hci_request.c 77.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*
   BlueZ - Bluetooth protocol stack for Linux

   Copyright (C) 2014 Intel Corporation

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License version 2 as
   published by the Free Software Foundation;

   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
   IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
   CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
   WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
   ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
   OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

   ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
   COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
   SOFTWARE IS DISCLAIMED.
*/

24 25
#include <linux/sched/signal.h>

26 27
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
28
#include <net/bluetooth/mgmt.h>
29 30 31 32

#include "smp.h"
#include "hci_request.h"

33 34 35 36
#define HCI_REQ_DONE	  0
#define HCI_REQ_PEND	  1
#define HCI_REQ_CANCELED  2

37 38 39
#define LE_SUSPEND_SCAN_WINDOW		0x0012
#define LE_SUSPEND_SCAN_INTERVAL	0x0060

40 41 42 43 44 45 46
void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
{
	skb_queue_head_init(&req->cmd_q);
	req->hdev = hdev;
	req->err = 0;
}

47 48 49 50 51
void hci_req_purge(struct hci_request *req)
{
	skb_queue_purge(&req->cmd_q);
}

52 53 54 55 56
bool hci_req_status_pend(struct hci_dev *hdev)
{
	return hdev->req_status == HCI_REQ_PEND;
}

57 58
static int req_run(struct hci_request *req, hci_req_complete_t complete,
		   hci_req_complete_skb_t complete_skb)
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;
	unsigned long flags;

	BT_DBG("length %u", skb_queue_len(&req->cmd_q));

	/* If an error occurred during request building, remove all HCI
	 * commands queued on the HCI request queue.
	 */
	if (req->err) {
		skb_queue_purge(&req->cmd_q);
		return req->err;
	}

	/* Do not allow empty requests */
	if (skb_queue_empty(&req->cmd_q))
		return -ENODATA;

	skb = skb_peek_tail(&req->cmd_q);
79 80 81 82 83 84
	if (complete) {
		bt_cb(skb)->hci.req_complete = complete;
	} else if (complete_skb) {
		bt_cb(skb)->hci.req_complete_skb = complete_skb;
		bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
	}
85 86 87 88 89 90 91 92 93 94

	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);

	queue_work(hdev->workqueue, &hdev->cmd_work);

	return 0;
}

95 96 97 98 99 100 101 102 103 104
int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
{
	return req_run(req, complete, NULL);
}

int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
{
	return req_run(req, NULL, complete);
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118
static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
				  struct sk_buff *skb)
{
	BT_DBG("%s result 0x%2.2x", hdev->name, result);

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = result;
		hdev->req_status = HCI_REQ_DONE;
		if (skb)
			hdev->req_skb = skb_get(skb);
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

119
void hci_req_sync_cancel(struct hci_dev *hdev, int err)
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
{
	BT_DBG("%s err 0x%2.2x", hdev->name, err);

	if (hdev->req_status == HCI_REQ_PEND) {
		hdev->req_result = err;
		hdev->req_status = HCI_REQ_CANCELED;
		wake_up_interruptible(&hdev->req_wait_q);
	}
}

struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
				  const void *param, u8 event, u32 timeout)
{
	struct hci_request req;
	struct sk_buff *skb;
	int err = 0;

	BT_DBG("%s", hdev->name);

	hci_req_init(&req, hdev);

	hci_req_add_ev(&req, opcode, plen, param, event);

	hdev->req_status = HCI_REQ_PEND;

	err = hci_req_run_skb(&req, hci_req_sync_complete);
146
	if (err < 0)
147 148
		return ERR_PTR(err);

149 150
	err = wait_event_interruptible_timeout(hdev->req_wait_q,
			hdev->req_status != HCI_REQ_PEND, timeout);
151

152
	if (err == -ERESTARTSYS)
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
		return ERR_PTR(-EINTR);

	switch (hdev->req_status) {
	case HCI_REQ_DONE:
		err = -bt_to_errno(hdev->req_result);
		break;

	case HCI_REQ_CANCELED:
		err = -hdev->req_result;
		break;

	default:
		err = -ETIMEDOUT;
		break;
	}

	hdev->req_status = hdev->req_result = 0;
	skb = hdev->req_skb;
	hdev->req_skb = NULL;

	BT_DBG("%s end: err %d", hdev->name, err);

	if (err < 0) {
		kfree_skb(skb);
		return ERR_PTR(err);
	}

	if (!skb)
		return ERR_PTR(-ENODATA);

	return skb;
}
EXPORT_SYMBOL(__hci_cmd_sync_ev);

struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
			       const void *param, u32 timeout)
{
	return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
}
EXPORT_SYMBOL(__hci_cmd_sync);

/* Execute request and wait for completion. */
195 196
int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
						     unsigned long opt),
197
		   unsigned long opt, u32 timeout, u8 *hci_status)
198 199 200 201 202 203 204 205 206 207
{
	struct hci_request req;
	int err = 0;

	BT_DBG("%s start", hdev->name);

	hci_req_init(&req, hdev);

	hdev->req_status = HCI_REQ_PEND;

208 209 210 211 212 213
	err = func(&req, opt);
	if (err) {
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
		return err;
	}
214 215 216 217 218 219 220 221 222 223

	err = hci_req_run_skb(&req, hci_req_sync_complete);
	if (err < 0) {
		hdev->req_status = 0;

		/* ENODATA means the HCI request command queue is empty.
		 * This can happen when a request with conditionals doesn't
		 * trigger any commands to be sent. This is normal behavior
		 * and should not trigger an error return.
		 */
224 225 226
		if (err == -ENODATA) {
			if (hci_status)
				*hci_status = 0;
227
			return 0;
228 229 230 231
		}

		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
232 233 234 235

		return err;
	}

236 237
	err = wait_event_interruptible_timeout(hdev->req_wait_q,
			hdev->req_status != HCI_REQ_PEND, timeout);
238

239
	if (err == -ERESTARTSYS)
240 241 242 243 244
		return -EINTR;

	switch (hdev->req_status) {
	case HCI_REQ_DONE:
		err = -bt_to_errno(hdev->req_result);
245 246
		if (hci_status)
			*hci_status = hdev->req_result;
247 248 249 250
		break;

	case HCI_REQ_CANCELED:
		err = -hdev->req_result;
251 252
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
253 254 255 256
		break;

	default:
		err = -ETIMEDOUT;
257 258
		if (hci_status)
			*hci_status = HCI_ERROR_UNSPECIFIED;
259 260 261
		break;
	}

262 263
	kfree_skb(hdev->req_skb);
	hdev->req_skb = NULL;
264 265 266 267 268 269 270
	hdev->req_status = hdev->req_result = 0;

	BT_DBG("%s end: err %d", hdev->name, err);

	return err;
}

271 272
int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
						  unsigned long opt),
273
		 unsigned long opt, u32 timeout, u8 *hci_status)
274 275 276 277 278 279 280
{
	int ret;

	if (!test_bit(HCI_UP, &hdev->flags))
		return -ENETDOWN;

	/* Serialize all requests */
281
	hci_req_sync_lock(hdev);
282
	ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
283
	hci_req_sync_unlock(hdev);
284 285 286 287

	return ret;
}

288 289 290 291 292 293 294 295 296 297 298
struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
				const void *param)
{
	int len = HCI_COMMAND_HDR_SIZE + plen;
	struct hci_command_hdr *hdr;
	struct sk_buff *skb;

	skb = bt_skb_alloc(len, GFP_ATOMIC);
	if (!skb)
		return NULL;

299
	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
300 301 302 303
	hdr->opcode = cpu_to_le16(opcode);
	hdr->plen   = plen;

	if (plen)
304
		skb_put_data(skb, param, plen);
305 306 307

	BT_DBG("skb len %d", skb->len);

308 309
	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
	hci_skb_opcode(skb) = opcode;
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

	return skb;
}

/* Queue a command to an asynchronous HCI request */
void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
		    const void *param, u8 event)
{
	struct hci_dev *hdev = req->hdev;
	struct sk_buff *skb;

	BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);

	/* If an error occurred during request building, there is no point in
	 * queueing the HCI command. We can simply return.
	 */
	if (req->err)
		return;

	skb = hci_prepare_cmd(hdev, opcode, plen, param);
	if (!skb) {
331 332
		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
			   opcode);
333 334 335 336 337
		req->err = -ENOMEM;
		return;
	}

	if (skb_queue_empty(&req->cmd_q))
338
		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
339

340
	bt_cb(skb)->hci.req_event = event;
341 342 343 344 345 346 347 348 349 350

	skb_queue_tail(&req->cmd_q, skb);
}

void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
		 const void *param)
{
	hci_req_add_ev(req, opcode, plen, param, 0);
}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_page_scan_activity acp;
	u8 type;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
		return;

	if (enable) {
		type = PAGE_SCAN_TYPE_INTERLACED;

		/* 160 msec page scan interval */
		acp.interval = cpu_to_le16(0x0100);
	} else {
		type = PAGE_SCAN_TYPE_STANDARD;	/* default */

		/* default 1.28 sec page scan */
		acp.interval = cpu_to_le16(0x0800);
	}

	acp.window = cpu_to_le16(0x0012);

	if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
	    __cpu_to_le16(hdev->page_scan_window) != acp.window)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
			    sizeof(acp), &acp);

	if (hdev->page_scan_type != type)
		hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
}

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
/* This function controls the background scanning based on hdev->pend_le_conns
 * list. If there are pending LE connection we start the background scanning,
 * otherwise we stop it.
 *
 * This function requires the caller holds hdev->lock.
 */
static void __hci_update_background_scan(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;

	if (!test_bit(HCI_UP, &hdev->flags) ||
	    test_bit(HCI_INIT, &hdev->flags) ||
	    hci_dev_test_flag(hdev, HCI_SETUP) ||
	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
		return;

	/* No point in doing scanning if LE support hasn't been enabled */
	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

	/* If discovery is active don't interfere with it */
	if (hdev->discovery.state != DISCOVERY_STOPPED)
		return;

	/* Reset RSSI and UUID filters when starting background scanning
	 * since these filters are meant for service discovery only.
	 *
	 * The Start Discovery and Start Service Discovery operations
	 * ensure to set proper values for RSSI threshold and UUID
	 * filter list. So it is safe to just reset them here.
	 */
	hci_discovery_filter_clear(hdev);

	if (list_empty(&hdev->pend_le_conns) &&
	    list_empty(&hdev->pend_le_reports)) {
		/* If there is no pending LE connections or devices
		 * to be scanned for, we should stop the background
		 * scanning.
		 */

		/* If controller is not scanning we are done. */
		if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
			return;

		hci_req_add_le_scan_disable(req);

		BT_DBG("%s stopping background scanning", hdev->name);
	} else {
		/* If there is at least one pending LE connection, we should
		 * keep the background scan running.
		 */

		/* If controller is connecting, we should not start scanning
		 * since some controllers are not able to scan and connect at
		 * the same time.
		 */
		if (hci_lookup_le_connect(hdev))
			return;

		/* If controller is currently scanning, we stop it to ensure we
		 * don't miss any advertising (due to duplicates filter).
		 */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
			hci_req_add_le_scan_disable(req);

		hci_req_add_le_passive_scan(req);

		BT_DBG("%s starting background scanning", hdev->name);
	}
}

459 460 461 462 463 464 465 466 467 468
void __hci_req_update_name(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_local_name cp;

	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));

	hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
}

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
#define PNP_INFO_SVCLASS_ID		0x1200

static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
{
	u8 *ptr = data, *uuids_start = NULL;
	struct bt_uuid *uuid;

	if (len < 4)
		return ptr;

	list_for_each_entry(uuid, &hdev->uuids, list) {
		u16 uuid16;

		if (uuid->size != 16)
			continue;

		uuid16 = get_unaligned_le16(&uuid->uuid[12]);
		if (uuid16 < 0x1100)
			continue;

		if (uuid16 == PNP_INFO_SVCLASS_ID)
			continue;

		if (!uuids_start) {
			uuids_start = ptr;
			uuids_start[0] = 1;
			uuids_start[1] = EIR_UUID16_ALL;
			ptr += 2;
		}

		/* Stop if not enough space to put next UUID */
		if ((ptr - data) + sizeof(u16) > len) {
			uuids_start[1] = EIR_UUID16_SOME;
			break;
		}

		*ptr++ = (uuid16 & 0x00ff);
		*ptr++ = (uuid16 & 0xff00) >> 8;
		uuids_start[0] += sizeof(uuid16);
	}

	return ptr;
}

static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
{
	u8 *ptr = data, *uuids_start = NULL;
	struct bt_uuid *uuid;

	if (len < 6)
		return ptr;

	list_for_each_entry(uuid, &hdev->uuids, list) {
		if (uuid->size != 32)
			continue;

		if (!uuids_start) {
			uuids_start = ptr;
			uuids_start[0] = 1;
			uuids_start[1] = EIR_UUID32_ALL;
			ptr += 2;
		}

		/* Stop if not enough space to put next UUID */
		if ((ptr - data) + sizeof(u32) > len) {
			uuids_start[1] = EIR_UUID32_SOME;
			break;
		}

		memcpy(ptr, &uuid->uuid[12], sizeof(u32));
		ptr += sizeof(u32);
		uuids_start[0] += sizeof(u32);
	}

	return ptr;
}

static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
{
	u8 *ptr = data, *uuids_start = NULL;
	struct bt_uuid *uuid;

	if (len < 18)
		return ptr;

	list_for_each_entry(uuid, &hdev->uuids, list) {
		if (uuid->size != 128)
			continue;

		if (!uuids_start) {
			uuids_start = ptr;
			uuids_start[0] = 1;
			uuids_start[1] = EIR_UUID128_ALL;
			ptr += 2;
		}

		/* Stop if not enough space to put next UUID */
		if ((ptr - data) + 16 > len) {
			uuids_start[1] = EIR_UUID128_SOME;
			break;
		}

		memcpy(ptr, uuid->uuid, 16);
		ptr += 16;
		uuids_start[0] += 16;
	}

	return ptr;
}

static void create_eir(struct hci_dev *hdev, u8 *data)
{
	u8 *ptr = data;
	size_t name_len;

	name_len = strlen(hdev->dev_name);

	if (name_len > 0) {
		/* EIR Data type */
		if (name_len > 48) {
			name_len = 48;
			ptr[1] = EIR_NAME_SHORT;
		} else
			ptr[1] = EIR_NAME_COMPLETE;

		/* EIR Data length */
		ptr[0] = name_len + 1;

		memcpy(ptr + 2, hdev->dev_name, name_len);

		ptr += (name_len + 2);
	}

	if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
		ptr[0] = 2;
		ptr[1] = EIR_TX_POWER;
		ptr[2] = (u8) hdev->inq_tx_power;

		ptr += 3;
	}

	if (hdev->devid_source > 0) {
		ptr[0] = 9;
		ptr[1] = EIR_DEVICE_ID;

		put_unaligned_le16(hdev->devid_source, ptr + 2);
		put_unaligned_le16(hdev->devid_vendor, ptr + 4);
		put_unaligned_le16(hdev->devid_product, ptr + 6);
		put_unaligned_le16(hdev->devid_version, ptr + 8);

		ptr += 10;
	}

	ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
	ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
	ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
}

void __hci_req_update_eir(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_eir cp;

	if (!hdev_is_powered(hdev))
		return;

	if (!lmp_ext_inq_capable(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	memset(&cp, 0, sizeof(cp));

	create_eir(hdev, cp.data);

	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
		return;

	memcpy(hdev->eir, cp.data, sizeof(cp.data));

	hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
}

656 657
void hci_req_add_le_scan_disable(struct hci_request *req)
{
658
	struct hci_dev *hdev = req->hdev;
659

660 661 662 663 664
	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}

665 666 667 668 669 670 671 672 673 674 675 676 677 678
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_DISABLE;
		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
			    &cp);
	} else {
		struct hci_cp_le_set_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_DISABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
	}
679 680
}

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
static void del_from_white_list(struct hci_request *req, bdaddr_t *bdaddr,
				u8 bdaddr_type)
{
	struct hci_cp_le_del_from_white_list cp;

	cp.bdaddr_type = bdaddr_type;
	bacpy(&cp.bdaddr, bdaddr);

	bt_dev_dbg(req->hdev, "Remove %pMR (0x%x) from whitelist", &cp.bdaddr,
		   cp.bdaddr_type);
	hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, sizeof(cp), &cp);
}

/* Adds connection to white list if needed. On error, returns -1. */
static int add_to_white_list(struct hci_request *req,
			     struct hci_conn_params *params, u8 *num_entries,
			     bool allow_rpa)
698 699
{
	struct hci_cp_le_add_to_white_list cp;
700 701 702 703 704 705
	struct hci_dev *hdev = req->hdev;

	/* Already in white list */
	if (hci_bdaddr_list_lookup(&hdev->le_white_list, &params->addr,
				   params->addr_type))
		return 0;
706

707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	/* Select filter policy to accept all advertising */
	if (*num_entries >= hdev->le_white_list_size)
		return -1;

	/* White list can not be used with RPAs */
	if (!allow_rpa &&
	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type)) {
		return -1;
	}

	/* During suspend, only wakeable devices can be in whitelist */
	if (hdev->suspended && !params->wakeable)
		return 0;

	*num_entries += 1;
722 723 724
	cp.bdaddr_type = params->addr_type;
	bacpy(&cp.bdaddr, &params->addr);

725 726
	bt_dev_dbg(hdev, "Add %pMR (0x%x) to whitelist", &cp.bdaddr,
		   cp.bdaddr_type);
727
	hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
728 729

	return 0;
730 731 732 733 734 735 736
}

static u8 update_white_list(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_conn_params *params;
	struct bdaddr_list *b;
737 738 739 740 741 742 743 744
	u8 num_entries = 0;
	bool pend_conn, pend_report;
	/* We allow whitelisting even with RPAs in suspend. In the worst case,
	 * we won't be able to wake from devices that use the privacy1.2
	 * features. Additionally, once we support privacy1.2 and IRK
	 * offloading, we can update this to also check for those conditions.
	 */
	bool allow_rpa = hdev->suspended;
745 746 747 748 749 750 751 752

	/* Go through the current white list programmed into the
	 * controller one by one and check if that address is still
	 * in the list of pending connections or list of devices to
	 * report. If not present in either list, then queue the
	 * command to remove it from the controller.
	 */
	list_for_each_entry(b, &hdev->le_white_list, list) {
753 754 755 756 757 758 759 760 761
		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
						      &b->bdaddr,
						      b->bdaddr_type);
		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
							&b->bdaddr,
							b->bdaddr_type);

		/* If the device is not likely to connect or report,
		 * remove it from the whitelist.
762
		 */
763 764
		if (!pend_conn && !pend_report) {
			del_from_white_list(req, &b->bdaddr, b->bdaddr_type);
765 766 767
			continue;
		}

768 769 770
		/* White list can not be used with RPAs */
		if (!allow_rpa &&
		    hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
771 772
			return 0x00;
		}
773

774
		num_entries++;
775 776 777 778 779 780 781 782 783 784 785 786 787
	}

	/* Since all no longer valid white list entries have been
	 * removed, walk through the list of pending connections
	 * and ensure that any new device gets programmed into
	 * the controller.
	 *
	 * If the list of the devices is larger than the list of
	 * available white list entries in the controller, then
	 * just abort and return filer policy value to not use the
	 * white list.
	 */
	list_for_each_entry(params, &hdev->pend_le_conns, action) {
788
		if (add_to_white_list(req, params, &num_entries, allow_rpa))
789 790 791 792 793
			return 0x00;
	}

	/* After adding all new pending connections, walk through
	 * the list of pending reports and also add these to the
794
	 * white list if there is still space. Abort if space runs out.
795 796
	 */
	list_for_each_entry(params, &hdev->pend_le_reports, action) {
797
		if (add_to_white_list(req, params, &num_entries, allow_rpa))
798 799 800 801 802 803 804
			return 0x00;
	}

	/* Select filter policy to use white list */
	return 0x01;
}

805 806 807 808 809
static bool scan_use_rpa(struct hci_dev *hdev)
{
	return hci_dev_test_flag(hdev, HCI_PRIVACY);
}

810 811
static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
			       u16 window, u8 own_addr_type, u8 filter_policy)
812
{
813
	struct hci_dev *hdev = req->hdev;
814

815 816 817 818 819 820 821
	/* Use ext scanning if set ext scan param and ext scan enable is
	 * supported
	 */
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_params *ext_param_cp;
		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
		struct hci_cp_le_scan_phy_params *phy_params;
822 823
		u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
		u32 plen;
824 825 826 827 828 829 830 831

		ext_param_cp = (void *)data;
		phy_params = (void *)ext_param_cp->data;

		memset(ext_param_cp, 0, sizeof(*ext_param_cp));
		ext_param_cp->own_addr_type = own_addr_type;
		ext_param_cp->filter_policy = filter_policy;

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
		plen = sizeof(*ext_param_cp);

		if (scan_1m(hdev) || scan_2m(hdev)) {
			ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;

			memset(phy_params, 0, sizeof(*phy_params));
			phy_params->type = type;
			phy_params->interval = cpu_to_le16(interval);
			phy_params->window = cpu_to_le16(window);

			plen += sizeof(*phy_params);
			phy_params++;
		}

		if (scan_coded(hdev)) {
			ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;

			memset(phy_params, 0, sizeof(*phy_params));
			phy_params->type = type;
			phy_params->interval = cpu_to_le16(interval);
			phy_params->window = cpu_to_le16(window);

			plen += sizeof(*phy_params);
			phy_params++;
		}
857 858

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
859
			    plen, ext_param_cp);
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885

		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
		ext_enable_cp.enable = LE_SCAN_ENABLE;
		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
			    sizeof(ext_enable_cp), &ext_enable_cp);
	} else {
		struct hci_cp_le_set_scan_param param_cp;
		struct hci_cp_le_set_scan_enable enable_cp;

		memset(&param_cp, 0, sizeof(param_cp));
		param_cp.type = type;
		param_cp.interval = cpu_to_le16(interval);
		param_cp.window = cpu_to_le16(window);
		param_cp.own_address_type = own_addr_type;
		param_cp.filter_policy = filter_policy;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
			    &param_cp);

		memset(&enable_cp, 0, sizeof(enable_cp));
		enable_cp.enable = LE_SCAN_ENABLE;
		enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
			    &enable_cp);
	}
886 887 888 889
}

void hci_req_add_le_passive_scan(struct hci_request *req)
{
890 891 892
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
	u8 filter_policy;
893 894 895 896 897 898
	u8 window, interval;

	if (hdev->scanning_paused) {
		bt_dev_dbg(hdev, "Scanning is paused for suspend");
		return;
	}
899 900 901 902 903 904 905

	/* Set require_privacy to false since no SCAN_REQ are send
	 * during passive scanning. Not using an non-resolvable address
	 * here is important so that peer devices using direct
	 * advertising with our address will be correctly reported
	 * by the controller.
	 */
906 907
	if (hci_update_random_address(req, false, scan_use_rpa(hdev),
				      &own_addr_type))
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
		return;

	/* Adding or removing entries from the white list must
	 * happen before enabling scanning. The controller does
	 * not allow white list modification while scanning.
	 */
	filter_policy = update_white_list(req);

	/* When the controller is using random resolvable addresses and
	 * with that having LE privacy enabled, then controllers with
	 * Extended Scanner Filter Policies support can now enable support
	 * for handling directed advertising.
	 *
	 * So instead of using filter polices 0x00 (no whitelist)
	 * and 0x01 (whitelist enabled) use the new filter policies
	 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
	 */
925
	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
926 927 928
	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
		filter_policy |= 0x02;

929 930 931 932 933 934 935 936 937 938 939
	if (hdev->suspended) {
		window = LE_SUSPEND_SCAN_WINDOW;
		interval = LE_SUSPEND_SCAN_INTERVAL;
	} else {
		window = hdev->le_scan_window;
		interval = hdev->le_scan_interval;
	}

	bt_dev_dbg(hdev, "LE passive scan with whitelist = %d", filter_policy);
	hci_req_start_scan(req, LE_SCAN_PASSIVE, interval, window,
			   own_addr_type, filter_policy);
940 941
}

942 943 944 945
static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance)
{
	struct adv_info *adv_instance;

946
	/* Instance 0x00 always set local name */
947
	if (instance == 0x00)
948
		return 1;
949 950 951 952 953 954 955 956 957 958 959

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return 0;

	/* TODO: Take into account the "appearance" and "local-name" flags here.
	 * These are currently being ignored as they are not supported.
	 */
	return adv_instance->scan_rsp_len;
}

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
static void hci_req_clear_event_filter(struct hci_request *req)
{
	struct hci_cp_set_event_filter f;

	memset(&f, 0, sizeof(f));
	f.flt_type = HCI_FLT_CLEAR_ALL;
	hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &f);

	/* Update page scan state (since we may have modified it when setting
	 * the event filter).
	 */
	__hci_req_update_scan(req);
}

static void hci_req_set_event_filter(struct hci_request *req)
{
	struct bdaddr_list *b;
	struct hci_cp_set_event_filter f;
	struct hci_dev *hdev = req->hdev;
	u8 scan;

	/* Always clear event filter when starting */
	hci_req_clear_event_filter(req);

	list_for_each_entry(b, &hdev->wakeable, list) {
		memset(&f, 0, sizeof(f));
		bacpy(&f.addr_conn_flt.bdaddr, &b->bdaddr);
		f.flt_type = HCI_FLT_CONN_SETUP;
		f.cond_type = HCI_CONN_SETUP_ALLOW_BDADDR;
		f.addr_conn_flt.auto_accept = HCI_CONN_SETUP_AUTO_ON;

		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
		hci_req_add(req, HCI_OP_SET_EVENT_FLT, sizeof(f), &f);
	}

	scan = !list_empty(&hdev->wakeable) ? SCAN_PAGE : SCAN_DISABLED;
	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
}

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
static void hci_req_config_le_suspend_scan(struct hci_request *req)
{
	/* Can't change params without disabling first */
	hci_req_add_le_scan_disable(req);

	/* Configure params and enable scanning */
	hci_req_add_le_passive_scan(req);

	/* Block suspend notifier on response */
	set_bit(SUSPEND_SCAN_ENABLE, req->hdev->suspend_tasks);
}

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
static void suspend_req_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	bt_dev_dbg(hdev, "Request complete opcode=0x%x, status=0x%x", opcode,
		   status);
	if (test_and_clear_bit(SUSPEND_SCAN_ENABLE, hdev->suspend_tasks) ||
	    test_and_clear_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks)) {
		wake_up(&hdev->suspend_wait_q);
	}
}

1021 1022 1023
/* Call with hci_dev_lock */
void hci_req_prepare_suspend(struct hci_dev *hdev, enum suspended_state next)
{
1024 1025 1026 1027 1028
	struct hci_conn *conn;
	struct hci_request req;
	u8 page_scan;
	int disconnect_counter;

1029 1030 1031 1032 1033 1034
	if (next == hdev->suspend_state) {
		bt_dev_dbg(hdev, "Same state before and after: %d", next);
		goto done;
	}

	hdev->suspend_state = next;
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	hci_req_init(&req, hdev);

	if (next == BT_SUSPEND_DISCONNECT) {
		/* Mark device as suspended */
		hdev->suspended = true;

		/* Disable page scan */
		page_scan = SCAN_DISABLED;
		hci_req_add(&req, HCI_OP_WRITE_SCAN_ENABLE, 1, &page_scan);

1045 1046 1047
		/* Disable LE passive scan */
		hci_req_add_le_scan_disable(&req);

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
		/* Mark task needing completion */
		set_bit(SUSPEND_SCAN_DISABLE, hdev->suspend_tasks);

		/* Prevent disconnects from causing scanning to be re-enabled */
		hdev->scanning_paused = true;

		/* Run commands before disconnecting */
		hci_req_run(&req, suspend_req_complete);

		disconnect_counter = 0;
		/* Soft disconnect everything (power off) */
		list_for_each_entry(conn, &hdev->conn_hash.list, list) {
			hci_disconnect(conn, HCI_ERROR_REMOTE_POWER_OFF);
			disconnect_counter++;
		}

		if (disconnect_counter > 0) {
			bt_dev_dbg(hdev,
				   "Had %d disconnects. Will wait on them",
				   disconnect_counter);
			set_bit(SUSPEND_DISCONNECTING, hdev->suspend_tasks);
		}
	} else if (next == BT_SUSPEND_COMPLETE) {
		/* Unpause to take care of updating scanning params */
		hdev->scanning_paused = false;
		/* Enable event filter for paired devices */
		hci_req_set_event_filter(&req);
1075 1076
		/* Enable passive scan at lower duty cycle */
		hci_req_config_le_suspend_scan(&req);
1077 1078 1079 1080 1081 1082 1083 1084
		/* Pause scan changes again. */
		hdev->scanning_paused = true;
		hci_req_run(&req, suspend_req_complete);
	} else {
		hdev->suspended = false;
		hdev->scanning_paused = false;

		hci_req_clear_event_filter(&req);
1085 1086
		/* Reset passive/background scanning to normal */
		hci_req_config_le_suspend_scan(&req);
1087 1088 1089 1090
		hci_req_run(&req, suspend_req_complete);
	}

	hdev->suspend_state = next;
1091 1092 1093 1094 1095 1096

done:
	clear_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
	wake_up(&hdev->suspend_wait_q);
}

1097 1098
static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
{
1099
	u8 instance = hdev->cur_adv_instance;
1100 1101
	struct adv_info *adv_instance;

1102
	/* Instance 0x00 always set local name */
1103
	if (instance == 0x00)
1104
		return 1;
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return 0;

	/* TODO: Take into account the "appearance" and "local-name" flags here.
	 * These are currently being ignored as they are not supported.
	 */
	return adv_instance->scan_rsp_len;
}

void __hci_req_disable_advertising(struct hci_request *req)
{
1118 1119
	if (ext_adv_capable(req->hdev)) {
		struct hci_cp_le_set_ext_adv_enable cp;
1120

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
		cp.enable = 0x00;
		/* Disable all sets since we only support one set at the moment */
		cp.num_of_sets = 0x00;

		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), &cp);
	} else {
		u8 enable = 0x00;

		hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
	}
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
}

static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
{
	u32 flags;
	struct adv_info *adv_instance;

	if (instance == 0x00) {
		/* Instance 0 always manages the "Tx Power" and "Flags"
		 * fields
		 */
		flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;

		/* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
		 * corresponds to the "connectable" instance flag.
		 */
		if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
			flags |= MGMT_ADV_FLAG_CONNECTABLE;

1150 1151 1152
		if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
			flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
		else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1153 1154
			flags |= MGMT_ADV_FLAG_DISCOV;

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		return flags;
	}

	adv_instance = hci_find_adv_instance(hdev, instance);

	/* Return 0 when we got an invalid instance identifier. */
	if (!adv_instance)
		return 0;

	return adv_instance->flags;
}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
{
	/* If privacy is not enabled don't use RPA */
	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
		return false;

	/* If basic privacy mode is enabled use RPA */
	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
		return true;

	/* If limited privacy mode is enabled don't use RPA if we're
	 * both discoverable and bondable.
	 */
	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
	    hci_dev_test_flag(hdev, HCI_BONDABLE))
		return false;

	/* We're neither bondable nor discoverable in the limited
	 * privacy mode, therefore use RPA.
	 */
	return true;
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
{
	/* If there is no connection we are OK to advertise. */
	if (hci_conn_num(hdev, LE_LINK) == 0)
		return true;

	/* Check le_states if there is any connection in slave role. */
	if (hdev->conn_hash.le_num_slave > 0) {
		/* Slave connection state and non connectable mode bit 20. */
		if (!connectable && !(hdev->le_states[2] & 0x10))
			return false;

		/* Slave connection state and connectable mode bit 38
		 * and scannable bit 21.
		 */
1205 1206
		if (connectable && (!(hdev->le_states[4] & 0x40) ||
				    !(hdev->le_states[2] & 0x20)))
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
			return false;
	}

	/* Check le_states if there is any connection in master role. */
	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) {
		/* Master connection state and non connectable mode bit 18. */
		if (!connectable && !(hdev->le_states[2] & 0x02))
			return false;

		/* Master connection state and connectable mode bit 35 and
		 * scannable 19.
		 */
1219
		if (connectable && (!(hdev->le_states[4] & 0x08) ||
1220 1221 1222 1223 1224 1225 1226
				    !(hdev->le_states[2] & 0x08)))
			return false;
	}

	return true;
}

1227 1228 1229 1230 1231 1232
void __hci_req_enable_advertising(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_le_set_adv_param cp;
	u8 own_addr_type, enable = 0x01;
	bool connectable;
1233
	u16 adv_min_interval, adv_max_interval;
1234 1235
	u32 flags;

1236 1237 1238 1239 1240 1241 1242 1243 1244
	flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

	if (!is_advertising_allowed(hdev, connectable))
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
		return;

	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
		__hci_req_disable_advertising(req);

	/* Clear the HCI_LE_ADV bit temporarily so that the
	 * hci_update_random_address knows that it's safe to go ahead
	 * and write a new random address. The flag will be set back on
	 * as soon as the SET_ADV_ENABLE HCI command completes.
	 */
	hci_dev_clear_flag(hdev, HCI_LE_ADV);

	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
1261 1262 1263
	if (hci_update_random_address(req, !connectable,
				      adv_use_rpa(hdev, flags),
				      &own_addr_type) < 0)
1264 1265 1266 1267
		return;

	memset(&cp, 0, sizeof(cp));

1268
	if (connectable) {
1269 1270
		cp.type = LE_ADV_IND;

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
		adv_min_interval = hdev->le_adv_min_interval;
		adv_max_interval = hdev->le_adv_max_interval;
	} else {
		if (get_cur_adv_instance_scan_rsp_len(hdev))
			cp.type = LE_ADV_SCAN_IND;
		else
			cp.type = LE_ADV_NONCONN_IND;

		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
		} else {
			adv_min_interval = hdev->le_adv_min_interval;
			adv_max_interval = hdev->le_adv_max_interval;
		}
	}

	cp.min_interval = cpu_to_le16(adv_min_interval);
	cp.max_interval = cpu_to_le16(adv_max_interval);
1291 1292 1293 1294 1295 1296 1297 1298
	cp.own_address_type = own_addr_type;
	cp.channel_map = hdev->le_adv_channel_map;

	hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);

	hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
}

1299
u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1300
{
1301
	size_t short_len;
1302
	size_t complete_len;
1303

1304 1305
	/* no space left for name (+ NULL + type + len) */
	if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1306
		return ad_len;
1307

1308 1309 1310
	/* use complete name if present and fits */
	complete_len = strlen(hdev->dev_name);
	if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1311
		return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1312
				       hdev->dev_name, complete_len + 1);
1313

1314 1315 1316
	/* use short name if present */
	short_len = strlen(hdev->short_name);
	if (short_len)
1317
		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1318
				       hdev->short_name, short_len + 1);
1319

1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	/* use shortened full name if present, we already know that name
	 * is longer then HCI_MAX_SHORT_NAME_LENGTH
	 */
	if (complete_len) {
		u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];

		memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
		name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';

		return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
				       sizeof(name));
1331 1332 1333 1334 1335
	}

	return ad_len;
}

1336 1337 1338 1339 1340
static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
{
	return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
}

1341 1342
static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
{
1343 1344 1345
	u8 scan_rsp_len = 0;

	if (hdev->appearance) {
1346
		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1347 1348
	}

1349
	return append_local_name(hdev, ptr, scan_rsp_len);
1350 1351
}

1352 1353 1354 1355
static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
					u8 *ptr)
{
	struct adv_info *adv_instance;
1356 1357
	u32 instance_flags;
	u8 scan_rsp_len = 0;
1358 1359 1360 1361 1362

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return 0;

1363 1364
	instance_flags = adv_instance->flags;

1365
	if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1366
		scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1367 1368
	}

1369
	memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1370 1371
	       adv_instance->scan_rsp_len);

1372 1373 1374 1375 1376 1377
	scan_rsp_len += adv_instance->scan_rsp_len;

	if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
		scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);

	return scan_rsp_len;
1378 1379
}

1380
void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1381 1382 1383 1384 1385 1386 1387
{
	struct hci_dev *hdev = req->hdev;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

1388 1389
	if (ext_adv_capable(hdev)) {
		struct hci_cp_le_set_ext_scan_rsp_data cp;
1390

1391
		memset(&cp, 0, sizeof(cp));
1392

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
		if (instance)
			len = create_instance_scan_rsp_data(hdev, instance,
							    cp.data);
		else
			len = create_default_scan_rsp_data(hdev, cp.data);

		if (hdev->scan_rsp_data_len == len &&
		    !memcmp(cp.data, hdev->scan_rsp_data, len))
			return;

		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
		hdev->scan_rsp_data_len = len;

		cp.handle = 0;
		cp.length = len;
		cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
		cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp),
			    &cp);
	} else {
		struct hci_cp_le_set_scan_rsp_data cp;

		memset(&cp, 0, sizeof(cp));

		if (instance)
			len = create_instance_scan_rsp_data(hdev, instance,
							    cp.data);
		else
			len = create_default_scan_rsp_data(hdev, cp.data);

		if (hdev->scan_rsp_data_len == len &&
		    !memcmp(cp.data, hdev->scan_rsp_data, len))
			return;
1427

1428 1429
		memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
		hdev->scan_rsp_data_len = len;
1430

1431
		cp.length = len;
1432

1433 1434
		hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
	}
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
}

static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
{
	struct adv_info *adv_instance = NULL;
	u8 ad_len = 0, flags = 0;
	u32 instance_flags;

	/* Return 0 when the current instance identifier is invalid. */
	if (instance) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return 0;
	}

	instance_flags = get_adv_instance_flags(hdev, instance);

1452 1453 1454 1455 1456 1457 1458 1459
	/* If instance already has the flags set skip adding it once
	 * again.
	 */
	if (adv_instance && eir_get_data(adv_instance->adv_data,
					 adv_instance->adv_data_len, EIR_FLAGS,
					 NULL))
		goto skip_flags;

1460 1461 1462 1463 1464 1465 1466 1467 1468
	/* The Add Advertising command allows userspace to set both the general
	 * and limited discoverable flags.
	 */
	if (instance_flags & MGMT_ADV_FLAG_DISCOV)
		flags |= LE_AD_GENERAL;

	if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
		flags |= LE_AD_LIMITED;

1469 1470 1471
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		flags |= LE_AD_NO_BREDR;

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
	if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
		/* If a discovery flag wasn't provided, simply use the global
		 * settings.
		 */
		if (!flags)
			flags |= mgmt_get_adv_discov_flags(hdev);

		/* If flags would still be empty, then there is no need to
		 * include the "Flags" AD field".
		 */
		if (flags) {
			ptr[0] = 0x02;
			ptr[1] = EIR_FLAGS;
			ptr[2] = flags;

			ad_len += 3;
			ptr += 3;
		}
	}

1492
skip_flags:
1493 1494 1495 1496 1497 1498 1499
	if (adv_instance) {
		memcpy(ptr, adv_instance->adv_data,
		       adv_instance->adv_data_len);
		ad_len += adv_instance->adv_data_len;
		ptr += adv_instance->adv_data_len;
	}

1500 1501
	if (instance_flags & MGMT_ADV_FLAG_TX_POWER) {
		s8 adv_tx_power;
1502

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
		if (ext_adv_capable(hdev)) {
			if (adv_instance)
				adv_tx_power = adv_instance->tx_power;
			else
				adv_tx_power = hdev->adv_tx_power;
		} else {
			adv_tx_power = hdev->adv_tx_power;
		}

		/* Provide Tx Power only if we can provide a valid value for it */
		if (adv_tx_power != HCI_TX_POWER_INVALID) {
			ptr[0] = 0x02;
			ptr[1] = EIR_TX_POWER;
			ptr[2] = (u8)adv_tx_power;

			ad_len += 3;
			ptr += 3;
		}
1521 1522 1523 1524 1525
	}

	return ad_len;
}

1526
void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1527 1528 1529 1530 1531 1532 1533
{
	struct hci_dev *hdev = req->hdev;
	u8 len;

	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
		return;

1534 1535
	if (ext_adv_capable(hdev)) {
		struct hci_cp_le_set_ext_adv_data cp;
1536

1537
		memset(&cp, 0, sizeof(cp));
1538

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
		len = create_instance_adv_data(hdev, instance, cp.data);

		/* There's nothing to do if the data hasn't changed */
		if (hdev->adv_data_len == len &&
		    memcmp(cp.data, hdev->adv_data, len) == 0)
			return;

		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
		hdev->adv_data_len = len;

		cp.length = len;
		cp.handle = 0;
		cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
		cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1553

1554 1555 1556 1557 1558
		hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp);
	} else {
		struct hci_cp_le_set_adv_data cp;

		memset(&cp, 0, sizeof(cp));
1559

1560 1561 1562 1563 1564 1565
		len = create_instance_adv_data(hdev, instance, cp.data);

		/* There's nothing to do if the data hasn't changed */
		if (hdev->adv_data_len == len &&
		    memcmp(cp.data, hdev->adv_data, len) == 0)
			return;
1566

1567 1568 1569 1570 1571 1572 1573
		memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
		hdev->adv_data_len = len;

		cp.length = len;

		hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
	}
1574 1575
}

1576
int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
{
	struct hci_request req;

	hci_req_init(&req, hdev);
	__hci_req_update_adv_data(&req, instance);

	return hci_req_run(&req, NULL);
}

static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	BT_DBG("%s status %u", hdev->name, status);
}

void hci_req_reenable_advertising(struct hci_dev *hdev)
{
	struct hci_request req;

	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1596
	    list_empty(&hdev->adv_instances))
1597 1598 1599 1600
		return;

	hci_req_init(&req, hdev);

1601 1602 1603
	if (hdev->cur_adv_instance) {
		__hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
						true);
1604
	} else {
1605 1606 1607 1608 1609 1610 1611
		if (ext_adv_capable(hdev)) {
			__hci_req_start_ext_adv(&req, 0x00);
		} else {
			__hci_req_update_adv_data(&req, 0x00);
			__hci_req_update_scan_rsp_data(&req, 0x00);
			__hci_req_enable_advertising(&req);
		}
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
	}

	hci_req_run(&req, adv_enable_complete);
}

static void adv_timeout_expire(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    adv_instance_expire.work);

	struct hci_request req;
	u8 instance;

	BT_DBG("%s", hdev->name);

	hci_dev_lock(hdev);

	hdev->adv_instance_timeout = 0;

1631
	instance = hdev->cur_adv_instance;
1632 1633 1634 1635 1636
	if (instance == 0x00)
		goto unlock;

	hci_req_init(&req, hdev);

1637
	hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1638 1639 1640 1641

	if (list_empty(&hdev->adv_instances))
		__hci_req_disable_advertising(&req);

1642
	hci_req_run(&req, NULL);
1643 1644 1645 1646 1647

unlock:
	hci_dev_unlock(hdev);
}

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
			   bool use_rpa, struct adv_info *adv_instance,
			   u8 *own_addr_type, bdaddr_t *rand_addr)
{
	int err;

	bacpy(rand_addr, BDADDR_ANY);

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired then generate a new one.
	 */
	if (use_rpa) {
		int to;

		*own_addr_type = ADDR_LE_DEV_RANDOM;

		if (adv_instance) {
			if (!adv_instance->rpa_expired &&
			    !bacmp(&adv_instance->random_addr, &hdev->rpa))
				return 0;

			adv_instance->rpa_expired = false;
		} else {
			if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
			    !bacmp(&hdev->random_addr, &hdev->rpa))
				return 0;
		}

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
1678
			bt_dev_err(hdev, "failed to generate new RPA");
1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
			return err;
		}

		bacpy(rand_addr, &hdev->rpa);

		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
		if (adv_instance)
			queue_delayed_work(hdev->workqueue,
					   &adv_instance->rpa_expired_cb, to);
		else
			queue_delayed_work(hdev->workqueue,
					   &hdev->rpa_expired, to);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for
	 * non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		bacpy(rand_addr, &nrpa);

		return 0;
	}

	/* No privacy so use a public address. */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}

1729 1730 1731 1732 1733
void __hci_req_clear_ext_adv_sets(struct hci_request *req)
{
	hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
}

1734
int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1735 1736 1737 1738 1739
{
	struct hci_cp_le_set_ext_adv_params cp;
	struct hci_dev *hdev = req->hdev;
	bool connectable;
	u32 flags;
1740 1741 1742 1743
	bdaddr_t random_addr;
	u8 own_addr_type;
	int err;
	struct adv_info *adv_instance;
1744
	bool secondary_adv;
1745 1746 1747
	/* In ext adv set param interval is 3 octets */
	const u8 adv_interval[3] = { 0x00, 0x08, 0x00 };

1748 1749 1750 1751 1752 1753 1754 1755
	if (instance > 0) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return -EINVAL;
	} else {
		adv_instance = NULL;
	}

1756 1757 1758 1759 1760 1761 1762 1763
	flags = get_adv_instance_flags(hdev, instance);

	/* If the "connectable" instance flag was not set, then choose between
	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
	 */
	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
		      mgmt_get_connectable(hdev);

1764
	if (!is_advertising_allowed(hdev, connectable))
1765 1766
		return -EPERM;

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
	/* Set require_privacy to true only when non-connectable
	 * advertising is used. In that case it is fine to use a
	 * non-resolvable private address.
	 */
	err = hci_get_random_address(hdev, !connectable,
				     adv_use_rpa(hdev, flags), adv_instance,
				     &own_addr_type, &random_addr);
	if (err < 0)
		return err;

1777 1778 1779 1780 1781
	memset(&cp, 0, sizeof(cp));

	memcpy(cp.min_interval, adv_interval, sizeof(cp.min_interval));
	memcpy(cp.max_interval, adv_interval, sizeof(cp.max_interval));

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);

	if (connectable) {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
	} else if (get_adv_instance_scan_rsp_len(hdev, instance)) {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
	} else {
		if (secondary_adv)
			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
		else
			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
	}
1800

1801
	cp.own_addr_type = own_addr_type;
1802 1803
	cp.channel_map = hdev->le_adv_channel_map;
	cp.tx_power = 127;
1804
	cp.handle = instance;
1805

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
	if (flags & MGMT_ADV_FLAG_SEC_2M) {
		cp.primary_phy = HCI_ADV_PHY_1M;
		cp.secondary_phy = HCI_ADV_PHY_2M;
	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
		cp.primary_phy = HCI_ADV_PHY_CODED;
		cp.secondary_phy = HCI_ADV_PHY_CODED;
	} else {
		/* In all other cases use 1M */
		cp.primary_phy = HCI_ADV_PHY_1M;
		cp.secondary_phy = HCI_ADV_PHY_1M;
	}

1818 1819
	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
	    bacmp(&random_addr, BDADDR_ANY)) {
		struct hci_cp_le_set_adv_set_rand_addr cp;

		/* Check if random address need to be updated */
		if (adv_instance) {
			if (!bacmp(&random_addr, &adv_instance->random_addr))
				return 0;
		} else {
			if (!bacmp(&random_addr, &hdev->random_addr))
				return 0;
		}

		memset(&cp, 0, sizeof(cp));

		cp.handle = 0;
		bacpy(&cp.bdaddr, &random_addr);

		hci_req_add(req,
			    HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
			    sizeof(cp), &cp);
	}

1843 1844 1845
	return 0;
}

1846
int __hci_req_enable_ext_advertising(struct hci_request *req, u8 instance)
1847
{
1848
	struct hci_dev *hdev = req->hdev;
1849 1850 1851
	struct hci_cp_le_set_ext_adv_enable *cp;
	struct hci_cp_ext_adv_set *adv_set;
	u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
1852 1853 1854 1855 1856 1857 1858 1859 1860
	struct adv_info *adv_instance;

	if (instance > 0) {
		adv_instance = hci_find_adv_instance(hdev, instance);
		if (!adv_instance)
			return -EINVAL;
	} else {
		adv_instance = NULL;
	}
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871

	cp = (void *) data;
	adv_set = (void *) cp->data;

	memset(cp, 0, sizeof(*cp));

	cp->enable = 0x01;
	cp->num_of_sets = 0x01;

	memset(adv_set, 0, sizeof(*adv_set));

1872 1873 1874 1875 1876 1877
	adv_set->handle = instance;

	/* Set duration per instance since controller is responsible for
	 * scheduling it.
	 */
	if (adv_instance && adv_instance->duration) {
1878
		u16 duration = adv_instance->timeout * MSEC_PER_SEC;
1879 1880 1881 1882

		/* Time = N * 10 ms */
		adv_set->duration = cpu_to_le16(duration / 10);
	}
1883 1884 1885 1886

	hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
		    sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
		    data);
1887 1888

	return 0;
1889 1890 1891 1892
}

int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
{
1893
	struct hci_dev *hdev = req->hdev;
1894 1895
	int err;

1896 1897 1898
	if (hci_dev_test_flag(hdev, HCI_LE_ADV))
		__hci_req_disable_advertising(req);

1899 1900 1901 1902
	err = __hci_req_setup_ext_adv_instance(req, instance);
	if (err < 0)
		return err;

1903
	__hci_req_update_scan_rsp_data(req, instance);
1904
	__hci_req_enable_ext_advertising(req, instance);
1905 1906 1907 1908

	return 0;
}

1909 1910 1911 1912 1913 1914 1915 1916
int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
				    bool force)
{
	struct hci_dev *hdev = req->hdev;
	struct adv_info *adv_instance = NULL;
	u16 timeout;

	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1917
	    list_empty(&hdev->adv_instances))
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
		return -EPERM;

	if (hdev->adv_instance_timeout)
		return -EBUSY;

	adv_instance = hci_find_adv_instance(hdev, instance);
	if (!adv_instance)
		return -ENOENT;

	/* A zero timeout means unlimited advertising. As long as there is
	 * only one instance, duration should be ignored. We still set a timeout
	 * in case further instances are being added later on.
	 *
	 * If the remaining lifetime of the instance is more than the duration
	 * then the timeout corresponds to the duration, otherwise it will be
	 * reduced to the remaining instance lifetime.
	 */
	if (adv_instance->timeout == 0 ||
	    adv_instance->duration <= adv_instance->remaining_time)
		timeout = adv_instance->duration;
	else
		timeout = adv_instance->remaining_time;

	/* The remaining time is being reduced unless the instance is being
	 * advertised without time limit.
	 */
	if (adv_instance->timeout)
		adv_instance->remaining_time =
				adv_instance->remaining_time - timeout;

1948 1949 1950 1951
	/* Only use work for scheduling instances with legacy advertising */
	if (!ext_adv_capable(hdev)) {
		hdev->adv_instance_timeout = timeout;
		queue_delayed_work(hdev->req_workqueue,
1952 1953
			   &hdev->adv_instance_expire,
			   msecs_to_jiffies(timeout * 1000));
1954
	}
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964

	/* If we're just re-scheduling the same instance again then do not
	 * execute any HCI commands. This happens when a single instance is
	 * being advertised.
	 */
	if (!force && hdev->cur_adv_instance == instance &&
	    hci_dev_test_flag(hdev, HCI_LE_ADV))
		return 0;

	hdev->cur_adv_instance = instance;
1965 1966 1967 1968 1969 1970 1971
	if (ext_adv_capable(hdev)) {
		__hci_req_start_ext_adv(req, instance);
	} else {
		__hci_req_update_adv_data(req, instance);
		__hci_req_update_scan_rsp_data(req, instance);
		__hci_req_enable_advertising(req);
	}
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

	return 0;
}

static void cancel_adv_timeout(struct hci_dev *hdev)
{
	if (hdev->adv_instance_timeout) {
		hdev->adv_instance_timeout = 0;
		cancel_delayed_work(&hdev->adv_instance_expire);
	}
}

/* For a single instance:
 * - force == true: The instance will be removed even when its remaining
 *   lifetime is not zero.
 * - force == false: the instance will be deactivated but kept stored unless
 *   the remaining lifetime is zero.
 *
 * For instance == 0x00:
 * - force == true: All instances will be removed regardless of their timeout
 *   setting.
 * - force == false: Only instances that have a timeout will be removed.
 */
1995 1996 1997
void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
				struct hci_request *req, u8 instance,
				bool force)
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
{
	struct adv_info *adv_instance, *n, *next_instance = NULL;
	int err;
	u8 rem_inst;

	/* Cancel any timeout concerning the removed instance(s). */
	if (!instance || hdev->cur_adv_instance == instance)
		cancel_adv_timeout(hdev);

	/* Get the next instance to advertise BEFORE we remove
	 * the current one. This can be the same instance again
	 * if there is only one instance.
	 */
	if (instance && hdev->cur_adv_instance == instance)
		next_instance = hci_get_next_instance(hdev, instance);

	if (instance == 0x00) {
		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
					 list) {
			if (!(force || adv_instance->timeout))
				continue;

			rem_inst = adv_instance->instance;
			err = hci_remove_adv_instance(hdev, rem_inst);
			if (!err)
2023
				mgmt_advertising_removed(sk, hdev, rem_inst);
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
		}
	} else {
		adv_instance = hci_find_adv_instance(hdev, instance);

		if (force || (adv_instance && adv_instance->timeout &&
			      !adv_instance->remaining_time)) {
			/* Don't advertise a removed instance. */
			if (next_instance &&
			    next_instance->instance == instance)
				next_instance = NULL;

			err = hci_remove_adv_instance(hdev, instance);
			if (!err)
2037
				mgmt_advertising_removed(sk, hdev, instance);
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
		}
	}

	if (!req || !hdev_is_powered(hdev) ||
	    hci_dev_test_flag(hdev, HCI_ADVERTISING))
		return;

	if (next_instance)
		__hci_req_schedule_adv_instance(req, next_instance->instance,
						false);
}

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
{
	struct hci_dev *hdev = req->hdev;

	/* If we're advertising or initiating an LE connection we can't
	 * go ahead and change the random address at this time. This is
	 * because the eventual initiator address used for the
	 * subsequently created connection will be undefined (some
	 * controllers use the new address and others the one we had
	 * when the operation started).
	 *
	 * In this kind of scenario skip the update and let the random
	 * address be updated at the next cycle.
	 */
2064
	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
2065
	    hci_lookup_le_connect(hdev)) {
2066
		BT_DBG("Deferring random address update");
2067
		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
2068 2069 2070 2071 2072 2073 2074
		return;
	}

	hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
}

int hci_update_random_address(struct hci_request *req, bool require_privacy,
2075
			      bool use_rpa, u8 *own_addr_type)
2076 2077 2078 2079 2080 2081 2082 2083
{
	struct hci_dev *hdev = req->hdev;
	int err;

	/* If privacy is enabled use a resolvable private address. If
	 * current RPA has expired or there is something else than
	 * the current RPA in use, then generate a new one.
	 */
2084
	if (use_rpa) {
2085 2086 2087 2088
		int to;

		*own_addr_type = ADDR_LE_DEV_RANDOM;

2089
		if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
2090 2091 2092 2093 2094
		    !bacmp(&hdev->random_addr, &hdev->rpa))
			return 0;

		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
		if (err < 0) {
2095
			bt_dev_err(hdev, "failed to generate new RPA");
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
			return err;
		}

		set_random_addr(req, &hdev->rpa);

		to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
		queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);

		return 0;
	}

	/* In case of required privacy without resolvable private address,
	 * use an non-resolvable private address. This is useful for active
	 * scanning and non-connectable advertising.
	 */
	if (require_privacy) {
		bdaddr_t nrpa;

		while (true) {
			/* The non-resolvable private address is generated
			 * from random six bytes with the two most significant
			 * bits cleared.
			 */
			get_random_bytes(&nrpa, 6);
			nrpa.b[5] &= 0x3f;

			/* The non-resolvable private address shall not be
			 * equal to the public address.
			 */
			if (bacmp(&hdev->bdaddr, &nrpa))
				break;
		}

		*own_addr_type = ADDR_LE_DEV_RANDOM;
		set_random_addr(req, &nrpa);
		return 0;
	}

	/* If forcing static address is in use or there is no public
	 * address use the static address as random address (but skip
	 * the HCI command if the current random address is already the
	 * static one.
2138 2139 2140 2141
	 *
	 * In case BR/EDR has been disabled on a dual-mode controller
	 * and a static address has been configured, then use that
	 * address instead of the public BR/EDR address.
2142
	 */
2143
	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
2144
	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
2145
	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
2146
	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
		*own_addr_type = ADDR_LE_DEV_RANDOM;
		if (bacmp(&hdev->static_addr, &hdev->random_addr))
			hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
				    &hdev->static_addr);
		return 0;
	}

	/* Neither privacy nor static address is being used so use a
	 * public address.
	 */
	*own_addr_type = ADDR_LE_DEV_PUBLIC;

	return 0;
}
2161

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
static bool disconnected_whitelist_entries(struct hci_dev *hdev)
{
	struct bdaddr_list *b;

	list_for_each_entry(b, &hdev->whitelist, list) {
		struct hci_conn *conn;

		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
		if (!conn)
			return true;

		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
			return true;
	}

	return false;
}

2180
void __hci_req_update_scan(struct hci_request *req)
2181 2182 2183 2184
{
	struct hci_dev *hdev = req->hdev;
	u8 scan;

2185
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2186 2187 2188 2189 2190 2191 2192 2193
		return;

	if (!hdev_is_powered(hdev))
		return;

	if (mgmt_powering_down(hdev))
		return;

2194 2195 2196
	if (hdev->scanning_paused)
		return;

2197
	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
2198 2199 2200 2201 2202
	    disconnected_whitelist_entries(hdev))
		scan = SCAN_PAGE;
	else
		scan = SCAN_DISABLED;

2203
	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2204 2205
		scan |= SCAN_INQUIRY;

2206 2207 2208 2209
	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
		return;

2210 2211 2212
	hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
}

2213
static int update_scan(struct hci_request *req, unsigned long opt)
2214
{
2215 2216 2217 2218 2219
	hci_dev_lock(req->hdev);
	__hci_req_update_scan(req);
	hci_dev_unlock(req->hdev);
	return 0;
}
2220

2221 2222 2223 2224 2225
static void scan_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);

	hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
2226 2227
}

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
static int connectable_update(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	hci_dev_lock(hdev);

	__hci_req_update_scan(req);

	/* If BR/EDR is not enabled and we disable advertising as a
	 * by-product of disabling connectable, we need to update the
	 * advertising flags.
	 */
	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2241
		__hci_req_update_adv_data(req, hdev->cur_adv_instance);
2242 2243 2244

	/* Update the advertising parameters if necessary */
	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2245 2246 2247 2248 2249 2250
	    !list_empty(&hdev->adv_instances)) {
		if (ext_adv_capable(hdev))
			__hci_req_start_ext_adv(req, hdev->cur_adv_instance);
		else
			__hci_req_enable_advertising(req);
	}
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268

	__hci_update_background_scan(req);

	hci_dev_unlock(hdev);

	return 0;
}

static void connectable_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    connectable_update);
	u8 status;

	hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
	mgmt_set_connectable_complete(hdev, status);
}

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
static u8 get_service_classes(struct hci_dev *hdev)
{
	struct bt_uuid *uuid;
	u8 val = 0;

	list_for_each_entry(uuid, &hdev->uuids, list)
		val |= uuid->svc_hint;

	return val;
}

void __hci_req_update_class(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	u8 cod[3];

	BT_DBG("%s", hdev->name);

	if (!hdev_is_powered(hdev))
		return;

	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
		return;

	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
		return;

	cod[0] = hdev->minor_class;
	cod[1] = hdev->major_class;
	cod[2] = get_service_classes(hdev);

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
		cod[1] |= 0x20;

	if (memcmp(cod, hdev->dev_class, 3) == 0)
		return;

	hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
}

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352
static void write_iac(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct hci_cp_write_current_iac_lap cp;

	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
		return;

	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
		/* Limited discoverable mode */
		cp.num_iac = min_t(u8, hdev->num_iac, 2);
		cp.iac_lap[0] = 0x00;	/* LIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
		cp.iac_lap[3] = 0x33;	/* GIAC */
		cp.iac_lap[4] = 0x8b;
		cp.iac_lap[5] = 0x9e;
	} else {
		/* General discoverable mode */
		cp.num_iac = 1;
		cp.iac_lap[0] = 0x33;	/* GIAC */
		cp.iac_lap[1] = 0x8b;
		cp.iac_lap[2] = 0x9e;
	}

	hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
		    (cp.num_iac * 3) + 1, &cp);
}

static int discoverable_update(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
		write_iac(req);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
	}

	/* Advertising instances don't use the global discoverable setting, so
	 * only update AD if advertising was enabled using Set Advertising.
	 */
2353
	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2354
		__hci_req_update_adv_data(req, 0x00);
2355

2356 2357 2358
		/* Discoverable mode affects the local advertising
		 * address in limited privacy mode.
		 */
2359 2360 2361 2362 2363 2364
		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
			if (ext_adv_capable(hdev))
				__hci_req_start_ext_adv(req, 0x00);
			else
				__hci_req_enable_advertising(req);
		}
2365 2366
	}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
	hci_dev_unlock(hdev);

	return 0;
}

static void discoverable_update_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discoverable_update);
	u8 status;

	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
	mgmt_set_discoverable_complete(hdev, status);
}

2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
		      u8 reason)
{
	switch (conn->state) {
	case BT_CONNECTED:
	case BT_CONFIG:
		if (conn->type == AMP_LINK) {
			struct hci_cp_disconn_phy_link cp;

			cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
			cp.reason = reason;
			hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
				    &cp);
		} else {
			struct hci_cp_disconnect dc;

			dc.handle = cpu_to_le16(conn->handle);
			dc.reason = reason;
			hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
		}

		conn->state = BT_DISCONN;

		break;
	case BT_CONNECT:
		if (conn->type == LE_LINK) {
			if (test_bit(HCI_CONN_SCANNING, &conn->flags))
				break;
			hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
				    0, NULL);
		} else if (conn->type == ACL_LINK) {
			if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
				break;
			hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
				    6, &conn->dst);
		}
		break;
	case BT_CONNECT2:
		if (conn->type == ACL_LINK) {
			struct hci_cp_reject_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);
			rej.reason = reason;

			hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
				    sizeof(rej), &rej);
		} else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
			struct hci_cp_reject_sync_conn_req rej;

			bacpy(&rej.bdaddr, &conn->dst);

			/* SCO rejection has its own limited set of
			 * allowed error values (0x0D-0x0F) which isn't
			 * compatible with most values passed to this
			 * function. To be safe hard-code one of the
			 * values that's suitable for SCO.
			 */
2439
			rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467

			hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
				    sizeof(rej), &rej);
		}
		break;
	default:
		conn->state = BT_CLOSED;
		break;
	}
}

static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
{
	if (status)
		BT_DBG("Failed to abort connection: status 0x%2.2x", status);
}

int hci_abort_conn(struct hci_conn *conn, u8 reason)
{
	struct hci_request req;
	int err;

	hci_req_init(&req, conn->hdev);

	__hci_abort_conn(&req, conn, reason);

	err = hci_req_run(&req, abort_conn_complete);
	if (err && err != -ENODATA) {
2468
		bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2469 2470 2471 2472 2473
		return err;
	}

	return 0;
}
2474

2475
static int update_bg_scan(struct hci_request *req, unsigned long opt)
2476 2477 2478 2479
{
	hci_dev_lock(req->hdev);
	__hci_update_background_scan(req);
	hci_dev_unlock(req->hdev);
2480
	return 0;
2481 2482 2483 2484 2485 2486
}

static void bg_scan_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    bg_scan_update);
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
	struct hci_conn *conn;
	u8 status;
	int err;

	err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
	if (!err)
		return;

	hci_dev_lock(hdev);

	conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
	if (conn)
		hci_le_conn_failed(conn, status);
2500

2501
	hci_dev_unlock(hdev);
2502 2503
}

2504
static int le_scan_disable(struct hci_request *req, unsigned long opt)
2505
{
2506 2507
	hci_req_add_le_scan_disable(req);
	return 0;
2508 2509
}

2510
static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2511
{
2512
	u8 length = opt;
2513 2514
	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2515 2516
	struct hci_cp_inquiry cp;

2517
	BT_DBG("%s", req->hdev->name);
2518

2519 2520 2521
	hci_dev_lock(req->hdev);
	hci_inquiry_cache_flush(req->hdev);
	hci_dev_unlock(req->hdev);
2522

2523
	memset(&cp, 0, sizeof(cp));
2524 2525 2526 2527 2528 2529

	if (req->hdev->discovery.limited)
		memcpy(&cp.lap, liac, sizeof(cp.lap));
	else
		memcpy(&cp.lap, giac, sizeof(cp.lap));

2530
	cp.length = length;
2531

2532
	hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2533

2534
	return 0;
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
}

static void le_scan_disable_work(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_disable.work);
	u8 status;

	BT_DBG("%s", hdev->name);

2545 2546 2547
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return;

2548 2549
	cancel_delayed_work(&hdev->le_scan_restart);

2550 2551
	hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
	if (status) {
2552 2553
		bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
			   status);
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
		return;
	}

	hdev->discovery.scan_start = 0;

	/* If we were running LE only scan, change discovery state. If
	 * we were running both LE and BR/EDR inquiry simultaneously,
	 * and BR/EDR inquiry is already finished, stop discovery,
	 * otherwise BR/EDR inquiry will stop discovery when finished.
	 * If we will resolve remote device name, do not change
	 * discovery state.
	 */

	if (hdev->discovery.type == DISCOV_TYPE_LE)
		goto discov_stopped;

	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2571 2572
		return;

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
		    hdev->discovery.state != DISCOVERY_RESOLVING)
			goto discov_stopped;

		return;
	}

	hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
		     HCI_CMD_TIMEOUT, &status);
	if (status) {
2584
		bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2585 2586 2587 2588 2589 2590 2591 2592 2593
		goto discov_stopped;
	}

	return;

discov_stopped:
	hci_dev_lock(hdev);
	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
	hci_dev_unlock(hdev);
2594 2595
}

2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
static int le_scan_restart(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;

	/* If controller is not scanning we are done. */
	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
		return 0;

	hci_req_add_le_scan_disable(req);

2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
	if (use_ext_scan(hdev)) {
		struct hci_cp_le_set_ext_scan_enable ext_enable_cp;

		memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
		ext_enable_cp.enable = LE_SCAN_ENABLE;
		ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;

		hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
			    sizeof(ext_enable_cp), &ext_enable_cp);
	} else {
		struct hci_cp_le_set_scan_enable cp;

		memset(&cp, 0, sizeof(cp));
		cp.enable = LE_SCAN_ENABLE;
		cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
		hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
	}
2623 2624 2625 2626 2627

	return 0;
}

static void le_scan_restart_work(struct work_struct *work)
2628
{
2629 2630
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    le_scan_restart.work);
2631
	unsigned long timeout, duration, scan_start, now;
2632
	u8 status;
2633 2634 2635

	BT_DBG("%s", hdev->name);

2636
	hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2637
	if (status) {
2638 2639
		bt_dev_err(hdev, "failed to restart LE scan: status %d",
			   status);
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
		return;
	}

	hci_dev_lock(hdev);

	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
	    !hdev->discovery.scan_start)
		goto unlock;

	/* When the scan was started, hdev->le_scan_disable has been queued
	 * after duration from scan_start. During scan restart this job
	 * has been canceled, and we need to queue it again after proper
	 * timeout, to make sure that scan does not run indefinitely.
	 */
	duration = hdev->discovery.scan_duration;
	scan_start = hdev->discovery.scan_start;
	now = jiffies;
	if (now - scan_start <= duration) {
		int elapsed;

		if (now >= scan_start)
			elapsed = now - scan_start;
		else
			elapsed = ULONG_MAX - scan_start + now;

		timeout = duration - elapsed;
	} else {
		timeout = 0;
	}

	queue_delayed_work(hdev->req_workqueue,
			   &hdev->le_scan_disable, timeout);

unlock:
	hci_dev_unlock(hdev);
}

2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
static int active_scan(struct hci_request *req, unsigned long opt)
{
	uint16_t interval = opt;
	struct hci_dev *hdev = req->hdev;
	u8 own_addr_type;
	int err;

	BT_DBG("%s", hdev->name);

	if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
		hci_dev_lock(hdev);

		/* Don't let discovery abort an outgoing connection attempt
		 * that's using directed advertising.
		 */
		if (hci_lookup_le_connect(hdev)) {
			hci_dev_unlock(hdev);
			return -EBUSY;
		}

		cancel_adv_timeout(hdev);
		hci_dev_unlock(hdev);

2700
		__hci_req_disable_advertising(req);
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
	}

	/* If controller is scanning, it means the background scanning is
	 * running. Thus, we should temporarily stop it in order to set the
	 * discovery scanning parameters.
	 */
	if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
		hci_req_add_le_scan_disable(req);

	/* All active scans will be done with either a resolvable private
	 * address (when privacy feature has been enabled) or non-resolvable
	 * private address.
	 */
2714 2715
	err = hci_update_random_address(req, true, scan_use_rpa(hdev),
					&own_addr_type);
2716 2717 2718
	if (err < 0)
		own_addr_type = ADDR_LE_DEV_PUBLIC;

2719 2720
	hci_req_start_scan(req, LE_SCAN_ACTIVE, interval, DISCOV_LE_SCAN_WIN,
			   own_addr_type, 0);
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
	return 0;
}

static int interleaved_discov(struct hci_request *req, unsigned long opt)
{
	int err;

	BT_DBG("%s", req->hdev->name);

	err = active_scan(req, opt);
	if (err)
		return err;

2734
	return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
}

static void start_discovery(struct hci_dev *hdev, u8 *status)
{
	unsigned long timeout;

	BT_DBG("%s type %u", hdev->name, hdev->discovery.type);

	switch (hdev->discovery.type) {
	case DISCOV_TYPE_BREDR:
		if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2746 2747
			hci_req_sync(hdev, bredr_inquiry,
				     DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
				     status);
		return;
	case DISCOV_TYPE_INTERLEAVED:
		/* When running simultaneous discovery, the LE scanning time
		 * should occupy the whole discovery time sine BR/EDR inquiry
		 * and LE scanning are scheduled by the controller.
		 *
		 * For interleaving discovery in comparison, BR/EDR inquiry
		 * and LE scanning are done sequentially with separate
		 * timeouts.
		 */
		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
			     &hdev->quirks)) {
			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
			/* During simultaneous discovery, we double LE scan
			 * interval. We must leave some time for the controller
			 * to do BR/EDR inquiry.
			 */
			hci_req_sync(hdev, interleaved_discov,
				     DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
				     status);
			break;
		}

		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
			     HCI_CMD_TIMEOUT, status);
		break;
	case DISCOV_TYPE_LE:
		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
		hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
			     HCI_CMD_TIMEOUT, status);
		break;
	default:
		*status = HCI_ERROR_UNSPECIFIED;
		return;
	}

	if (*status)
		return;

	BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));

	/* When service discovery is used and the controller has a
	 * strict duplicate filter, it is important to remember the
	 * start and duration of the scan. This is required for
	 * restarting scanning during the discovery phase.
	 */
	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
		     hdev->discovery.result_filtering) {
		hdev->discovery.scan_start = jiffies;
		hdev->discovery.scan_duration = timeout;
	}

	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
			   timeout);
}

2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
bool hci_req_stop_discovery(struct hci_request *req)
{
	struct hci_dev *hdev = req->hdev;
	struct discovery_state *d = &hdev->discovery;
	struct hci_cp_remote_name_req_cancel cp;
	struct inquiry_entry *e;
	bool ret = false;

	BT_DBG("%s state %u", hdev->name, hdev->discovery.state);

	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
		if (test_bit(HCI_INQUIRY, &hdev->flags))
			hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);

		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			cancel_delayed_work(&hdev->le_scan_disable);
			hci_req_add_le_scan_disable(req);
		}

		ret = true;
	} else {
		/* Passive scanning */
		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
			hci_req_add_le_scan_disable(req);
			ret = true;
		}
	}

	/* No further actions needed for LE-only discovery */
	if (d->type == DISCOV_TYPE_LE)
		return ret;

	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
						     NAME_PENDING);
		if (!e)
			return ret;

		bacpy(&cp.bdaddr, &e->data.bdaddr);
		hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
			    &cp);
		ret = true;
	}

	return ret;
}

static int stop_discovery(struct hci_request *req, unsigned long opt)
{
	hci_dev_lock(req->hdev);
	hci_req_stop_discovery(req);
	hci_dev_unlock(req->hdev);

	return 0;
}

2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
static void discov_update(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_update);
	u8 status = 0;

	switch (hdev->discovery.state) {
	case DISCOVERY_STARTING:
		start_discovery(hdev, &status);
		mgmt_start_discovery_complete(hdev, status);
		if (status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		else
			hci_discovery_set_state(hdev, DISCOVERY_FINDING);
		break;
2877 2878 2879 2880 2881 2882
	case DISCOVERY_STOPPING:
		hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
		mgmt_stop_discovery_complete(hdev, status);
		if (!status)
			hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
		break;
2883 2884 2885 2886 2887 2888
	case DISCOVERY_STOPPED:
	default:
		return;
	}
}

2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
static void discov_off(struct work_struct *work)
{
	struct hci_dev *hdev = container_of(work, struct hci_dev,
					    discov_off.work);

	BT_DBG("%s", hdev->name);

	hci_dev_lock(hdev);

	/* When discoverable timeout triggers, then just make sure
	 * the limited discoverable flag is cleared. Even in the case
	 * of a timeout triggered from general discoverable, it is
	 * safe to unconditionally clear the flag.
	 */
	hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
	hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
	hdev->discov_timeout = 0;

	hci_dev_unlock(hdev);

	hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
	mgmt_new_settings(hdev);
}

2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
static int powered_update_hci(struct hci_request *req, unsigned long opt)
{
	struct hci_dev *hdev = req->hdev;
	u8 link_sec;

	hci_dev_lock(hdev);

	if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
	    !lmp_host_ssp_capable(hdev)) {
		u8 mode = 0x01;

		hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);

		if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
			u8 support = 0x01;

			hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
				    sizeof(support), &support);
		}
	}

	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
	    lmp_bredr_capable(hdev)) {
		struct hci_cp_write_le_host_supported cp;

		cp.le = 0x01;
		cp.simul = 0x00;

		/* Check first if we already have the right
		 * host state (host features set)
		 */
		if (cp.le != lmp_host_le_capable(hdev) ||
		    cp.simul != lmp_host_le_br_capable(hdev))
			hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
				    sizeof(cp), &cp);
	}

2950
	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2951 2952 2953 2954
		/* Make sure the controller has a good default for
		 * advertising data. This also applies to the case
		 * where BR/EDR was toggled during the AUTO_OFF phase.
		 */
2955 2956
		if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
		    list_empty(&hdev->adv_instances)) {
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
			int err;

			if (ext_adv_capable(hdev)) {
				err = __hci_req_setup_ext_adv_instance(req,
								       0x00);
				if (!err)
					__hci_req_update_scan_rsp_data(req,
								       0x00);
			} else {
				err = 0;
				__hci_req_update_adv_data(req, 0x00);
				__hci_req_update_scan_rsp_data(req, 0x00);
			}
2970

2971
			if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2972
				if (!ext_adv_capable(hdev))
2973
					__hci_req_enable_advertising(req);
2974
				else if (!err)
2975 2976
					__hci_req_enable_ext_advertising(req,
									 0x00);
2977
			}
2978 2979
		} else if (!list_empty(&hdev->adv_instances)) {
			struct adv_info *adv_instance;
2980 2981 2982 2983

			adv_instance = list_first_entry(&hdev->adv_instances,
							struct adv_info, list);
			__hci_req_schedule_adv_instance(req,
2984
							adv_instance->instance,
2985
							true);
2986
		}
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
	}

	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
	if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
		hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
			    sizeof(link_sec), &link_sec);

	if (lmp_bredr_capable(hdev)) {
		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
			__hci_req_write_fast_connectable(req, true);
		else
			__hci_req_write_fast_connectable(req, false);
		__hci_req_update_scan(req);
		__hci_req_update_class(req);
		__hci_req_update_name(req);
		__hci_req_update_eir(req);
	}

	hci_dev_unlock(hdev);
	return 0;
}

int __hci_req_hci_power_on(struct hci_dev *hdev)
{
	/* Register the available SMP channels (BR/EDR and LE) only when
	 * successfully powering on the controller. This late
	 * registration is required so that LE SMP can clearly decide if
	 * the public address or static address is used.
	 */
	smp_register(hdev);

	return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
			      NULL);
}

3022 3023
void hci_request_setup(struct hci_dev *hdev)
{
3024
	INIT_WORK(&hdev->discov_update, discov_update);
3025
	INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
3026
	INIT_WORK(&hdev->scan_update, scan_update_work);
3027
	INIT_WORK(&hdev->connectable_update, connectable_update_work);
3028
	INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
3029
	INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
3030 3031
	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
3032
	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
3033 3034 3035 3036
}

void hci_request_cancel_all(struct hci_dev *hdev)
{
3037 3038
	hci_req_sync_cancel(hdev, ENODEV);

3039
	cancel_work_sync(&hdev->discov_update);
3040
	cancel_work_sync(&hdev->bg_scan_update);
3041
	cancel_work_sync(&hdev->scan_update);
3042
	cancel_work_sync(&hdev->connectable_update);
3043
	cancel_work_sync(&hdev->discoverable_update);
3044
	cancel_delayed_work_sync(&hdev->discov_off);
3045 3046
	cancel_delayed_work_sync(&hdev->le_scan_disable);
	cancel_delayed_work_sync(&hdev->le_scan_restart);
3047 3048 3049 3050 3051

	if (hdev->adv_instance_timeout) {
		cancel_delayed_work_sync(&hdev->adv_instance_expire);
		hdev->adv_instance_timeout = 0;
	}
3052
}