hci_request.c 78.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
   BlueZ - Bluetooth protocol stack for Linux

   Copyright (C) 2014 Intel Corporation

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License version 2 as
   published by the Free Software Foundation;

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
   SOFTWARE IS DISCLAIMED.
*/

24 25
#include <linux/sched/signal.h>

26 27
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
28
#include <net/bluetooth/mgmt.h>
29 30 31 32

#include "smp.h"
#include "hci_request.h"

33 34 35 36
#define HCI_REQ_DONE	  0
#define HCI_REQ_PEND	  1
#define HCI_REQ_CANCELED  2

37
#define LE_SUSPEND_SCAN_WINDOW		0x0012
38
#define LE_SUSPEND_SCAN_INTERVAL	0x0400
39

40 41 42 43 44 45 46
void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
{
	skb_queue_head_init(&req->cmd_q);
	req->hdev = hdev;
	req->err = 0;
}

47 48 49 50 51
void hci_req_purge(struct hci_request *req)
{
	skb_queue_purge(&req->cmd_q);
}

52 53 54 55 56
bool hci_req_status_pend(struct hci_dev *hdev)
{
	return hdev->req_status == HCI_REQ_PEND;
}

57 58
static int req_run(struct hci_request *req, hci_req_complete_t complete,
		   hci_req_complete_skb_t complete_skb)
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;
	unsigned long flags;

	BT_DBG("length %u", skb_queue_len(&req->cmd_q));

	/* If an error occurred during request building, remove all HCI
	 * commands queued on the HCI request queue.
	 */
	if (req->err) {
		skb_queue_purge(&req->cmd_q);
		return req->err;
	}

	/* Do not allow empty requests */
	if (skb_queue_empty(&req->cmd_q))
		return -ENODATA;

	skb = skb_peek_tail(&req->cmd_q);
79 80 81 82 83 84
	if (complete) {
		bt_cb(skb)->hci.req_complete = complete;
	} else if (complete_skb) {
		bt_cb(skb)->hci.req_complete_skb = complete_skb;
		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
	}
85 86 87 88 89 90 91 92 93 94

	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);

	queue_work(hdev->workqueue, &hdev->cmd_work);

	return 0;
}

95 96 97 98 99 100 101 102 103 104
int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
{
	return req_run(req, complete, NULL);
}

int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
{
	return req_run(req, NULL, complete);
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118
static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
				  struct sk_buff *skb)
{
	BT_DBG("%s result 0x%2.2x", hdev->name, result);

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = result;
		hdev->req_status = HCI_REQ_DONE;
		if (skb)
			hdev->req_skb = skb_get(skb);
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

119
void hci_req_sync_cancel(struct hci_dev *hdev, int err)
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
{
	BT_DBG("%s err 0x%2.2x", hdev->name, err);

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = err;
		hdev->req_status = HCI_REQ_CANCELED;
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
				  const void *param, u8 event, u32 timeout)
{
	struct hci_request req;
	struct sk_buff *skb;
	int err = 0;

	BT_DBG("%s", hdev->name);

	hci_req_init(&req, hdev);

	hci_req_add_ev(&req, opcode, plen, param, event);

	hdev->req_status = HCI_REQ_PEND;

	err = hci_req_run_skb(&req, hci_req_sync_complete);
146
	if (err < 0)
147 148
		return ERR_PTR(err);

149 150
	err = wait_event_interruptible_timeout(hdev->req_wait_q,
			hdev->req_status != HCI_REQ_PEND, timeout);
151

152
	if (err == -ERESTARTSYS)
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
		return ERR_PTR(-EINTR);

	switch (hdev->req_status) {
	case HCI_REQ_DONE:
		err = -bt_to_errno(hdev->req_result);
		break;

	case HCI_REQ_CANCELED:
		err = -hdev->req_result;
		break;

	default:
		err = -ETIMEDOUT;
		break;
	}

	hdev->req_status = hdev->req_result = 0;
	skb = hdev->req_skb;
	hdev->req_skb = NULL;

	BT_DBG("%s end: err %d", hdev->name, err);

	if (err < 0) {
		kfree_skb(skb);
		return ERR_PTR(err);
	}

	if (!skb)
		return ERR_PTR(-ENODATA);

	return skb;
}
EXPORT_SYMBOL(__hci_cmd_sync_ev);

struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
			       const void *param, u32 timeout)
{
	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
}
EXPORT_SYMBOL(__hci_cmd_sync);

/* Execute request and wait for completion. */
195 196
int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
						     unsigned long opt),
197
		   unsigned long opt, u32 timeout, u8 *hci_status)
198 199 200 201 202 203 204 205 206 207
{
	struct hci_request req;
	int err = 0;

	BT_DBG("%s start", hdev->name);

	hci_req_init(&req, hdev);

	hdev->req_status = HCI_REQ_PEND;

208 209 210 211 212 213
	err = func(&req, opt);
	if (err) {
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
		return err;
	}
214 215 216 217 218 219 220 221 222 223

	err = hci_req_run_skb(&req, hci_req_sync_complete);
	if (err < 0) {
		hdev->req_status = 0;

		/* ENODATA means the HCI request command queue is empty.
		 * This can happen when a request with conditionals doesn't
		 * trigger any commands to be sent. This is normal behavior
		 * and should not trigger an error return.
		 */
224 225 226
		if (err == -ENODATA) {
			if (hci_status)
				*hci_status = 0;
227
			return 0;
228 229 230 231
		}

		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
232 233 234 235

		return err;
	}

236 237
	err = wait_event_interruptible_timeout(hdev->req_wait_q,
			hdev->req_status != HCI_REQ_PEND, timeout);
238

239
	if (err == -ERESTARTSYS)
240 241 242 243 244
		return -EINTR;

	switch (hdev->req_status) {
	case HCI_REQ_DONE:
		err = -bt_to_errno(hdev->req_result);
245 246
		if (hci_status)
			*hci_status = hdev->req_result;
247 248 249 250
		break;

	case HCI_REQ_CANCELED:
		err = -hdev->req_result;
251 252
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
253 254 255 256
		break;

	default:
		err = -ETIMEDOUT;
257 258
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
259 260 261
		break;
	}

262 263
	kfree_skb(hdev->req_skb);
	hdev->req_skb = NULL;
264 265 266 267 268 269 270
	hdev->req_status = hdev->req_result = 0;

	BT_DBG("%s end: err %d", hdev->name, err);

	return err;
}

271 272
int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
						  unsigned long opt),
273
		 unsigned long opt, u32 timeout, u8 *hci_status)
274 275 276 277 278 279 280
{
	int ret;

	if (!test_bit(HCI_UP, &hdev->flags))
		return -ENETDOWN;

	/* Serialize all requests */
281
	hci_req_sync_lock(hdev);
282
	ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
283
	hci_req_sync_unlock(hdev);
284 285 286 287

	return ret;
}

288 289 290 291 292 293 294 295 296 297 298
struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
				const void *param)
{
	int len = HCI_COMMAND_HDR_SIZE + plen;
	struct hci_command_hdr *hdr;
	struct sk_buff *skb;

	skb = bt_skb_alloc(len, GFP_ATOMIC);
	if (!skb)
		return NULL;

299
	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
300 301 302 303
	hdr->opcode = cpu_to_le16(opcode);
	hdr->plen   = plen;

	if (plen)
304
		skb_put_data(skb, param, plen);
305 306 307

	BT_DBG("skb len %d", skb->len);

308 309
	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
	hci_skb_opcode(skb) = opcode;
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

	return skb;
}

/* Queue a command to an asynchronous HCI request */
void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
		    const void *param, u8 event)
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;

	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);

	/* If an error occurred during request building, there is no point in
	 * queueing the HCI command. We can simply return.
	 */
	if (req->err)
		return;

	skb = hci_prepare_cmd(hdev, opcode, plen, param);
	if (!skb) {
331 332
		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
			   opcode);
333 334 335 336 337
		req->err = -ENOMEM;
		return;
	}

	if (skb_queue_empty(&req->cmd_q))
338
		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
339

340
	bt_cb(skb)->hci.req_event = event;
341 342 343 344 345 346 347 348 349 350

	skb_queue_tail(&req->cmd_q, skb);
}

void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
		 const void *param)
{
	hci_req_add_ev(req, opcode, plen, param, 0);
}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_page_scan_activity acp;
	u8 type;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
		return;

	if (enable) {
		type = PAGE_SCAN_TYPE_INTERLACED;

		/* 160 msec page scan interval */
		acp.interval = cpu_to_le16(0x0100);
	} else {
		type = PAGE_SCAN_TYPE_STANDARD;	/* default */

		/* default 1.28 sec page scan */
		acp.interval = cpu_to_le16(0x0800);
	}

	acp.window = cpu_to_le16(0x0012);

	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
			    sizeof(acp), &acp);

	if (hdev->page_scan_type != type)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
}

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
/* This function controls the background scanning based on hdev->pend_le_conns
 * list. If there are pending LE connection we start the background scanning,
 * otherwise we stop it.
 *
 * This function requires the caller holds hdev->lock.
 */
static void __hci_update_background_scan(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;

	if (!test_bit(HCI_UP, &hdev->flags) ||
	    test_bit(HCI_INIT, &hdev->flags) ||
	    hci_dev_test_flag(hdev, HCI_SETUP) ||
	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
		return;

	/* No point in doing scanning if LE support hasn't been enabled */
	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

	/* If discovery is active don't interfere with it */
	if (hdev->discovery.state != DISCOVERY_STOPPED)
		return;

	/* Reset RSSI and UUID filters when starting background scanning
	 * since these filters are meant for service discovery only.
	 *
	 * The Start Discovery and Start Service Discovery operations
	 * ensure to set proper values for RSSI threshold and UUID
	 * filter list. So it is safe to just reset them here.
	 */
	hci_discovery_filter_clear(hdev);

	if (list_empty(&hdev->pend_le_conns) &&
	    list_empty(&hdev->pend_le_reports)) {
		/* If there is no pending LE connections or devices
		 * to be scanned for, we should stop the background
		 * scanning.
		 */

		/* If controller is not scanning we are done. */
		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
			return;

		hci_req_add_le_scan_disable(req);

		BT_DBG("%s stopping background scanning", hdev->name);
	} else {
		/* If there is at least one pending LE connection, we should
		 * keep the background scan running.
		 */

		/* If controller is connecting, we should not start scanning
		 * since some controllers are not able to scan and connect at
		 * the same time.
		 */
		if (hci_lookup_le_connect(hdev))
			return;

		/* If controller is currently scanning, we stop it to ensure we
		 * don't miss any advertising (due to duplicates filter).
		 */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
			hci_req_add_le_scan_disable(req);

		hci_req_add_le_passive_scan(req);

		BT_DBG("%s starting background scanning", hdev->name);
	}
}

459 460 461 462 463 464 465 466 467 468
void __hci_req_update_name(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_local_name cp;

	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));

	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
}

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
#define PNP_INFO_SVCLASS_ID		0x1200

static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
{
	u8 *ptr = data, *uuids_start = NULL;
	struct bt_uuid *uuid;

	if (len < 4)
		return ptr;

	list_for_each_entry(uuid, &hdev->uuids, list) {
		u16 uuid16;

		if (uuid->size != 16)
			continue;

		uuid16 = get_unaligned_le16(&uuid->uuid[12]);
		if (uuid16 < 0x1100)
			continue;

		if (uuid16 == PNP_INFO_SVCLASS_ID)
			continue;

		if (!uuids_start) {
			uuids_start = ptr;
			uuids_start[0] = 1;
			uuids_start[1] = EIR_UUID16_ALL;
			ptr += 2;
		}

		/* Stop if not enough space to put next UUID */
		if ((ptr - data) + sizeof(u16) > len) {
			uuids_start[1] = EIR_UUID16_SOME;
			break;
		}

		*ptr++ = (uuid16 & 0x00ff);
		*ptr++ = (uuid16 & 0xff00) >> 8;
		uuids_start[0] += sizeof(uuid16);
	}

	return ptr;
}

static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
{
	u8 *ptr = data, *uuids_start = NULL;
	struct bt_uuid *uuid;

	if (len < 6)
		return ptr;

	list_for_each_entry(uuid, &hdev->uuids, list) {
		if (uuid->size != 32)
			continue;

		if (!uuids_start) {
			uuids_start = ptr;
			uuids_start[0] = 1;
			uuids_start[1] = EIR_UUID32_ALL;
			ptr += 2;
		}

		/* Stop if not enough space to put next UUID */
		if ((ptr - data) + sizeof(u32) > len) {
			uuids_start[1] = EIR_UUID32_SOME;
			break;
		}

		memcpy(ptr, &uuid->uuid[12], sizeof(u32));
		ptr += sizeof(u32);
		uuids_start[0] += sizeof(u32);
	}

	return ptr;
}

static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
{
	u8 *ptr = data, *uuids_start = NULL;
	struct bt_uuid *uuid;

	if (len < 18)
		return ptr;

	list_for_each_entry(uuid, &hdev->uuids, list) {
		if (uuid->size != 128)
			continue;

		if (!uuids_start) {
			uuids_start = ptr;
			uuids_start[0] = 1;
			uuids_start[1] = EIR_UUID128_ALL;
			ptr += 2;
		}

		/* Stop if not enough space to put next UUID */
		if ((ptr - data) + 16 > len) {
			uuids_start[1] = EIR_UUID128_SOME;
			break;
		}

		memcpy(ptr, uuid->uuid, 16);
		ptr += 16;
		uuids_start[0] += 16;
	}

	return ptr;
}

static void create_eir(struct hci_dev *hdev, u8 *data)
{
	u8 *ptr = data;
	size_t name_len;

	name_len = strlen(hdev->dev_name);

	if (name_len > 0) {
		/* EIR Data type */
		if (name_len > 48) {
			name_len = 48;
			ptr[1] = EIR_NAME_SHORT;
		} else
			ptr[1] = EIR_NAME_COMPLETE;

		/* EIR Data length */
		ptr[0] = name_len + 1;

		memcpy(ptr + 2, hdev->dev_name, name_len);

		ptr += (name_len + 2);
	}

	if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
		ptr[0] = 2;
		ptr[1] = EIR_TX_POWER;
		ptr[2] = (u8) hdev->inq_tx_power;

		ptr += 3;
	}

	if (hdev->devid_source > 0) {
		ptr[0] = 9;
		ptr[1] = EIR_DEVICE_ID;

		put_unaligned_le16(hdev->devid_source, ptr + 2);
		put_unaligned_le16(hdev->devid_vendor, ptr + 4);
		put_unaligned_le16(hdev->devid_product, ptr + 6);
		put_unaligned_le16(hdev->devid_version, ptr + 8);

		ptr += 10;
	}

	ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
	ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
	ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
}

void __hci_req_update_eir(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_eir cp;

	if (!hdev_is_powered(hdev))
		return;

	if (!lmp_ext_inq_capable(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	memset(&cp, 0, sizeof(cp));

	create_eir(hdev, cp.data);

	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
		return;

	memcpy(hdev->eir, cp.data, sizeof(cp.data));

	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
}

656 657
void hci_req_add_le_scan_disable(struct hci_request *req)
{
658
	struct hci_dev *hdev = req->hdev;
659

660 661 662 663 664
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}

665 666 667 668 669 670 671 672 673 674 675 676 677 678
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_DISABLE;
		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
			    &cp);
	} else {
		struct hci_cp_le_set_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_DISABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
	}
679 680
}

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
static void del_from_white_list(struct hci_request *req, bdaddr_t *bdaddr,
				u8 bdaddr_type)
{
	struct hci_cp_le_del_from_white_list cp;

	cp.bdaddr_type = bdaddr_type;
	bacpy(&cp.bdaddr, bdaddr);

	bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from whitelist", &cp.bdaddr,
		   cp.bdaddr_type);
	hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, sizeof(cp), &cp);
}

/* Adds connection to white list if needed. On error, returns -1. */
static int add_to_white_list(struct hci_request *req,
			     struct hci_conn_params *params, u8 *num_entries,
			     bool allow_rpa)
698 699
{
	struct hci_cp_le_add_to_white_list cp;
700 701 702 703 704 705
	struct hci_dev *hdev = req->hdev;

	/* Already in white list */
	if (hci_bdaddr_list_lookup(&hdev->le_white_list, &params->addr,
				   params->addr_type))
		return 0;
706

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	/* Select filter policy to accept all advertising */
	if (*num_entries >= hdev->le_white_list_size)
		return -1;

	/* White list can not be used with RPAs */
	if (!allow_rpa &&
	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type)) {
		return -1;
	}

	/* During suspend, only wakeable devices can be in whitelist */
	if (hdev->suspended && !params->wakeable)
		return 0;

	*num_entries += 1;
722 723 724
	cp.bdaddr_type = params->addr_type;
	bacpy(&cp.bdaddr, &params->addr);

725 726
	bt_dev_dbg(hdev, "Add %pMR (0x%x) to whitelist", &cp.bdaddr,
		   cp.bdaddr_type);
727
	hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
728 729

	return 0;
730 731 732 733 734 735 736
}

static u8 update_white_list(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_conn_params *params;
	struct bdaddr_list *b;
737 738 739 740 741 742 743 744
	u8 num_entries = 0;
	bool pend_conn, pend_report;
	/* We allow whitelisting even with RPAs in suspend. In the worst case,
	 * we won't be able to wake from devices that use the privacy1.2
	 * features. Additionally, once we support privacy1.2 and IRK
	 * offloading, we can update this to also check for those conditions.
	 */
	bool allow_rpa = hdev->suspended;
745 746 747 748 749 750 751 752

	/* Go through the current white list programmed into the
	 * controller one by one and check if that address is still
	 * in the list of pending connections or list of devices to
	 * report. If not present in either list, then queue the
	 * command to remove it from the controller.
	 */
	list_for_each_entry(b, &hdev->le_white_list, list) {
753 754 755 756 757 758 759 760 761
		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
						      &b->bdaddr,
						      b->bdaddr_type);
		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
							&b->bdaddr,
							b->bdaddr_type);

		/* If the device is not likely to connect or report,
		 * remove it from the whitelist.
762
		 */
763 764
		if (!pend_conn && !pend_report) {
			del_from_white_list(req, &b->bdaddr, b->bdaddr_type);
765 766 767
			continue;
		}

768 769 770
		/* White list can not be used with RPAs */
		if (!allow_rpa &&
		    hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
771 772
			return 0x00;
		}
773

774
		num_entries++;
775 776 777 778 779 780 781 782 783 784 785 786 787
	}

	/* Since all no longer valid white list entries have been
	 * removed, walk through the list of pending connections
	 * and ensure that any new device gets programmed into
	 * the controller.
	 *
	 * If the list of the devices is larger than the list of
	 * available white list entries in the controller, then
	 * just abort and return filer policy value to not use the
	 * white list.
	 */
	list_for_each_entry(params, &hdev->pend_le_conns, action) {
788
		if (add_to_white_list(req, params, &num_entries, allow_rpa))
789 790 791 792 793
			return 0x00;
	}

	/* After adding all new pending connections, walk through
	 * the list of pending reports and also add these to the
794
	 * white list if there is still space. Abort if space runs out.
795 796
	 */
	list_for_each_entry(params, &hdev->pend_le_reports, action) {
797
		if (add_to_white_list(req, params, &num_entries, allow_rpa))
798 799 800 801 802 803 804
			return 0x00;
	}

	/* Select filter policy to use white list */
	return 0x01;
}

805 806 807 808 809
static bool scan_use_rpa(struct hci_dev *hdev)
{
	return hci_dev_test_flag(hdev, HCI_PRIVACY);
}

810 811
static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
			       u16 window, u8 own_addr_type, u8 filter_policy)
812
{
813
	struct hci_dev *hdev = req->hdev;
814

815 816 817 818 819 820 821
	/* Use ext scanning if set ext scan param and ext scan enable is
	 * supported
	 */
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_params *ext_param_cp;
		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
		struct hci_cp_le_scan_phy_params *phy_params;
822 823
		u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
		u32 plen;
824 825 826 827 828 829 830 831

		ext_param_cp = (void *)data;
		phy_params = (void *)ext_param_cp->data;

		memset(ext_param_cp, 0, sizeof(*ext_param_cp));
		ext_param_cp->own_addr_type = own_addr_type;
		ext_param_cp->filter_policy = filter_policy;

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
		plen = sizeof(*ext_param_cp);

		if (scan_1m(hdev) || scan_2m(hdev)) {
			ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;

			memset(phy_params, 0, sizeof(*phy_params));
			phy_params->type = type;
			phy_params->interval = cpu_to_le16(interval);
			phy_params->window = cpu_to_le16(window);

			plen += sizeof(*phy_params);
			phy_params++;
		}

		if (scan_coded(hdev)) {
			ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;

			memset(phy_params, 0, sizeof(*phy_params));
			phy_params->type = type;
			phy_params->interval = cpu_to_le16(interval);
			phy_params->window = cpu_to_le16(window);

			plen += sizeof(*phy_params);
			phy_params++;
		}
857 858

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
859
			    plen, ext_param_cp);
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885

		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
		ext_enable_cp.enable = LE_SCAN_ENABLE;
		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
			    sizeof(ext_enable_cp), &ext_enable_cp);
	} else {
		struct hci_cp_le_set_scan_param param_cp;
		struct hci_cp_le_set_scan_enable enable_cp;

		memset(&param_cp, 0, sizeof(param_cp));
		param_cp.type = type;
		param_cp.interval = cpu_to_le16(interval);
		param_cp.window = cpu_to_le16(window);
		param_cp.own_address_type = own_addr_type;
		param_cp.filter_policy = filter_policy;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
			    &param_cp);

		memset(&enable_cp, 0, sizeof(enable_cp));
		enable_cp.enable = LE_SCAN_ENABLE;
		enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
			    &enable_cp);
	}
886 887 888 889
}

void hci_req_add_le_passive_scan(struct hci_request *req)
{
890 891 892
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
	u8 filter_policy;
893
	u16 window, interval;
894 895 896 897 898

	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}
899 900 901 902 903 904 905

	/* Set require_privacy to false since no SCAN_REQ are send
	 * during passive scanning. Not using an non-resolvable address
	 * here is important so that peer devices using direct
	 * advertising with our address will be correctly reported
	 * by the controller.
	 */
906 907
	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
				      &own_addr_type))
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
		return;

	/* Adding or removing entries from the white list must
	 * happen before enabling scanning. The controller does
	 * not allow white list modification while scanning.
	 */
	filter_policy = update_white_list(req);

	/* When the controller is using random resolvable addresses and
	 * with that having LE privacy enabled, then controllers with
	 * Extended Scanner Filter Policies support can now enable support
	 * for handling directed advertising.
	 *
	 * So instead of using filter polices 0x00 (no whitelist)
	 * and 0x01 (whitelist enabled) use the new filter policies
	 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
	 */
925
	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
926 927 928
	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
		filter_policy |= 0x02;

929 930 931 932 933 934 935 936 937 938 939
	if (hdev->suspended) {
		window = LE_SUSPEND_SCAN_WINDOW;
		interval = LE_SUSPEND_SCAN_INTERVAL;
	} else {
		window = hdev->le_scan_window;
		interval = hdev->le_scan_interval;
	}

	bt_dev_dbg(hdev, "LE passive scan with whitelist = %d", filter_policy);
	hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window,
			   own_addr_type, filter_policy);
940 941
}

942 943 944 945
static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance)
{
	struct adv_info *adv_instance;

946
	/* Instance 0x00 always set local name */
947
	if (instance == 0x00)
948
		return 1;
949 950 951 952 953 954 955 956 957 958 959

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return 0;

	/* TODO: Take into account the "appearance" and "local-name" flags here.
	 * These are currently being ignored as they are not supported.
	 */
	return adv_instance->scan_rsp_len;
}

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
static void hci_req_clear_event_filter(struct hci_request *req)
{
	struct hci_cp_set_event_filter f;

	memset(&f, 0, sizeof(f));
	f.flt_type = HCI_FLT_CLEAR_ALL;
	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &f);

	/* Update page scan state (since we may have modified it when setting
	 * the event filter).
	 */
	__hci_req_update_scan(req);
}

static void hci_req_set_event_filter(struct hci_request *req)
{
	struct bdaddr_list *b;
	struct hci_cp_set_event_filter f;
	struct hci_dev *hdev = req->hdev;
	u8 scan;

	/* Always clear event filter when starting */
	hci_req_clear_event_filter(req);

	list_for_each_entry(b, &hdev->wakeable, list) {
		memset(&f, 0, sizeof(f));
		bacpy(&f.addr_conn_flt.bdaddr, &b->bdaddr);
		f.flt_type = HCI_FLT_CONN_SETUP;
		f.cond_type = HCI_CONN_SETUP_ALLOW_BDADDR;
		f.addr_conn_flt.auto_accept = HCI_CONN_SETUP_AUTO_ON;

		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
		hci_req_add(req, HCI_OP_SET_EVENT_FLT, sizeof(f), &f);
	}

	scan = !list_empty(&hdev->wakeable) ? SCAN_PAGE : SCAN_DISABLED;
	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
}

999 1000
static void hci_req_config_le_suspend_scan(struct hci_request *req)
{
1001 1002 1003
	/* Before changing params disable scan if enabled */
	if (hci_dev_test_flag(req->hdev, HCI_LE_SCAN))
		hci_req_add_le_scan_disable(req);
1004 1005 1006 1007 1008 1009 1010 1011

	/* Configure params and enable scanning */
	hci_req_add_le_passive_scan(req);

	/* Block suspend notifier on response */
	set_bit(SUSPEND_SCAN_ENABLE, req->hdev->suspend_tasks);
}

1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
static void suspend_req_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	bt_dev_dbg(hdev, "Request complete opcode=0x%x, status=0x%x", opcode,
		   status);
	if (test_and_clear_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks) ||
	    test_and_clear_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks)) {
		wake_up(&hdev->suspend_wait_q);
	}
}

1022 1023 1024
/* Call with hci_dev_lock */
void hci_req_prepare_suspend(struct hci_dev *hdev, enum suspended_state next)
{
1025
	int old_state;
1026 1027 1028 1029 1030
	struct hci_conn *conn;
	struct hci_request req;
	u8 page_scan;
	int disconnect_counter;

1031 1032 1033 1034 1035 1036
	if (next == hdev->suspend_state) {
		bt_dev_dbg(hdev, "Same state before and after: %d", next);
		goto done;
	}

	hdev->suspend_state = next;
1037 1038 1039 1040 1041 1042
	hci_req_init(&req, hdev);

	if (next == BT_SUSPEND_DISCONNECT) {
		/* Mark device as suspended */
		hdev->suspended = true;

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
		/* Pause discovery if not already stopped */
		old_state = hdev->discovery.state;
		if (old_state != DISCOVERY_STOPPED) {
			set_bit(SUSPEND_PAUSE_DISCOVERY, hdev->suspend_tasks);
			hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
			queue_work(hdev->req_workqueue, &hdev->discov_update);
		}

		hdev->discovery_paused = true;
		hdev->discovery_old_state = old_state;

		/* Stop advertising */
		old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
		if (old_state) {
			set_bit(SUSPEND_PAUSE_ADVERTISING, hdev->suspend_tasks);
			cancel_delayed_work(&hdev->discov_off);
			queue_delayed_work(hdev->req_workqueue,
					   &hdev->discov_off, 0);
		}

		hdev->advertising_paused = true;
		hdev->advertising_old_state = old_state;
1065 1066 1067 1068
		/* Disable page scan */
		page_scan = SCAN_DISABLED;
		hci_req_add(&req, HCI_OP_WRITE_SCAN_ENABLE, 1, &page_scan);

1069 1070 1071
		/* Disable LE passive scan if enabled */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
			hci_req_add_le_scan_disable(&req);
1072

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
		/* Mark task needing completion */
		set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);

		/* Prevent disconnects from causing scanning to be re-enabled */
		hdev->scanning_paused = true;

		/* Run commands before disconnecting */
		hci_req_run(&req, suspend_req_complete);

		disconnect_counter = 0;
		/* Soft disconnect everything (power off) */
		list_for_each_entry(conn, &hdev->conn_hash.list, list) {
			hci_disconnect(conn, HCI_ERROR_REMOTE_POWER_OFF);
			disconnect_counter++;
		}

		if (disconnect_counter > 0) {
			bt_dev_dbg(hdev,
				   "Had %d disconnects. Will wait on them",
				   disconnect_counter);
			set_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks);
		}
1095
	} else if (next == BT_SUSPEND_CONFIGURE_WAKE) {
1096 1097 1098 1099
		/* Unpause to take care of updating scanning params */
		hdev->scanning_paused = false;
		/* Enable event filter for paired devices */
		hci_req_set_event_filter(&req);
1100 1101
		/* Enable passive scan at lower duty cycle */
		hci_req_config_le_suspend_scan(&req);
1102 1103 1104 1105 1106 1107 1108 1109
		/* Pause scan changes again. */
		hdev->scanning_paused = true;
		hci_req_run(&req, suspend_req_complete);
	} else {
		hdev->suspended = false;
		hdev->scanning_paused = false;

		hci_req_clear_event_filter(&req);
1110 1111
		/* Reset passive/background scanning to normal */
		hci_req_config_le_suspend_scan(&req);
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

		/* Unpause advertising */
		hdev->advertising_paused = false;
		if (hdev->advertising_old_state) {
			set_bit(SUSPEND_UNPAUSE_ADVERTISING,
				hdev->suspend_tasks);
			hci_dev_set_flag(hdev, HCI_ADVERTISING);
			queue_work(hdev->req_workqueue,
				   &hdev->discoverable_update);
			hdev->advertising_old_state = 0;
		}

		/* Unpause discovery */
		hdev->discovery_paused = false;
		if (hdev->discovery_old_state != DISCOVERY_STOPPED &&
		    hdev->discovery_old_state != DISCOVERY_STOPPING) {
			set_bit(SUSPEND_UNPAUSE_DISCOVERY, hdev->suspend_tasks);
			hci_discovery_set_state(hdev, DISCOVERY_STARTING);
			queue_work(hdev->req_workqueue, &hdev->discov_update);
		}

1133 1134 1135 1136
		hci_req_run(&req, suspend_req_complete);
	}

	hdev->suspend_state = next;
1137 1138 1139 1140 1141 1142

done:
	clear_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
	wake_up(&hdev->suspend_wait_q);
}

1143 1144
static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
{
1145
	u8 instance = hdev->cur_adv_instance;
1146 1147
	struct adv_info *adv_instance;

1148
	/* Instance 0x00 always set local name */
1149
	if (instance == 0x00)
1150
		return 1;
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return 0;

	/* TODO: Take into account the "appearance" and "local-name" flags here.
	 * These are currently being ignored as they are not supported.
	 */
	return adv_instance->scan_rsp_len;
}

void __hci_req_disable_advertising(struct hci_request *req)
{
1164 1165
	if (ext_adv_capable(req->hdev)) {
		struct hci_cp_le_set_ext_adv_enable cp;
1166

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
		cp.enable = 0x00;
		/* Disable all sets since we only support one set at the moment */
		cp.num_of_sets = 0x00;

		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), &cp);
	} else {
		u8 enable = 0x00;

		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
	}
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
}

static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
{
	u32 flags;
	struct adv_info *adv_instance;

	if (instance == 0x00) {
		/* Instance 0 always manages the "Tx Power" and "Flags"
		 * fields
		 */
		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;

		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
		 * corresponds to the "connectable" instance flag.
		 */
		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
			flags |= MGMT_ADV_FLAG_CONNECTABLE;

1196 1197 1198
		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1199 1200
			flags |= MGMT_ADV_FLAG_DISCOV;

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
		return flags;
	}

	adv_instance = hci_find_adv_instance(hdev, instance);

	/* Return 0 when we got an invalid instance identifier. */
	if (!adv_instance)
		return 0;

	return adv_instance->flags;
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
{
	/* If privacy is not enabled don't use RPA */
	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
		return false;

	/* If basic privacy mode is enabled use RPA */
	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
		return true;

	/* If limited privacy mode is enabled don't use RPA if we're
	 * both discoverable and bondable.
	 */
	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
	    hci_dev_test_flag(hdev, HCI_BONDABLE))
		return false;

	/* We're neither bondable nor discoverable in the limited
	 * privacy mode, therefore use RPA.
	 */
	return true;
}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
{
	/* If there is no connection we are OK to advertise. */
	if (hci_conn_num(hdev, LE_LINK) == 0)
		return true;

	/* Check le_states if there is any connection in slave role. */
	if (hdev->conn_hash.le_num_slave > 0) {
		/* Slave connection state and non connectable mode bit 20. */
		if (!connectable && !(hdev->le_states[2] & 0x10))
			return false;

		/* Slave connection state and connectable mode bit 38
		 * and scannable bit 21.
		 */
1251 1252
		if (connectable && (!(hdev->le_states[4] & 0x40) ||
				    !(hdev->le_states[2] & 0x20)))
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
			return false;
	}

	/* Check le_states if there is any connection in master role. */
	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) {
		/* Master connection state and non connectable mode bit 18. */
		if (!connectable && !(hdev->le_states[2] & 0x02))
			return false;

		/* Master connection state and connectable mode bit 35 and
		 * scannable 19.
		 */
1265
		if (connectable && (!(hdev->le_states[4] & 0x08) ||
1266 1267 1268 1269 1270 1271 1272
				    !(hdev->le_states[2] & 0x08)))
			return false;
	}

	return true;
}

1273 1274 1275 1276 1277 1278
void __hci_req_enable_advertising(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_le_set_adv_param cp;
	u8 own_addr_type, enable = 0x01;
	bool connectable;
1279
	u16 adv_min_interval, adv_max_interval;
1280 1281
	u32 flags;

1282 1283 1284 1285 1286 1287 1288 1289 1290
	flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

	if (!is_advertising_allowed(hdev, connectable))
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		return;

	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
		__hci_req_disable_advertising(req);

	/* Clear the HCI_LE_ADV bit temporarily so that the
	 * hci_update_random_address knows that it's safe to go ahead
	 * and write a new random address. The flag will be set back on
	 * as soon as the SET_ADV_ENABLE HCI command completes.
	 */
	hci_dev_clear_flag(hdev, HCI_LE_ADV);

	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
1307 1308 1309
	if (hci_update_random_address(req, !connectable,
				      adv_use_rpa(hdev, flags),
				      &own_addr_type) < 0)
1310 1311 1312 1313
		return;

	memset(&cp, 0, sizeof(cp));

1314
	if (connectable) {
1315 1316
		cp.type = LE_ADV_IND;

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		adv_min_interval = hdev->le_adv_min_interval;
		adv_max_interval = hdev->le_adv_max_interval;
	} else {
		if (get_cur_adv_instance_scan_rsp_len(hdev))
			cp.type = LE_ADV_SCAN_IND;
		else
			cp.type = LE_ADV_NONCONN_IND;

		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
		} else {
			adv_min_interval = hdev->le_adv_min_interval;
			adv_max_interval = hdev->le_adv_max_interval;
		}
	}

	cp.min_interval = cpu_to_le16(adv_min_interval);
	cp.max_interval = cpu_to_le16(adv_max_interval);
1337 1338 1339 1340 1341 1342 1343 1344
	cp.own_address_type = own_addr_type;
	cp.channel_map = hdev->le_adv_channel_map;

	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);

	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
}

1345
u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1346
{
1347
	size_t short_len;
1348
	size_t complete_len;
1349

1350 1351
	/* no space left for name (+ NULL + type + len) */
	if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1352
		return ad_len;
1353

1354 1355 1356
	/* use complete name if present and fits */
	complete_len = strlen(hdev->dev_name);
	if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1357
		return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1358
				       hdev->dev_name, complete_len + 1);
1359

1360 1361 1362
	/* use short name if present */
	short_len = strlen(hdev->short_name);
	if (short_len)
1363
		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1364
				       hdev->short_name, short_len + 1);
1365

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	/* use shortened full name if present, we already know that name
	 * is longer then HCI_MAX_SHORT_NAME_LENGTH
	 */
	if (complete_len) {
		u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];

		memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
		name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';

		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
				       sizeof(name));
1377 1378 1379 1380 1381
	}

	return ad_len;
}

1382 1383 1384 1385 1386
static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
{
	return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
}

1387 1388
static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
{
1389 1390 1391
	u8 scan_rsp_len = 0;

	if (hdev->appearance) {
1392
		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1393 1394
	}

1395
	return append_local_name(hdev, ptr, scan_rsp_len);
1396 1397
}

1398 1399 1400 1401
static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
					u8 *ptr)
{
	struct adv_info *adv_instance;
1402 1403
	u32 instance_flags;
	u8 scan_rsp_len = 0;
1404 1405 1406 1407 1408

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return 0;

1409 1410
	instance_flags = adv_instance->flags;

1411
	if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1412
		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1413 1414
	}

1415
	memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1416 1417
	       adv_instance->scan_rsp_len);

1418 1419 1420 1421 1422 1423
	scan_rsp_len += adv_instance->scan_rsp_len;

	if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
		scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);

	return scan_rsp_len;
1424 1425
}

1426
void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1427 1428 1429 1430 1431 1432 1433
{
	struct hci_dev *hdev = req->hdev;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

1434 1435
	if (ext_adv_capable(hdev)) {
		struct hci_cp_le_set_ext_scan_rsp_data cp;
1436

1437
		memset(&cp, 0, sizeof(cp));
1438

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
		if (instance)
			len = create_instance_scan_rsp_data(hdev, instance,
							    cp.data);
		else
			len = create_default_scan_rsp_data(hdev, cp.data);

		if (hdev->scan_rsp_data_len == len &&
		    !memcmp(cp.data, hdev->scan_rsp_data, len))
			return;

		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
		hdev->scan_rsp_data_len = len;

1452
		cp.handle = instance;
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
		cp.length = len;
		cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
		cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp),
			    &cp);
	} else {
		struct hci_cp_le_set_scan_rsp_data cp;

		memset(&cp, 0, sizeof(cp));

		if (instance)
			len = create_instance_scan_rsp_data(hdev, instance,
							    cp.data);
		else
			len = create_default_scan_rsp_data(hdev, cp.data);

		if (hdev->scan_rsp_data_len == len &&
		    !memcmp(cp.data, hdev->scan_rsp_data, len))
			return;
1473

1474 1475
		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
		hdev->scan_rsp_data_len = len;
1476

1477
		cp.length = len;
1478

1479 1480
		hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
	}
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
}

static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
{
	struct adv_info *adv_instance = NULL;
	u8 ad_len = 0, flags = 0;
	u32 instance_flags;

	/* Return 0 when the current instance identifier is invalid. */
	if (instance) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return 0;
	}

	instance_flags = get_adv_instance_flags(hdev, instance);

1498 1499 1500 1501 1502 1503 1504 1505
	/* If instance already has the flags set skip adding it once
	 * again.
	 */
	if (adv_instance && eir_get_data(adv_instance->adv_data,
					 adv_instance->adv_data_len, EIR_FLAGS,
					 NULL))
		goto skip_flags;

1506 1507 1508 1509 1510 1511 1512 1513 1514
	/* The Add Advertising command allows userspace to set both the general
	 * and limited discoverable flags.
	 */
	if (instance_flags & MGMT_ADV_FLAG_DISCOV)
		flags |= LE_AD_GENERAL;

	if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
		flags |= LE_AD_LIMITED;

1515 1516 1517
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		flags |= LE_AD_NO_BREDR;

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
	if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
		/* If a discovery flag wasn't provided, simply use the global
		 * settings.
		 */
		if (!flags)
			flags |= mgmt_get_adv_discov_flags(hdev);

		/* If flags would still be empty, then there is no need to
		 * include the "Flags" AD field".
		 */
		if (flags) {
			ptr[0] = 0x02;
			ptr[1] = EIR_FLAGS;
			ptr[2] = flags;

			ad_len += 3;
			ptr += 3;
		}
	}

1538
skip_flags:
1539 1540 1541 1542 1543 1544 1545
	if (adv_instance) {
		memcpy(ptr, adv_instance->adv_data,
		       adv_instance->adv_data_len);
		ad_len += adv_instance->adv_data_len;
		ptr += adv_instance->adv_data_len;
	}

1546 1547
	if (instance_flags & MGMT_ADV_FLAG_TX_POWER) {
		s8 adv_tx_power;
1548

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
		if (ext_adv_capable(hdev)) {
			if (adv_instance)
				adv_tx_power = adv_instance->tx_power;
			else
				adv_tx_power = hdev->adv_tx_power;
		} else {
			adv_tx_power = hdev->adv_tx_power;
		}

		/* Provide Tx Power only if we can provide a valid value for it */
		if (adv_tx_power != HCI_TX_POWER_INVALID) {
			ptr[0] = 0x02;
			ptr[1] = EIR_TX_POWER;
			ptr[2] = (u8)adv_tx_power;

			ad_len += 3;
			ptr += 3;
		}
1567 1568 1569 1570 1571
	}

	return ad_len;
}

1572
void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1573 1574 1575 1576 1577 1578 1579
{
	struct hci_dev *hdev = req->hdev;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

1580 1581
	if (ext_adv_capable(hdev)) {
		struct hci_cp_le_set_ext_adv_data cp;
1582

1583
		memset(&cp, 0, sizeof(cp));
1584

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
		len = create_instance_adv_data(hdev, instance, cp.data);

		/* There's nothing to do if the data hasn't changed */
		if (hdev->adv_data_len == len &&
		    memcmp(cp.data, hdev->adv_data, len) == 0)
			return;

		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
		hdev->adv_data_len = len;

		cp.length = len;
1596
		cp.handle = instance;
1597 1598
		cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
		cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1599

1600 1601 1602 1603 1604
		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp);
	} else {
		struct hci_cp_le_set_adv_data cp;

		memset(&cp, 0, sizeof(cp));
1605

1606 1607 1608 1609 1610 1611
		len = create_instance_adv_data(hdev, instance, cp.data);

		/* There's nothing to do if the data hasn't changed */
		if (hdev->adv_data_len == len &&
		    memcmp(cp.data, hdev->adv_data, len) == 0)
			return;
1612

1613 1614 1615 1616 1617 1618 1619
		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
		hdev->adv_data_len = len;

		cp.length = len;

		hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
	}
1620 1621
}

1622
int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
{
	struct hci_request req;

	hci_req_init(&req, hdev);
	__hci_req_update_adv_data(&req, instance);

	return hci_req_run(&req, NULL);
}

static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	BT_DBG("%s status %u", hdev->name, status);
}

void hci_req_reenable_advertising(struct hci_dev *hdev)
{
	struct hci_request req;

	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1642
	    list_empty(&hdev->adv_instances))
1643 1644 1645 1646
		return;

	hci_req_init(&req, hdev);

1647 1648 1649
	if (hdev->cur_adv_instance) {
		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
						true);
1650
	} else {
1651 1652 1653 1654 1655 1656 1657
		if (ext_adv_capable(hdev)) {
			__hci_req_start_ext_adv(&req, 0x00);
		} else {
			__hci_req_update_adv_data(&req, 0x00);
			__hci_req_update_scan_rsp_data(&req, 0x00);
			__hci_req_enable_advertising(&req);
		}
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
	}

	hci_req_run(&req, adv_enable_complete);
}

static void adv_timeout_expire(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    adv_instance_expire.work);

	struct hci_request req;
	u8 instance;

	BT_DBG("%s", hdev->name);

	hci_dev_lock(hdev);

	hdev->adv_instance_timeout = 0;

1677
	instance = hdev->cur_adv_instance;
1678 1679 1680 1681 1682
	if (instance == 0x00)
		goto unlock;

	hci_req_init(&req, hdev);

1683
	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1684 1685 1686 1687

	if (list_empty(&hdev->adv_instances))
		__hci_req_disable_advertising(&req);

1688
	hci_req_run(&req, NULL);
1689 1690 1691 1692 1693

unlock:
	hci_dev_unlock(hdev);
}

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
			   bool use_rpa, struct adv_info *adv_instance,
			   u8 *own_addr_type, bdaddr_t *rand_addr)
{
	int err;

	bacpy(rand_addr, BDADDR_ANY);

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired then generate a new one.
	 */
	if (use_rpa) {
		int to;

		*own_addr_type = ADDR_LE_DEV_RANDOM;

		if (adv_instance) {
			if (!adv_instance->rpa_expired &&
			    !bacmp(&adv_instance->random_addr, &hdev->rpa))
				return 0;

			adv_instance->rpa_expired = false;
		} else {
			if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
			    !bacmp(&hdev->random_addr, &hdev->rpa))
				return 0;
		}

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
1724
			bt_dev_err(hdev, "failed to generate new RPA");
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
			return err;
		}

		bacpy(rand_addr, &hdev->rpa);

		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
		if (adv_instance)
			queue_delayed_work(hdev->workqueue,
					   &adv_instance->rpa_expired_cb, to);
		else
			queue_delayed_work(hdev->workqueue,
					   &hdev->rpa_expired, to);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for
	 * non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		bacpy(rand_addr, &nrpa);

		return 0;
	}

	/* No privacy so use a public address. */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}

1775 1776 1777 1778 1779
void __hci_req_clear_ext_adv_sets(struct hci_request *req)
{
	hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
}

1780
int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1781 1782 1783 1784 1785
{
	struct hci_cp_le_set_ext_adv_params cp;
	struct hci_dev *hdev = req->hdev;
	bool connectable;
	u32 flags;
1786 1787 1788 1789
	bdaddr_t random_addr;
	u8 own_addr_type;
	int err;
	struct adv_info *adv_instance;
1790
	bool secondary_adv;
1791 1792 1793
	/* In ext adv set param interval is 3 octets */
	const u8 adv_interval[3] = { 0x00, 0x08, 0x00 };

1794 1795 1796 1797 1798 1799 1800 1801
	if (instance > 0) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return -EINVAL;
	} else {
		adv_instance = NULL;
	}

1802 1803 1804 1805 1806 1807 1808 1809
	flags = get_adv_instance_flags(hdev, instance);

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

1810
	if (!is_advertising_allowed(hdev, connectable))
1811 1812
		return -EPERM;

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
	err = hci_get_random_address(hdev, !connectable,
				     adv_use_rpa(hdev, flags), adv_instance,
				     &own_addr_type, &random_addr);
	if (err < 0)
		return err;

1823 1824 1825 1826 1827
	memset(&cp, 0, sizeof(cp));

	memcpy(cp.min_interval, adv_interval, sizeof(cp.min_interval));
	memcpy(cp.max_interval, adv_interval, sizeof(cp.max_interval));

1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);

	if (connectable) {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
	} else if (get_adv_instance_scan_rsp_len(hdev, instance)) {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
	} else {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
	}
1846

1847
	cp.own_addr_type = own_addr_type;
1848 1849
	cp.channel_map = hdev->le_adv_channel_map;
	cp.tx_power = 127;
1850
	cp.handle = instance;
1851

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	if (flags & MGMT_ADV_FLAG_SEC_2M) {
		cp.primary_phy = HCI_ADV_PHY_1M;
		cp.secondary_phy = HCI_ADV_PHY_2M;
	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
		cp.primary_phy = HCI_ADV_PHY_CODED;
		cp.secondary_phy = HCI_ADV_PHY_CODED;
	} else {
		/* In all other cases use 1M */
		cp.primary_phy = HCI_ADV_PHY_1M;
		cp.secondary_phy = HCI_ADV_PHY_1M;
	}

1864 1865
	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
	    bacmp(&random_addr, BDADDR_ANY)) {
		struct hci_cp_le_set_adv_set_rand_addr cp;

		/* Check if random address need to be updated */
		if (adv_instance) {
			if (!bacmp(&random_addr, &adv_instance->random_addr))
				return 0;
		} else {
			if (!bacmp(&random_addr, &hdev->random_addr))
				return 0;
		}

		memset(&cp, 0, sizeof(cp));

1881
		cp.handle = instance;
1882 1883 1884 1885 1886 1887 1888
		bacpy(&cp.bdaddr, &random_addr);

		hci_req_add(req,
			    HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
			    sizeof(cp), &cp);
	}

1889 1890 1891
	return 0;
}

1892
int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
1893
{
1894
	struct hci_dev *hdev = req->hdev;
1895 1896 1897
	struct hci_cp_le_set_ext_adv_enable *cp;
	struct hci_cp_ext_adv_set *adv_set;
	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
1898 1899 1900 1901 1902 1903 1904 1905 1906
	struct adv_info *adv_instance;

	if (instance > 0) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return -EINVAL;
	} else {
		adv_instance = NULL;
	}
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917

	cp = (void *) data;
	adv_set = (void *) cp->data;

	memset(cp, 0, sizeof(*cp));

	cp->enable = 0x01;
	cp->num_of_sets = 0x01;

	memset(adv_set, 0, sizeof(*adv_set));

1918 1919 1920 1921 1922 1923
	adv_set->handle = instance;

	/* Set duration per instance since controller is responsible for
	 * scheduling it.
	 */
	if (adv_instance && adv_instance->duration) {
1924
		u16 duration = adv_instance->timeout * MSEC_PER_SEC;
1925 1926 1927 1928

		/* Time = N * 10 ms */
		adv_set->duration = cpu_to_le16(duration / 10);
	}
1929 1930 1931 1932

	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
		    sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
		    data);
1933 1934

	return 0;
1935 1936 1937 1938
}

int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
{
1939
	struct hci_dev *hdev = req->hdev;
1940 1941
	int err;

1942 1943 1944
	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
		__hci_req_disable_advertising(req);

1945 1946 1947 1948
	err = __hci_req_setup_ext_adv_instance(req, instance);
	if (err < 0)
		return err;

1949
	__hci_req_update_scan_rsp_data(req, instance);
1950
	__hci_req_enable_ext_advertising(req, instance);
1951 1952 1953 1954

	return 0;
}

1955 1956 1957 1958 1959 1960 1961 1962
int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
				    bool force)
{
	struct hci_dev *hdev = req->hdev;
	struct adv_info *adv_instance = NULL;
	u16 timeout;

	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1963
	    list_empty(&hdev->adv_instances))
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
		return -EPERM;

	if (hdev->adv_instance_timeout)
		return -EBUSY;

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return -ENOENT;

	/* A zero timeout means unlimited advertising. As long as there is
	 * only one instance, duration should be ignored. We still set a timeout
	 * in case further instances are being added later on.
	 *
	 * If the remaining lifetime of the instance is more than the duration
	 * then the timeout corresponds to the duration, otherwise it will be
	 * reduced to the remaining instance lifetime.
	 */
	if (adv_instance->timeout == 0 ||
	    adv_instance->duration <= adv_instance->remaining_time)
		timeout = adv_instance->duration;
	else
		timeout = adv_instance->remaining_time;

	/* The remaining time is being reduced unless the instance is being
	 * advertised without time limit.
	 */
	if (adv_instance->timeout)
		adv_instance->remaining_time =
				adv_instance->remaining_time - timeout;

1994 1995 1996 1997
	/* Only use work for scheduling instances with legacy advertising */
	if (!ext_adv_capable(hdev)) {
		hdev->adv_instance_timeout = timeout;
		queue_delayed_work(hdev->req_workqueue,
1998 1999
			   &hdev->adv_instance_expire,
			   msecs_to_jiffies(timeout * 1000));
2000
	}
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

	/* If we're just re-scheduling the same instance again then do not
	 * execute any HCI commands. This happens when a single instance is
	 * being advertised.
	 */
	if (!force && hdev->cur_adv_instance == instance &&
	    hci_dev_test_flag(hdev, HCI_LE_ADV))
		return 0;

	hdev->cur_adv_instance = instance;
2011 2012 2013 2014 2015 2016 2017
	if (ext_adv_capable(hdev)) {
		__hci_req_start_ext_adv(req, instance);
	} else {
		__hci_req_update_adv_data(req, instance);
		__hci_req_update_scan_rsp_data(req, instance);
		__hci_req_enable_advertising(req);
	}
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040

	return 0;
}

static void cancel_adv_timeout(struct hci_dev *hdev)
{
	if (hdev->adv_instance_timeout) {
		hdev->adv_instance_timeout = 0;
		cancel_delayed_work(&hdev->adv_instance_expire);
	}
}

/* For a single instance:
 * - force == true: The instance will be removed even when its remaining
 *   lifetime is not zero.
 * - force == false: the instance will be deactivated but kept stored unless
 *   the remaining lifetime is zero.
 *
 * For instance == 0x00:
 * - force == true: All instances will be removed regardless of their timeout
 *   setting.
 * - force == false: Only instances that have a timeout will be removed.
 */
2041 2042 2043
void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
				struct hci_request *req, u8 instance,
				bool force)
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
{
	struct adv_info *adv_instance, *n, *next_instance = NULL;
	int err;
	u8 rem_inst;

	/* Cancel any timeout concerning the removed instance(s). */
	if (!instance || hdev->cur_adv_instance == instance)
		cancel_adv_timeout(hdev);

	/* Get the next instance to advertise BEFORE we remove
	 * the current one. This can be the same instance again
	 * if there is only one instance.
	 */
	if (instance && hdev->cur_adv_instance == instance)
		next_instance = hci_get_next_instance(hdev, instance);

	if (instance == 0x00) {
		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
					 list) {
			if (!(force || adv_instance->timeout))
				continue;

			rem_inst = adv_instance->instance;
			err = hci_remove_adv_instance(hdev, rem_inst);
			if (!err)
2069
				mgmt_advertising_removed(sk, hdev, rem_inst);
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
		}
	} else {
		adv_instance = hci_find_adv_instance(hdev, instance);

		if (force || (adv_instance && adv_instance->timeout &&
			      !adv_instance->remaining_time)) {
			/* Don't advertise a removed instance. */
			if (next_instance &&
			    next_instance->instance == instance)
				next_instance = NULL;

			err = hci_remove_adv_instance(hdev, instance);
			if (!err)
2083
				mgmt_advertising_removed(sk, hdev, instance);
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
		}
	}

	if (!req || !hdev_is_powered(hdev) ||
	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
		return;

	if (next_instance)
		__hci_req_schedule_adv_instance(req, next_instance->instance,
						false);
}

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
{
	struct hci_dev *hdev = req->hdev;

	/* If we're advertising or initiating an LE connection we can't
	 * go ahead and change the random address at this time. This is
	 * because the eventual initiator address used for the
	 * subsequently created connection will be undefined (some
	 * controllers use the new address and others the one we had
	 * when the operation started).
	 *
	 * In this kind of scenario skip the update and let the random
	 * address be updated at the next cycle.
	 */
2110
	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
2111
	    hci_lookup_le_connect(hdev)) {
2112
		BT_DBG("Deferring random address update");
2113
		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
2114 2115 2116 2117 2118 2119 2120
		return;
	}

	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
}

int hci_update_random_address(struct hci_request *req, bool require_privacy,
2121
			      bool use_rpa, u8 *own_addr_type)
2122 2123 2124 2125 2126 2127 2128 2129
{
	struct hci_dev *hdev = req->hdev;
	int err;

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired or there is something else than
	 * the current RPA in use, then generate a new one.
	 */
2130
	if (use_rpa) {
2131 2132 2133 2134
		int to;

		*own_addr_type = ADDR_LE_DEV_RANDOM;

2135
		if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
2136 2137 2138 2139 2140
		    !bacmp(&hdev->random_addr, &hdev->rpa))
			return 0;

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
2141
			bt_dev_err(hdev, "failed to generate new RPA");
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
			return err;
		}

		set_random_addr(req, &hdev->rpa);

		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for active
	 * scanning and non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		set_random_addr(req, &nrpa);
		return 0;
	}

	/* If forcing static address is in use or there is no public
	 * address use the static address as random address (but skip
	 * the HCI command if the current random address is already the
	 * static one.
2184 2185 2186 2187
	 *
	 * In case BR/EDR has been disabled on a dual-mode controller
	 * and a static address has been configured, then use that
	 * address instead of the public BR/EDR address.
2188
	 */
2189
	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2190
	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2191
	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2192
	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
		*own_addr_type = ADDR_LE_DEV_RANDOM;
		if (bacmp(&hdev->static_addr, &hdev->random_addr))
			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
				    &hdev->static_addr);
		return 0;
	}

	/* Neither privacy nor static address is being used so use a
	 * public address.
	 */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}
2207

2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
static bool disconnected_whitelist_entries(struct hci_dev *hdev)
{
	struct bdaddr_list *b;

	list_for_each_entry(b, &hdev->whitelist, list) {
		struct hci_conn *conn;

		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
		if (!conn)
			return true;

		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
			return true;
	}

	return false;
}

2226
void __hci_req_update_scan(struct hci_request *req)
2227 2228 2229 2230
{
	struct hci_dev *hdev = req->hdev;
	u8 scan;

2231
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2232 2233 2234 2235 2236 2237 2238 2239
		return;

	if (!hdev_is_powered(hdev))
		return;

	if (mgmt_powering_down(hdev))
		return;

2240 2241 2242
	if (hdev->scanning_paused)
		return;

2243
	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2244 2245 2246 2247 2248
	    disconnected_whitelist_entries(hdev))
		scan = SCAN_PAGE;
	else
		scan = SCAN_DISABLED;

2249
	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2250 2251
		scan |= SCAN_INQUIRY;

2252 2253 2254 2255
	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
		return;

2256 2257 2258
	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
}

2259
static int update_scan(struct hci_request *req, unsigned long opt)
2260
{
2261 2262 2263 2264 2265
	hci_dev_lock(req->hdev);
	__hci_req_update_scan(req);
	hci_dev_unlock(req->hdev);
	return 0;
}
2266

2267 2268 2269 2270 2271
static void scan_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);

	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
2272 2273
}

2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
static int connectable_update(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	hci_dev_lock(hdev);

	__hci_req_update_scan(req);

	/* If BR/EDR is not enabled and we disable advertising as a
	 * by-product of disabling connectable, we need to update the
	 * advertising flags.
	 */
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2287
		__hci_req_update_adv_data(req, hdev->cur_adv_instance);
2288 2289 2290

	/* Update the advertising parameters if necessary */
	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2291 2292 2293 2294 2295 2296
	    !list_empty(&hdev->adv_instances)) {
		if (ext_adv_capable(hdev))
			__hci_req_start_ext_adv(req, hdev->cur_adv_instance);
		else
			__hci_req_enable_advertising(req);
	}
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314

	__hci_update_background_scan(req);

	hci_dev_unlock(hdev);

	return 0;
}

static void connectable_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    connectable_update);
	u8 status;

	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
	mgmt_set_connectable_complete(hdev, status);
}

2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
static u8 get_service_classes(struct hci_dev *hdev)
{
	struct bt_uuid *uuid;
	u8 val = 0;

	list_for_each_entry(uuid, &hdev->uuids, list)
		val |= uuid->svc_hint;

	return val;
}

void __hci_req_update_class(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	u8 cod[3];

	BT_DBG("%s", hdev->name);

	if (!hdev_is_powered(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	cod[0] = hdev->minor_class;
	cod[1] = hdev->major_class;
	cod[2] = get_service_classes(hdev);

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
		cod[1] |= 0x20;

	if (memcmp(cod, hdev->dev_class, 3) == 0)
		return;

	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
}

2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398
static void write_iac(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_current_iac_lap cp;

	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
		return;

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
		/* Limited discoverable mode */
		cp.num_iac = min_t(u8, hdev->num_iac, 2);
		cp.iac_lap[0] = 0x00;	/* LIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
		cp.iac_lap[3] = 0x33;	/* GIAC */
		cp.iac_lap[4] = 0x8b;
		cp.iac_lap[5] = 0x9e;
	} else {
		/* General discoverable mode */
		cp.num_iac = 1;
		cp.iac_lap[0] = 0x33;	/* GIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
	}

	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
		    (cp.num_iac * 3) + 1, &cp);
}

static int discoverable_update(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
		write_iac(req);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
	}

	/* Advertising instances don't use the global discoverable setting, so
	 * only update AD if advertising was enabled using Set Advertising.
	 */
2399
	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2400
		__hci_req_update_adv_data(req, 0x00);
2401

2402 2403 2404
		/* Discoverable mode affects the local advertising
		 * address in limited privacy mode.
		 */
2405 2406 2407 2408 2409 2410
		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
			if (ext_adv_capable(hdev))
				__hci_req_start_ext_adv(req, 0x00);
			else
				__hci_req_enable_advertising(req);
		}
2411 2412
	}

2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	hci_dev_unlock(hdev);

	return 0;
}

static void discoverable_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discoverable_update);
	u8 status;

	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
	mgmt_set_discoverable_complete(hdev, status);
}

2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
		      u8 reason)
{
	switch (conn->state) {
	case BT_CONNECTED:
	case BT_CONFIG:
		if (conn->type == AMP_LINK) {
			struct hci_cp_disconn_phy_link cp;

			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
			cp.reason = reason;
			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
				    &cp);
		} else {
			struct hci_cp_disconnect dc;

			dc.handle = cpu_to_le16(conn->handle);
			dc.reason = reason;
			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
		}

		conn->state = BT_DISCONN;

		break;
	case BT_CONNECT:
		if (conn->type == LE_LINK) {
			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
				break;
			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
				    0, NULL);
		} else if (conn->type == ACL_LINK) {
			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
				break;
			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
				    6, &conn->dst);
		}
		break;
	case BT_CONNECT2:
		if (conn->type == ACL_LINK) {
			struct hci_cp_reject_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);
			rej.reason = reason;

			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
				    sizeof(rej), &rej);
		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
			struct hci_cp_reject_sync_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);

			/* SCO rejection has its own limited set of
			 * allowed error values (0x0D-0x0F) which isn't
			 * compatible with most values passed to this
			 * function. To be safe hard-code one of the
			 * values that's suitable for SCO.
			 */
2485
			rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513

			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
				    sizeof(rej), &rej);
		}
		break;
	default:
		conn->state = BT_CLOSED;
		break;
	}
}

static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	if (status)
		BT_DBG("Failed to abort connection: status 0x%2.2x", status);
}

int hci_abort_conn(struct hci_conn *conn, u8 reason)
{
	struct hci_request req;
	int err;

	hci_req_init(&req, conn->hdev);

	__hci_abort_conn(&req, conn, reason);

	err = hci_req_run(&req, abort_conn_complete);
	if (err && err != -ENODATA) {
2514
		bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2515 2516 2517 2518 2519
		return err;
	}

	return 0;
}
2520

2521
static int update_bg_scan(struct hci_request *req, unsigned long opt)
2522 2523 2524 2525
{
	hci_dev_lock(req->hdev);
	__hci_update_background_scan(req);
	hci_dev_unlock(req->hdev);
2526
	return 0;
2527 2528 2529 2530 2531 2532
}

static void bg_scan_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    bg_scan_update);
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
	struct hci_conn *conn;
	u8 status;
	int err;

	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
	if (!err)
		return;

	hci_dev_lock(hdev);

	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
	if (conn)
		hci_le_conn_failed(conn, status);
2546

2547
	hci_dev_unlock(hdev);
2548 2549
}

2550
static int le_scan_disable(struct hci_request *req, unsigned long opt)
2551
{
2552 2553
	hci_req_add_le_scan_disable(req);
	return 0;
2554 2555
}

2556
static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2557
{
2558
	u8 length = opt;
2559 2560
	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2561 2562
	struct hci_cp_inquiry cp;

2563
	BT_DBG("%s", req->hdev->name);
2564

2565 2566 2567
	hci_dev_lock(req->hdev);
	hci_inquiry_cache_flush(req->hdev);
	hci_dev_unlock(req->hdev);
2568

2569
	memset(&cp, 0, sizeof(cp));
2570 2571 2572 2573 2574 2575

	if (req->hdev->discovery.limited)
		memcpy(&cp.lap, liac, sizeof(cp.lap));
	else
		memcpy(&cp.lap, giac, sizeof(cp.lap));

2576
	cp.length = length;
2577

2578
	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2579

2580
	return 0;
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
}

static void le_scan_disable_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_disable.work);
	u8 status;

	BT_DBG("%s", hdev->name);

2591 2592 2593
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return;

2594 2595
	cancel_delayed_work(&hdev->le_scan_restart);

2596 2597
	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
	if (status) {
2598 2599
		bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
			   status);
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
		return;
	}

	hdev->discovery.scan_start = 0;

	/* If we were running LE only scan, change discovery state. If
	 * we were running both LE and BR/EDR inquiry simultaneously,
	 * and BR/EDR inquiry is already finished, stop discovery,
	 * otherwise BR/EDR inquiry will stop discovery when finished.
	 * If we will resolve remote device name, do not change
	 * discovery state.
	 */

	if (hdev->discovery.type == DISCOV_TYPE_LE)
		goto discov_stopped;

	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2617 2618
		return;

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
		    hdev->discovery.state != DISCOVERY_RESOLVING)
			goto discov_stopped;

		return;
	}

	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
		     HCI_CMD_TIMEOUT, &status);
	if (status) {
2630
		bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2631 2632 2633 2634 2635 2636 2637 2638 2639
		goto discov_stopped;
	}

	return;

discov_stopped:
	hci_dev_lock(hdev);
	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
	hci_dev_unlock(hdev);
2640 2641
}

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651
static int le_scan_restart(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	/* If controller is not scanning we are done. */
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return 0;

	hci_req_add_le_scan_disable(req);

2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;

		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
		ext_enable_cp.enable = LE_SCAN_ENABLE;
		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
			    sizeof(ext_enable_cp), &ext_enable_cp);
	} else {
		struct hci_cp_le_set_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_ENABLE;
		cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
	}
2669 2670 2671 2672 2673

	return 0;
}

static void le_scan_restart_work(struct work_struct *work)
2674
{
2675 2676
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_restart.work);
2677
	unsigned long timeout, duration, scan_start, now;
2678
	u8 status;
2679 2680 2681

	BT_DBG("%s", hdev->name);

2682
	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2683
	if (status) {
2684 2685
		bt_dev_err(hdev, "failed to restart LE scan: status %d",
			   status);
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
		return;
	}

	hci_dev_lock(hdev);

	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
	    !hdev->discovery.scan_start)
		goto unlock;

	/* When the scan was started, hdev->le_scan_disable has been queued
	 * after duration from scan_start. During scan restart this job
	 * has been canceled, and we need to queue it again after proper
	 * timeout, to make sure that scan does not run indefinitely.
	 */
	duration = hdev->discovery.scan_duration;
	scan_start = hdev->discovery.scan_start;
	now = jiffies;
	if (now - scan_start <= duration) {
		int elapsed;

		if (now >= scan_start)
			elapsed = now - scan_start;
		else
			elapsed = ULONG_MAX - scan_start + now;

		timeout = duration - elapsed;
	} else {
		timeout = 0;
	}

	queue_delayed_work(hdev->req_workqueue,
			   &hdev->le_scan_disable, timeout);

unlock:
	hci_dev_unlock(hdev);
}

2723 2724 2725 2726 2727
static int active_scan(struct hci_request *req, unsigned long opt)
{
	uint16_t interval = opt;
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
2728 2729
	/* White list is not used for discovery */
	u8 filter_policy = 0x00;
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
	int err;

	BT_DBG("%s", hdev->name);

	/* If controller is scanning, it means the background scanning is
	 * running. Thus, we should temporarily stop it in order to set the
	 * discovery scanning parameters.
	 */
	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
		hci_req_add_le_scan_disable(req);

	/* All active scans will be done with either a resolvable private
	 * address (when privacy feature has been enabled) or non-resolvable
	 * private address.
	 */
2745 2746
	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
					&own_addr_type);
2747 2748 2749
	if (err < 0)
		own_addr_type = ADDR_LE_DEV_PUBLIC;

2750
	hci_req_start_scan(req, LE_SCAN_ACTIVE, interval, DISCOV_LE_SCAN_WIN,
2751
			   own_addr_type, filter_policy);
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
	return 0;
}

static int interleaved_discov(struct hci_request *req, unsigned long opt)
{
	int err;

	BT_DBG("%s", req->hdev->name);

	err = active_scan(req, opt);
	if (err)
		return err;

2765
	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
}

static void start_discovery(struct hci_dev *hdev, u8 *status)
{
	unsigned long timeout;

	BT_DBG("%s type %u", hdev->name, hdev->discovery.type);

	switch (hdev->discovery.type) {
	case DISCOV_TYPE_BREDR:
		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2777 2778
			hci_req_sync(hdev, bredr_inquiry,
				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
				     status);
		return;
	case DISCOV_TYPE_INTERLEAVED:
		/* When running simultaneous discovery, the LE scanning time
		 * should occupy the whole discovery time sine BR/EDR inquiry
		 * and LE scanning are scheduled by the controller.
		 *
		 * For interleaving discovery in comparison, BR/EDR inquiry
		 * and LE scanning are done sequentially with separate
		 * timeouts.
		 */
		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
			     &hdev->quirks)) {
			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
			/* During simultaneous discovery, we double LE scan
			 * interval. We must leave some time for the controller
			 * to do BR/EDR inquiry.
			 */
			hci_req_sync(hdev, interleaved_discov,
				     DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
				     status);
			break;
		}

		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
			     HCI_CMD_TIMEOUT, status);
		break;
	case DISCOV_TYPE_LE:
		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
			     HCI_CMD_TIMEOUT, status);
		break;
	default:
		*status = HCI_ERROR_UNSPECIFIED;
		return;
	}

	if (*status)
		return;

	BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));

	/* When service discovery is used and the controller has a
	 * strict duplicate filter, it is important to remember the
	 * start and duration of the scan. This is required for
	 * restarting scanning during the discovery phase.
	 */
	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
		     hdev->discovery.result_filtering) {
		hdev->discovery.scan_start = jiffies;
		hdev->discovery.scan_duration = timeout;
	}

	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
			   timeout);
}

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
bool hci_req_stop_discovery(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct discovery_state *d = &hdev->discovery;
	struct hci_cp_remote_name_req_cancel cp;
	struct inquiry_entry *e;
	bool ret = false;

	BT_DBG("%s state %u", hdev->name, hdev->discovery.state);

	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
		if (test_bit(HCI_INQUIRY, &hdev->flags))
			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);

		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			cancel_delayed_work(&hdev->le_scan_disable);
			hci_req_add_le_scan_disable(req);
		}

		ret = true;
	} else {
		/* Passive scanning */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			hci_req_add_le_scan_disable(req);
			ret = true;
		}
	}

	/* No further actions needed for LE-only discovery */
	if (d->type == DISCOV_TYPE_LE)
		return ret;

	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
						     NAME_PENDING);
		if (!e)
			return ret;

		bacpy(&cp.bdaddr, &e->data.bdaddr);
		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
			    &cp);
		ret = true;
	}

	return ret;
}

static int stop_discovery(struct hci_request *req, unsigned long opt)
{
	hci_dev_lock(req->hdev);
	hci_req_stop_discovery(req);
	hci_dev_unlock(req->hdev);

	return 0;
}

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
static void discov_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_update);
	u8 status = 0;

	switch (hdev->discovery.state) {
	case DISCOVERY_STARTING:
		start_discovery(hdev, &status);
		mgmt_start_discovery_complete(hdev, status);
		if (status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		else
			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
		break;
2908 2909 2910 2911 2912 2913
	case DISCOVERY_STOPPING:
		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
		mgmt_stop_discovery_complete(hdev, status);
		if (!status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		break;
2914 2915 2916 2917 2918 2919
	case DISCOVERY_STOPPED:
	default:
		return;
	}
}

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
static void discov_off(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_off.work);

	BT_DBG("%s", hdev->name);

	hci_dev_lock(hdev);

	/* When discoverable timeout triggers, then just make sure
	 * the limited discoverable flag is cleared. Even in the case
	 * of a timeout triggered from general discoverable, it is
	 * safe to unconditionally clear the flag.
	 */
	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
	hdev->discov_timeout = 0;

	hci_dev_unlock(hdev);

	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
	mgmt_new_settings(hdev);
}

2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
static int powered_update_hci(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	u8 link_sec;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
	    !lmp_host_ssp_capable(hdev)) {
		u8 mode = 0x01;

		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);

		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
			u8 support = 0x01;

			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
				    sizeof(support), &support);
		}
	}

	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
	    lmp_bredr_capable(hdev)) {
		struct hci_cp_write_le_host_supported cp;

		cp.le = 0x01;
		cp.simul = 0x00;

		/* Check first if we already have the right
		 * host state (host features set)
		 */
		if (cp.le != lmp_host_le_capable(hdev) ||
		    cp.simul != lmp_host_le_br_capable(hdev))
			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
				    sizeof(cp), &cp);
	}

2981
	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2982 2983 2984 2985
		/* Make sure the controller has a good default for
		 * advertising data. This also applies to the case
		 * where BR/EDR was toggled during the AUTO_OFF phase.
		 */
2986 2987
		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
		    list_empty(&hdev->adv_instances)) {
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
			int err;

			if (ext_adv_capable(hdev)) {
				err = __hci_req_setup_ext_adv_instance(req,
								       0x00);
				if (!err)
					__hci_req_update_scan_rsp_data(req,
								       0x00);
			} else {
				err = 0;
				__hci_req_update_adv_data(req, 0x00);
				__hci_req_update_scan_rsp_data(req, 0x00);
			}
3001

3002
			if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
3003
				if (!ext_adv_capable(hdev))
3004
					__hci_req_enable_advertising(req);
3005
				else if (!err)
3006 3007
					__hci_req_enable_ext_advertising(req,
									 0x00);
3008
			}
3009 3010
		} else if (!list_empty(&hdev->adv_instances)) {
			struct adv_info *adv_instance;
3011 3012 3013 3014

			adv_instance = list_first_entry(&hdev->adv_instances,
							struct adv_info, list);
			__hci_req_schedule_adv_instance(req,
3015
							adv_instance->instance,
3016
							true);
3017
		}
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
	}

	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
			    sizeof(link_sec), &link_sec);

	if (lmp_bredr_capable(hdev)) {
		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
			__hci_req_write_fast_connectable(req, true);
		else
			__hci_req_write_fast_connectable(req, false);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
		__hci_req_update_name(req);
		__hci_req_update_eir(req);
	}

	hci_dev_unlock(hdev);
	return 0;
}

int __hci_req_hci_power_on(struct hci_dev *hdev)
{
	/* Register the available SMP channels (BR/EDR and LE) only when
	 * successfully powering on the controller. This late
	 * registration is required so that LE SMP can clearly decide if
	 * the public address or static address is used.
	 */
	smp_register(hdev);

	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
			      NULL);
}

3053 3054
void hci_request_setup(struct hci_dev *hdev)
{
3055
	INIT_WORK(&hdev->discov_update, discov_update);
3056
	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
3057
	INIT_WORK(&hdev->scan_update, scan_update_work);
3058
	INIT_WORK(&hdev->connectable_update, connectable_update_work);
3059
	INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
3060
	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
3061 3062
	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
3063
	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
3064 3065 3066 3067
}

void hci_request_cancel_all(struct hci_dev *hdev)
{
3068 3069
	hci_req_sync_cancel(hdev, ENODEV);

3070
	cancel_work_sync(&hdev->discov_update);
3071
	cancel_work_sync(&hdev->bg_scan_update);
3072
	cancel_work_sync(&hdev->scan_update);
3073
	cancel_work_sync(&hdev->connectable_update);
3074
	cancel_work_sync(&hdev->discoverable_update);
3075
	cancel_delayed_work_sync(&hdev->discov_off);
3076 3077
	cancel_delayed_work_sync(&hdev->le_scan_disable);
	cancel_delayed_work_sync(&hdev->le_scan_restart);
3078 3079 3080 3081 3082

	if (hdev->adv_instance_timeout) {
		cancel_delayed_work_sync(&hdev->adv_instance_expire);
		hdev->adv_instance_timeout = 0;
	}
3083
}