hci_request.c 89.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
   BlueZ - Bluetooth protocol stack for Linux

   Copyright (C) 2014 Intel Corporation

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License version 2 as
   published by the Free Software Foundation;

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
   SOFTWARE IS DISCLAIMED.
*/

24 25
#include <linux/sched/signal.h>

26 27
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
28
#include <net/bluetooth/mgmt.h>
29 30 31

#include "smp.h"
#include "hci_request.h"
32
#include "msft.h"
33

34 35 36 37
#define HCI_REQ_DONE	  0
#define HCI_REQ_PEND	  1
#define HCI_REQ_CANCELED  2

38 39 40 41 42 43 44
void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
{
	skb_queue_head_init(&req->cmd_q);
	req->hdev = hdev;
	req->err = 0;
}

45 46 47 48 49
void hci_req_purge(struct hci_request *req)
{
	skb_queue_purge(&req->cmd_q);
}

50 51 52 53 54
bool hci_req_status_pend(struct hci_dev *hdev)
{
	return hdev->req_status == HCI_REQ_PEND;
}

55 56
static int req_run(struct hci_request *req, hci_req_complete_t complete,
		   hci_req_complete_skb_t complete_skb)
57 58 59 60 61
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;
	unsigned long flags;

62
	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
63 64 65 66 67 68 69 70 71 72 73 74 75 76

	/* If an error occurred during request building, remove all HCI
	 * commands queued on the HCI request queue.
	 */
	if (req->err) {
		skb_queue_purge(&req->cmd_q);
		return req->err;
	}

	/* Do not allow empty requests */
	if (skb_queue_empty(&req->cmd_q))
		return -ENODATA;

	skb = skb_peek_tail(&req->cmd_q);
77 78 79 80 81 82
	if (complete) {
		bt_cb(skb)->hci.req_complete = complete;
	} else if (complete_skb) {
		bt_cb(skb)->hci.req_complete_skb = complete_skb;
		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
	}
83 84 85 86 87 88 89 90 91 92

	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);

	queue_work(hdev->workqueue, &hdev->cmd_work);

	return 0;
}

93 94 95 96 97 98 99 100 101 102
int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
{
	return req_run(req, complete, NULL);
}

int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
{
	return req_run(req, NULL, complete);
}

103 104 105
static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
				  struct sk_buff *skb)
{
106
	bt_dev_dbg(hdev, "result 0x%2.2x", result);
107 108 109 110 111 112 113 114 115 116

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = result;
		hdev->req_status = HCI_REQ_DONE;
		if (skb)
			hdev->req_skb = skb_get(skb);
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

117
void hci_req_sync_cancel(struct hci_dev *hdev, int err)
118
{
119
	bt_dev_dbg(hdev, "err 0x%2.2x", err);
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = err;
		hdev->req_status = HCI_REQ_CANCELED;
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
				  const void *param, u8 event, u32 timeout)
{
	struct hci_request req;
	struct sk_buff *skb;
	int err = 0;

135
	bt_dev_dbg(hdev, "");
136 137 138 139 140 141 142 143

	hci_req_init(&req, hdev);

	hci_req_add_ev(&req, opcode, plen, param, event);

	hdev->req_status = HCI_REQ_PEND;

	err = hci_req_run_skb(&req, hci_req_sync_complete);
144
	if (err < 0)
145 146
		return ERR_PTR(err);

147 148
	err = wait_event_interruptible_timeout(hdev->req_wait_q,
			hdev->req_status != HCI_REQ_PEND, timeout);
149

150
	if (err == -ERESTARTSYS)
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
		return ERR_PTR(-EINTR);

	switch (hdev->req_status) {
	case HCI_REQ_DONE:
		err = -bt_to_errno(hdev->req_result);
		break;

	case HCI_REQ_CANCELED:
		err = -hdev->req_result;
		break;

	default:
		err = -ETIMEDOUT;
		break;
	}

	hdev->req_status = hdev->req_result = 0;
	skb = hdev->req_skb;
	hdev->req_skb = NULL;

171
	bt_dev_dbg(hdev, "end: err %d", err);
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192

	if (err < 0) {
		kfree_skb(skb);
		return ERR_PTR(err);
	}

	if (!skb)
		return ERR_PTR(-ENODATA);

	return skb;
}
EXPORT_SYMBOL(__hci_cmd_sync_ev);

struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
			       const void *param, u32 timeout)
{
	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
}
EXPORT_SYMBOL(__hci_cmd_sync);

/* Execute request and wait for completion. */
193 194
int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
						     unsigned long opt),
195
		   unsigned long opt, u32 timeout, u8 *hci_status)
196 197 198 199
{
	struct hci_request req;
	int err = 0;

200
	bt_dev_dbg(hdev, "start");
201 202 203 204 205

	hci_req_init(&req, hdev);

	hdev->req_status = HCI_REQ_PEND;

206 207 208 209 210 211
	err = func(&req, opt);
	if (err) {
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
		return err;
	}
212 213 214 215 216 217 218 219 220 221

	err = hci_req_run_skb(&req, hci_req_sync_complete);
	if (err < 0) {
		hdev->req_status = 0;

		/* ENODATA means the HCI request command queue is empty.
		 * This can happen when a request with conditionals doesn't
		 * trigger any commands to be sent. This is normal behavior
		 * and should not trigger an error return.
		 */
222 223 224
		if (err == -ENODATA) {
			if (hci_status)
				*hci_status = 0;
225
			return 0;
226 227 228 229
		}

		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
230 231 232 233

		return err;
	}

234 235
	err = wait_event_interruptible_timeout(hdev->req_wait_q,
			hdev->req_status != HCI_REQ_PEND, timeout);
236

237
	if (err == -ERESTARTSYS)
238 239 240 241 242
		return -EINTR;

	switch (hdev->req_status) {
	case HCI_REQ_DONE:
		err = -bt_to_errno(hdev->req_result);
243 244
		if (hci_status)
			*hci_status = hdev->req_result;
245 246 247 248
		break;

	case HCI_REQ_CANCELED:
		err = -hdev->req_result;
249 250
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
251 252 253 254
		break;

	default:
		err = -ETIMEDOUT;
255 256
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
257 258 259
		break;
	}

260 261
	kfree_skb(hdev->req_skb);
	hdev->req_skb = NULL;
262 263
	hdev->req_status = hdev->req_result = 0;

264
	bt_dev_dbg(hdev, "end: err %d", err);
265 266 267 268

	return err;
}

269 270
int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
						  unsigned long opt),
271
		 unsigned long opt, u32 timeout, u8 *hci_status)
272 273 274 275 276 277 278
{
	int ret;

	if (!test_bit(HCI_UP, &hdev->flags))
		return -ENETDOWN;

	/* Serialize all requests */
279
	hci_req_sync_lock(hdev);
280
	ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
281
	hci_req_sync_unlock(hdev);
282 283 284 285

	return ret;
}

286 287 288 289 290 291 292 293 294 295 296
struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
				const void *param)
{
	int len = HCI_COMMAND_HDR_SIZE + plen;
	struct hci_command_hdr *hdr;
	struct sk_buff *skb;

	skb = bt_skb_alloc(len, GFP_ATOMIC);
	if (!skb)
		return NULL;

297
	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
298 299 300 301
	hdr->opcode = cpu_to_le16(opcode);
	hdr->plen   = plen;

	if (plen)
302
		skb_put_data(skb, param, plen);
303

304
	bt_dev_dbg(hdev, "skb len %d", skb->len);
305

306 307
	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
	hci_skb_opcode(skb) = opcode;
308 309 310 311 312 313 314 315 316 317 318

	return skb;
}

/* Queue a command to an asynchronous HCI request */
void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
		    const void *param, u8 event)
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;

319
	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
320 321 322 323 324 325 326 327 328

	/* If an error occurred during request building, there is no point in
	 * queueing the HCI command. We can simply return.
	 */
	if (req->err)
		return;

	skb = hci_prepare_cmd(hdev, opcode, plen, param);
	if (!skb) {
329 330
		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
			   opcode);
331 332 333 334 335
		req->err = -ENOMEM;
		return;
	}

	if (skb_queue_empty(&req->cmd_q))
336
		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
337

338
	bt_cb(skb)->hci.req_event = event;
339 340 341 342 343 344 345 346 347 348

	skb_queue_tail(&req->cmd_q, skb);
}

void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
		 const void *param)
{
	hci_req_add_ev(req, opcode, plen, param, 0);
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_page_scan_activity acp;
	u8 type;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
		return;

	if (enable) {
		type = PAGE_SCAN_TYPE_INTERLACED;

		/* 160 msec page scan interval */
		acp.interval = cpu_to_le16(0x0100);
	} else {
367 368
		type = hdev->def_page_scan_type;
		acp.interval = cpu_to_le16(hdev->def_page_scan_int);
369 370
	}

371
	acp.window = cpu_to_le16(hdev->def_page_scan_window);
372 373 374 375 376 377 378 379 380 381

	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
			    sizeof(acp), &acp);

	if (hdev->page_scan_type != type)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
}

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
static void start_interleave_scan(struct hci_dev *hdev)
{
	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
	queue_delayed_work(hdev->req_workqueue,
			   &hdev->interleave_scan, 0);
}

static bool is_interleave_scanning(struct hci_dev *hdev)
{
	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
}

static void cancel_interleave_scan(struct hci_dev *hdev)
{
	bt_dev_dbg(hdev, "cancelling interleave scan");

	cancel_delayed_work_sync(&hdev->interleave_scan);

	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
}

/* Return true if interleave_scan wasn't started until exiting this function,
 * otherwise, return false
 */
static bool __hci_update_interleaved_scan(struct hci_dev *hdev)
{
408 409 410 411 412 413
	/* Do interleaved scan only if all of the following are true:
	 * - There is at least one ADV monitor
	 * - At least one pending LE connection or one device to be scanned for
	 * - Monitor offloading is not supported
	 * If so, we should alternate between allowlist scan and one without
	 * any filters to save power.
414 415 416
	 */
	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
				!(list_empty(&hdev->pend_le_conns) &&
417 418 419
				  list_empty(&hdev->pend_le_reports)) &&
				hci_get_adv_monitor_offload_ext(hdev) ==
				    HCI_ADV_MONITOR_EXT_NONE;
420 421 422 423 424 425 426 427 428 429 430 431 432 433
	bool is_interleaving = is_interleave_scanning(hdev);

	if (use_interleaving && !is_interleaving) {
		start_interleave_scan(hdev);
		bt_dev_dbg(hdev, "starting interleave scan");
		return true;
	}

	if (!use_interleaving && is_interleaving)
		cancel_interleave_scan(hdev);

	return false;
}

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
/* This function controls the background scanning based on hdev->pend_le_conns
 * list. If there are pending LE connection we start the background scanning,
 * otherwise we stop it.
 *
 * This function requires the caller holds hdev->lock.
 */
static void __hci_update_background_scan(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;

	if (!test_bit(HCI_UP, &hdev->flags) ||
	    test_bit(HCI_INIT, &hdev->flags) ||
	    hci_dev_test_flag(hdev, HCI_SETUP) ||
	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
		return;

	/* No point in doing scanning if LE support hasn't been enabled */
	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

	/* If discovery is active don't interfere with it */
	if (hdev->discovery.state != DISCOVERY_STOPPED)
		return;

	/* Reset RSSI and UUID filters when starting background scanning
	 * since these filters are meant for service discovery only.
	 *
	 * The Start Discovery and Start Service Discovery operations
	 * ensure to set proper values for RSSI threshold and UUID
	 * filter list. So it is safe to just reset them here.
	 */
	hci_discovery_filter_clear(hdev);

469 470
	bt_dev_dbg(hdev, "ADV monitoring is %s",
		   hci_is_adv_monitoring(hdev) ? "on" : "off");
471

472
	if (list_empty(&hdev->pend_le_conns) &&
473 474
	    list_empty(&hdev->pend_le_reports) &&
	    !hci_is_adv_monitoring(hdev)) {
475
		/* If there is no pending LE connections or devices
476 477
		 * to be scanned for or no ADV monitors, we should stop the
		 * background scanning.
478 479 480 481 482 483
		 */

		/* If controller is not scanning we are done. */
		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
			return;

484
		hci_req_add_le_scan_disable(req, false);
485

486
		bt_dev_dbg(hdev, "stopping background scanning");
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	} else {
		/* If there is at least one pending LE connection, we should
		 * keep the background scan running.
		 */

		/* If controller is connecting, we should not start scanning
		 * since some controllers are not able to scan and connect at
		 * the same time.
		 */
		if (hci_lookup_le_connect(hdev))
			return;

		/* If controller is currently scanning, we stop it to ensure we
		 * don't miss any advertising (due to duplicates filter).
		 */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
503
			hci_req_add_le_scan_disable(req, false);
504 505

		hci_req_add_le_passive_scan(req);
506
		bt_dev_dbg(hdev, "starting background scanning");
507 508 509
	}
}

510 511 512 513 514 515 516 517 518 519
void __hci_req_update_name(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_local_name cp;

	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));

	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
}

520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
#define PNP_INFO_SVCLASS_ID		0x1200

static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
{
	u8 *ptr = data, *uuids_start = NULL;
	struct bt_uuid *uuid;

	if (len < 4)
		return ptr;

	list_for_each_entry(uuid, &hdev->uuids, list) {
		u16 uuid16;

		if (uuid->size != 16)
			continue;

		uuid16 = get_unaligned_le16(&uuid->uuid[12]);
		if (uuid16 < 0x1100)
			continue;

		if (uuid16 == PNP_INFO_SVCLASS_ID)
			continue;

		if (!uuids_start) {
			uuids_start = ptr;
			uuids_start[0] = 1;
			uuids_start[1] = EIR_UUID16_ALL;
			ptr += 2;
		}

		/* Stop if not enough space to put next UUID */
		if ((ptr - data) + sizeof(u16) > len) {
			uuids_start[1] = EIR_UUID16_SOME;
			break;
		}

		*ptr++ = (uuid16 & 0x00ff);
		*ptr++ = (uuid16 & 0xff00) >> 8;
		uuids_start[0] += sizeof(uuid16);
	}

	return ptr;
}

static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
{
	u8 *ptr = data, *uuids_start = NULL;
	struct bt_uuid *uuid;

	if (len < 6)
		return ptr;

	list_for_each_entry(uuid, &hdev->uuids, list) {
		if (uuid->size != 32)
			continue;

		if (!uuids_start) {
			uuids_start = ptr;
			uuids_start[0] = 1;
			uuids_start[1] = EIR_UUID32_ALL;
			ptr += 2;
		}

		/* Stop if not enough space to put next UUID */
		if ((ptr - data) + sizeof(u32) > len) {
			uuids_start[1] = EIR_UUID32_SOME;
			break;
		}

		memcpy(ptr, &uuid->uuid[12], sizeof(u32));
		ptr += sizeof(u32);
		uuids_start[0] += sizeof(u32);
	}

	return ptr;
}

static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
{
	u8 *ptr = data, *uuids_start = NULL;
	struct bt_uuid *uuid;

	if (len < 18)
		return ptr;

	list_for_each_entry(uuid, &hdev->uuids, list) {
		if (uuid->size != 128)
			continue;

		if (!uuids_start) {
			uuids_start = ptr;
			uuids_start[0] = 1;
			uuids_start[1] = EIR_UUID128_ALL;
			ptr += 2;
		}

		/* Stop if not enough space to put next UUID */
		if ((ptr - data) + 16 > len) {
			uuids_start[1] = EIR_UUID128_SOME;
			break;
		}

		memcpy(ptr, uuid->uuid, 16);
		ptr += 16;
		uuids_start[0] += 16;
	}

	return ptr;
}

static void create_eir(struct hci_dev *hdev, u8 *data)
{
	u8 *ptr = data;
	size_t name_len;

	name_len = strlen(hdev->dev_name);

	if (name_len > 0) {
		/* EIR Data type */
		if (name_len > 48) {
			name_len = 48;
			ptr[1] = EIR_NAME_SHORT;
		} else
			ptr[1] = EIR_NAME_COMPLETE;

		/* EIR Data length */
		ptr[0] = name_len + 1;

		memcpy(ptr + 2, hdev->dev_name, name_len);

		ptr += (name_len + 2);
	}

	if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
		ptr[0] = 2;
		ptr[1] = EIR_TX_POWER;
		ptr[2] = (u8) hdev->inq_tx_power;

		ptr += 3;
	}

	if (hdev->devid_source > 0) {
		ptr[0] = 9;
		ptr[1] = EIR_DEVICE_ID;

		put_unaligned_le16(hdev->devid_source, ptr + 2);
		put_unaligned_le16(hdev->devid_vendor, ptr + 4);
		put_unaligned_le16(hdev->devid_product, ptr + 6);
		put_unaligned_le16(hdev->devid_version, ptr + 8);

		ptr += 10;
	}

	ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
	ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
	ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
}

void __hci_req_update_eir(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_eir cp;

	if (!hdev_is_powered(hdev))
		return;

	if (!lmp_ext_inq_capable(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	memset(&cp, 0, sizeof(cp));

	create_eir(hdev, cp.data);

	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
		return;

	memcpy(hdev->eir, cp.data, sizeof(cp.data));

	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
}

707
void hci_req_add_le_scan_disable(struct hci_request *req, bool rpa_le_conn)
708
{
709
	struct hci_dev *hdev = req->hdev;
710

711 712 713 714 715
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}

716 717 718
	if (hdev->suspended)
		set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);

719 720 721 722 723 724 725 726 727 728 729 730 731 732
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_DISABLE;
		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
			    &cp);
	} else {
		struct hci_cp_le_set_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_DISABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
	}
733

734
	/* Disable address resolution */
735
	if (use_ll_privacy(hdev) &&
736
	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
737
	    hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION) && !rpa_le_conn) {
738
		__u8 enable = 0x00;
739

740 741
		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
	}
742 743
}

744 745 746 747 748 749 750 751 752 753 754
static void del_from_white_list(struct hci_request *req, bdaddr_t *bdaddr,
				u8 bdaddr_type)
{
	struct hci_cp_le_del_from_white_list cp;

	cp.bdaddr_type = bdaddr_type;
	bacpy(&cp.bdaddr, bdaddr);

	bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from whitelist", &cp.bdaddr,
		   cp.bdaddr_type);
	hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, sizeof(cp), &cp);
755

756 757
	if (use_ll_privacy(req->hdev) &&
	    hci_dev_test_flag(req->hdev, HCI_ENABLE_LL_PRIVACY)) {
758 759 760 761 762 763 764 765 766 767 768 769 770
		struct smp_irk *irk;

		irk = hci_find_irk_by_addr(req->hdev, bdaddr, bdaddr_type);
		if (irk) {
			struct hci_cp_le_del_from_resolv_list cp;

			cp.bdaddr_type = bdaddr_type;
			bacpy(&cp.bdaddr, bdaddr);

			hci_req_add(req, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
				    sizeof(cp), &cp);
		}
	}
771 772 773 774 775 776
}

/* Adds connection to white list if needed. On error, returns -1. */
static int add_to_white_list(struct hci_request *req,
			     struct hci_conn_params *params, u8 *num_entries,
			     bool allow_rpa)
777 778
{
	struct hci_cp_le_add_to_white_list cp;
779 780 781 782 783 784
	struct hci_dev *hdev = req->hdev;

	/* Already in white list */
	if (hci_bdaddr_list_lookup(&hdev->le_white_list, &params->addr,
				   params->addr_type))
		return 0;
785

786 787 788 789 790
	/* Select filter policy to accept all advertising */
	if (*num_entries >= hdev->le_white_list_size)
		return -1;

	/* White list can not be used with RPAs */
791 792
	if (!allow_rpa &&
	    !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
793 794 795 796 797
	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type)) {
		return -1;
	}

	/* During suspend, only wakeable devices can be in whitelist */
798 799
	if (hdev->suspended && !hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
						   params->current_flags))
800 801 802
		return 0;

	*num_entries += 1;
803 804 805
	cp.bdaddr_type = params->addr_type;
	bacpy(&cp.bdaddr, &params->addr);

806 807
	bt_dev_dbg(hdev, "Add %pMR (0x%x) to whitelist", &cp.bdaddr,
		   cp.bdaddr_type);
808
	hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
809

810 811
	if (use_ll_privacy(hdev) &&
	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY)) {
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
		struct smp_irk *irk;

		irk = hci_find_irk_by_addr(hdev, &params->addr,
					   params->addr_type);
		if (irk) {
			struct hci_cp_le_add_to_resolv_list cp;

			cp.bdaddr_type = params->addr_type;
			bacpy(&cp.bdaddr, &params->addr);
			memcpy(cp.peer_irk, irk->val, 16);

			if (hci_dev_test_flag(hdev, HCI_PRIVACY))
				memcpy(cp.local_irk, hdev->irk, 16);
			else
				memset(cp.local_irk, 0, 16);

			hci_req_add(req, HCI_OP_LE_ADD_TO_RESOLV_LIST,
				    sizeof(cp), &cp);
		}
	}

833
	return 0;
834 835 836 837 838 839 840
}

static u8 update_white_list(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_conn_params *params;
	struct bdaddr_list *b;
841 842 843 844 845 846 847 848
	u8 num_entries = 0;
	bool pend_conn, pend_report;
	/* We allow whitelisting even with RPAs in suspend. In the worst case,
	 * we won't be able to wake from devices that use the privacy1.2
	 * features. Additionally, once we support privacy1.2 and IRK
	 * offloading, we can update this to also check for those conditions.
	 */
	bool allow_rpa = hdev->suspended;
849 850 851 852 853 854 855 856

	/* Go through the current white list programmed into the
	 * controller one by one and check if that address is still
	 * in the list of pending connections or list of devices to
	 * report. If not present in either list, then queue the
	 * command to remove it from the controller.
	 */
	list_for_each_entry(b, &hdev->le_white_list, list) {
857 858 859 860 861 862 863 864 865
		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
						      &b->bdaddr,
						      b->bdaddr_type);
		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
							&b->bdaddr,
							b->bdaddr_type);

		/* If the device is not likely to connect or report,
		 * remove it from the whitelist.
866
		 */
867 868
		if (!pend_conn && !pend_report) {
			del_from_white_list(req, &b->bdaddr, b->bdaddr_type);
869 870 871
			continue;
		}

872
		/* White list can not be used with RPAs */
873 874
		if (!allow_rpa &&
		    !hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
875
		    hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
876 877
			return 0x00;
		}
878

879
		num_entries++;
880 881 882 883 884 885 886 887 888 889 890 891 892
	}

	/* Since all no longer valid white list entries have been
	 * removed, walk through the list of pending connections
	 * and ensure that any new device gets programmed into
	 * the controller.
	 *
	 * If the list of the devices is larger than the list of
	 * available white list entries in the controller, then
	 * just abort and return filer policy value to not use the
	 * white list.
	 */
	list_for_each_entry(params, &hdev->pend_le_conns, action) {
893
		if (add_to_white_list(req, params, &num_entries, allow_rpa))
894 895 896 897 898
			return 0x00;
	}

	/* After adding all new pending connections, walk through
	 * the list of pending reports and also add these to the
899
	 * white list if there is still space. Abort if space runs out.
900 901
	 */
	list_for_each_entry(params, &hdev->pend_le_reports, action) {
902
		if (add_to_white_list(req, params, &num_entries, allow_rpa))
903 904 905
			return 0x00;
	}

906 907
	/* Use the allowlist unless the following conditions are all true:
	 * - We are not currently suspending
908
	 * - There are 1 or more ADV monitors registered and it's not offloaded
909
	 * - Interleaved scanning is not currently using the allowlist
910
	 */
911
	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
912
	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
913
	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
914 915
		return 0x00;

916 917 918 919
	/* Select filter policy to use white list */
	return 0x01;
}

920 921 922 923 924
static bool scan_use_rpa(struct hci_dev *hdev)
{
	return hci_dev_test_flag(hdev, HCI_PRIVACY);
}

925
static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
926 927
			       u16 window, u8 own_addr_type, u8 filter_policy,
			       bool addr_resolv)
928
{
929
	struct hci_dev *hdev = req->hdev;
930

931 932 933 934 935
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}

936 937 938
	if (use_ll_privacy(hdev) &&
	    hci_dev_test_flag(hdev, HCI_ENABLE_LL_PRIVACY) &&
	    addr_resolv) {
939
		u8 enable = 0x01;
940

941 942 943
		hci_req_add(req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);
	}

944 945 946 947 948 949 950
	/* Use ext scanning if set ext scan param and ext scan enable is
	 * supported
	 */
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_params *ext_param_cp;
		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
		struct hci_cp_le_scan_phy_params *phy_params;
951 952
		u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
		u32 plen;
953 954 955 956 957 958 959 960

		ext_param_cp = (void *)data;
		phy_params = (void *)ext_param_cp->data;

		memset(ext_param_cp, 0, sizeof(*ext_param_cp));
		ext_param_cp->own_addr_type = own_addr_type;
		ext_param_cp->filter_policy = filter_policy;

961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
		plen = sizeof(*ext_param_cp);

		if (scan_1m(hdev) || scan_2m(hdev)) {
			ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;

			memset(phy_params, 0, sizeof(*phy_params));
			phy_params->type = type;
			phy_params->interval = cpu_to_le16(interval);
			phy_params->window = cpu_to_le16(window);

			plen += sizeof(*phy_params);
			phy_params++;
		}

		if (scan_coded(hdev)) {
			ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;

			memset(phy_params, 0, sizeof(*phy_params));
			phy_params->type = type;
			phy_params->interval = cpu_to_le16(interval);
			phy_params->window = cpu_to_le16(window);

			plen += sizeof(*phy_params);
			phy_params++;
		}
986 987

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
988
			    plen, ext_param_cp);
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014

		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
		ext_enable_cp.enable = LE_SCAN_ENABLE;
		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
			    sizeof(ext_enable_cp), &ext_enable_cp);
	} else {
		struct hci_cp_le_set_scan_param param_cp;
		struct hci_cp_le_set_scan_enable enable_cp;

		memset(&param_cp, 0, sizeof(param_cp));
		param_cp.type = type;
		param_cp.interval = cpu_to_le16(interval);
		param_cp.window = cpu_to_le16(window);
		param_cp.own_address_type = own_addr_type;
		param_cp.filter_policy = filter_policy;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
			    &param_cp);

		memset(&enable_cp, 0, sizeof(enable_cp));
		enable_cp.enable = LE_SCAN_ENABLE;
		enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
			    &enable_cp);
	}
1015 1016
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
/* Returns true if an le connection is in the scanning state */
static inline bool hci_is_le_conn_scanning(struct hci_dev *hdev)
{
	struct hci_conn_hash *h = &hdev->conn_hash;
	struct hci_conn  *c;

	rcu_read_lock();

	list_for_each_entry_rcu(c, &h->list, list) {
		if (c->type == LE_LINK && c->state == BT_CONNECT &&
		    test_bit(HCI_CONN_SCANNING, &c->flags)) {
			rcu_read_unlock();
			return true;
		}
	}

	rcu_read_unlock();

	return false;
}

1038 1039 1040 1041
/* Ensure to call hci_req_add_le_scan_disable() first to disable the
 * controller based address resolution to be able to reconfigure
 * resolving list.
 */
1042 1043
void hci_req_add_le_passive_scan(struct hci_request *req)
{
1044 1045 1046
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
	u8 filter_policy;
1047
	u16 window, interval;
1048 1049
	/* Background scanning should run with address resolution */
	bool addr_resolv = true;
1050 1051 1052 1053 1054

	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}
1055 1056 1057 1058 1059 1060 1061

	/* Set require_privacy to false since no SCAN_REQ are send
	 * during passive scanning. Not using an non-resolvable address
	 * here is important so that peer devices using direct
	 * advertising with our address will be correctly reported
	 * by the controller.
	 */
1062 1063
	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
				      &own_addr_type))
1064 1065
		return;

1066 1067
	if (hdev->enable_advmon_interleave_scan &&
	    __hci_update_interleaved_scan(hdev))
1068 1069 1070
		return;

	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
	/* Adding or removing entries from the white list must
	 * happen before enabling scanning. The controller does
	 * not allow white list modification while scanning.
	 */
	filter_policy = update_white_list(req);

	/* When the controller is using random resolvable addresses and
	 * with that having LE privacy enabled, then controllers with
	 * Extended Scanner Filter Policies support can now enable support
	 * for handling directed advertising.
	 *
	 * So instead of using filter polices 0x00 (no whitelist)
	 * and 0x01 (whitelist enabled) use the new filter policies
	 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
	 */
1086
	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
1087 1088 1089
	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
		filter_policy |= 0x02;

1090
	if (hdev->suspended) {
1091 1092
		window = hdev->le_scan_window_suspend;
		interval = hdev->le_scan_int_suspend;
1093 1094

		set_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks);
1095 1096 1097
	} else if (hci_is_le_conn_scanning(hdev)) {
		window = hdev->le_scan_window_connect;
		interval = hdev->le_scan_int_connect;
1098 1099 1100
	} else if (hci_is_adv_monitoring(hdev)) {
		window = hdev->le_scan_window_adv_monitor;
		interval = hdev->le_scan_int_adv_monitor;
1101 1102 1103 1104 1105 1106 1107
	} else {
		window = hdev->le_scan_window;
		interval = hdev->le_scan_interval;
	}

	bt_dev_dbg(hdev, "LE passive scan with whitelist = %d", filter_policy);
	hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window,
1108
			   own_addr_type, filter_policy, addr_resolv);
1109 1110
}

1111
static bool adv_instance_is_scannable(struct hci_dev *hdev, u8 instance)
1112 1113 1114
{
	struct adv_info *adv_instance;

1115
	/* Instance 0x00 always set local name */
1116
	if (instance == 0x00)
1117
		return true;
1118 1119 1120

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
1121
		return false;
1122

1123 1124
	if (adv_instance->flags & MGMT_ADV_FLAG_APPEARANCE ||
	    adv_instance->flags & MGMT_ADV_FLAG_LOCAL_NAME)
1125
		return true;
1126

1127
	return adv_instance->scan_rsp_len ? true : false;
1128 1129
}

1130 1131 1132 1133
static void hci_req_clear_event_filter(struct hci_request *req)
{
	struct hci_cp_set_event_filter f;

1134 1135
	if (!hci_dev_test_flag(req->hdev, HCI_BREDR_ENABLED))
		return;
1136

1137 1138 1139 1140 1141
	if (hci_dev_test_flag(req->hdev, HCI_EVENT_FILTER_CONFIGURED)) {
		memset(&f, 0, sizeof(f));
		f.flt_type = HCI_FLT_CLEAR_ALL;
		hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &f);
	}
1142 1143 1144 1145
}

static void hci_req_set_event_filter(struct hci_request *req)
{
1146
	struct bdaddr_list_with_flags *b;
1147 1148
	struct hci_cp_set_event_filter f;
	struct hci_dev *hdev = req->hdev;
1149
	u8 scan = SCAN_DISABLED;
1150 1151 1152 1153
	bool scanning = test_bit(HCI_PSCAN, &hdev->flags);

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;
1154 1155 1156 1157

	/* Always clear event filter when starting */
	hci_req_clear_event_filter(req);

1158 1159 1160 1161 1162
	list_for_each_entry(b, &hdev->whitelist, list) {
		if (!hci_conn_test_flag(HCI_CONN_FLAG_REMOTE_WAKEUP,
					b->current_flags))
			continue;

1163 1164 1165 1166 1167 1168 1169 1170
		memset(&f, 0, sizeof(f));
		bacpy(&f.addr_conn_flt.bdaddr, &b->bdaddr);
		f.flt_type = HCI_FLT_CONN_SETUP;
		f.cond_type = HCI_CONN_SETUP_ALLOW_BDADDR;
		f.addr_conn_flt.auto_accept = HCI_CONN_SETUP_AUTO_ON;

		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
		hci_req_add(req, HCI_OP_SET_EVENT_FLT, sizeof(f), &f);
1171
		scan = SCAN_PAGE;
1172 1173
	}

1174
	if (scan && !scanning) {
1175
		set_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks);
1176 1177
		hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
	} else if (!scan && scanning) {
1178
		set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
1179 1180
		hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
	}
1181 1182
}

1183 1184 1185 1186 1187 1188 1189 1190 1191
static void cancel_adv_timeout(struct hci_dev *hdev)
{
	if (hdev->adv_instance_timeout) {
		hdev->adv_instance_timeout = 0;
		cancel_delayed_work(&hdev->adv_instance_expire);
	}
}

/* This function requires the caller holds hdev->lock */
1192
void __hci_req_pause_adv_instances(struct hci_request *req)
1193
{
1194
	bt_dev_dbg(req->hdev, "Pausing advertising instances");
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206

	/* Call to disable any advertisements active on the controller.
	 * This will succeed even if no advertisements are configured.
	 */
	__hci_req_disable_advertising(req);

	/* If we are using software rotation, pause the loop */
	if (!ext_adv_capable(req->hdev))
		cancel_adv_timeout(req->hdev);
}

/* This function requires the caller holds hdev->lock */
1207
static void __hci_req_resume_adv_instances(struct hci_request *req)
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
{
	struct adv_info *adv;

	bt_dev_dbg(req->hdev, "Resuming advertising instances");

	if (ext_adv_capable(req->hdev)) {
		/* Call for each tracked instance to be re-enabled */
		list_for_each_entry(adv, &req->hdev->adv_instances, list) {
			__hci_req_enable_ext_advertising(req,
							 adv->instance);
		}

	} else {
		/* Schedule for most recent instance to be restarted and begin
		 * the software rotation loop
		 */
		__hci_req_schedule_adv_instance(req,
						req->hdev->cur_adv_instance,
						true);
	}
}

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
/* This function requires the caller holds hdev->lock */
int hci_req_resume_adv_instances(struct hci_dev *hdev)
{
	struct hci_request req;

	hci_req_init(&req, hdev);
	__hci_req_resume_adv_instances(&req);

	return hci_req_run(&req, NULL);
}

1241 1242 1243 1244
static void suspend_req_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	bt_dev_dbg(hdev, "Request complete opcode=0x%x, status=0x%x", opcode,
		   status);
1245 1246 1247 1248
	if (test_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks) ||
	    test_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks)) {
		clear_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks);
		clear_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
1249 1250
		wake_up(&hdev->suspend_wait_q);
	}
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273

	if (test_bit(SUSPEND_SET_ADV_FILTER, hdev->suspend_tasks)) {
		clear_bit(SUSPEND_SET_ADV_FILTER, hdev->suspend_tasks);
		wake_up(&hdev->suspend_wait_q);
	}
}

static void hci_req_add_set_adv_filter_enable(struct hci_request *req,
					      bool enable)
{
	struct hci_dev *hdev = req->hdev;

	switch (hci_get_adv_monitor_offload_ext(hdev)) {
	case HCI_ADV_MONITOR_EXT_MSFT:
		msft_req_add_set_filter_enable(req, enable);
		break;
	default:
		return;
	}

	/* No need to block when enabling since it's on resume path */
	if (hdev->suspended && !enable)
		set_bit(SUSPEND_SET_ADV_FILTER, hdev->suspend_tasks);
1274 1275
}

1276 1277 1278
/* Call with hci_dev_lock */
void hci_req_prepare_suspend(struct hci_dev *hdev, enum suspended_state next)
{
1279
	int old_state;
1280 1281 1282 1283 1284
	struct hci_conn *conn;
	struct hci_request req;
	u8 page_scan;
	int disconnect_counter;

1285 1286 1287 1288 1289 1290
	if (next == hdev->suspend_state) {
		bt_dev_dbg(hdev, "Same state before and after: %d", next);
		goto done;
	}

	hdev->suspend_state = next;
1291 1292 1293 1294 1295 1296
	hci_req_init(&req, hdev);

	if (next == BT_SUSPEND_DISCONNECT) {
		/* Mark device as suspended */
		hdev->suspended = true;

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		/* Pause discovery if not already stopped */
		old_state = hdev->discovery.state;
		if (old_state != DISCOVERY_STOPPED) {
			set_bit(SUSPEND_PAUSE_DISCOVERY, hdev->suspend_tasks);
			hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
			queue_work(hdev->req_workqueue, &hdev->discov_update);
		}

		hdev->discovery_paused = true;
		hdev->discovery_old_state = old_state;

1308
		/* Stop directed advertising */
1309 1310 1311 1312 1313 1314 1315 1316
		old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
		if (old_state) {
			set_bit(SUSPEND_PAUSE_ADVERTISING, hdev->suspend_tasks);
			cancel_delayed_work(&hdev->discov_off);
			queue_delayed_work(hdev->req_workqueue,
					   &hdev->discov_off, 0);
		}

1317 1318
		/* Pause other advertisements */
		if (hdev->adv_instance_cnt)
1319
			__hci_req_pause_adv_instances(&req);
1320

1321 1322
		hdev->advertising_paused = true;
		hdev->advertising_old_state = old_state;
1323 1324 1325 1326 1327 1328 1329 1330

		/* Disable page scan if enabled */
		if (test_bit(HCI_PSCAN, &hdev->flags)) {
			page_scan = SCAN_DISABLED;
			hci_req_add(&req, HCI_OP_WRITE_SCAN_ENABLE, 1,
				    &page_scan);
			set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);
		}
1331

1332
		/* Disable LE passive scan if enabled */
1333 1334
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			cancel_interleave_scan(hdev);
1335
			hci_req_add_le_scan_disable(&req, false);
1336
		}
1337

1338 1339 1340
		/* Disable advertisement filters */
		hci_req_add_set_adv_filter_enable(&req, false);

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
		/* Prevent disconnects from causing scanning to be re-enabled */
		hdev->scanning_paused = true;

		/* Run commands before disconnecting */
		hci_req_run(&req, suspend_req_complete);

		disconnect_counter = 0;
		/* Soft disconnect everything (power off) */
		list_for_each_entry(conn, &hdev->conn_hash.list, list) {
			hci_disconnect(conn, HCI_ERROR_REMOTE_POWER_OFF);
			disconnect_counter++;
		}

		if (disconnect_counter > 0) {
			bt_dev_dbg(hdev,
				   "Had %d disconnects. Will wait on them",
				   disconnect_counter);
			set_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks);
		}
1360
	} else if (next == BT_SUSPEND_CONFIGURE_WAKE) {
1361 1362 1363 1364
		/* Unpause to take care of updating scanning params */
		hdev->scanning_paused = false;
		/* Enable event filter for paired devices */
		hci_req_set_event_filter(&req);
1365
		/* Enable passive scan at lower duty cycle */
1366
		__hci_update_background_scan(&req);
1367 1368 1369 1370 1371 1372 1373
		/* Pause scan changes again. */
		hdev->scanning_paused = true;
		hci_req_run(&req, suspend_req_complete);
	} else {
		hdev->suspended = false;
		hdev->scanning_paused = false;

1374
		/* Clear any event filters and restore scan state */
1375
		hci_req_clear_event_filter(&req);
1376 1377
		__hci_req_update_scan(&req);

1378
		/* Reset passive/background scanning to normal */
1379
		__hci_update_background_scan(&req);
1380 1381
		/* Enable all of the advertisement filters */
		hci_req_add_set_adv_filter_enable(&req, true);
1382

1383
		/* Unpause directed advertising */
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
		hdev->advertising_paused = false;
		if (hdev->advertising_old_state) {
			set_bit(SUSPEND_UNPAUSE_ADVERTISING,
				hdev->suspend_tasks);
			hci_dev_set_flag(hdev, HCI_ADVERTISING);
			queue_work(hdev->req_workqueue,
				   &hdev->discoverable_update);
			hdev->advertising_old_state = 0;
		}

1394 1395
		/* Resume other advertisements */
		if (hdev->adv_instance_cnt)
1396
			__hci_req_resume_adv_instances(&req);
1397

1398 1399 1400 1401 1402 1403 1404 1405 1406
		/* Unpause discovery */
		hdev->discovery_paused = false;
		if (hdev->discovery_old_state != DISCOVERY_STOPPED &&
		    hdev->discovery_old_state != DISCOVERY_STOPPING) {
			set_bit(SUSPEND_UNPAUSE_DISCOVERY, hdev->suspend_tasks);
			hci_discovery_set_state(hdev, DISCOVERY_STARTING);
			queue_work(hdev->req_workqueue, &hdev->discov_update);
		}

1407 1408 1409 1410
		hci_req_run(&req, suspend_req_complete);
	}

	hdev->suspend_state = next;
1411 1412 1413 1414 1415 1416

done:
	clear_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
	wake_up(&hdev->suspend_wait_q);
}

1417
static bool adv_cur_instance_is_scannable(struct hci_dev *hdev)
1418
{
1419
	return adv_instance_is_scannable(hdev, hdev->cur_adv_instance);
1420 1421 1422 1423
}

void __hci_req_disable_advertising(struct hci_request *req)
{
1424
	if (ext_adv_capable(req->hdev)) {
1425
		__hci_req_disable_ext_adv_instance(req, 0x00);
1426

1427 1428 1429 1430 1431
	} else {
		u8 enable = 0x00;

		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
	}
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
}

static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
{
	u32 flags;
	struct adv_info *adv_instance;

	if (instance == 0x00) {
		/* Instance 0 always manages the "Tx Power" and "Flags"
		 * fields
		 */
		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;

		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
		 * corresponds to the "connectable" instance flag.
		 */
		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
			flags |= MGMT_ADV_FLAG_CONNECTABLE;

1451 1452 1453
		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1454 1455
			flags |= MGMT_ADV_FLAG_DISCOV;

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
		return flags;
	}

	adv_instance = hci_find_adv_instance(hdev, instance);

	/* Return 0 when we got an invalid instance identifier. */
	if (!adv_instance)
		return 0;

	return adv_instance->flags;
}

1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
{
	/* If privacy is not enabled don't use RPA */
	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
		return false;

	/* If basic privacy mode is enabled use RPA */
	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
		return true;

	/* If limited privacy mode is enabled don't use RPA if we're
	 * both discoverable and bondable.
	 */
	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
	    hci_dev_test_flag(hdev, HCI_BONDABLE))
		return false;

	/* We're neither bondable nor discoverable in the limited
	 * privacy mode, therefore use RPA.
	 */
	return true;
}

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
{
	/* If there is no connection we are OK to advertise. */
	if (hci_conn_num(hdev, LE_LINK) == 0)
		return true;

	/* Check le_states if there is any connection in slave role. */
	if (hdev->conn_hash.le_num_slave > 0) {
		/* Slave connection state and non connectable mode bit 20. */
		if (!connectable && !(hdev->le_states[2] & 0x10))
			return false;

		/* Slave connection state and connectable mode bit 38
		 * and scannable bit 21.
		 */
1506 1507
		if (connectable && (!(hdev->le_states[4] & 0x40) ||
				    !(hdev->le_states[2] & 0x20)))
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
			return false;
	}

	/* Check le_states if there is any connection in master role. */
	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) {
		/* Master connection state and non connectable mode bit 18. */
		if (!connectable && !(hdev->le_states[2] & 0x02))
			return false;

		/* Master connection state and connectable mode bit 35 and
		 * scannable 19.
		 */
1520
		if (connectable && (!(hdev->le_states[4] & 0x08) ||
1521 1522 1523 1524 1525 1526 1527
				    !(hdev->le_states[2] & 0x08)))
			return false;
	}

	return true;
}

1528 1529 1530
void __hci_req_enable_advertising(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
1531
	struct adv_info *adv_instance;
1532 1533 1534
	struct hci_cp_le_set_adv_param cp;
	u8 own_addr_type, enable = 0x01;
	bool connectable;
1535
	u16 adv_min_interval, adv_max_interval;
1536 1537
	u32 flags;

1538
	flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
1539
	adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1540 1541 1542 1543 1544 1545 1546 1547

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

	if (!is_advertising_allowed(hdev, connectable))
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
		return;

	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
		__hci_req_disable_advertising(req);

	/* Clear the HCI_LE_ADV bit temporarily so that the
	 * hci_update_random_address knows that it's safe to go ahead
	 * and write a new random address. The flag will be set back on
	 * as soon as the SET_ADV_ENABLE HCI command completes.
	 */
	hci_dev_clear_flag(hdev, HCI_LE_ADV);

	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
1564 1565 1566
	if (hci_update_random_address(req, !connectable,
				      adv_use_rpa(hdev, flags),
				      &own_addr_type) < 0)
1567 1568 1569 1570
		return;

	memset(&cp, 0, sizeof(cp));

1571 1572 1573 1574
	if (adv_instance) {
		adv_min_interval = adv_instance->min_interval;
		adv_max_interval = adv_instance->max_interval;
	} else {
1575 1576
		adv_min_interval = hdev->le_adv_min_interval;
		adv_max_interval = hdev->le_adv_max_interval;
1577 1578 1579 1580
	}

	if (connectable) {
		cp.type = LE_ADV_IND;
1581
	} else {
1582
		if (adv_cur_instance_is_scannable(hdev))
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
			cp.type = LE_ADV_SCAN_IND;
		else
			cp.type = LE_ADV_NONCONN_IND;

		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
		}
	}

	cp.min_interval = cpu_to_le16(adv_min_interval);
	cp.max_interval = cpu_to_le16(adv_max_interval);
1596 1597 1598 1599 1600 1601 1602 1603
	cp.own_address_type = own_addr_type;
	cp.channel_map = hdev->le_adv_channel_map;

	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);

	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
}

1604
u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1605
{
1606
	size_t short_len;
1607
	size_t complete_len;
1608

1609 1610
	/* no space left for name (+ NULL + type + len) */
	if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1611
		return ad_len;
1612

1613 1614 1615
	/* use complete name if present and fits */
	complete_len = strlen(hdev->dev_name);
	if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1616
		return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1617
				       hdev->dev_name, complete_len + 1);
1618

1619 1620 1621
	/* use short name if present */
	short_len = strlen(hdev->short_name);
	if (short_len)
1622
		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1623
				       hdev->short_name, short_len + 1);
1624

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	/* use shortened full name if present, we already know that name
	 * is longer then HCI_MAX_SHORT_NAME_LENGTH
	 */
	if (complete_len) {
		u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];

		memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
		name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';

		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
				       sizeof(name));
1636 1637 1638 1639 1640
	}

	return ad_len;
}

1641 1642 1643 1644 1645
static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
{
	return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
}

1646 1647
static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
{
1648 1649 1650
	u8 scan_rsp_len = 0;

	if (hdev->appearance) {
1651
		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1652 1653
	}

1654
	return append_local_name(hdev, ptr, scan_rsp_len);
1655 1656
}

1657 1658 1659 1660
static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
					u8 *ptr)
{
	struct adv_info *adv_instance;
1661 1662
	u32 instance_flags;
	u8 scan_rsp_len = 0;
1663 1664 1665 1666 1667

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return 0;

1668 1669
	instance_flags = adv_instance->flags;

1670
	if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1671
		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1672 1673
	}

1674
	memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1675 1676
	       adv_instance->scan_rsp_len);

1677 1678 1679 1680 1681 1682
	scan_rsp_len += adv_instance->scan_rsp_len;

	if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
		scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);

	return scan_rsp_len;
1683 1684
}

1685
void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1686 1687 1688 1689 1690 1691 1692
{
	struct hci_dev *hdev = req->hdev;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

1693 1694
	if (ext_adv_capable(hdev)) {
		struct hci_cp_le_set_ext_scan_rsp_data cp;
1695

1696
		memset(&cp, 0, sizeof(cp));
1697

1698
		if (instance)
1699 1700 1701
			len = create_instance_scan_rsp_data(hdev, instance,
							    cp.data);
		else
1702
			len = create_default_scan_rsp_data(hdev, cp.data);
1703 1704 1705 1706 1707 1708 1709 1710

		if (hdev->scan_rsp_data_len == len &&
		    !memcmp(cp.data, hdev->scan_rsp_data, len))
			return;

		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
		hdev->scan_rsp_data_len = len;

1711
		cp.handle = instance;
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
		cp.length = len;
		cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
		cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp),
			    &cp);
	} else {
		struct hci_cp_le_set_scan_rsp_data cp;

		memset(&cp, 0, sizeof(cp));

		if (instance)
			len = create_instance_scan_rsp_data(hdev, instance,
							    cp.data);
		else
			len = create_default_scan_rsp_data(hdev, cp.data);

		if (hdev->scan_rsp_data_len == len &&
		    !memcmp(cp.data, hdev->scan_rsp_data, len))
			return;
1732

1733 1734
		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
		hdev->scan_rsp_data_len = len;
1735

1736
		cp.length = len;
1737

1738 1739
		hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
	}
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
}

static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
{
	struct adv_info *adv_instance = NULL;
	u8 ad_len = 0, flags = 0;
	u32 instance_flags;

	/* Return 0 when the current instance identifier is invalid. */
	if (instance) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return 0;
	}

	instance_flags = get_adv_instance_flags(hdev, instance);

1757 1758 1759 1760 1761 1762 1763 1764
	/* If instance already has the flags set skip adding it once
	 * again.
	 */
	if (adv_instance && eir_get_data(adv_instance->adv_data,
					 adv_instance->adv_data_len, EIR_FLAGS,
					 NULL))
		goto skip_flags;

1765 1766 1767 1768 1769 1770 1771 1772 1773
	/* The Add Advertising command allows userspace to set both the general
	 * and limited discoverable flags.
	 */
	if (instance_flags & MGMT_ADV_FLAG_DISCOV)
		flags |= LE_AD_GENERAL;

	if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
		flags |= LE_AD_LIMITED;

1774 1775 1776
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		flags |= LE_AD_NO_BREDR;

1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
	if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
		/* If a discovery flag wasn't provided, simply use the global
		 * settings.
		 */
		if (!flags)
			flags |= mgmt_get_adv_discov_flags(hdev);

		/* If flags would still be empty, then there is no need to
		 * include the "Flags" AD field".
		 */
		if (flags) {
			ptr[0] = 0x02;
			ptr[1] = EIR_FLAGS;
			ptr[2] = flags;

			ad_len += 3;
			ptr += 3;
		}
	}

1797
skip_flags:
1798 1799 1800 1801 1802 1803 1804
	if (adv_instance) {
		memcpy(ptr, adv_instance->adv_data,
		       adv_instance->adv_data_len);
		ad_len += adv_instance->adv_data_len;
		ptr += adv_instance->adv_data_len;
	}

1805 1806
	if (instance_flags & MGMT_ADV_FLAG_TX_POWER) {
		s8 adv_tx_power;
1807

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
		if (ext_adv_capable(hdev)) {
			if (adv_instance)
				adv_tx_power = adv_instance->tx_power;
			else
				adv_tx_power = hdev->adv_tx_power;
		} else {
			adv_tx_power = hdev->adv_tx_power;
		}

		/* Provide Tx Power only if we can provide a valid value for it */
		if (adv_tx_power != HCI_TX_POWER_INVALID) {
			ptr[0] = 0x02;
			ptr[1] = EIR_TX_POWER;
			ptr[2] = (u8)adv_tx_power;

			ad_len += 3;
			ptr += 3;
		}
1826 1827 1828 1829 1830
	}

	return ad_len;
}

1831
void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1832 1833 1834 1835 1836 1837 1838
{
	struct hci_dev *hdev = req->hdev;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

1839 1840
	if (ext_adv_capable(hdev)) {
		struct hci_cp_le_set_ext_adv_data cp;
1841

1842
		memset(&cp, 0, sizeof(cp));
1843

1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
		len = create_instance_adv_data(hdev, instance, cp.data);

		/* There's nothing to do if the data hasn't changed */
		if (hdev->adv_data_len == len &&
		    memcmp(cp.data, hdev->adv_data, len) == 0)
			return;

		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
		hdev->adv_data_len = len;

		cp.length = len;
1855
		cp.handle = instance;
1856 1857
		cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
		cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1858

1859 1860 1861 1862 1863
		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp);
	} else {
		struct hci_cp_le_set_adv_data cp;

		memset(&cp, 0, sizeof(cp));
1864

1865 1866 1867 1868 1869 1870
		len = create_instance_adv_data(hdev, instance, cp.data);

		/* There's nothing to do if the data hasn't changed */
		if (hdev->adv_data_len == len &&
		    memcmp(cp.data, hdev->adv_data, len) == 0)
			return;
1871

1872 1873 1874 1875 1876 1877 1878
		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
		hdev->adv_data_len = len;

		cp.length = len;

		hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
	}
1879 1880
}

1881
int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1882 1883 1884 1885 1886 1887 1888 1889 1890
{
	struct hci_request req;

	hci_req_init(&req, hdev);
	__hci_req_update_adv_data(&req, instance);

	return hci_req_run(&req, NULL);
}

1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
static void enable_addr_resolution_complete(struct hci_dev *hdev, u8 status,
					    u16 opcode)
{
	BT_DBG("%s status %u", hdev->name, status);
}

void hci_req_disable_address_resolution(struct hci_dev *hdev)
{
	struct hci_request req;
	__u8 enable = 0x00;

	if (!use_ll_privacy(hdev) &&
	    !hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
		return;

	hci_req_init(&req, hdev);

	hci_req_add(&req, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE, 1, &enable);

	hci_req_run(&req, enable_addr_resolution_complete);
}

1913 1914
static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
1915
	bt_dev_dbg(hdev, "status %u", status);
1916 1917 1918 1919 1920 1921 1922
}

void hci_req_reenable_advertising(struct hci_dev *hdev)
{
	struct hci_request req;

	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1923
	    list_empty(&hdev->adv_instances))
1924 1925 1926 1927
		return;

	hci_req_init(&req, hdev);

1928 1929 1930
	if (hdev->cur_adv_instance) {
		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
						true);
1931
	} else {
1932 1933 1934 1935 1936 1937 1938
		if (ext_adv_capable(hdev)) {
			__hci_req_start_ext_adv(&req, 0x00);
		} else {
			__hci_req_update_adv_data(&req, 0x00);
			__hci_req_update_scan_rsp_data(&req, 0x00);
			__hci_req_enable_advertising(&req);
		}
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
	}

	hci_req_run(&req, adv_enable_complete);
}

static void adv_timeout_expire(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    adv_instance_expire.work);

	struct hci_request req;
	u8 instance;

1952
	bt_dev_dbg(hdev, "");
1953 1954 1955 1956 1957

	hci_dev_lock(hdev);

	hdev->adv_instance_timeout = 0;

1958
	instance = hdev->cur_adv_instance;
1959 1960 1961 1962 1963
	if (instance == 0x00)
		goto unlock;

	hci_req_init(&req, hdev);

1964
	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1965 1966 1967 1968

	if (list_empty(&hdev->adv_instances))
		__hci_req_disable_advertising(&req);

1969
	hci_req_run(&req, NULL);
1970 1971 1972 1973 1974

unlock:
	hci_dev_unlock(hdev);
}

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
static int hci_req_add_le_interleaved_scan(struct hci_request *req,
					   unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	int ret = 0;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
		hci_req_add_le_scan_disable(req, false);
	hci_req_add_le_passive_scan(req);

	switch (hdev->interleave_scan_state) {
	case INTERLEAVE_SCAN_ALLOWLIST:
		bt_dev_dbg(hdev, "next state: allowlist");
		hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
		break;
	case INTERLEAVE_SCAN_NO_FILTER:
		bt_dev_dbg(hdev, "next state: no filter");
		hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST;
		break;
	case INTERLEAVE_SCAN_NONE:
		BT_ERR("unexpected error");
		ret = -1;
	}

	hci_dev_unlock(hdev);

	return ret;
}

static void interleave_scan_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    interleave_scan.work);
	u8 status;
	unsigned long timeout;

	if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) {
		timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration);
	} else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) {
		timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration);
	} else {
		bt_dev_err(hdev, "unexpected error");
		return;
	}

	hci_req_sync(hdev, hci_req_add_le_interleaved_scan, 0,
		     HCI_CMD_TIMEOUT, &status);

	/* Don't continue interleaving if it was canceled */
	if (is_interleave_scanning(hdev))
		queue_delayed_work(hdev->req_workqueue,
				   &hdev->interleave_scan, timeout);
}

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
			   bool use_rpa, struct adv_info *adv_instance,
			   u8 *own_addr_type, bdaddr_t *rand_addr)
{
	int err;

	bacpy(rand_addr, BDADDR_ANY);

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired then generate a new one.
	 */
	if (use_rpa) {
		int to;

2045 2046 2047 2048 2049 2050 2051
		/* If Controller supports LL Privacy use own address type is
		 * 0x03
		 */
		if (use_ll_privacy(hdev))
			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
		else
			*own_addr_type = ADDR_LE_DEV_RANDOM;
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066

		if (adv_instance) {
			if (!adv_instance->rpa_expired &&
			    !bacmp(&adv_instance->random_addr, &hdev->rpa))
				return 0;

			adv_instance->rpa_expired = false;
		} else {
			if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
			    !bacmp(&hdev->random_addr, &hdev->rpa))
				return 0;
		}

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
2067
			bt_dev_err(hdev, "failed to generate new RPA");
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
			return err;
		}

		bacpy(rand_addr, &hdev->rpa);

		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
		if (adv_instance)
			queue_delayed_work(hdev->workqueue,
					   &adv_instance->rpa_expired_cb, to);
		else
			queue_delayed_work(hdev->workqueue,
					   &hdev->rpa_expired, to);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for
	 * non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		bacpy(rand_addr, &nrpa);

		return 0;
	}

	/* No privacy so use a public address. */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}

2118 2119 2120 2121 2122
void __hci_req_clear_ext_adv_sets(struct hci_request *req)
{
	hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
}

2123
int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
2124 2125 2126 2127 2128
{
	struct hci_cp_le_set_ext_adv_params cp;
	struct hci_dev *hdev = req->hdev;
	bool connectable;
	u32 flags;
2129 2130 2131 2132
	bdaddr_t random_addr;
	u8 own_addr_type;
	int err;
	struct adv_info *adv_instance;
2133
	bool secondary_adv;
2134

2135 2136 2137 2138 2139 2140 2141 2142
	if (instance > 0) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return -EINVAL;
	} else {
		adv_instance = NULL;
	}

2143 2144 2145 2146 2147 2148 2149 2150
	flags = get_adv_instance_flags(hdev, instance);

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

2151
	if (!is_advertising_allowed(hdev, connectable))
2152 2153
		return -EPERM;

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
	err = hci_get_random_address(hdev, !connectable,
				     adv_use_rpa(hdev, flags), adv_instance,
				     &own_addr_type, &random_addr);
	if (err < 0)
		return err;

2164 2165
	memset(&cp, 0, sizeof(cp));

2166 2167 2168 2169 2170 2171 2172 2173 2174
	if (adv_instance) {
		hci_cpu_to_le24(adv_instance->min_interval, cp.min_interval);
		hci_cpu_to_le24(adv_instance->max_interval, cp.max_interval);
		cp.tx_power = adv_instance->tx_power;
	} else {
		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
	}
2175

2176 2177 2178 2179 2180 2181 2182
	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);

	if (connectable) {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
2183
	} else if (adv_instance_is_scannable(hdev, instance)) {
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
	} else {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
	}
2194

2195
	cp.own_addr_type = own_addr_type;
2196
	cp.channel_map = hdev->le_adv_channel_map;
2197
	cp.handle = instance;
2198

2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	if (flags & MGMT_ADV_FLAG_SEC_2M) {
		cp.primary_phy = HCI_ADV_PHY_1M;
		cp.secondary_phy = HCI_ADV_PHY_2M;
	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
		cp.primary_phy = HCI_ADV_PHY_CODED;
		cp.secondary_phy = HCI_ADV_PHY_CODED;
	} else {
		/* In all other cases use 1M */
		cp.primary_phy = HCI_ADV_PHY_1M;
		cp.secondary_phy = HCI_ADV_PHY_1M;
	}

2211 2212
	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
	    bacmp(&random_addr, BDADDR_ANY)) {
		struct hci_cp_le_set_adv_set_rand_addr cp;

		/* Check if random address need to be updated */
		if (adv_instance) {
			if (!bacmp(&random_addr, &adv_instance->random_addr))
				return 0;
		} else {
			if (!bacmp(&random_addr, &hdev->random_addr))
				return 0;
		}

		memset(&cp, 0, sizeof(cp));

2228
		cp.handle = instance;
2229 2230 2231 2232 2233 2234 2235
		bacpy(&cp.bdaddr, &random_addr);

		hci_req_add(req,
			    HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
			    sizeof(cp), &cp);
	}

2236 2237 2238
	return 0;
}

2239
int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
2240
{
2241
	struct hci_dev *hdev = req->hdev;
2242 2243 2244
	struct hci_cp_le_set_ext_adv_enable *cp;
	struct hci_cp_ext_adv_set *adv_set;
	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
2245 2246 2247 2248 2249 2250 2251 2252 2253
	struct adv_info *adv_instance;

	if (instance > 0) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return -EINVAL;
	} else {
		adv_instance = NULL;
	}
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264

	cp = (void *) data;
	adv_set = (void *) cp->data;

	memset(cp, 0, sizeof(*cp));

	cp->enable = 0x01;
	cp->num_of_sets = 0x01;

	memset(adv_set, 0, sizeof(*adv_set));

2265 2266 2267 2268 2269 2270
	adv_set->handle = instance;

	/* Set duration per instance since controller is responsible for
	 * scheduling it.
	 */
	if (adv_instance && adv_instance->duration) {
2271
		u16 duration = adv_instance->timeout * MSEC_PER_SEC;
2272 2273 2274 2275

		/* Time = N * 10 ms */
		adv_set->duration = cpu_to_le16(duration / 10);
	}
2276 2277 2278 2279

	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
		    sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
		    data);
2280 2281

	return 0;
2282 2283
}

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
int __hci_req_disable_ext_adv_instance(struct hci_request *req, u8 instance)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_le_set_ext_adv_enable *cp;
	struct hci_cp_ext_adv_set *adv_set;
	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
	u8 req_size;

	/* If request specifies an instance that doesn't exist, fail */
	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
		return -EINVAL;

	memset(data, 0, sizeof(data));

	cp = (void *)data;
	adv_set = (void *)cp->data;

	/* Instance 0x00 indicates all advertising instances will be disabled */
	cp->num_of_sets = !!instance;
	cp->enable = 0x00;

	adv_set->handle = instance;

	req_size = sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets;
	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, req_size, data);

	return 0;
}

int __hci_req_remove_ext_adv_instance(struct hci_request *req, u8 instance)
{
	struct hci_dev *hdev = req->hdev;

	/* If request specifies an instance that doesn't exist, fail */
	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
		return -EINVAL;

	hci_req_add(req, HCI_OP_LE_REMOVE_ADV_SET, sizeof(instance), &instance);

	return 0;
}

2326 2327
int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
{
2328
	struct hci_dev *hdev = req->hdev;
2329
	struct adv_info *adv_instance = hci_find_adv_instance(hdev, instance);
2330 2331
	int err;

2332 2333 2334 2335 2336
	/* If instance isn't pending, the chip knows about it, and it's safe to
	 * disable
	 */
	if (adv_instance && !adv_instance->pending)
		__hci_req_disable_ext_adv_instance(req, instance);
2337

2338 2339 2340 2341
	err = __hci_req_setup_ext_adv_instance(req, instance);
	if (err < 0)
		return err;

2342
	__hci_req_update_scan_rsp_data(req, instance);
2343
	__hci_req_enable_ext_advertising(req, instance);
2344 2345 2346 2347

	return 0;
}

2348 2349 2350 2351 2352 2353 2354 2355
int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
				    bool force)
{
	struct hci_dev *hdev = req->hdev;
	struct adv_info *adv_instance = NULL;
	u16 timeout;

	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2356
	    list_empty(&hdev->adv_instances))
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
		return -EPERM;

	if (hdev->adv_instance_timeout)
		return -EBUSY;

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return -ENOENT;

	/* A zero timeout means unlimited advertising. As long as there is
	 * only one instance, duration should be ignored. We still set a timeout
	 * in case further instances are being added later on.
	 *
	 * If the remaining lifetime of the instance is more than the duration
	 * then the timeout corresponds to the duration, otherwise it will be
	 * reduced to the remaining instance lifetime.
	 */
	if (adv_instance->timeout == 0 ||
	    adv_instance->duration <= adv_instance->remaining_time)
		timeout = adv_instance->duration;
	else
		timeout = adv_instance->remaining_time;

	/* The remaining time is being reduced unless the instance is being
	 * advertised without time limit.
	 */
	if (adv_instance->timeout)
		adv_instance->remaining_time =
				adv_instance->remaining_time - timeout;

2387 2388 2389 2390
	/* Only use work for scheduling instances with legacy advertising */
	if (!ext_adv_capable(hdev)) {
		hdev->adv_instance_timeout = timeout;
		queue_delayed_work(hdev->req_workqueue,
2391 2392
			   &hdev->adv_instance_expire,
			   msecs_to_jiffies(timeout * 1000));
2393
	}
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403

	/* If we're just re-scheduling the same instance again then do not
	 * execute any HCI commands. This happens when a single instance is
	 * being advertised.
	 */
	if (!force && hdev->cur_adv_instance == instance &&
	    hci_dev_test_flag(hdev, HCI_LE_ADV))
		return 0;

	hdev->cur_adv_instance = instance;
2404 2405 2406 2407 2408 2409 2410
	if (ext_adv_capable(hdev)) {
		__hci_req_start_ext_adv(req, instance);
	} else {
		__hci_req_update_adv_data(req, instance);
		__hci_req_update_scan_rsp_data(req, instance);
		__hci_req_enable_advertising(req);
	}
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425

	return 0;
}

/* For a single instance:
 * - force == true: The instance will be removed even when its remaining
 *   lifetime is not zero.
 * - force == false: the instance will be deactivated but kept stored unless
 *   the remaining lifetime is zero.
 *
 * For instance == 0x00:
 * - force == true: All instances will be removed regardless of their timeout
 *   setting.
 * - force == false: Only instances that have a timeout will be removed.
 */
2426 2427 2428
void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
				struct hci_request *req, u8 instance,
				bool force)
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
{
	struct adv_info *adv_instance, *n, *next_instance = NULL;
	int err;
	u8 rem_inst;

	/* Cancel any timeout concerning the removed instance(s). */
	if (!instance || hdev->cur_adv_instance == instance)
		cancel_adv_timeout(hdev);

	/* Get the next instance to advertise BEFORE we remove
	 * the current one. This can be the same instance again
	 * if there is only one instance.
	 */
	if (instance && hdev->cur_adv_instance == instance)
		next_instance = hci_get_next_instance(hdev, instance);

	if (instance == 0x00) {
		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
					 list) {
			if (!(force || adv_instance->timeout))
				continue;

			rem_inst = adv_instance->instance;
			err = hci_remove_adv_instance(hdev, rem_inst);
			if (!err)
2454
				mgmt_advertising_removed(sk, hdev, rem_inst);
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
		}
	} else {
		adv_instance = hci_find_adv_instance(hdev, instance);

		if (force || (adv_instance && adv_instance->timeout &&
			      !adv_instance->remaining_time)) {
			/* Don't advertise a removed instance. */
			if (next_instance &&
			    next_instance->instance == instance)
				next_instance = NULL;

			err = hci_remove_adv_instance(hdev, instance);
			if (!err)
2468
				mgmt_advertising_removed(sk, hdev, instance);
2469 2470 2471 2472 2473 2474 2475
		}
	}

	if (!req || !hdev_is_powered(hdev) ||
	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
		return;

2476
	if (next_instance && !ext_adv_capable(hdev))
2477 2478 2479 2480
		__hci_req_schedule_adv_instance(req, next_instance->instance,
						false);
}

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
{
	struct hci_dev *hdev = req->hdev;

	/* If we're advertising or initiating an LE connection we can't
	 * go ahead and change the random address at this time. This is
	 * because the eventual initiator address used for the
	 * subsequently created connection will be undefined (some
	 * controllers use the new address and others the one we had
	 * when the operation started).
	 *
	 * In this kind of scenario skip the update and let the random
	 * address be updated at the next cycle.
	 */
2495
	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
2496
	    hci_lookup_le_connect(hdev)) {
2497
		bt_dev_dbg(hdev, "Deferring random address update");
2498
		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
2499 2500 2501 2502 2503 2504 2505
		return;
	}

	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
}

int hci_update_random_address(struct hci_request *req, bool require_privacy,
2506
			      bool use_rpa, u8 *own_addr_type)
2507 2508 2509 2510 2511 2512 2513 2514
{
	struct hci_dev *hdev = req->hdev;
	int err;

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired or there is something else than
	 * the current RPA in use, then generate a new one.
	 */
2515
	if (use_rpa) {
2516 2517
		int to;

2518 2519 2520 2521 2522 2523 2524
		/* If Controller supports LL Privacy use own address type is
		 * 0x03
		 */
		if (use_ll_privacy(hdev))
			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
		else
			*own_addr_type = ADDR_LE_DEV_RANDOM;
2525

2526
		if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
2527 2528 2529 2530 2531
		    !bacmp(&hdev->random_addr, &hdev->rpa))
			return 0;

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
2532
			bt_dev_err(hdev, "failed to generate new RPA");
2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
			return err;
		}

		set_random_addr(req, &hdev->rpa);

		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for active
	 * scanning and non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		set_random_addr(req, &nrpa);
		return 0;
	}

	/* If forcing static address is in use or there is no public
	 * address use the static address as random address (but skip
	 * the HCI command if the current random address is already the
	 * static one.
2575 2576 2577 2578
	 *
	 * In case BR/EDR has been disabled on a dual-mode controller
	 * and a static address has been configured, then use that
	 * address instead of the public BR/EDR address.
2579
	 */
2580
	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2581
	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2582
	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2583
	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
		*own_addr_type = ADDR_LE_DEV_RANDOM;
		if (bacmp(&hdev->static_addr, &hdev->random_addr))
			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
				    &hdev->static_addr);
		return 0;
	}

	/* Neither privacy nor static address is being used so use a
	 * public address.
	 */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}
2598

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
static bool disconnected_whitelist_entries(struct hci_dev *hdev)
{
	struct bdaddr_list *b;

	list_for_each_entry(b, &hdev->whitelist, list) {
		struct hci_conn *conn;

		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
		if (!conn)
			return true;

		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
			return true;
	}

	return false;
}

2617
void __hci_req_update_scan(struct hci_request *req)
2618 2619 2620 2621
{
	struct hci_dev *hdev = req->hdev;
	u8 scan;

2622
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2623 2624 2625 2626 2627 2628 2629 2630
		return;

	if (!hdev_is_powered(hdev))
		return;

	if (mgmt_powering_down(hdev))
		return;

2631 2632 2633
	if (hdev->scanning_paused)
		return;

2634
	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2635 2636 2637 2638 2639
	    disconnected_whitelist_entries(hdev))
		scan = SCAN_PAGE;
	else
		scan = SCAN_DISABLED;

2640
	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2641 2642
		scan |= SCAN_INQUIRY;

2643 2644 2645 2646
	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
		return;

2647 2648 2649
	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
}

2650
static int update_scan(struct hci_request *req, unsigned long opt)
2651
{
2652 2653 2654 2655 2656
	hci_dev_lock(req->hdev);
	__hci_req_update_scan(req);
	hci_dev_unlock(req->hdev);
	return 0;
}
2657

2658 2659 2660 2661 2662
static void scan_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);

	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
2663 2664
}

2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
static int connectable_update(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	hci_dev_lock(hdev);

	__hci_req_update_scan(req);

	/* If BR/EDR is not enabled and we disable advertising as a
	 * by-product of disabling connectable, we need to update the
	 * advertising flags.
	 */
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2678
		__hci_req_update_adv_data(req, hdev->cur_adv_instance);
2679 2680 2681

	/* Update the advertising parameters if necessary */
	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2682 2683 2684 2685 2686 2687
	    !list_empty(&hdev->adv_instances)) {
		if (ext_adv_capable(hdev))
			__hci_req_start_ext_adv(req, hdev->cur_adv_instance);
		else
			__hci_req_enable_advertising(req);
	}
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705

	__hci_update_background_scan(req);

	hci_dev_unlock(hdev);

	return 0;
}

static void connectable_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    connectable_update);
	u8 status;

	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
	mgmt_set_connectable_complete(hdev, status);
}

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
static u8 get_service_classes(struct hci_dev *hdev)
{
	struct bt_uuid *uuid;
	u8 val = 0;

	list_for_each_entry(uuid, &hdev->uuids, list)
		val |= uuid->svc_hint;

	return val;
}

void __hci_req_update_class(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	u8 cod[3];

2722
	bt_dev_dbg(hdev, "");
2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745

	if (!hdev_is_powered(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	cod[0] = hdev->minor_class;
	cod[1] = hdev->major_class;
	cod[2] = get_service_classes(hdev);

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
		cod[1] |= 0x20;

	if (memcmp(cod, hdev->dev_class, 3) == 0)
		return;

	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
}

2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
static void write_iac(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_current_iac_lap cp;

	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
		return;

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
		/* Limited discoverable mode */
		cp.num_iac = min_t(u8, hdev->num_iac, 2);
		cp.iac_lap[0] = 0x00;	/* LIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
		cp.iac_lap[3] = 0x33;	/* GIAC */
		cp.iac_lap[4] = 0x8b;
		cp.iac_lap[5] = 0x9e;
	} else {
		/* General discoverable mode */
		cp.num_iac = 1;
		cp.iac_lap[0] = 0x33;	/* GIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
	}

	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
		    (cp.num_iac * 3) + 1, &cp);
}

static int discoverable_update(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
		write_iac(req);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
	}

	/* Advertising instances don't use the global discoverable setting, so
	 * only update AD if advertising was enabled using Set Advertising.
	 */
2790
	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2791
		__hci_req_update_adv_data(req, 0x00);
2792

2793 2794 2795
		/* Discoverable mode affects the local advertising
		 * address in limited privacy mode.
		 */
2796 2797 2798 2799 2800 2801
		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
			if (ext_adv_capable(hdev))
				__hci_req_start_ext_adv(req, 0x00);
			else
				__hci_req_enable_advertising(req);
		}
2802 2803
	}

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
	hci_dev_unlock(hdev);

	return 0;
}

static void discoverable_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discoverable_update);
	u8 status;

	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
	mgmt_set_discoverable_complete(hdev, status);
}

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
		      u8 reason)
{
	switch (conn->state) {
	case BT_CONNECTED:
	case BT_CONFIG:
		if (conn->type == AMP_LINK) {
			struct hci_cp_disconn_phy_link cp;

			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
			cp.reason = reason;
			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
				    &cp);
		} else {
			struct hci_cp_disconnect dc;

			dc.handle = cpu_to_le16(conn->handle);
			dc.reason = reason;
			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
		}

		conn->state = BT_DISCONN;

		break;
	case BT_CONNECT:
		if (conn->type == LE_LINK) {
			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
				break;
			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
				    0, NULL);
		} else if (conn->type == ACL_LINK) {
			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
				break;
			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
				    6, &conn->dst);
		}
		break;
	case BT_CONNECT2:
		if (conn->type == ACL_LINK) {
			struct hci_cp_reject_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);
			rej.reason = reason;

			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
				    sizeof(rej), &rej);
		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
			struct hci_cp_reject_sync_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);

			/* SCO rejection has its own limited set of
			 * allowed error values (0x0D-0x0F) which isn't
			 * compatible with most values passed to this
			 * function. To be safe hard-code one of the
			 * values that's suitable for SCO.
			 */
2876
			rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890

			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
				    sizeof(rej), &rej);
		}
		break;
	default:
		conn->state = BT_CLOSED;
		break;
	}
}

static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	if (status)
2891
		bt_dev_dbg(hdev, "Failed to abort connection: status 0x%2.2x", status);
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
}

int hci_abort_conn(struct hci_conn *conn, u8 reason)
{
	struct hci_request req;
	int err;

	hci_req_init(&req, conn->hdev);

	__hci_abort_conn(&req, conn, reason);

	err = hci_req_run(&req, abort_conn_complete);
	if (err && err != -ENODATA) {
2905
		bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2906 2907 2908 2909 2910
		return err;
	}

	return 0;
}
2911

2912
static int update_bg_scan(struct hci_request *req, unsigned long opt)
2913 2914 2915 2916
{
	hci_dev_lock(req->hdev);
	__hci_update_background_scan(req);
	hci_dev_unlock(req->hdev);
2917
	return 0;
2918 2919 2920 2921 2922 2923
}

static void bg_scan_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    bg_scan_update);
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
	struct hci_conn *conn;
	u8 status;
	int err;

	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
	if (!err)
		return;

	hci_dev_lock(hdev);

	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
	if (conn)
		hci_le_conn_failed(conn, status);
2937

2938
	hci_dev_unlock(hdev);
2939 2940
}

2941
static int le_scan_disable(struct hci_request *req, unsigned long opt)
2942
{
2943
	hci_req_add_le_scan_disable(req, false);
2944
	return 0;
2945 2946
}

2947
static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2948
{
2949
	u8 length = opt;
2950 2951
	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2952 2953
	struct hci_cp_inquiry cp;

2954
	bt_dev_dbg(req->hdev, "");
2955

2956 2957 2958
	hci_dev_lock(req->hdev);
	hci_inquiry_cache_flush(req->hdev);
	hci_dev_unlock(req->hdev);
2959

2960
	memset(&cp, 0, sizeof(cp));
2961 2962 2963 2964 2965 2966

	if (req->hdev->discovery.limited)
		memcpy(&cp.lap, liac, sizeof(cp.lap));
	else
		memcpy(&cp.lap, giac, sizeof(cp.lap));

2967
	cp.length = length;
2968

2969
	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2970

2971
	return 0;
2972 2973 2974 2975 2976 2977 2978 2979
}

static void le_scan_disable_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_disable.work);
	u8 status;

2980
	bt_dev_dbg(hdev, "");
2981

2982 2983 2984
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return;

2985 2986
	cancel_delayed_work(&hdev->le_scan_restart);

2987 2988
	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
	if (status) {
2989 2990
		bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
			   status);
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
		return;
	}

	hdev->discovery.scan_start = 0;

	/* If we were running LE only scan, change discovery state. If
	 * we were running both LE and BR/EDR inquiry simultaneously,
	 * and BR/EDR inquiry is already finished, stop discovery,
	 * otherwise BR/EDR inquiry will stop discovery when finished.
	 * If we will resolve remote device name, do not change
	 * discovery state.
	 */

	if (hdev->discovery.type == DISCOV_TYPE_LE)
		goto discov_stopped;

	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
3008 3009
		return;

3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
		    hdev->discovery.state != DISCOVERY_RESOLVING)
			goto discov_stopped;

		return;
	}

	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
		     HCI_CMD_TIMEOUT, &status);
	if (status) {
3021
		bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
3022 3023 3024 3025 3026 3027 3028 3029 3030
		goto discov_stopped;
	}

	return;

discov_stopped:
	hci_dev_lock(hdev);
	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
	hci_dev_unlock(hdev);
3031 3032
}

3033 3034 3035 3036 3037 3038 3039 3040
static int le_scan_restart(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	/* If controller is not scanning we are done. */
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return 0;

3041 3042 3043 3044 3045
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return 0;
	}

3046
	hci_req_add_le_scan_disable(req, false);
3047

3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;

		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
		ext_enable_cp.enable = LE_SCAN_ENABLE;
		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
			    sizeof(ext_enable_cp), &ext_enable_cp);
	} else {
		struct hci_cp_le_set_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_ENABLE;
		cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
	}
3065 3066 3067 3068 3069

	return 0;
}

static void le_scan_restart_work(struct work_struct *work)
3070
{
3071 3072
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_restart.work);
3073
	unsigned long timeout, duration, scan_start, now;
3074
	u8 status;
3075

3076
	bt_dev_dbg(hdev, "");
3077

3078
	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
3079
	if (status) {
3080 3081
		bt_dev_err(hdev, "failed to restart LE scan: status %d",
			   status);
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
		return;
	}

	hci_dev_lock(hdev);

	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
	    !hdev->discovery.scan_start)
		goto unlock;

	/* When the scan was started, hdev->le_scan_disable has been queued
	 * after duration from scan_start. During scan restart this job
	 * has been canceled, and we need to queue it again after proper
	 * timeout, to make sure that scan does not run indefinitely.
	 */
	duration = hdev->discovery.scan_duration;
	scan_start = hdev->discovery.scan_start;
	now = jiffies;
	if (now - scan_start <= duration) {
		int elapsed;

		if (now >= scan_start)
			elapsed = now - scan_start;
		else
			elapsed = ULONG_MAX - scan_start + now;

		timeout = duration - elapsed;
	} else {
		timeout = 0;
	}

	queue_delayed_work(hdev->req_workqueue,
			   &hdev->le_scan_disable, timeout);

unlock:
	hci_dev_unlock(hdev);
}

3119 3120 3121 3122 3123
static int active_scan(struct hci_request *req, unsigned long opt)
{
	uint16_t interval = opt;
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
3124 3125
	/* White list is not used for discovery */
	u8 filter_policy = 0x00;
3126 3127
	/* Discovery doesn't require controller address resolution */
	bool addr_resolv = false;
3128 3129
	int err;

3130
	bt_dev_dbg(hdev, "");
3131 3132 3133 3134 3135

	/* If controller is scanning, it means the background scanning is
	 * running. Thus, we should temporarily stop it in order to set the
	 * discovery scanning parameters.
	 */
H
Howard Chung 已提交
3136
	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
3137
		hci_req_add_le_scan_disable(req, false);
H
Howard Chung 已提交
3138 3139
		cancel_interleave_scan(hdev);
	}
3140 3141 3142 3143 3144

	/* All active scans will be done with either a resolvable private
	 * address (when privacy feature has been enabled) or non-resolvable
	 * private address.
	 */
3145 3146
	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
					&own_addr_type);
3147 3148 3149
	if (err < 0)
		own_addr_type = ADDR_LE_DEV_PUBLIC;

3150 3151
	hci_req_start_scan(req, LE_SCAN_ACTIVE, interval,
			   hdev->le_scan_window_discovery, own_addr_type,
3152
			   filter_policy, addr_resolv);
3153 3154 3155 3156 3157 3158 3159
	return 0;
}

static int interleaved_discov(struct hci_request *req, unsigned long opt)
{
	int err;

3160
	bt_dev_dbg(req->hdev, "");
3161 3162 3163 3164 3165

	err = active_scan(req, opt);
	if (err)
		return err;

3166
	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
3167 3168 3169 3170 3171 3172
}

static void start_discovery(struct hci_dev *hdev, u8 *status)
{
	unsigned long timeout;

3173
	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
3174 3175 3176 3177

	switch (hdev->discovery.type) {
	case DISCOV_TYPE_BREDR:
		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
3178 3179
			hci_req_sync(hdev, bredr_inquiry,
				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
				     status);
		return;
	case DISCOV_TYPE_INTERLEAVED:
		/* When running simultaneous discovery, the LE scanning time
		 * should occupy the whole discovery time sine BR/EDR inquiry
		 * and LE scanning are scheduled by the controller.
		 *
		 * For interleaving discovery in comparison, BR/EDR inquiry
		 * and LE scanning are done sequentially with separate
		 * timeouts.
		 */
		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
			     &hdev->quirks)) {
			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
			/* During simultaneous discovery, we double LE scan
			 * interval. We must leave some time for the controller
			 * to do BR/EDR inquiry.
			 */
			hci_req_sync(hdev, interleaved_discov,
3199
				     hdev->le_scan_int_discovery * 2, HCI_CMD_TIMEOUT,
3200 3201 3202 3203 3204
				     status);
			break;
		}

		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
3205
		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
3206 3207 3208 3209
			     HCI_CMD_TIMEOUT, status);
		break;
	case DISCOV_TYPE_LE:
		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
3210
		hci_req_sync(hdev, active_scan, hdev->le_scan_int_discovery,
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
			     HCI_CMD_TIMEOUT, status);
		break;
	default:
		*status = HCI_ERROR_UNSPECIFIED;
		return;
	}

	if (*status)
		return;

3221
	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237

	/* When service discovery is used and the controller has a
	 * strict duplicate filter, it is important to remember the
	 * start and duration of the scan. This is required for
	 * restarting scanning during the discovery phase.
	 */
	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
		     hdev->discovery.result_filtering) {
		hdev->discovery.scan_start = jiffies;
		hdev->discovery.scan_duration = timeout;
	}

	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
			   timeout);
}

3238 3239 3240 3241 3242 3243 3244 3245
bool hci_req_stop_discovery(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct discovery_state *d = &hdev->discovery;
	struct hci_cp_remote_name_req_cancel cp;
	struct inquiry_entry *e;
	bool ret = false;

3246
	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
3247 3248 3249 3250 3251 3252 3253

	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
		if (test_bit(HCI_INQUIRY, &hdev->flags))
			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);

		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			cancel_delayed_work(&hdev->le_scan_disable);
3254
			hci_req_add_le_scan_disable(req, false);
3255 3256 3257 3258 3259 3260
		}

		ret = true;
	} else {
		/* Passive scanning */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
3261
			hci_req_add_le_scan_disable(req, false);
3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
			ret = true;
		}
	}

	/* No further actions needed for LE-only discovery */
	if (d->type == DISCOV_TYPE_LE)
		return ret;

	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
						     NAME_PENDING);
		if (!e)
			return ret;

		bacpy(&cp.bdaddr, &e->data.bdaddr);
		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
			    &cp);
		ret = true;
	}

	return ret;
}

static int stop_discovery(struct hci_request *req, unsigned long opt)
{
	hci_dev_lock(req->hdev);
	hci_req_stop_discovery(req);
	hci_dev_unlock(req->hdev);

	return 0;
}

3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
static void discov_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_update);
	u8 status = 0;

	switch (hdev->discovery.state) {
	case DISCOVERY_STARTING:
		start_discovery(hdev, &status);
		mgmt_start_discovery_complete(hdev, status);
		if (status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		else
			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
		break;
3309 3310 3311 3312 3313 3314
	case DISCOVERY_STOPPING:
		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
		mgmt_stop_discovery_complete(hdev, status);
		if (!status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		break;
3315 3316 3317 3318 3319 3320
	case DISCOVERY_STOPPED:
	default:
		return;
	}
}

3321 3322 3323 3324 3325
static void discov_off(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_off.work);

3326
	bt_dev_dbg(hdev, "");
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344

	hci_dev_lock(hdev);

	/* When discoverable timeout triggers, then just make sure
	 * the limited discoverable flag is cleared. Even in the case
	 * of a timeout triggered from general discoverable, it is
	 * safe to unconditionally clear the flag.
	 */
	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
	hdev->discov_timeout = 0;

	hci_dev_unlock(hdev);

	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
	mgmt_new_settings(hdev);
}

3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
static int powered_update_hci(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	u8 link_sec;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
	    !lmp_host_ssp_capable(hdev)) {
		u8 mode = 0x01;

		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);

		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
			u8 support = 0x01;

			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
				    sizeof(support), &support);
		}
	}

	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
	    lmp_bredr_capable(hdev)) {
		struct hci_cp_write_le_host_supported cp;

		cp.le = 0x01;
		cp.simul = 0x00;

		/* Check first if we already have the right
		 * host state (host features set)
		 */
		if (cp.le != lmp_host_le_capable(hdev) ||
		    cp.simul != lmp_host_le_br_capable(hdev))
			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
				    sizeof(cp), &cp);
	}

3382
	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
3383 3384 3385 3386
		/* Make sure the controller has a good default for
		 * advertising data. This also applies to the case
		 * where BR/EDR was toggled during the AUTO_OFF phase.
		 */
3387 3388
		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
		    list_empty(&hdev->adv_instances)) {
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401
			int err;

			if (ext_adv_capable(hdev)) {
				err = __hci_req_setup_ext_adv_instance(req,
								       0x00);
				if (!err)
					__hci_req_update_scan_rsp_data(req,
								       0x00);
			} else {
				err = 0;
				__hci_req_update_adv_data(req, 0x00);
				__hci_req_update_scan_rsp_data(req, 0x00);
			}
3402

3403
			if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
3404
				if (!ext_adv_capable(hdev))
3405
					__hci_req_enable_advertising(req);
3406
				else if (!err)
3407 3408
					__hci_req_enable_ext_advertising(req,
									 0x00);
3409
			}
3410 3411
		} else if (!list_empty(&hdev->adv_instances)) {
			struct adv_info *adv_instance;
3412 3413 3414 3415

			adv_instance = list_first_entry(&hdev->adv_instances,
							struct adv_info, list);
			__hci_req_schedule_adv_instance(req,
3416
							adv_instance->instance,
3417
							true);
3418
		}
3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
	}

	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
			    sizeof(link_sec), &link_sec);

	if (lmp_bredr_capable(hdev)) {
		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
			__hci_req_write_fast_connectable(req, true);
		else
			__hci_req_write_fast_connectable(req, false);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
		__hci_req_update_name(req);
		__hci_req_update_eir(req);
	}

	hci_dev_unlock(hdev);
	return 0;
}

int __hci_req_hci_power_on(struct hci_dev *hdev)
{
	/* Register the available SMP channels (BR/EDR and LE) only when
	 * successfully powering on the controller. This late
	 * registration is required so that LE SMP can clearly decide if
	 * the public address or static address is used.
	 */
	smp_register(hdev);

	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
			      NULL);
}

3454 3455
void hci_request_setup(struct hci_dev *hdev)
{
3456
	INIT_WORK(&hdev->discov_update, discov_update);
3457
	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
3458
	INIT_WORK(&hdev->scan_update, scan_update_work);
3459
	INIT_WORK(&hdev->connectable_update, connectable_update_work);
3460
	INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
3461
	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
3462 3463
	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
3464
	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
3465
	INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work);
3466 3467 3468 3469
}

void hci_request_cancel_all(struct hci_dev *hdev)
{
3470 3471
	hci_req_sync_cancel(hdev, ENODEV);

3472
	cancel_work_sync(&hdev->discov_update);
3473
	cancel_work_sync(&hdev->bg_scan_update);
3474
	cancel_work_sync(&hdev->scan_update);
3475
	cancel_work_sync(&hdev->connectable_update);
3476
	cancel_work_sync(&hdev->discoverable_update);
3477
	cancel_delayed_work_sync(&hdev->discov_off);
3478 3479
	cancel_delayed_work_sync(&hdev->le_scan_disable);
	cancel_delayed_work_sync(&hdev->le_scan_restart);
3480 3481 3482 3483 3484

	if (hdev->adv_instance_timeout) {
		cancel_delayed_work_sync(&hdev->adv_instance_expire);
		hdev->adv_instance_timeout = 0;
	}
3485 3486

	cancel_interleave_scan(hdev);
3487
}