG("%s end: err %d", hdev->name, err);

	return err;
}

274 275
int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
						  unsigned long opt),
276
		 unsigned long opt, u32 timeout, u8 *hci_status)
277 278 279 280 281 282 283
{
	int ret;

	if (!test_bit(HCI_UP, &hdev->flags))
		return -ENETDOWN;

	/* Serialize all requests */
284
	hci_req_sync_lock(hdev);
285
	ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
286
	hci_req_sync_unlock(hdev);
287 288 289 290

	return ret;
}

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
				const void *param)
{
	int len = HCI_COMMAND_HDR_SIZE + plen;
	struct hci_command_hdr *hdr;
	struct sk_buff *skb;

	skb = bt_skb_alloc(len, GFP_ATOMIC);
	if (!skb)
		return NULL;

	hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
	hdr->opcode = cpu_to_le16(opcode);
	hdr->plen   = plen;

	if (plen)
		memcpy(skb_put(skb, plen), param, plen);

	BT_DBG("skb len %d", skb->len);

311 312
	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
	hci_skb_opcode(skb) = opcode;
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

	return skb;
}

/* Queue a command to an asynchronous HCI request */
void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
		    const void *param, u8 event)
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;

	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);

	/* If an error occurred during request building, there is no point in
	 * queueing the HCI command. We can simply return.
	 */
	if (req->err)
		return;

	skb = hci_prepare_cmd(hdev, opcode, plen, param);
	if (!skb) {
		BT_ERR("%s no memory for command (opcode 0x%4.4x)",
		       hdev->name, opcode);
		req->err = -ENOMEM;
		return;
	}

	if (skb_queue_empty(&req->cmd_q))
341
		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
342

343
	bt_cb(skb)->hci.req_event = event;
344 345 346 347 348 349 350 351 352 353

	skb_queue_tail(&req->cmd_q, skb);
}

void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
		 const void *param)
{
	hci_req_add_ev(req, opcode, plen, param, 0);
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_page_scan_activity acp;
	u8 type;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
		return;

	if (enable) {
		type = PAGE_SCAN_TYPE_INTERLACED;

		/* 160 msec page scan interval */
		acp.interval = cpu_to_le16(0x0100);
	} else {
		type = PAGE_SCAN_TYPE_STANDARD;	/* default */

		/* default 1.28 sec page scan */
		acp.interval = cpu_to_le16(0x0800);
	}

	acp.window = cpu_to_le16(0x0012);

	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
			    sizeof(acp), &acp);

	if (hdev->page_scan_type != type)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
}

389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
/* This function controls the background scanning based on hdev->pend_le_conns
 * list. If there are pending LE connection we start the background scanning,
 * otherwise we stop it.
 *
 * This function requires the caller holds hdev->lock.
 */
static void __hci_update_background_scan(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;

	if (!test_bit(HCI_UP, &hdev->flags) ||
	    test_bit(HCI_INIT, &hdev->flags) ||
	    hci_dev_test_flag(hdev, HCI_SETUP) ||
	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
		return;

	/* No point in doing scanning if LE support hasn't been enabled */
	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

	/* If discovery is active don't interfere with it */
	if (hdev->discovery.state != DISCOVERY_STOPPED)
		return;

	/* Reset RSSI and UUID filters when starting background scanning
	 * since these filters are meant for service discovery only.
	 *
	 * The Start Discovery and Start Service Discovery operations
	 * ensure to set proper values for RSSI threshold and UUID
	 * filter list. So it is safe to just reset them here.
	 */
	hci_discovery_filter_clear(hdev);

	if (list_empty(&hdev->pend_le_conns) &&
	    list_empty(&hdev->pend_le_reports)) {
		/* If there is no pending LE connections or devices
		 * to be scanned for, we should stop the background
		 * scanning.
		 */

		/* If controller is not scanning we are done. */
		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
			return;

		hci_req_add_le_scan_disable(req);

		BT_DBG("%s stopping background scanning", hdev->name);
	} else {
		/* If there is at least one pending LE connection, we should
		 * keep the background scan running.
		 */

		/* If controller is connecting, we should not start scanning
		 * since some controllers are not able to scan and connect at
		 * the same time.
		 */
		if (hci_lookup_le_connect(hdev))
			return;

		/* If controller is currently scanning, we stop it to ensure we
		 * don't miss any advertising (due to duplicates filter).
		 */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
			hci_req_add_le_scan_disable(req);

		hci_req_add_le_passive_scan(req);

		BT_DBG("%s starting background scanning", hdev->name);
	}
}

462 463 464 465 466 467 468 469 470 471
void __hci_req_update_name(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_local_name cp;

	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));

	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
}

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
#define PNP_INFO_SVCLASS_ID		0x1200

static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
{
	u8 *ptr = data, *uuids_start = NULL;
	struct bt_uuid *uuid;

	if (len < 4)
		return ptr;

	list_for_each_entry(uuid, &hdev->uuids, list) {
		u16 uuid16;

		if (uuid->size != 16)
			continue;

		uuid16 = get_unaligned_le16(&uuid->uuid[12]);
		if (uuid16 < 0x1100)
			continue;

		if (uuid16 == PNP_INFO_SVCLASS_ID)
			continue;

		if (!uuids_start) {
			uuids_start = ptr;
			uuids_start[0] = 1;
			uuids_start[1] = EIR_UUID16_ALL;
			ptr += 2;
		}

		/* Stop if not enough space to put next UUID */
		if ((ptr - data) + sizeof(u16) > len) {
			uuids_start[1] = EIR_UUID16_SOME;
			break;
		}

		*ptr++ = (uuid16 & 0x00ff);
		*ptr++ = (uuid16 & 0xff00) >> 8;
		uuids_start[0] += sizeof(uuid16);
	}

	return ptr;
}

static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
{
	u8 *ptr = data, *uuids_start = NULL;
	struct bt_uuid *uuid;

	if (len < 6)
		return ptr;

	list_for_each_entry(uuid, &hdev->uuids, list) {
		if (uuid->size != 32)
			continue;

		if (!uuids_start) {
			uuids_start = ptr;
			uuids_start[0] = 1;
			uuids_start[1] = EIR_UUID32_ALL;
			ptr += 2;
		}

		/* Stop if not enough space to put next UUID */
		if ((ptr - data) + sizeof(u32) > len) {
			uuids_start[1] = EIR_UUID32_SOME;
			break;
		}

		memcpy(ptr, &uuid->uuid[12], sizeof(u32));
		ptr += sizeof(u32);
		uuids_start[0] += sizeof(u32);
	}

	return ptr;
}

static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
{
	u8 *ptr = data, *uuids_start = NULL;
	struct bt_uuid *uuid;

	if (len < 18)
		return ptr;

	list_for_each_entry(uuid, &hdev->uuids, list) {
		if (uuid->size != 128)
			continue;

		if (!uuids_start) {
			uuids_start = ptr;
			uuids_start[0] = 1;
			uuids_start[1] = EIR_UUID128_ALL;
			ptr += 2;
		}

		/* Stop if not enough space to put next UUID */
		if ((ptr - data) + 16 > len) {
			uuids_start[1] = EIR_UUID128_SOME;
			break;
		}

		memcpy(ptr, uuid->uuid, 16);
		ptr += 16;
		uuids_start[0] += 16;
	}

	return ptr;
}

static void create_eir(struct hci_dev *hdev, u8 *data)
{
	u8 *ptr = data;
	size_t name_len;

	name_len = strlen(hdev->dev_name);

	if (name_len > 0) {
		/* EIR Data type */
		if (name_len > 48) {
			name_len = 48;
			ptr[1] = EIR_NAME_SHORT;
		} else
			ptr[1] = EIR_NAME_COMPLETE;

		/* EIR Data length */
		ptr[0] = name_len + 1;

		memcpy(ptr + 2, hdev->dev_name, name_len);

		ptr += (name_len + 2);
	}

	if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
		ptr[0] = 2;
		ptr[1] = EIR_TX_POWER;
		ptr[2] = (u8) hdev->inq_tx_power;

		ptr += 3;
	}

	if (hdev->devid_source > 0) {
		ptr[0] = 9;
		ptr[1] = EIR_DEVICE_ID;

		put_unaligned_le16(hdev->devid_source, ptr + 2);
		put_unaligned_le16(hdev->devid_vendor, ptr + 4);
		put_unaligned_le16(hdev->devid_product, ptr + 6);
		put_unaligned_le16(hdev->devid_version, ptr + 8);

		ptr += 10;
	}

	ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
	ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
	ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
}

void __hci_req_update_eir(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_eir cp;

	if (!hdev_is_powered(hdev))
		return;

	if (!lmp_ext_inq_capable(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	memset(&cp, 0, sizeof(cp));

	create_eir(hdev, cp.data);

	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
		return;

	memcpy(hdev->eir, cp.data, sizeof(cp.data));

	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
}

659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
void hci_req_add_le_scan_disable(struct hci_request *req)
{
	struct hci_cp_le_set_scan_enable cp;

	memset(&cp, 0, sizeof(cp));
	cp.enable = LE_SCAN_DISABLE;
	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
}

static void add_to_white_list(struct hci_request *req,
			      struct hci_conn_params *params)
{
	struct hci_cp_le_add_to_white_list cp;

	cp.bdaddr_type = params->addr_type;
	bacpy(&cp.bdaddr, &params->addr);

	hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
}

static u8 update_white_list(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_conn_params *params;
	struct bdaddr_list *b;
	uint8_t white_list_entries = 0;

	/* Go through the current white list programmed into the
	 * controller one by one and check if that address is still
	 * in the list of pending connections or list of devices to
	 * report. If not present in either list, then queue the
	 * command to remove it from the controller.
	 */
	list_for_each_entry(b, &hdev->le_white_list, list) {
693 694 695 696 697 698 699 700 701 702 703
		/* If the device is neither in pend_le_conns nor
		 * pend_le_reports then remove it from the whitelist.
		 */
		if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
					       &b->bdaddr, b->bdaddr_type) &&
		    !hci_pend_le_action_lookup(&hdev->pend_le_reports,
					       &b->bdaddr, b->bdaddr_type)) {
			struct hci_cp_le_del_from_white_list cp;

			cp.bdaddr_type = b->bdaddr_type;
			bacpy(&cp.bdaddr, &b->bdaddr);
704

705 706
			hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
				    sizeof(cp), &cp);
707 708 709
			continue;
		}

710 711 712 713
		if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
			/* White list can not be used with RPAs */
			return 0x00;
		}
714

715
		white_list_entries++;
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	}

	/* Since all no longer valid white list entries have been
	 * removed, walk through the list of pending connections
	 * and ensure that any new device gets programmed into
	 * the controller.
	 *
	 * If the list of the devices is larger than the list of
	 * available white list entries in the controller, then
	 * just abort and return filer policy value to not use the
	 * white list.
	 */
	list_for_each_entry(params, &hdev->pend_le_conns, action) {
		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
					   &params->addr, params->addr_type))
			continue;

		if (white_list_entries >= hdev->le_white_list_size) {
			/* Select filter policy to accept all advertising */
			return 0x00;
		}

		if (hci_find_irk_by_addr(hdev, &params->addr,
					 params->addr_type)) {
			/* White list can not be used with RPAs */
			return 0x00;
		}

		white_list_entries++;
		add_to_white_list(req, params);
	}

	/* After adding all new pending connections, walk through
	 * the list of pending reports and also add these to the
	 * white list if there is still space.
	 */
	list_for_each_entry(params, &hdev->pend_le_reports, action) {
		if (hci_bdaddr_list_lookup(&hdev->le_white_list,
					   &params->addr, params->addr_type))
			continue;

		if (white_list_entries >= hdev->le_white_list_size) {
			/* Select filter policy to accept all advertising */
			return 0x00;
		}

		if (hci_find_irk_by_addr(hdev, &params->addr,
					 params->addr_type)) {
			/* White list can not be used with RPAs */
			return 0x00;
		}

		white_list_entries++;
		add_to_white_list(req, params);
	}

	/* Select filter policy to use white list */
	return 0x01;
}

776 777 778 779 780
static bool scan_use_rpa(struct hci_dev *hdev)
{
	return hci_dev_test_flag(hdev, HCI_PRIVACY);
}

781 782 783 784 785 786 787 788 789 790 791 792 793 794
void hci_req_add_le_passive_scan(struct hci_request *req)
{
	struct hci_cp_le_set_scan_param param_cp;
	struct hci_cp_le_set_scan_enable enable_cp;
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
	u8 filter_policy;

	/* Set require_privacy to false since no SCAN_REQ are send
	 * during passive scanning. Not using an non-resolvable address
	 * here is important so that peer devices using direct
	 * advertising with our address will be correctly reported
	 * by the controller.
	 */
795 796
	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
				      &own_addr_type))
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
		return;

	/* Adding or removing entries from the white list must
	 * happen before enabling scanning. The controller does
	 * not allow white list modification while scanning.
	 */
	filter_policy = update_white_list(req);

	/* When the controller is using random resolvable addresses and
	 * with that having LE privacy enabled, then controllers with
	 * Extended Scanner Filter Policies support can now enable support
	 * for handling directed advertising.
	 *
	 * So instead of using filter polices 0x00 (no whitelist)
	 * and 0x01 (whitelist enabled) use the new filter policies
	 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
	 */
814
	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
		filter_policy |= 0x02;

	memset(&param_cp, 0, sizeof(param_cp));
	param_cp.type = LE_SCAN_PASSIVE;
	param_cp.interval = cpu_to_le16(hdev->le_scan_interval);
	param_cp.window = cpu_to_le16(hdev->le_scan_window);
	param_cp.own_address_type = own_addr_type;
	param_cp.filter_policy = filter_policy;
	hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
		    &param_cp);

	memset(&enable_cp, 0, sizeof(enable_cp));
	enable_cp.enable = LE_SCAN_ENABLE;
	enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
		    &enable_cp);
}

834 835
static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
{
836
	u8 instance = hdev->cur_adv_instance;
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
	struct adv_info *adv_instance;

	/* Ignore instance 0 */
	if (instance == 0x00)
		return 0;

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return 0;

	/* TODO: Take into account the "appearance" and "local-name" flags here.
	 * These are currently being ignored as they are not supported.
	 */
	return adv_instance->scan_rsp_len;
}

void __hci_req_disable_advertising(struct hci_request *req)
{
	u8 enable = 0x00;

	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
}

static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
{
	u32 flags;
	struct adv_info *adv_instance;

	if (instance == 0x00) {
		/* Instance 0 always manages the "Tx Power" and "Flags"
		 * fields
		 */
		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;

		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
		 * corresponds to the "connectable" instance flag.
		 */
		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
			flags |= MGMT_ADV_FLAG_CONNECTABLE;

877 878 879
		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
880 881
			flags |= MGMT_ADV_FLAG_DISCOV;

882 883 884 885 886 887 888 889 890 891 892 893
		return flags;
	}

	adv_instance = hci_find_adv_instance(hdev, instance);

	/* Return 0 when we got an invalid instance identifier. */
	if (!adv_instance)
		return 0;

	return adv_instance->flags;
}

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
{
	/* If privacy is not enabled don't use RPA */
	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
		return false;

	/* If basic privacy mode is enabled use RPA */
	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
		return true;

	/* If limited privacy mode is enabled don't use RPA if we're
	 * both discoverable and bondable.
	 */
	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
	    hci_dev_test_flag(hdev, HCI_BONDABLE))
		return false;

	/* We're neither bondable nor discoverable in the limited
	 * privacy mode, therefore use RPA.
	 */
	return true;
}

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
void __hci_req_enable_advertising(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_le_set_adv_param cp;
	u8 own_addr_type, enable = 0x01;
	bool connectable;
	u32 flags;

	if (hci_conn_num(hdev, LE_LINK) > 0)
		return;

	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
		__hci_req_disable_advertising(req);

	/* Clear the HCI_LE_ADV bit temporarily so that the
	 * hci_update_random_address knows that it's safe to go ahead
	 * and write a new random address. The flag will be set back on
	 * as soon as the SET_ADV_ENABLE HCI command completes.
	 */
	hci_dev_clear_flag(hdev, HCI_LE_ADV);

938
	flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
939 940 941 942 943 944 945 946 947 948 949

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
950 951 952
	if (hci_update_random_address(req, !connectable,
				      adv_use_rpa(hdev, flags),
				      &own_addr_type) < 0)
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
		return;

	memset(&cp, 0, sizeof(cp));
	cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval);
	cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval);

	if (connectable)
		cp.type = LE_ADV_IND;
	else if (get_cur_adv_instance_scan_rsp_len(hdev))
		cp.type = LE_ADV_SCAN_IND;
	else
		cp.type = LE_ADV_NONCONN_IND;

	cp.own_address_type = own_addr_type;
	cp.channel_map = hdev->le_adv_channel_map;

	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);

	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
}

static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
{
	u8 ad_len = 0;
	size_t name_len;

	name_len = strlen(hdev->dev_name);
	if (name_len > 0) {
		size_t max_len = HCI_MAX_AD_LENGTH - ad_len - 2;

		if (name_len > max_len) {
			name_len = max_len;
			ptr[1] = EIR_NAME_SHORT;
		} else
			ptr[1] = EIR_NAME_COMPLETE;

		ptr[0] = name_len + 1;

		memcpy(ptr + 2, hdev->dev_name, name_len);

		ad_len += (name_len + 2);
		ptr += (name_len + 2);
	}

	return ad_len;
}

static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
					u8 *ptr)
{
	struct adv_info *adv_instance;

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return 0;

	/* TODO: Set the appropriate entries based on advertising instance flags
	 * here once flags other than 0 are supported.
	 */
	memcpy(ptr, adv_instance->scan_rsp_data,
	       adv_instance->scan_rsp_len);

	return adv_instance->scan_rsp_len;
}

1018
void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_le_set_scan_rsp_data cp;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

	memset(&cp, 0, sizeof(cp));

	if (instance)
		len = create_instance_scan_rsp_data(hdev, instance, cp.data);
	else
		len = create_default_scan_rsp_data(hdev, cp.data);

	if (hdev->scan_rsp_data_len == len &&
	    !memcmp(cp.data, hdev->scan_rsp_data, len))
		return;

	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
	hdev->scan_rsp_data_len = len;

	cp.length = len;

	hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
}

static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
{
	struct adv_info *adv_instance = NULL;
	u8 ad_len = 0, flags = 0;
	u32 instance_flags;

	/* Return 0 when the current instance identifier is invalid. */
	if (instance) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return 0;
	}

	instance_flags = get_adv_instance_flags(hdev, instance);

	/* The Add Advertising command allows userspace to set both the general
	 * and limited discoverable flags.
	 */
	if (instance_flags & MGMT_ADV_FLAG_DISCOV)
		flags |= LE_AD_GENERAL;

	if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
		flags |= LE_AD_LIMITED;

1070 1071 1072
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		flags |= LE_AD_NO_BREDR;

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
		/* If a discovery flag wasn't provided, simply use the global
		 * settings.
		 */
		if (!flags)
			flags |= mgmt_get_adv_discov_flags(hdev);

		/* If flags would still be empty, then there is no need to
		 * include the "Flags" AD field".
		 */
		if (flags) {
			ptr[0] = 0x02;
			ptr[1] = EIR_FLAGS;
			ptr[2] = flags;

			ad_len += 3;
			ptr += 3;
		}
	}

	if (adv_instance) {
		memcpy(ptr, adv_instance->adv_data,
		       adv_instance->adv_data_len);
		ad_len += adv_instance->adv_data_len;
		ptr += adv_instance->adv_data_len;
	}

	/* Provide Tx Power only if we can provide a valid value for it */
	if (hdev->adv_tx_power != HCI_TX_POWER_INVALID &&
	    (instance_flags & MGMT_ADV_FLAG_TX_POWER)) {
		ptr[0] = 0x02;
		ptr[1] = EIR_TX_POWER;
		ptr[2] = (u8)hdev->adv_tx_power;

		ad_len += 3;
		ptr += 3;
	}

	return ad_len;
}

1114
void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_le_set_adv_data cp;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

	memset(&cp, 0, sizeof(cp));

	len = create_instance_adv_data(hdev, instance, cp.data);

	/* There's nothing to do if the data hasn't changed */
	if (hdev->adv_data_len == len &&
	    memcmp(cp.data, hdev->adv_data, len) == 0)
		return;

	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
	hdev->adv_data_len = len;

	cp.length = len;

	hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
}

1140
int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
{
	struct hci_request req;

	hci_req_init(&req, hdev);
	__hci_req_update_adv_data(&req, instance);

	return hci_req_run(&req, NULL);
}

static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	BT_DBG("%s status %u", hdev->name, status);
}

void hci_req_reenable_advertising(struct hci_dev *hdev)
{
	struct hci_request req;

	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1160
	    list_empty(&hdev->adv_instances))
1161 1162 1163 1164
		return;

	hci_req_init(&req, hdev);

1165 1166 1167
	if (hdev->cur_adv_instance) {
		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
						true);
1168
	} else {
1169 1170
		__hci_req_update_adv_data(&req, 0x00);
		__hci_req_update_scan_rsp_data(&req, 0x00);
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
		__hci_req_enable_advertising(&req);
	}

	hci_req_run(&req, adv_enable_complete);
}

static void adv_timeout_expire(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    adv_instance_expire.work);

	struct hci_request req;
	u8 instance;

	BT_DBG("%s", hdev->name);

	hci_dev_lock(hdev);

	hdev->adv_instance_timeout = 0;

1191
	instance = hdev->cur_adv_instance;
1192 1193 1194 1195 1196
	if (instance == 0x00)
		goto unlock;

	hci_req_init(&req, hdev);

1197
	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1198 1199 1200 1201

	if (list_empty(&hdev->adv_instances))
		__hci_req_disable_advertising(&req);

1202
	hci_req_run(&req, NULL);
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215

unlock:
	hci_dev_unlock(hdev);
}

int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
				    bool force)
{
	struct hci_dev *hdev = req->hdev;
	struct adv_info *adv_instance = NULL;
	u16 timeout;

	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1216
	    list_empty(&hdev->adv_instances))
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
		return -EPERM;

	if (hdev->adv_instance_timeout)
		return -EBUSY;

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return -ENOENT;

	/* A zero timeout means unlimited advertising. As long as there is
	 * only one instance, duration should be ignored. We still set a timeout
	 * in case further instances are being added later on.
	 *
	 * If the remaining lifetime of the instance is more than the duration
	 * then the timeout corresponds to the duration, otherwise it will be
	 * reduced to the remaining instance lifetime.
	 */
	if (adv_instance->timeout == 0 ||
	    adv_instance->duration <= adv_instance->remaining_time)
		timeout = adv_instance->duration;
	else
		timeout = adv_instance->remaining_time;

	/* The remaining time is being reduced unless the instance is being
	 * advertised without time limit.
	 */
	if (adv_instance->timeout)
		adv_instance->remaining_time =
				adv_instance->remaining_time - timeout;

	hdev->adv_instance_timeout = timeout;
	queue_delayed_work(hdev->req_workqueue,
			   &hdev->adv_instance_expire,
			   msecs_to_jiffies(timeout * 1000));

	/* If we're just re-scheduling the same instance again then do not
	 * execute any HCI commands. This happens when a single instance is
	 * being advertised.
	 */
	if (!force && hdev->cur_adv_instance == instance &&
	    hci_dev_test_flag(hdev, HCI_LE_ADV))
		return 0;

	hdev->cur_adv_instance = instance;
1261 1262
	__hci_req_update_adv_data(req, instance);
	__hci_req_update_scan_rsp_data(req, instance);
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
	__hci_req_enable_advertising(req);

	return 0;
}

static void cancel_adv_timeout(struct hci_dev *hdev)
{
	if (hdev->adv_instance_timeout) {
		hdev->adv_instance_timeout = 0;
		cancel_delayed_work(&hdev->adv_instance_expire);
	}
}

/* For a single instance:
 * - force == true: The instance will be removed even when its remaining
 *   lifetime is not zero.
 * - force == false: the instance will be deactivated but kept stored unless
 *   the remaining lifetime is zero.
 *
 * For instance == 0x00:
 * - force == true: All instances will be removed regardless of their timeout
 *   setting.
 * - force == false: Only instances that have a timeout will be removed.
 */
1287 1288 1289
void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
				struct hci_request *req, u8 instance,
				bool force)
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
{
	struct adv_info *adv_instance, *n, *next_instance = NULL;
	int err;
	u8 rem_inst;

	/* Cancel any timeout concerning the removed instance(s). */
	if (!instance || hdev->cur_adv_instance == instance)
		cancel_adv_timeout(hdev);

	/* Get the next instance to advertise BEFORE we remove
	 * the current one. This can be the same instance again
	 * if there is only one instance.
	 */
	if (instance && hdev->cur_adv_instance == instance)
		next_instance = hci_get_next_instance(hdev, instance);

	if (instance == 0x00) {
		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
					 list) {
			if (!(force || adv_instance->timeout))
				continue;

			rem_inst = adv_instance->instance;
			err = hci_remove_adv_instance(hdev, rem_inst);
			if (!err)
1315
				mgmt_advertising_removed(sk, hdev, rem_inst);
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
		}
	} else {
		adv_instance = hci_find_adv_instance(hdev, instance);

		if (force || (adv_instance && adv_instance->timeout &&
			      !adv_instance->remaining_time)) {
			/* Don't advertise a removed instance. */
			if (next_instance &&
			    next_instance->instance == instance)
				next_instance = NULL;

			err = hci_remove_adv_instance(hdev, instance);
			if (!err)
1329
				mgmt_advertising_removed(sk, hdev, instance);
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
		}
	}

	if (!req || !hdev_is_powered(hdev) ||
	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
		return;

	if (next_instance)
		__hci_req_schedule_adv_instance(req, next_instance->instance,
						false);
}

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
{
	struct hci_dev *hdev = req->hdev;

	/* If we're advertising or initiating an LE connection we can't
	 * go ahead and change the random address at this time. This is
	 * because the eventual initiator address used for the
	 * subsequently created connection will be undefined (some
	 * controllers use the new address and others the one we had
	 * when the operation started).
	 *
	 * In this kind of scenario skip the update and let the random
	 * address be updated at the next cycle.
	 */
1356
	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1357
	    hci_lookup_le_connect(hdev)) {
1358
		BT_DBG("Deferring random address update");
1359
		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1360 1361 1362 1363 1364 1365 1366
		return;
	}

	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
}

int hci_update_random_address(struct hci_request *req, bool require_privacy,
1367
			      bool use_rpa, u8 *own_addr_type)
1368 1369 1370 1371 1372 1373 1374 1375
{
	struct hci_dev *hdev = req->hdev;
	int err;

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired or there is something else than
	 * the current RPA in use, then generate a new one.
	 */
1376
	if (use_rpa) {
1377 1378 1379 1380
		int to;

		*own_addr_type = ADDR_LE_DEV_RANDOM;

1381
		if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
		    !bacmp(&hdev->random_addr, &hdev->rpa))
			return 0;

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
			BT_ERR("%s failed to generate new RPA", hdev->name);
			return err;
		}

		set_random_addr(req, &hdev->rpa);

		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for active
	 * scanning and non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		set_random_addr(req, &nrpa);
		return 0;
	}

	/* If forcing static address is in use or there is no public
	 * address use the static address as random address (but skip
	 * the HCI command if the current random address is already the
	 * static one.
1430 1431 1432 1433
	 *
	 * In case BR/EDR has been disabled on a dual-mode controller
	 * and a static address has been configured, then use that
	 * address instead of the public BR/EDR address.
1434
	 */
1435
	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1436
	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1437
	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1438
	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
		*own_addr_type = ADDR_LE_DEV_RANDOM;
		if (bacmp(&hdev->static_addr, &hdev->random_addr))
			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
				    &hdev->static_addr);
		return 0;
	}

	/* Neither privacy nor static address is being used so use a
	 * public address.
	 */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
static bool disconnected_whitelist_entries(struct hci_dev *hdev)
{
	struct bdaddr_list *b;

	list_for_each_entry(b, &hdev->whitelist, list) {
		struct hci_conn *conn;

		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
		if (!conn)
			return true;

		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
			return true;
	}

	return false;
}

1472
void __hci_req_update_scan(struct hci_request *req)
1473 1474 1475 1476
{
	struct hci_dev *hdev = req->hdev;
	u8 scan;

1477
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1478 1479 1480 1481 1482 1483 1484 1485
		return;

	if (!hdev_is_powered(hdev))
		return;

	if (mgmt_powering_down(hdev))
		return;

1486
	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
1487 1488 1489 1490 1491
	    disconnected_whitelist_entries(hdev))
		scan = SCAN_PAGE;
	else
		scan = SCAN_DISABLED;

1492
	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1493 1494
		scan |= SCAN_INQUIRY;

1495 1496 1497 1498
	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
		return;

1499 1500 1501
	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
}

1502
static int update_scan(struct hci_request *req, unsigned long opt)
1503
{
1504 1505 1506 1507 1508
	hci_dev_lock(req->hdev);
	__hci_req_update_scan(req);
	hci_dev_unlock(req->hdev);
	return 0;
}
1509

1510 1511 1512 1513 1514
static void scan_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);

	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
1515 1516
}

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
static int connectable_update(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	hci_dev_lock(hdev);

	__hci_req_update_scan(req);

	/* If BR/EDR is not enabled and we disable advertising as a
	 * by-product of disabling connectable, we need to update the
	 * advertising flags.
	 */
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1530
		__hci_req_update_adv_data(req, hdev->cur_adv_instance);
1531 1532 1533

	/* Update the advertising parameters if necessary */
	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1534
	    !list_empty(&hdev->adv_instances))
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
		__hci_req_enable_advertising(req);

	__hci_update_background_scan(req);

	hci_dev_unlock(hdev);

	return 0;
}

static void connectable_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    connectable_update);
	u8 status;

	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
	mgmt_set_connectable_complete(hdev, status);
}

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
static u8 get_service_classes(struct hci_dev *hdev)
{
	struct bt_uuid *uuid;
	u8 val = 0;

	list_for_each_entry(uuid, &hdev->uuids, list)
		val |= uuid->svc_hint;

	return val;
}

void __hci_req_update_class(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	u8 cod[3];

	BT_DBG("%s", hdev->name);

	if (!hdev_is_powered(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	cod[0] = hdev->minor_class;
	cod[1] = hdev->major_class;
	cod[2] = get_service_classes(hdev);

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
		cod[1] |= 0x20;

	if (memcmp(cod, hdev->dev_class, 3) == 0)
		return;

	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
}

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
static void write_iac(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_current_iac_lap cp;

	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
		return;

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
		/* Limited discoverable mode */
		cp.num_iac = min_t(u8, hdev->num_iac, 2);
		cp.iac_lap[0] = 0x00;	/* LIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
		cp.iac_lap[3] = 0x33;	/* GIAC */
		cp.iac_lap[4] = 0x8b;
		cp.iac_lap[5] = 0x9e;
	} else {
		/* General discoverable mode */
		cp.num_iac = 1;
		cp.iac_lap[0] = 0x33;	/* GIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
	}

	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
		    (cp.num_iac * 3) + 1, &cp);
}

static int discoverable_update(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
		write_iac(req);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
	}

	/* Advertising instances don't use the global discoverable setting, so
	 * only update AD if advertising was enabled using Set Advertising.
	 */
1638
	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
1639
		__hci_req_update_adv_data(req, 0x00);
1640

1641 1642 1643 1644 1645 1646 1647
		/* Discoverable mode affects the local advertising
		 * address in limited privacy mode.
		 */
		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
			__hci_req_enable_advertising(req);
	}

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	hci_dev_unlock(hdev);

	return 0;
}

static void discoverable_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discoverable_update);
	u8 status;

	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
	mgmt_set_discoverable_complete(hdev, status);
}

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
		      u8 reason)
{
	switch (conn->state) {
	case BT_CONNECTED:
	case BT_CONFIG:
		if (conn->type == AMP_LINK) {
			struct hci_cp_disconn_phy_link cp;

			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
			cp.reason = reason;
			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
				    &cp);
		} else {
			struct hci_cp_disconnect dc;

			dc.handle = cpu_to_le16(conn->handle);
			dc.reason = reason;
			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
		}

		conn->state = BT_DISCONN;

		break;
	case BT_CONNECT:
		if (conn->type == LE_LINK) {
			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
				break;
			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
				    0, NULL);
		} else if (conn->type == ACL_LINK) {
			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
				break;
			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
				    6, &conn->dst);
		}
		break;
	case BT_CONNECT2:
		if (conn->type == ACL_LINK) {
			struct hci_cp_reject_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);
			rej.reason = reason;

			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
				    sizeof(rej), &rej);
		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
			struct hci_cp_reject_sync_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);

			/* SCO rejection has its own limited set of
			 * allowed error values (0x0D-0x0F) which isn't
			 * compatible with most values passed to this
			 * function. To be safe hard-code one of the
			 * values that's suitable for SCO.
			 */
			rej.reason = HCI_ERROR_REMOTE_LOW_RESOURCES;

			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
				    sizeof(rej), &rej);
		}
		break;
	default:
		conn->state = BT_CLOSED;
		break;
	}
}

static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	if (status)
		BT_DBG("Failed to abort connection: status 0x%2.2x", status);
}

int hci_abort_conn(struct hci_conn *conn, u8 reason)
{
	struct hci_request req;
	int err;

	hci_req_init(&req, conn->hdev);

	__hci_abort_conn(&req, conn, reason);

	err = hci_req_run(&req, abort_conn_complete);
	if (err && err != -ENODATA) {
		BT_ERR("Failed to run HCI request: err %d", err);
		return err;
	}

	return 0;
}
1755

1756
static int update_bg_scan(struct hci_request *req, unsigned long opt)
1757 1758 1759 1760
{
	hci_dev_lock(req->hdev);
	__hci_update_background_scan(req);
	hci_dev_unlock(req->hdev);
1761
	return 0;
1762 1763 1764 1765 1766 1767
}

static void bg_scan_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    bg_scan_update);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
	struct hci_conn *conn;
	u8 status;
	int err;

	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
	if (!err)
		return;

	hci_dev_lock(hdev);

	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
	if (conn)
		hci_le_conn_failed(conn, status);
1781

1782
	hci_dev_unlock(hdev);
1783 1784
}

1785
static int le_scan_disable(struct hci_request *req, unsigned long opt)
1786
{
1787 1788
	hci_req_add_le_scan_disable(req);
	return 0;
1789 1790
}

1791
static int bredr_inquiry(struct hci_request *req, unsigned long opt)
1792
{
1793
	u8 length = opt;
1794 1795
	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
1796 1797
	struct hci_cp_inquiry cp;

1798
	BT_DBG("%s", req->hdev->name);
1799

1800 1801 1802
	hci_dev_lock(req->hdev);
	hci_inquiry_cache_flush(req->hdev);
	hci_dev_unlock(req->hdev);
1803

1804
	memset(&cp, 0, sizeof(cp));
1805 1806 1807 1808 1809 1810

	if (req->hdev->discovery.limited)
		memcpy(&cp.lap, liac, sizeof(cp.lap));
	else
		memcpy(&cp.lap, giac, sizeof(cp.lap));

1811
	cp.length = length;
1812

1813
	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1814

1815
	return 0;
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
}

static void le_scan_disable_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_disable.work);
	u8 status;

	BT_DBG("%s", hdev->name);

1826 1827 1828
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return;

1829 1830
	cancel_delayed_work(&hdev->le_scan_restart);

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850
	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
	if (status) {
		BT_ERR("Failed to disable LE scan: status 0x%02x", status);
		return;
	}

	hdev->discovery.scan_start = 0;

	/* If we were running LE only scan, change discovery state. If
	 * we were running both LE and BR/EDR inquiry simultaneously,
	 * and BR/EDR inquiry is already finished, stop discovery,
	 * otherwise BR/EDR inquiry will stop discovery when finished.
	 * If we will resolve remote device name, do not change
	 * discovery state.
	 */

	if (hdev->discovery.type == DISCOV_TYPE_LE)
		goto discov_stopped;

	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
1851 1852
		return;

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
		    hdev->discovery.state != DISCOVERY_RESOLVING)
			goto discov_stopped;

		return;
	}

	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
		     HCI_CMD_TIMEOUT, &status);
	if (status) {
		BT_ERR("Inquiry failed: status 0x%02x", status);
		goto discov_stopped;
	}

	return;

discov_stopped:
	hci_dev_lock(hdev);
	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
	hci_dev_unlock(hdev);
1874 1875
}

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
static int le_scan_restart(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_le_set_scan_enable cp;

	/* If controller is not scanning we are done. */
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return 0;

	hci_req_add_le_scan_disable(req);

	memset(&cp, 0, sizeof(cp));
	cp.enable = LE_SCAN_ENABLE;
	cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);

	return 0;
}

static void le_scan_restart_work(struct work_struct *work)
1896
{
1897 1898
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_restart.work);
1899
	unsigned long timeout, duration, scan_start, now;
1900
	u8 status;
1901 1902 1903

	BT_DBG("%s", hdev->name);

1904
	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
	if (status) {
		BT_ERR("Failed to restart LE scan: status %d", status);
		return;
	}

	hci_dev_lock(hdev);

	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
	    !hdev->discovery.scan_start)
		goto unlock;

	/* When the scan was started, hdev->le_scan_disable has been queued
	 * after duration from scan_start. During scan restart this job
	 * has been canceled, and we need to queue it again after proper
	 * timeout, to make sure that scan does not run indefinitely.
	 */
	duration = hdev->discovery.scan_duration;
	scan_start = hdev->discovery.scan_start;
	now = jiffies;
	if (now - scan_start <= duration) {
		int elapsed;

		if (now >= scan_start)
			elapsed = now - scan_start;
		else
			elapsed = ULONG_MAX - scan_start + now;

		timeout = duration - elapsed;
	} else {
		timeout = 0;
	}

	queue_delayed_work(hdev->req_workqueue,
			   &hdev->le_scan_disable, timeout);

unlock:
	hci_dev_unlock(hdev);
}

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
static void disable_advertising(struct hci_request *req)
{
	u8 enable = 0x00;

	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
}

static int active_scan(struct hci_request *req, unsigned long opt)
{
	uint16_t interval = opt;
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_le_set_scan_param param_cp;
	struct hci_cp_le_set_scan_enable enable_cp;
	u8 own_addr_type;
	int err;

	BT_DBG("%s", hdev->name);

	if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
		hci_dev_lock(hdev);

		/* Don't let discovery abort an outgoing connection attempt
		 * that's using directed advertising.
		 */
		if (hci_lookup_le_connect(hdev)) {
			hci_dev_unlock(hdev);
			return -EBUSY;
		}

		cancel_adv_timeout(hdev);
		hci_dev_unlock(hdev);

		disable_advertising(req);
	}

	/* If controller is scanning, it means the background scanning is
	 * running. Thus, we should temporarily stop it in order to set the
	 * discovery scanning parameters.
	 */
	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
		hci_req_add_le_scan_disable(req);

	/* All active scans will be done with either a resolvable private
	 * address (when privacy feature has been enabled) or non-resolvable
	 * private address.
	 */
1990 1991
	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
					&own_addr_type);
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
	if (err < 0)
		own_addr_type = ADDR_LE_DEV_PUBLIC;

	memset(&param_cp, 0, sizeof(param_cp));
	param_cp.type = LE_SCAN_ACTIVE;
	param_cp.interval = cpu_to_le16(interval);
	param_cp.window = cpu_to_le16(DISCOV_LE_SCAN_WIN);
	param_cp.own_address_type = own_addr_type;

	hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
		    &param_cp);

	memset(&enable_cp, 0, sizeof(enable_cp));
	enable_cp.enable = LE_SCAN_ENABLE;
	enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;

	hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
		    &enable_cp);

	return 0;
}

static int interleaved_discov(struct hci_request *req, unsigned long opt)
{
	int err;

	BT_DBG("%s", req->hdev->name);

	err = active_scan(req, opt);
	if (err)
		return err;

2024
	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
}

static void start_discovery(struct hci_dev *hdev, u8 *status)
{
	unsigned long timeout;

	BT_DBG("%s type %u", hdev->name, hdev->discovery.type);

	switch (hdev->discovery.type) {
	case DISCOV_TYPE_BREDR:
		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2036 2037
			hci_req_sync(hdev, bredr_inquiry,
				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
				     status);
		return;
	case DISCOV_TYPE_INTERLEAVED:
		/* When running simultaneous discovery, the LE scanning time
		 * should occupy the whole discovery time sine BR/EDR inquiry
		 * and LE scanning are scheduled by the controller.
		 *
		 * For interleaving discovery in comparison, BR/EDR inquiry
		 * and LE scanning are done sequentially with separate
		 * timeouts.
		 */
		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
			     &hdev->quirks)) {
			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
			/* During simultaneous discovery, we double LE scan
			 * interval. We must leave some time for the controller
			 * to do BR/EDR inquiry.
			 */
			hci_req_sync(hdev, interleaved_discov,
				     DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
				     status);
			break;
		}

		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
			     HCI_CMD_TIMEOUT, status);
		break;
	case DISCOV_TYPE_LE:
		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
			     HCI_CMD_TIMEOUT, status);
		break;
	default:
		*status = HCI_ERROR_UNSPECIFIED;
		return;
	}

	if (*status)
		return;

	BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));

	/* When service discovery is used and the controller has a
	 * strict duplicate filter, it is important to remember the
	 * start and duration of the scan. This is required for
	 * restarting scanning during the discovery phase.
	 */
	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
		     hdev->discovery.result_filtering) {
		hdev->discovery.scan_start = jiffies;
		hdev->discovery.scan_duration = timeout;
	}

	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
			   timeout);
}

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
bool hci_req_stop_discovery(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct discovery_state *d = &hdev->discovery;
	struct hci_cp_remote_name_req_cancel cp;
	struct inquiry_entry *e;
	bool ret = false;

	BT_DBG("%s state %u", hdev->name, hdev->discovery.state);

	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
		if (test_bit(HCI_INQUIRY, &hdev->flags))
			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);

		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			cancel_delayed_work(&hdev->le_scan_disable);
			hci_req_add_le_scan_disable(req);
		}

		ret = true;
	} else {
		/* Passive scanning */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			hci_req_add_le_scan_disable(req);
			ret = true;
		}
	}

	/* No further actions needed for LE-only discovery */
	if (d->type == DISCOV_TYPE_LE)
		return ret;

	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
						     NAME_PENDING);
		if (!e)
			return ret;

		bacpy(&cp.bdaddr, &e->data.bdaddr);
		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
			    &cp);
		ret = true;
	}

	return ret;
}

static int stop_discovery(struct hci_request *req, unsigned long opt)
{
	hci_dev_lock(req->hdev);
	hci_req_stop_discovery(req);
	hci_dev_unlock(req->hdev);

	return 0;
}

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
static void discov_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_update);
	u8 status = 0;

	switch (hdev->discovery.state) {
	case DISCOVERY_STARTING:
		start_discovery(hdev, &status);
		mgmt_start_discovery_complete(hdev, status);
		if (status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		else
			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
		break;
2167 2168 2169 2170 2171 2172
	case DISCOVERY_STOPPING:
		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
		mgmt_stop_discovery_complete(hdev, status);
		if (!status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		break;
2173 2174 2175 2176 2177 2178
	case DISCOVERY_STOPPED:
	default:
		return;
	}
}

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
static void discov_off(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_off.work);

	BT_DBG("%s", hdev->name);

	hci_dev_lock(hdev);

	/* When discoverable timeout triggers, then just make sure
	 * the limited discoverable flag is cleared. Even in the case
	 * of a timeout triggered from general discoverable, it is
	 * safe to unconditionally clear the flag.
	 */
	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
	hdev->discov_timeout = 0;

	hci_dev_unlock(hdev);

	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
	mgmt_new_settings(hdev);
}

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
static int powered_update_hci(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	u8 link_sec;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
	    !lmp_host_ssp_capable(hdev)) {
		u8 mode = 0x01;

		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);

		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
			u8 support = 0x01;

			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
				    sizeof(support), &support);
		}
	}

	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
	    lmp_bredr_capable(hdev)) {
		struct hci_cp_write_le_host_supported cp;

		cp.le = 0x01;
		cp.simul = 0x00;

		/* Check first if we already have the right
		 * host state (host features set)
		 */
		if (cp.le != lmp_host_le_capable(hdev) ||
		    cp.simul != lmp_host_le_br_capable(hdev))
			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
				    sizeof(cp), &cp);
	}

2240
	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2241 2242 2243 2244
		/* Make sure the controller has a good default for
		 * advertising data. This also applies to the case
		 * where BR/EDR was toggled during the AUTO_OFF phase.
		 */
2245 2246 2247 2248 2249 2250 2251 2252 2253
		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
		    list_empty(&hdev->adv_instances)) {
			__hci_req_update_adv_data(req, 0x00);
			__hci_req_update_scan_rsp_data(req, 0x00);

			if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
				__hci_req_enable_advertising(req);
		} else if (!list_empty(&hdev->adv_instances)) {
			struct adv_info *adv_instance;
2254 2255 2256 2257

			adv_instance = list_first_entry(&hdev->adv_instances,
							struct adv_info, list);
			__hci_req_schedule_adv_instance(req,
2258
							adv_instance->instance,
2259
							true);
2260
		}
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295
	}

	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
			    sizeof(link_sec), &link_sec);

	if (lmp_bredr_capable(hdev)) {
		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
			__hci_req_write_fast_connectable(req, true);
		else
			__hci_req_write_fast_connectable(req, false);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
		__hci_req_update_name(req);
		__hci_req_update_eir(req);
	}

	hci_dev_unlock(hdev);
	return 0;
}

int __hci_req_hci_power_on(struct hci_dev *hdev)
{
	/* Register the available SMP channels (BR/EDR and LE) only when
	 * successfully powering on the controller. This late
	 * registration is required so that LE SMP can clearly decide if
	 * the public address or static address is used.
	 */
	smp_register(hdev);

	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
			      NULL);
}

2296 2297
void hci_request_setup(struct hci_dev *hdev)
{
2298
	INIT_WORK(&hdev->discov_update, discov_update);
2299
	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2300
	INIT_WORK(&hdev->scan_update, scan_update_work);
2301
	INIT_WORK(&hdev->connectable_update, connectable_update_work);
2302
	INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2303
	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2304 2305
	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2306
	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2307 2308 2309 2310
}

void hci_request_cancel_all(struct hci_dev *hdev)
{
2311 2312
	hci_req_sync_cancel(hdev, ENODEV);

2313
	cancel_work_sync(&hdev->discov_update);
2314
	cancel_work_sync(&hdev->bg_scan_update);
2315
	cancel_work_sync(&hdev->scan_update);
2316
	cancel_work_sync(&hdev->connectable_update);
2317
	cancel_work_sync(&hdev->discoverable_update);
2318
	cancel_delayed_work_sync(&hdev->discov_off);
2319 2320
	cancel_delayed_work_sync(&hdev->le_scan_disable);
	cancel_delayed_work_sync(&hdev->le_scan_restart);
2321 2322 2323 2324 2325

	if (hdev->adv_instance_timeout) {
		cancel_delayed_work_sync(&hdev->adv_instance_expire);
		hdev->adv_instance_timeout = 0;
	}
2326
}