scrub.c 116.0 KB
Newer Older
A
Arne Jansen 已提交
1
/*
2
 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
A
Arne Jansen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License v2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/blkdev.h>
20
#include <linux/ratelimit.h>
A
Arne Jansen 已提交
21 22 23 24
#include "ctree.h"
#include "volumes.h"
#include "disk-io.h"
#include "ordered-data.h"
25
#include "transaction.h"
26
#include "backref.h"
27
#include "extent_io.h"
28
#include "dev-replace.h"
29
#include "check-integrity.h"
30
#include "rcu-string.h"
D
David Woodhouse 已提交
31
#include "raid56.h"
A
Arne Jansen 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45

/*
 * This is only the first step towards a full-features scrub. It reads all
 * extent and super block and verifies the checksums. In case a bad checksum
 * is found or the extent cannot be read, good data will be written back if
 * any can be found.
 *
 * Future enhancements:
 *  - In case an unrepairable extent is encountered, track which files are
 *    affected and report them
 *  - track and record media errors, throw out bad devices
 *  - add a mode to also read unallocated space
 */

46
struct scrub_block;
47
struct scrub_ctx;
A
Arne Jansen 已提交
48

49 50 51 52 53 54 55 56 57
/*
 * the following three values only influence the performance.
 * The last one configures the number of parallel and outstanding I/O
 * operations. The first two values configure an upper limit for the number
 * of (dynamically allocated) pages that are added to a bio.
 */
#define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
#define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
#define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
58 59 60 61 62 63

/*
 * the following value times PAGE_SIZE needs to be large enough to match the
 * largest node/leaf/sector size that shall be supported.
 * Values larger than BTRFS_STRIPE_LEN are not supported.
 */
64
#define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
A
Arne Jansen 已提交
65

66 67 68 69 70 71
struct scrub_recover {
	atomic_t		refs;
	struct btrfs_bio	*bbio;
	u64			map_length;
};

A
Arne Jansen 已提交
72
struct scrub_page {
73 74
	struct scrub_block	*sblock;
	struct page		*page;
75
	struct btrfs_device	*dev;
76
	struct list_head	list;
A
Arne Jansen 已提交
77 78
	u64			flags;  /* extent flags */
	u64			generation;
79 80
	u64			logical;
	u64			physical;
81
	u64			physical_for_dev_replace;
82
	atomic_t		refs;
83 84 85 86 87
	struct {
		unsigned int	mirror_num:8;
		unsigned int	have_csum:1;
		unsigned int	io_error:1;
	};
A
Arne Jansen 已提交
88
	u8			csum[BTRFS_CSUM_SIZE];
89 90

	struct scrub_recover	*recover;
A
Arne Jansen 已提交
91 92 93 94
};

struct scrub_bio {
	int			index;
95
	struct scrub_ctx	*sctx;
96
	struct btrfs_device	*dev;
A
Arne Jansen 已提交
97 98 99 100
	struct bio		*bio;
	int			err;
	u64			logical;
	u64			physical;
101 102 103 104 105
#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
#else
	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
#endif
106
	int			page_count;
A
Arne Jansen 已提交
107 108 109 110
	int			next_free;
	struct btrfs_work	work;
};

111
struct scrub_block {
112
	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
113 114
	int			page_count;
	atomic_t		outstanding_pages;
115
	atomic_t		refs; /* free mem on transition to zero */
116
	struct scrub_ctx	*sctx;
117
	struct scrub_parity	*sparity;
118 119 120 121
	struct {
		unsigned int	header_error:1;
		unsigned int	checksum_error:1;
		unsigned int	no_io_error_seen:1;
122
		unsigned int	generation_error:1; /* also sets header_error */
123 124 125 126

		/* The following is for the data used to check parity */
		/* It is for the data with checksum */
		unsigned int	data_corrected:1;
127
	};
128
	struct btrfs_work	work;
129 130
};

131 132 133 134 135 136 137 138 139 140 141 142 143 144
/* Used for the chunks with parity stripe such RAID5/6 */
struct scrub_parity {
	struct scrub_ctx	*sctx;

	struct btrfs_device	*scrub_dev;

	u64			logic_start;

	u64			logic_end;

	int			nsectors;

	int			stripe_len;

145
	atomic_t		refs;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

	struct list_head	spages;

	/* Work of parity check and repair */
	struct btrfs_work	work;

	/* Mark the parity blocks which have data */
	unsigned long		*dbitmap;

	/*
	 * Mark the parity blocks which have data, but errors happen when
	 * read data or check data
	 */
	unsigned long		*ebitmap;

	unsigned long		bitmap[0];
};

164 165 166 167 168 169 170 171
struct scrub_wr_ctx {
	struct scrub_bio *wr_curr_bio;
	struct btrfs_device *tgtdev;
	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
	atomic_t flush_all_writes;
	struct mutex wr_lock;
};

172
struct scrub_ctx {
173
	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
174
	struct btrfs_root	*dev_root;
A
Arne Jansen 已提交
175 176
	int			first_free;
	int			curr;
177 178
	atomic_t		bios_in_flight;
	atomic_t		workers_pending;
A
Arne Jansen 已提交
179 180 181 182 183
	spinlock_t		list_lock;
	wait_queue_head_t	list_wait;
	u16			csum_size;
	struct list_head	csum_list;
	atomic_t		cancel_req;
A
Arne Jansen 已提交
184
	int			readonly;
185
	int			pages_per_rd_bio;
186 187
	u32			sectorsize;
	u32			nodesize;
188 189

	int			is_dev_replace;
190
	struct scrub_wr_ctx	wr_ctx;
191

A
Arne Jansen 已提交
192 193 194 195 196
	/*
	 * statistics
	 */
	struct btrfs_scrub_progress stat;
	spinlock_t		stat_lock;
197 198 199 200 201 202 203 204 205

	/*
	 * Use a ref counter to avoid use-after-free issues. Scrub workers
	 * decrement bios_in_flight and workers_pending and then do a wakeup
	 * on the list_wait wait queue. We must ensure the main scrub task
	 * doesn't free the scrub context before or while the workers are
	 * doing the wakeup() call.
	 */
	atomic_t                refs;
A
Arne Jansen 已提交
206 207
};

208
struct scrub_fixup_nodatasum {
209
	struct scrub_ctx	*sctx;
210
	struct btrfs_device	*dev;
211 212 213 214 215 216
	u64			logical;
	struct btrfs_root	*root;
	struct btrfs_work	work;
	int			mirror_num;
};

217 218 219 220 221 222 223
struct scrub_nocow_inode {
	u64			inum;
	u64			offset;
	u64			root;
	struct list_head	list;
};

224 225 226 227 228 229
struct scrub_copy_nocow_ctx {
	struct scrub_ctx	*sctx;
	u64			logical;
	u64			len;
	int			mirror_num;
	u64			physical_for_dev_replace;
230
	struct list_head	inodes;
231 232 233
	struct btrfs_work	work;
};

234 235 236 237 238 239 240 241 242
struct scrub_warning {
	struct btrfs_path	*path;
	u64			extent_item_size;
	const char		*errstr;
	sector_t		sector;
	u64			logical;
	struct btrfs_device	*dev;
};

243 244 245 246
static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
247
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
248
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
249
				     struct scrub_block *sblocks_for_recheck);
250
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
251 252
				struct scrub_block *sblock,
				int retry_failed_mirror);
253
static void scrub_recheck_block_checksum(struct scrub_block *sblock);
254
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
255
					     struct scrub_block *sblock_good);
256 257 258
static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write);
259 260 261
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num);
262 263 264 265 266
static int scrub_checksum_data(struct scrub_block *sblock);
static int scrub_checksum_tree_block(struct scrub_block *sblock);
static int scrub_checksum_super(struct scrub_block *sblock);
static void scrub_block_get(struct scrub_block *sblock);
static void scrub_block_put(struct scrub_block *sblock);
267 268
static void scrub_page_get(struct scrub_page *spage);
static void scrub_page_put(struct scrub_page *spage);
269 270
static void scrub_parity_get(struct scrub_parity *sparity);
static void scrub_parity_put(struct scrub_parity *sparity);
271 272
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
273
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
274
		       u64 physical, struct btrfs_device *dev, u64 flags,
275 276
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace);
277
static void scrub_bio_end_io(struct bio *bio);
278 279
static void scrub_bio_end_io_worker(struct btrfs_work *work);
static void scrub_block_complete(struct scrub_block *sblock);
280 281 282 283 284 285 286 287 288 289 290 291 292 293
static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num);
static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace);
static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage);
static void scrub_wr_submit(struct scrub_ctx *sctx);
294
static void scrub_wr_bio_end_io(struct bio *bio);
295 296 297 298
static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page);
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
299
				      struct scrub_copy_nocow_ctx *ctx);
300 301 302
static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace);
static void copy_nocow_pages_worker(struct btrfs_work *work);
303
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
304
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
305
static void scrub_put_ctx(struct scrub_ctx *sctx);
S
Stefan Behrens 已提交
306 307


308 309
static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
{
310
	atomic_inc(&sctx->refs);
311 312 313 314 315 316 317
	atomic_inc(&sctx->bios_in_flight);
}

static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
{
	atomic_dec(&sctx->bios_in_flight);
	wake_up(&sctx->list_wait);
318
	scrub_put_ctx(sctx);
319 320
}

321
static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
322 323 324 325 326 327 328 329 330
{
	while (atomic_read(&fs_info->scrub_pause_req)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
		   atomic_read(&fs_info->scrub_pause_req) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
}

331
static void scrub_pause_on(struct btrfs_fs_info *fs_info)
332 333 334
{
	atomic_inc(&fs_info->scrubs_paused);
	wake_up(&fs_info->scrub_pause_wait);
335
}
336

337 338
static void scrub_pause_off(struct btrfs_fs_info *fs_info)
{
339 340 341 342 343 344 345 346
	mutex_lock(&fs_info->scrub_lock);
	__scrub_blocked_if_needed(fs_info);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);

	wake_up(&fs_info->scrub_pause_wait);
}

347 348 349 350 351 352
static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
{
	scrub_pause_on(fs_info);
	scrub_pause_off(fs_info);
}

353 354 355 356 357 358 359 360
/*
 * used for workers that require transaction commits (i.e., for the
 * NOCOW case)
 */
static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

361
	atomic_inc(&sctx->refs);
362 363 364 365 366 367 368 369 370 371 372 373 374
	/*
	 * increment scrubs_running to prevent cancel requests from
	 * completing as long as a worker is running. we must also
	 * increment scrubs_paused to prevent deadlocking on pause
	 * requests used for transactions commits (as the worker uses a
	 * transaction context). it is safe to regard the worker
	 * as paused for all matters practical. effectively, we only
	 * avoid cancellation requests from completing.
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrubs_running);
	atomic_inc(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
375 376 377 378 379 380 381 382 383 384

	/*
	 * check if @scrubs_running=@scrubs_paused condition
	 * inside wait_event() is not an atomic operation.
	 * which means we may inc/dec @scrub_running/paused
	 * at any time. Let's wake up @scrub_pause_wait as
	 * much as we can to let commit transaction blocked less.
	 */
	wake_up(&fs_info->scrub_pause_wait);

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
	atomic_inc(&sctx->workers_pending);
}

/* used for workers that require transaction commits */
static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	/*
	 * see scrub_pending_trans_workers_inc() why we're pretending
	 * to be paused in the scrub counters
	 */
	mutex_lock(&fs_info->scrub_lock);
	atomic_dec(&fs_info->scrubs_running);
	atomic_dec(&fs_info->scrubs_paused);
	mutex_unlock(&fs_info->scrub_lock);
	atomic_dec(&sctx->workers_pending);
	wake_up(&fs_info->scrub_pause_wait);
	wake_up(&sctx->list_wait);
404
	scrub_put_ctx(sctx);
405 406
}

407
static void scrub_free_csums(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
408
{
409
	while (!list_empty(&sctx->csum_list)) {
A
Arne Jansen 已提交
410
		struct btrfs_ordered_sum *sum;
411
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
412 413 414 415 416 417
				       struct btrfs_ordered_sum, list);
		list_del(&sum->list);
		kfree(sum);
	}
}

418
static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
419 420 421
{
	int i;

422
	if (!sctx)
A
Arne Jansen 已提交
423 424
		return;

425 426
	scrub_free_wr_ctx(&sctx->wr_ctx);

427
	/* this can happen when scrub is cancelled */
428 429
	if (sctx->curr != -1) {
		struct scrub_bio *sbio = sctx->bios[sctx->curr];
430 431

		for (i = 0; i < sbio->page_count; i++) {
432
			WARN_ON(!sbio->pagev[i]->page);
433 434 435 436 437
			scrub_block_put(sbio->pagev[i]->sblock);
		}
		bio_put(sbio->bio);
	}

438
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
439
		struct scrub_bio *sbio = sctx->bios[i];
A
Arne Jansen 已提交
440 441 442 443 444 445

		if (!sbio)
			break;
		kfree(sbio);
	}

446 447
	scrub_free_csums(sctx);
	kfree(sctx);
A
Arne Jansen 已提交
448 449
}

450 451 452 453 454 455
static void scrub_put_ctx(struct scrub_ctx *sctx)
{
	if (atomic_dec_and_test(&sctx->refs))
		scrub_free_ctx(sctx);
}

A
Arne Jansen 已提交
456
static noinline_for_stack
457
struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
A
Arne Jansen 已提交
458
{
459
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
460 461
	int		i;
	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
462
	int ret;
A
Arne Jansen 已提交
463

464
	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
465
	if (!sctx)
A
Arne Jansen 已提交
466
		goto nomem;
467
	atomic_set(&sctx->refs, 1);
468
	sctx->is_dev_replace = is_dev_replace;
469
	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
470
	sctx->curr = -1;
471
	sctx->dev_root = dev->dev_root;
472
	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
A
Arne Jansen 已提交
473 474
		struct scrub_bio *sbio;

475
		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
A
Arne Jansen 已提交
476 477
		if (!sbio)
			goto nomem;
478
		sctx->bios[i] = sbio;
A
Arne Jansen 已提交
479 480

		sbio->index = i;
481
		sbio->sctx = sctx;
482
		sbio->page_count = 0;
483 484
		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
				scrub_bio_end_io_worker, NULL, NULL);
A
Arne Jansen 已提交
485

486
		if (i != SCRUB_BIOS_PER_SCTX - 1)
487
			sctx->bios[i]->next_free = i + 1;
488
		else
489 490 491 492 493
			sctx->bios[i]->next_free = -1;
	}
	sctx->first_free = 0;
	sctx->nodesize = dev->dev_root->nodesize;
	sctx->sectorsize = dev->dev_root->sectorsize;
494 495
	atomic_set(&sctx->bios_in_flight, 0);
	atomic_set(&sctx->workers_pending, 0);
496 497 498 499 500 501 502
	atomic_set(&sctx->cancel_req, 0);
	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
	INIT_LIST_HEAD(&sctx->csum_list);

	spin_lock_init(&sctx->list_lock);
	spin_lock_init(&sctx->stat_lock);
	init_waitqueue_head(&sctx->list_wait);
503 504 505 506 507 508 509

	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
				 fs_info->dev_replace.tgtdev, is_dev_replace);
	if (ret) {
		scrub_free_ctx(sctx);
		return ERR_PTR(ret);
	}
510
	return sctx;
A
Arne Jansen 已提交
511 512

nomem:
513
	scrub_free_ctx(sctx);
A
Arne Jansen 已提交
514 515 516
	return ERR_PTR(-ENOMEM);
}

517 518
static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
				     void *warn_ctx)
519 520 521 522 523 524 525
{
	u64 isize;
	u32 nlink;
	int ret;
	int i;
	struct extent_buffer *eb;
	struct btrfs_inode_item *inode_item;
526
	struct scrub_warning *swarn = warn_ctx;
527 528 529 530
	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
	struct inode_fs_paths *ipath = NULL;
	struct btrfs_root *local_root;
	struct btrfs_key root_key;
531
	struct btrfs_key key;
532 533 534 535 536 537 538 539 540 541

	root_key.objectid = root;
	root_key.type = BTRFS_ROOT_ITEM_KEY;
	root_key.offset = (u64)-1;
	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
	if (IS_ERR(local_root)) {
		ret = PTR_ERR(local_root);
		goto err;
	}

542 543 544
	/*
	 * this makes the path point to (inum INODE_ITEM ioff)
	 */
545 546 547 548 549
	key.objectid = inum;
	key.type = BTRFS_INODE_ITEM_KEY;
	key.offset = 0;

	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
550 551 552 553 554 555 556 557 558 559 560 561 562
	if (ret) {
		btrfs_release_path(swarn->path);
		goto err;
	}

	eb = swarn->path->nodes[0];
	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
					struct btrfs_inode_item);
	isize = btrfs_inode_size(eb, inode_item);
	nlink = btrfs_inode_nlink(eb, inode_item);
	btrfs_release_path(swarn->path);

	ipath = init_ipath(4096, local_root, swarn->path);
563 564 565 566 567
	if (IS_ERR(ipath)) {
		ret = PTR_ERR(ipath);
		ipath = NULL;
		goto err;
	}
568 569 570 571 572 573 574 575 576 577
	ret = paths_from_inode(inum, ipath);

	if (ret < 0)
		goto err;

	/*
	 * we deliberately ignore the bit ipath might have been too small to
	 * hold all of the paths here
	 */
	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
578
		btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev "
579
			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
580
			"length %llu, links %u (path: %s)", swarn->errstr,
581
			swarn->logical, rcu_str_deref(swarn->dev->name),
582 583
			(unsigned long long)swarn->sector, root, inum, offset,
			min(isize - offset, (u64)PAGE_SIZE), nlink,
584
			(char *)(unsigned long)ipath->fspath->val[i]);
585 586 587 588 589

	free_ipath(ipath);
	return 0;

err:
590
	btrfs_warn_in_rcu(fs_info, "%s at logical %llu on dev "
591
		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
592
		"resolving failed with ret=%d", swarn->errstr,
593
		swarn->logical, rcu_str_deref(swarn->dev->name),
594 595 596 597 598 599
		(unsigned long long)swarn->sector, root, inum, offset, ret);

	free_ipath(ipath);
	return 0;
}

600
static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
601
{
602 603
	struct btrfs_device *dev;
	struct btrfs_fs_info *fs_info;
604 605 606 607 608
	struct btrfs_path *path;
	struct btrfs_key found_key;
	struct extent_buffer *eb;
	struct btrfs_extent_item *ei;
	struct scrub_warning swarn;
609 610 611
	unsigned long ptr = 0;
	u64 extent_item_pos;
	u64 flags = 0;
612
	u64 ref_root;
613
	u32 item_size;
614
	u8 ref_level = 0;
615
	int ret;
616

617
	WARN_ON(sblock->page_count < 1);
618
	dev = sblock->pagev[0]->dev;
619 620
	fs_info = sblock->sctx->dev_root->fs_info;

621
	path = btrfs_alloc_path();
622 623
	if (!path)
		return;
624

625 626
	swarn.sector = (sblock->pagev[0]->physical) >> 9;
	swarn.logical = sblock->pagev[0]->logical;
627
	swarn.errstr = errstr;
628
	swarn.dev = NULL;
629

630 631
	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
				  &flags);
632 633 634
	if (ret < 0)
		goto out;

J
Jan Schmidt 已提交
635
	extent_item_pos = swarn.logical - found_key.objectid;
636 637 638 639 640 641
	swarn.extent_item_size = found_key.offset;

	eb = path->nodes[0];
	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
	item_size = btrfs_item_size_nr(eb, path->slots[0]);

642
	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
643
		do {
644 645 646
			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
						      item_size, &ref_root,
						      &ref_level);
647 648
			btrfs_warn_in_rcu(fs_info,
				"%s at logical %llu on dev %s, "
649
				"sector %llu: metadata %s (level %d) in tree "
650
				"%llu", errstr, swarn.logical,
651
				rcu_str_deref(dev->name),
652 653 654 655 656
				(unsigned long long)swarn.sector,
				ref_level ? "node" : "leaf",
				ret < 0 ? -1 : ref_level,
				ret < 0 ? -1 : ref_root);
		} while (ret != 1);
657
		btrfs_release_path(path);
658
	} else {
659
		btrfs_release_path(path);
660
		swarn.path = path;
661
		swarn.dev = dev;
662 663
		iterate_extent_inodes(fs_info, found_key.objectid,
					extent_item_pos, 1,
664 665 666 667 668 669 670
					scrub_print_warning_inode, &swarn);
	}

out:
	btrfs_free_path(path);
}

671
static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
672
{
673
	struct page *page = NULL;
674
	unsigned long index;
675
	struct scrub_fixup_nodatasum *fixup = fixup_ctx;
676
	int ret;
677
	int corrected = 0;
678
	struct btrfs_key key;
679
	struct inode *inode = NULL;
680
	struct btrfs_fs_info *fs_info;
681 682
	u64 end = offset + PAGE_SIZE - 1;
	struct btrfs_root *local_root;
683
	int srcu_index;
684 685 686 687

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
688 689 690 691 692 693 694

	fs_info = fixup->root->fs_info;
	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
695
		return PTR_ERR(local_root);
696
	}
697 698 699 700

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
701 702
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
703 704 705
	if (IS_ERR(inode))
		return PTR_ERR(inode);

706
	index = offset >> PAGE_SHIFT;
707 708

	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
	if (!page) {
		ret = -ENOMEM;
		goto out;
	}

	if (PageUptodate(page)) {
		if (PageDirty(page)) {
			/*
			 * we need to write the data to the defect sector. the
			 * data that was in that sector is not in memory,
			 * because the page was modified. we must not write the
			 * modified page to that sector.
			 *
			 * TODO: what could be done here: wait for the delalloc
			 *       runner to write out that page (might involve
			 *       COW) and see whether the sector is still
			 *       referenced afterwards.
			 *
			 * For the meantime, we'll treat this error
			 * incorrectable, although there is a chance that a
			 * later scrub will find the bad sector again and that
			 * there's no dirty page in memory, then.
			 */
			ret = -EIO;
			goto out;
		}
735
		ret = repair_io_failure(inode, offset, PAGE_SIZE,
736
					fixup->logical, page,
737
					offset - page_offset(page),
738 739 740 741 742 743 744 745 746 747
					fixup->mirror_num);
		unlock_page(page);
		corrected = !ret;
	} else {
		/*
		 * we need to get good data first. the general readpage path
		 * will call repair_io_failure for us, we just have to make
		 * sure we read the bad mirror.
		 */
		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
748
					EXTENT_DAMAGED);
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
		if (ret) {
			/* set_extent_bits should give proper error */
			WARN_ON(ret > 0);
			if (ret > 0)
				ret = -EFAULT;
			goto out;
		}

		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
						btrfs_get_extent,
						fixup->mirror_num);
		wait_on_page_locked(page);

		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
						end, EXTENT_DAMAGED, 0, NULL);
		if (!corrected)
			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
766
						EXTENT_DAMAGED);
767 768 769 770 771
	}

out:
	if (page)
		put_page(page);
772 773

	iput(inode);
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792

	if (ret < 0)
		return ret;

	if (ret == 0 && corrected) {
		/*
		 * we only need to call readpage for one of the inodes belonging
		 * to this extent. so make iterate_extent_inodes stop
		 */
		return 1;
	}

	return -EIO;
}

static void scrub_fixup_nodatasum(struct btrfs_work *work)
{
	int ret;
	struct scrub_fixup_nodatasum *fixup;
793
	struct scrub_ctx *sctx;
794 795 796 797 798
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_path *path;
	int uncorrectable = 0;

	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
799
	sctx = fixup->sctx;
800 801 802

	path = btrfs_alloc_path();
	if (!path) {
803 804 805
		spin_lock(&sctx->stat_lock);
		++sctx->stat.malloc_errors;
		spin_unlock(&sctx->stat_lock);
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
		uncorrectable = 1;
		goto out;
	}

	trans = btrfs_join_transaction(fixup->root);
	if (IS_ERR(trans)) {
		uncorrectable = 1;
		goto out;
	}

	/*
	 * the idea is to trigger a regular read through the standard path. we
	 * read a page from the (failed) logical address by specifying the
	 * corresponding copynum of the failed sector. thus, that readpage is
	 * expected to fail.
	 * that is the point where on-the-fly error correction will kick in
	 * (once it's finished) and rewrite the failed sector if a good copy
	 * can be found.
	 */
	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
						path, scrub_fixup_readpage,
						fixup);
	if (ret < 0) {
		uncorrectable = 1;
		goto out;
	}
	WARN_ON(ret != 1);

834 835 836
	spin_lock(&sctx->stat_lock);
	++sctx->stat.corrected_errors;
	spin_unlock(&sctx->stat_lock);
837 838 839 840 841

out:
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, fixup->root);
	if (uncorrectable) {
842 843 844
		spin_lock(&sctx->stat_lock);
		++sctx->stat.uncorrectable_errors;
		spin_unlock(&sctx->stat_lock);
845 846 847
		btrfs_dev_replace_stats_inc(
			&sctx->dev_root->fs_info->dev_replace.
			num_uncorrectable_read_errors);
848 849
		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
		    "unable to fixup (nodatasum) error at logical %llu on dev %s",
850
			fixup->logical, rcu_str_deref(fixup->dev->name));
851 852 853 854 855
	}

	btrfs_free_path(path);
	kfree(fixup);

856
	scrub_pending_trans_workers_dec(sctx);
857 858
}

859 860 861 862 863 864 865 866
static inline void scrub_get_recover(struct scrub_recover *recover)
{
	atomic_inc(&recover->refs);
}

static inline void scrub_put_recover(struct scrub_recover *recover)
{
	if (atomic_dec_and_test(&recover->refs)) {
867
		btrfs_put_bbio(recover->bbio);
868 869 870 871
		kfree(recover);
	}
}

A
Arne Jansen 已提交
872
/*
873 874 875 876 877 878
 * scrub_handle_errored_block gets called when either verification of the
 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 * case, this function handles all pages in the bio, even though only one
 * may be bad.
 * The goal of this function is to repair the errored block by using the
 * contents of one of the mirrors.
A
Arne Jansen 已提交
879
 */
880
static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
A
Arne Jansen 已提交
881
{
882
	struct scrub_ctx *sctx = sblock_to_check->sctx;
883
	struct btrfs_device *dev;
884 885 886 887 888 889 890 891 892 893 894 895
	struct btrfs_fs_info *fs_info;
	u64 length;
	u64 logical;
	unsigned int failed_mirror_index;
	unsigned int is_metadata;
	unsigned int have_csum;
	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
	struct scrub_block *sblock_bad;
	int ret;
	int mirror_index;
	int page_num;
	int success;
896
	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
897 898 899
				      DEFAULT_RATELIMIT_BURST);

	BUG_ON(sblock_to_check->page_count < 1);
900
	fs_info = sctx->dev_root->fs_info;
901 902 903 904 905 906 907 908 909 910 911
	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
		return 0;
	}
912
	length = sblock_to_check->page_count * PAGE_SIZE;
913 914 915 916
	logical = sblock_to_check->pagev[0]->logical;
	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
	is_metadata = !(sblock_to_check->pagev[0]->flags &
917
			BTRFS_EXTENT_FLAG_DATA);
918 919
	have_csum = sblock_to_check->pagev[0]->have_csum;
	dev = sblock_to_check->pagev[0]->dev;
920

921 922 923 924 925
	if (sctx->is_dev_replace && !is_metadata && !have_csum) {
		sblocks_for_recheck = NULL;
		goto nodatasum_case;
	}

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
	/*
	 * read all mirrors one after the other. This includes to
	 * re-read the extent or metadata block that failed (that was
	 * the cause that this fixup code is called) another time,
	 * page by page this time in order to know which pages
	 * caused I/O errors and which ones are good (for all mirrors).
	 * It is the goal to handle the situation when more than one
	 * mirror contains I/O errors, but the errors do not
	 * overlap, i.e. the data can be repaired by selecting the
	 * pages from those mirrors without I/O error on the
	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
	 * would be that mirror #1 has an I/O error on the first page,
	 * the second page is good, and mirror #2 has an I/O error on
	 * the second page, but the first page is good.
	 * Then the first page of the first mirror can be repaired by
	 * taking the first page of the second mirror, and the
	 * second page of the second mirror can be repaired by
	 * copying the contents of the 2nd page of the 1st mirror.
	 * One more note: if the pages of one mirror contain I/O
	 * errors, the checksum cannot be verified. In order to get
	 * the best data for repairing, the first attempt is to find
	 * a mirror without I/O errors and with a validated checksum.
	 * Only if this is not possible, the pages are picked from
	 * mirrors with I/O errors without considering the checksum.
	 * If the latter is the case, at the end, the checksum of the
	 * repaired area is verified in order to correctly maintain
	 * the statistics.
	 */

955 956
	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
				      sizeof(*sblocks_for_recheck), GFP_NOFS);
957
	if (!sblocks_for_recheck) {
958 959 960 961 962
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
963
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
964
		goto out;
A
Arne Jansen 已提交
965 966
	}

967
	/* setup the context, map the logical blocks and alloc the pages */
968
	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
969
	if (ret) {
970 971 972 973
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
974
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
975 976 977 978
		goto out;
	}
	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
	sblock_bad = sblocks_for_recheck + failed_mirror_index;
979

980
	/* build and submit the bios for the failed mirror, check checksums */
981
	scrub_recheck_block(fs_info, sblock_bad, 1);
A
Arne Jansen 已提交
982

983 984 985 986 987 988 989 990 991 992
	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
	    sblock_bad->no_io_error_seen) {
		/*
		 * the error disappeared after reading page by page, or
		 * the area was part of a huge bio and other parts of the
		 * bio caused I/O errors, or the block layer merged several
		 * read requests into one and the error is caused by a
		 * different bio (usually one of the two latter cases is
		 * the cause)
		 */
993 994
		spin_lock(&sctx->stat_lock);
		sctx->stat.unverified_errors++;
995
		sblock_to_check->data_corrected = 1;
996
		spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
997

998 999
		if (sctx->is_dev_replace)
			scrub_write_block_to_dev_replace(sblock_bad);
1000
		goto out;
A
Arne Jansen 已提交
1001 1002
	}

1003
	if (!sblock_bad->no_io_error_seen) {
1004 1005 1006
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
1007 1008
		if (__ratelimit(&_rs))
			scrub_print_warning("i/o error", sblock_to_check);
1009
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1010
	} else if (sblock_bad->checksum_error) {
1011 1012 1013
		spin_lock(&sctx->stat_lock);
		sctx->stat.csum_errors++;
		spin_unlock(&sctx->stat_lock);
1014 1015
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum error", sblock_to_check);
1016
		btrfs_dev_stat_inc_and_print(dev,
1017
					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1018
	} else if (sblock_bad->header_error) {
1019 1020 1021
		spin_lock(&sctx->stat_lock);
		sctx->stat.verify_errors++;
		spin_unlock(&sctx->stat_lock);
1022 1023 1024
		if (__ratelimit(&_rs))
			scrub_print_warning("checksum/header error",
					    sblock_to_check);
1025
		if (sblock_bad->generation_error)
1026
			btrfs_dev_stat_inc_and_print(dev,
1027 1028
				BTRFS_DEV_STAT_GENERATION_ERRS);
		else
1029
			btrfs_dev_stat_inc_and_print(dev,
1030
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1031
	}
A
Arne Jansen 已提交
1032

1033 1034 1035 1036
	if (sctx->readonly) {
		ASSERT(!sctx->is_dev_replace);
		goto out;
	}
A
Arne Jansen 已提交
1037

1038 1039
	if (!is_metadata && !have_csum) {
		struct scrub_fixup_nodatasum *fixup_nodatasum;
A
Arne Jansen 已提交
1040

1041 1042
		WARN_ON(sctx->is_dev_replace);

1043 1044
nodatasum_case:

1045 1046
		/*
		 * !is_metadata and !have_csum, this means that the data
1047
		 * might not be COWed, that it might be modified
1048 1049 1050 1051 1052 1053 1054
		 * concurrently. The general strategy to work on the
		 * commit root does not help in the case when COW is not
		 * used.
		 */
		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
		if (!fixup_nodatasum)
			goto did_not_correct_error;
1055
		fixup_nodatasum->sctx = sctx;
1056
		fixup_nodatasum->dev = dev;
1057 1058 1059
		fixup_nodatasum->logical = logical;
		fixup_nodatasum->root = fs_info->extent_root;
		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
1060
		scrub_pending_trans_workers_inc(sctx);
1061 1062
		btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
				scrub_fixup_nodatasum, NULL, NULL);
1063 1064
		btrfs_queue_work(fs_info->scrub_workers,
				 &fixup_nodatasum->work);
1065
		goto out;
A
Arne Jansen 已提交
1066 1067
	}

1068 1069
	/*
	 * now build and submit the bios for the other mirrors, check
1070 1071
	 * checksums.
	 * First try to pick the mirror which is completely without I/O
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
	 * errors and also does not have a checksum error.
	 * If one is found, and if a checksum is present, the full block
	 * that is known to contain an error is rewritten. Afterwards
	 * the block is known to be corrected.
	 * If a mirror is found which is completely correct, and no
	 * checksum is present, only those pages are rewritten that had
	 * an I/O error in the block to be repaired, since it cannot be
	 * determined, which copy of the other pages is better (and it
	 * could happen otherwise that a correct page would be
	 * overwritten by a bad one).
	 */
	for (mirror_index = 0;
	     mirror_index < BTRFS_MAX_MIRRORS &&
	     sblocks_for_recheck[mirror_index].page_count > 0;
	     mirror_index++) {
1087
		struct scrub_block *sblock_other;
1088

1089 1090 1091 1092 1093
		if (mirror_index == failed_mirror_index)
			continue;
		sblock_other = sblocks_for_recheck + mirror_index;

		/* build and submit the bios, check checksums */
1094
		scrub_recheck_block(fs_info, sblock_other, 0);
1095 1096

		if (!sblock_other->header_error &&
1097 1098
		    !sblock_other->checksum_error &&
		    sblock_other->no_io_error_seen) {
1099 1100
			if (sctx->is_dev_replace) {
				scrub_write_block_to_dev_replace(sblock_other);
1101
				goto corrected_error;
1102 1103
			} else {
				ret = scrub_repair_block_from_good_copy(
1104 1105 1106
						sblock_bad, sblock_other);
				if (!ret)
					goto corrected_error;
1107
			}
1108 1109
		}
	}
A
Arne Jansen 已提交
1110

1111 1112
	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
		goto did_not_correct_error;
1113 1114 1115

	/*
	 * In case of I/O errors in the area that is supposed to be
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
	 * repaired, continue by picking good copies of those pages.
	 * Select the good pages from mirrors to rewrite bad pages from
	 * the area to fix. Afterwards verify the checksum of the block
	 * that is supposed to be repaired. This verification step is
	 * only done for the purpose of statistic counting and for the
	 * final scrub report, whether errors remain.
	 * A perfect algorithm could make use of the checksum and try
	 * all possible combinations of pages from the different mirrors
	 * until the checksum verification succeeds. For example, when
	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
	 * of mirror #2 is readable but the final checksum test fails,
	 * then the 2nd page of mirror #3 could be tried, whether now
1128
	 * the final checksum succeeds. But this would be a rare
1129 1130 1131 1132 1133 1134 1135 1136
	 * exception and is therefore not implemented. At least it is
	 * avoided that the good copy is overwritten.
	 * A more useful improvement would be to pick the sectors
	 * without I/O error based on sector sizes (512 bytes on legacy
	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
	 * mirror could be repaired by taking 512 byte of a different
	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
	 * area are unreadable.
A
Arne Jansen 已提交
1137
	 */
1138
	success = 1;
1139 1140
	for (page_num = 0; page_num < sblock_bad->page_count;
	     page_num++) {
1141
		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1142
		struct scrub_block *sblock_other = NULL;
1143

1144 1145
		/* skip no-io-error page in scrub */
		if (!page_bad->io_error && !sctx->is_dev_replace)
A
Arne Jansen 已提交
1146
			continue;
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
		/* try to find no-io-error page in mirrors */
		if (page_bad->io_error) {
			for (mirror_index = 0;
			     mirror_index < BTRFS_MAX_MIRRORS &&
			     sblocks_for_recheck[mirror_index].page_count > 0;
			     mirror_index++) {
				if (!sblocks_for_recheck[mirror_index].
				    pagev[page_num]->io_error) {
					sblock_other = sblocks_for_recheck +
						       mirror_index;
					break;
1159 1160
				}
			}
1161 1162
			if (!sblock_other)
				success = 0;
I
Ilya Dryomov 已提交
1163
		}
A
Arne Jansen 已提交
1164

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
		if (sctx->is_dev_replace) {
			/*
			 * did not find a mirror to fetch the page
			 * from. scrub_write_page_to_dev_replace()
			 * handles this case (page->io_error), by
			 * filling the block with zeros before
			 * submitting the write request
			 */
			if (!sblock_other)
				sblock_other = sblock_bad;

			if (scrub_write_page_to_dev_replace(sblock_other,
							    page_num) != 0) {
				btrfs_dev_replace_stats_inc(
					&sctx->dev_root->
					fs_info->dev_replace.
					num_write_errors);
				success = 0;
			}
		} else if (sblock_other) {
			ret = scrub_repair_page_from_good_copy(sblock_bad,
							       sblock_other,
							       page_num, 0);
			if (0 == ret)
				page_bad->io_error = 0;
			else
				success = 0;
1192
		}
A
Arne Jansen 已提交
1193 1194
	}

1195
	if (success && !sctx->is_dev_replace) {
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
		if (is_metadata || have_csum) {
			/*
			 * need to verify the checksum now that all
			 * sectors on disk are repaired (the write
			 * request for data to be repaired is on its way).
			 * Just be lazy and use scrub_recheck_block()
			 * which re-reads the data before the checksum
			 * is verified, but most likely the data comes out
			 * of the page cache.
			 */
1206
			scrub_recheck_block(fs_info, sblock_bad, 1);
1207
			if (!sblock_bad->header_error &&
1208 1209 1210 1211 1212 1213 1214
			    !sblock_bad->checksum_error &&
			    sblock_bad->no_io_error_seen)
				goto corrected_error;
			else
				goto did_not_correct_error;
		} else {
corrected_error:
1215 1216
			spin_lock(&sctx->stat_lock);
			sctx->stat.corrected_errors++;
1217
			sblock_to_check->data_corrected = 1;
1218
			spin_unlock(&sctx->stat_lock);
1219 1220
			btrfs_err_rl_in_rcu(fs_info,
				"fixed up error at logical %llu on dev %s",
1221
				logical, rcu_str_deref(dev->name));
A
Arne Jansen 已提交
1222
		}
1223 1224
	} else {
did_not_correct_error:
1225 1226 1227
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
1228 1229
		btrfs_err_rl_in_rcu(fs_info,
			"unable to fixup (regular) error at logical %llu on dev %s",
1230
			logical, rcu_str_deref(dev->name));
I
Ilya Dryomov 已提交
1231
	}
A
Arne Jansen 已提交
1232

1233 1234 1235 1236 1237 1238
out:
	if (sblocks_for_recheck) {
		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
		     mirror_index++) {
			struct scrub_block *sblock = sblocks_for_recheck +
						     mirror_index;
1239
			struct scrub_recover *recover;
1240 1241
			int page_index;

1242 1243 1244
			for (page_index = 0; page_index < sblock->page_count;
			     page_index++) {
				sblock->pagev[page_index]->sblock = NULL;
1245 1246 1247 1248 1249 1250
				recover = sblock->pagev[page_index]->recover;
				if (recover) {
					scrub_put_recover(recover);
					sblock->pagev[page_index]->recover =
									NULL;
				}
1251 1252
				scrub_page_put(sblock->pagev[page_index]);
			}
1253 1254 1255
		}
		kfree(sblocks_for_recheck);
	}
A
Arne Jansen 已提交
1256

1257 1258
	return 0;
}
A
Arne Jansen 已提交
1259

1260
static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1261
{
Z
Zhao Lei 已提交
1262 1263 1264 1265 1266
	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
		return 2;
	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
		return 3;
	else
1267 1268 1269
		return (int)bbio->num_stripes;
}

Z
Zhao Lei 已提交
1270 1271
static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
						 u64 *raid_map,
1272 1273 1274 1275 1276 1277 1278
						 u64 mapped_length,
						 int nstripes, int mirror,
						 int *stripe_index,
						 u64 *stripe_offset)
{
	int i;

1279
	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
		/* RAID5/6 */
		for (i = 0; i < nstripes; i++) {
			if (raid_map[i] == RAID6_Q_STRIPE ||
			    raid_map[i] == RAID5_P_STRIPE)
				continue;

			if (logical >= raid_map[i] &&
			    logical < raid_map[i] + mapped_length)
				break;
		}

		*stripe_index = i;
		*stripe_offset = logical - raid_map[i];
	} else {
		/* The other RAID type */
		*stripe_index = mirror;
		*stripe_offset = 0;
	}
}

1300
static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1301 1302
				     struct scrub_block *sblocks_for_recheck)
{
1303 1304 1305 1306
	struct scrub_ctx *sctx = original_sblock->sctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	u64 length = original_sblock->page_count * PAGE_SIZE;
	u64 logical = original_sblock->pagev[0]->logical;
1307 1308 1309
	u64 generation = original_sblock->pagev[0]->generation;
	u64 flags = original_sblock->pagev[0]->flags;
	u64 have_csum = original_sblock->pagev[0]->have_csum;
1310 1311 1312 1313 1314 1315
	struct scrub_recover *recover;
	struct btrfs_bio *bbio;
	u64 sublen;
	u64 mapped_length;
	u64 stripe_offset;
	int stripe_index;
1316
	int page_index = 0;
1317
	int mirror_index;
1318
	int nmirrors;
1319 1320 1321
	int ret;

	/*
1322
	 * note: the two members refs and outstanding_pages
1323 1324 1325 1326 1327
	 * are not used (and not set) in the blocks that are used for
	 * the recheck procedure
	 */

	while (length > 0) {
1328 1329 1330
		sublen = min_t(u64, length, PAGE_SIZE);
		mapped_length = sublen;
		bbio = NULL;
A
Arne Jansen 已提交
1331

1332 1333 1334 1335
		/*
		 * with a length of PAGE_SIZE, each returned stripe
		 * represents one mirror
		 */
1336
		ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical,
1337
				       &mapped_length, &bbio, 0, 1);
1338
		if (ret || !bbio || mapped_length < sublen) {
1339
			btrfs_put_bbio(bbio);
1340 1341
			return -EIO;
		}
A
Arne Jansen 已提交
1342

1343 1344
		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
		if (!recover) {
1345
			btrfs_put_bbio(bbio);
1346 1347 1348 1349 1350 1351 1352
			return -ENOMEM;
		}

		atomic_set(&recover->refs, 1);
		recover->bbio = bbio;
		recover->map_length = mapped_length;

1353
		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1354

1355
		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
Z
Zhao Lei 已提交
1356

1357
		for (mirror_index = 0; mirror_index < nmirrors;
1358 1359 1360 1361 1362
		     mirror_index++) {
			struct scrub_block *sblock;
			struct scrub_page *page;

			sblock = sblocks_for_recheck + mirror_index;
1363
			sblock->sctx = sctx;
1364

1365 1366 1367
			page = kzalloc(sizeof(*page), GFP_NOFS);
			if (!page) {
leave_nomem:
1368 1369 1370
				spin_lock(&sctx->stat_lock);
				sctx->stat.malloc_errors++;
				spin_unlock(&sctx->stat_lock);
1371
				scrub_put_recover(recover);
1372 1373
				return -ENOMEM;
			}
1374 1375
			scrub_page_get(page);
			sblock->pagev[page_index] = page;
1376 1377 1378
			page->sblock = sblock;
			page->flags = flags;
			page->generation = generation;
1379
			page->logical = logical;
1380 1381 1382 1383 1384
			page->have_csum = have_csum;
			if (have_csum)
				memcpy(page->csum,
				       original_sblock->pagev[0]->csum,
				       sctx->csum_size);
1385

Z
Zhao Lei 已提交
1386 1387 1388
			scrub_stripe_index_and_offset(logical,
						      bbio->map_type,
						      bbio->raid_map,
1389
						      mapped_length,
1390 1391
						      bbio->num_stripes -
						      bbio->num_tgtdevs,
1392 1393 1394 1395 1396 1397 1398
						      mirror_index,
						      &stripe_index,
						      &stripe_offset);
			page->physical = bbio->stripes[stripe_index].physical +
					 stripe_offset;
			page->dev = bbio->stripes[stripe_index].dev;

1399 1400 1401 1402
			BUG_ON(page_index >= original_sblock->page_count);
			page->physical_for_dev_replace =
				original_sblock->pagev[page_index]->
				physical_for_dev_replace;
1403 1404
			/* for missing devices, dev->bdev is NULL */
			page->mirror_num = mirror_index + 1;
1405
			sblock->page_count++;
1406 1407 1408
			page->page = alloc_page(GFP_NOFS);
			if (!page->page)
				goto leave_nomem;
1409 1410 1411

			scrub_get_recover(recover);
			page->recover = recover;
1412
		}
1413
		scrub_put_recover(recover);
1414 1415 1416 1417 1418 1419
		length -= sublen;
		logical += sublen;
		page_index++;
	}

	return 0;
I
Ilya Dryomov 已提交
1420 1421
}

1422 1423 1424 1425 1426
struct scrub_bio_ret {
	struct completion event;
	int error;
};

1427
static void scrub_bio_wait_endio(struct bio *bio)
1428 1429 1430
{
	struct scrub_bio_ret *ret = bio->bi_private;

1431
	ret->error = bio->bi_error;
1432 1433 1434 1435 1436
	complete(&ret->event);
}

static inline int scrub_is_page_on_raid56(struct scrub_page *page)
{
Z
Zhao Lei 已提交
1437
	return page->recover &&
1438
	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
}

static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
					struct bio *bio,
					struct scrub_page *page)
{
	struct scrub_bio_ret done;
	int ret;

	init_completion(&done.event);
	done.error = 0;
	bio->bi_iter.bi_sector = page->logical >> 9;
	bio->bi_private = &done;
	bio->bi_end_io = scrub_bio_wait_endio;

	ret = raid56_parity_recover(fs_info->fs_root, bio, page->recover->bbio,
				    page->recover->map_length,
1456
				    page->mirror_num, 0);
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	if (ret)
		return ret;

	wait_for_completion(&done.event);
	if (done.error)
		return -EIO;

	return 0;
}

1467 1468 1469 1470 1471 1472 1473
/*
 * this function will check the on disk data for checksum errors, header
 * errors and read I/O errors. If any I/O errors happen, the exact pages
 * which are errored are marked as being bad. The goal is to enable scrub
 * to take those pages that are not errored from all the mirrors so that
 * the pages that are errored in the just handled mirror can be repaired.
 */
1474
static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1475 1476
				struct scrub_block *sblock,
				int retry_failed_mirror)
I
Ilya Dryomov 已提交
1477
{
1478
	int page_num;
I
Ilya Dryomov 已提交
1479

1480
	sblock->no_io_error_seen = 1;
I
Ilya Dryomov 已提交
1481

1482 1483
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		struct bio *bio;
1484
		struct scrub_page *page = sblock->pagev[page_num];
1485

1486
		if (page->dev->bdev == NULL) {
1487 1488 1489 1490 1491
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}

1492
		WARN_ON(!page->page);
1493
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1494 1495 1496 1497 1498
		if (!bio) {
			page->io_error = 1;
			sblock->no_io_error_seen = 0;
			continue;
		}
1499
		bio->bi_bdev = page->dev->bdev;
1500

1501
		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1502 1503 1504 1505 1506 1507 1508 1509 1510
		if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
			if (scrub_submit_raid56_bio_wait(fs_info, bio, page))
				sblock->no_io_error_seen = 0;
		} else {
			bio->bi_iter.bi_sector = page->physical >> 9;

			if (btrfsic_submit_bio_wait(READ, bio))
				sblock->no_io_error_seen = 0;
		}
1511

1512 1513
		bio_put(bio);
	}
I
Ilya Dryomov 已提交
1514

1515
	if (sblock->no_io_error_seen)
1516
		scrub_recheck_block_checksum(sblock);
A
Arne Jansen 已提交
1517 1518
}

M
Miao Xie 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
static inline int scrub_check_fsid(u8 fsid[],
				   struct scrub_page *spage)
{
	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
	int ret;

	ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
	return !ret;
}

1529
static void scrub_recheck_block_checksum(struct scrub_block *sblock)
A
Arne Jansen 已提交
1530
{
1531 1532 1533
	sblock->header_error = 0;
	sblock->checksum_error = 0;
	sblock->generation_error = 0;
1534

1535 1536 1537 1538
	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
		scrub_checksum_data(sblock);
	else
		scrub_checksum_tree_block(sblock);
A
Arne Jansen 已提交
1539 1540
}

1541
static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1542
					     struct scrub_block *sblock_good)
1543 1544 1545
{
	int page_num;
	int ret = 0;
I
Ilya Dryomov 已提交
1546

1547 1548
	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
		int ret_sub;
I
Ilya Dryomov 已提交
1549

1550 1551
		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
							   sblock_good,
1552
							   page_num, 1);
1553 1554
		if (ret_sub)
			ret = ret_sub;
A
Arne Jansen 已提交
1555
	}
1556 1557 1558 1559 1560 1561 1562 1563

	return ret;
}

static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
					    struct scrub_block *sblock_good,
					    int page_num, int force_write)
{
1564 1565
	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
	struct scrub_page *page_good = sblock_good->pagev[page_num];
1566

1567 1568
	BUG_ON(page_bad->page == NULL);
	BUG_ON(page_good->page == NULL);
1569 1570 1571 1572 1573
	if (force_write || sblock_bad->header_error ||
	    sblock_bad->checksum_error || page_bad->io_error) {
		struct bio *bio;
		int ret;

1574
		if (!page_bad->dev->bdev) {
1575
			btrfs_warn_rl(sblock_bad->sctx->dev_root->fs_info,
1576
				"scrub_repair_page_from_good_copy(bdev == NULL) "
1577
				"is unexpected");
1578 1579 1580
			return -EIO;
		}

1581
		bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1582 1583
		if (!bio)
			return -EIO;
1584
		bio->bi_bdev = page_bad->dev->bdev;
1585
		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1586 1587 1588 1589 1590

		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
		if (PAGE_SIZE != ret) {
			bio_put(bio);
			return -EIO;
1591
		}
1592

1593
		if (btrfsic_submit_bio_wait(WRITE, bio)) {
1594 1595
			btrfs_dev_stat_inc_and_print(page_bad->dev,
				BTRFS_DEV_STAT_WRITE_ERRS);
1596 1597 1598
			btrfs_dev_replace_stats_inc(
				&sblock_bad->sctx->dev_root->fs_info->
				dev_replace.num_write_errors);
1599 1600 1601
			bio_put(bio);
			return -EIO;
		}
1602
		bio_put(bio);
A
Arne Jansen 已提交
1603 1604
	}

1605 1606 1607
	return 0;
}

1608 1609 1610 1611
static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
{
	int page_num;

1612 1613 1614 1615 1616 1617 1618
	/*
	 * This block is used for the check of the parity on the source device,
	 * so the data needn't be written into the destination device.
	 */
	if (sblock->sparity)
		return;

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
	for (page_num = 0; page_num < sblock->page_count; page_num++) {
		int ret;

		ret = scrub_write_page_to_dev_replace(sblock, page_num);
		if (ret)
			btrfs_dev_replace_stats_inc(
				&sblock->sctx->dev_root->fs_info->dev_replace.
				num_write_errors);
	}
}

static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
					   int page_num)
{
	struct scrub_page *spage = sblock->pagev[page_num];

	BUG_ON(spage->page == NULL);
	if (spage->io_error) {
		void *mapped_buffer = kmap_atomic(spage->page);

1639
		memset(mapped_buffer, 0, PAGE_SIZE);
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
		flush_dcache_page(spage->page);
		kunmap_atomic(mapped_buffer);
	}
	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
}

static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;
	int ret;

	mutex_lock(&wr_ctx->wr_lock);
again:
	if (!wr_ctx->wr_curr_bio) {
		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1657
					      GFP_KERNEL);
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
		if (!wr_ctx->wr_curr_bio) {
			mutex_unlock(&wr_ctx->wr_lock);
			return -ENOMEM;
		}
		wr_ctx->wr_curr_bio->sctx = sctx;
		wr_ctx->wr_curr_bio->page_count = 0;
	}
	sbio = wr_ctx->wr_curr_bio;
	if (sbio->page_count == 0) {
		struct bio *bio;

		sbio->physical = spage->physical_for_dev_replace;
		sbio->logical = spage->logical;
		sbio->dev = wr_ctx->tgtdev;
		bio = sbio->bio;
		if (!bio) {
1674 1675
			bio = btrfs_io_bio_alloc(GFP_KERNEL,
					wr_ctx->pages_per_wr_bio);
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
			if (!bio) {
				mutex_unlock(&wr_ctx->wr_lock);
				return -ENOMEM;
			}
			sbio->bio = bio;
		}

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_wr_bio_end_io;
		bio->bi_bdev = sbio->dev->bdev;
1686
		bio->bi_iter.bi_sector = sbio->physical >> 9;
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
		sbio->err = 0;
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical_for_dev_replace ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
		   spage->logical) {
		scrub_wr_submit(sctx);
		goto again;
	}

	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			mutex_unlock(&wr_ctx->wr_lock);
			return -EIO;
		}
		scrub_wr_submit(sctx);
		goto again;
	}

	sbio->pagev[sbio->page_count] = spage;
	scrub_page_get(spage);
	sbio->page_count++;
	if (sbio->page_count == wr_ctx->pages_per_wr_bio)
		scrub_wr_submit(sctx);
	mutex_unlock(&wr_ctx->wr_lock);

	return 0;
}

static void scrub_wr_submit(struct scrub_ctx *sctx)
{
	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
	struct scrub_bio *sbio;

	if (!wr_ctx->wr_curr_bio)
		return;

	sbio = wr_ctx->wr_curr_bio;
	wr_ctx->wr_curr_bio = NULL;
	WARN_ON(!sbio->bio->bi_bdev);
	scrub_pending_bio_inc(sctx);
	/* process all writes in a single worker thread. Then the block layer
	 * orders the requests before sending them to the driver which
	 * doubled the write performance on spinning disks when measured
	 * with Linux 3.5 */
	btrfsic_submit_bio(WRITE, sbio->bio);
}

1737
static void scrub_wr_bio_end_io(struct bio *bio)
1738 1739 1740 1741
{
	struct scrub_bio *sbio = bio->bi_private;
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;

1742
	sbio->err = bio->bi_error;
1743 1744
	sbio->bio = bio;

1745 1746
	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
			 scrub_wr_bio_end_io_worker, NULL, NULL);
1747
	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
}

static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
	struct scrub_ctx *sctx = sbio->sctx;
	int i;

	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
	if (sbio->err) {
		struct btrfs_dev_replace *dev_replace =
			&sbio->sctx->dev_root->fs_info->dev_replace;

		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			btrfs_dev_replace_stats_inc(&dev_replace->
						    num_write_errors);
		}
	}

	for (i = 0; i < sbio->page_count; i++)
		scrub_page_put(sbio->pagev[i]);

	bio_put(sbio->bio);
	kfree(sbio);
	scrub_pending_bio_dec(sctx);
}

static int scrub_checksum(struct scrub_block *sblock)
1779 1780 1781 1782
{
	u64 flags;
	int ret;

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	/*
	 * No need to initialize these stats currently,
	 * because this function only use return value
	 * instead of these stats value.
	 *
	 * Todo:
	 * always use stats
	 */
	sblock->header_error = 0;
	sblock->generation_error = 0;
	sblock->checksum_error = 0;

1795 1796
	WARN_ON(sblock->page_count < 1);
	flags = sblock->pagev[0]->flags;
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	ret = 0;
	if (flags & BTRFS_EXTENT_FLAG_DATA)
		ret = scrub_checksum_data(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
		ret = scrub_checksum_tree_block(sblock);
	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
		(void)scrub_checksum_super(sblock);
	else
		WARN_ON(1);
	if (ret)
		scrub_handle_errored_block(sblock);
1808 1809

	return ret;
A
Arne Jansen 已提交
1810 1811
}

1812
static int scrub_checksum_data(struct scrub_block *sblock)
A
Arne Jansen 已提交
1813
{
1814
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1815
	u8 csum[BTRFS_CSUM_SIZE];
1816 1817 1818
	u8 *on_disk_csum;
	struct page *page;
	void *buffer;
A
Arne Jansen 已提交
1819
	u32 crc = ~(u32)0;
1820 1821
	u64 len;
	int index;
A
Arne Jansen 已提交
1822

1823
	BUG_ON(sblock->page_count < 1);
1824
	if (!sblock->pagev[0]->have_csum)
A
Arne Jansen 已提交
1825 1826
		return 0;

1827 1828
	on_disk_csum = sblock->pagev[0]->csum;
	page = sblock->pagev[0]->page;
1829
	buffer = kmap_atomic(page);
1830

1831
	len = sctx->sectorsize;
1832 1833 1834 1835
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, PAGE_SIZE);

1836
		crc = btrfs_csum_data(buffer, crc, l);
1837
		kunmap_atomic(buffer);
1838 1839 1840 1841 1842
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1843 1844
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1845
		buffer = kmap_atomic(page);
1846 1847
	}

A
Arne Jansen 已提交
1848
	btrfs_csum_final(crc, csum);
1849
	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1850
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1851

1852
	return sblock->checksum_error;
A
Arne Jansen 已提交
1853 1854
}

1855
static int scrub_checksum_tree_block(struct scrub_block *sblock)
A
Arne Jansen 已提交
1856
{
1857
	struct scrub_ctx *sctx = sblock->sctx;
A
Arne Jansen 已提交
1858
	struct btrfs_header *h;
1859
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
1860
	struct btrfs_fs_info *fs_info = root->fs_info;
1861 1862 1863 1864 1865 1866
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1867
	u32 crc = ~(u32)0;
1868 1869 1870 1871
	u64 len;
	int index;

	BUG_ON(sblock->page_count < 1);
1872
	page = sblock->pagev[0]->page;
1873
	mapped_buffer = kmap_atomic(page);
1874
	h = (struct btrfs_header *)mapped_buffer;
1875
	memcpy(on_disk_csum, h->csum, sctx->csum_size);
A
Arne Jansen 已提交
1876 1877 1878 1879 1880 1881

	/*
	 * we don't use the getter functions here, as we
	 * a) don't have an extent buffer and
	 * b) the page is already kmapped
	 */
1882
	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1883
		sblock->header_error = 1;
A
Arne Jansen 已提交
1884

1885 1886 1887 1888
	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
		sblock->header_error = 1;
		sblock->generation_error = 1;
	}
A
Arne Jansen 已提交
1889

M
Miao Xie 已提交
1890
	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1891
		sblock->header_error = 1;
A
Arne Jansen 已提交
1892 1893 1894

	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
		   BTRFS_UUID_SIZE))
1895
		sblock->header_error = 1;
A
Arne Jansen 已提交
1896

1897
	len = sctx->nodesize - BTRFS_CSUM_SIZE;
1898 1899 1900 1901 1902 1903
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1904
		crc = btrfs_csum_data(p, crc, l);
1905
		kunmap_atomic(mapped_buffer);
1906 1907 1908 1909 1910
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1911 1912
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1913
		mapped_buffer = kmap_atomic(page);
1914 1915 1916 1917 1918
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1919
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1920
		sblock->checksum_error = 1;
A
Arne Jansen 已提交
1921

1922
	return sblock->header_error || sblock->checksum_error;
A
Arne Jansen 已提交
1923 1924
}

1925
static int scrub_checksum_super(struct scrub_block *sblock)
A
Arne Jansen 已提交
1926 1927
{
	struct btrfs_super_block *s;
1928
	struct scrub_ctx *sctx = sblock->sctx;
1929 1930 1931 1932 1933 1934
	u8 calculated_csum[BTRFS_CSUM_SIZE];
	u8 on_disk_csum[BTRFS_CSUM_SIZE];
	struct page *page;
	void *mapped_buffer;
	u64 mapped_size;
	void *p;
A
Arne Jansen 已提交
1935
	u32 crc = ~(u32)0;
1936 1937
	int fail_gen = 0;
	int fail_cor = 0;
1938 1939
	u64 len;
	int index;
A
Arne Jansen 已提交
1940

1941
	BUG_ON(sblock->page_count < 1);
1942
	page = sblock->pagev[0]->page;
1943
	mapped_buffer = kmap_atomic(page);
1944
	s = (struct btrfs_super_block *)mapped_buffer;
1945
	memcpy(on_disk_csum, s->csum, sctx->csum_size);
A
Arne Jansen 已提交
1946

1947
	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1948
		++fail_cor;
A
Arne Jansen 已提交
1949

1950
	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1951
		++fail_gen;
A
Arne Jansen 已提交
1952

M
Miao Xie 已提交
1953
	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1954
		++fail_cor;
A
Arne Jansen 已提交
1955

1956 1957 1958 1959 1960 1961 1962
	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
	index = 0;
	for (;;) {
		u64 l = min_t(u64, len, mapped_size);

1963
		crc = btrfs_csum_data(p, crc, l);
1964
		kunmap_atomic(mapped_buffer);
1965 1966 1967 1968 1969
		len -= l;
		if (len == 0)
			break;
		index++;
		BUG_ON(index >= sblock->page_count);
1970 1971
		BUG_ON(!sblock->pagev[index]->page);
		page = sblock->pagev[index]->page;
1972
		mapped_buffer = kmap_atomic(page);
1973 1974 1975 1976 1977
		mapped_size = PAGE_SIZE;
		p = mapped_buffer;
	}

	btrfs_csum_final(crc, calculated_csum);
1978
	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1979
		++fail_cor;
A
Arne Jansen 已提交
1980

1981
	if (fail_cor + fail_gen) {
A
Arne Jansen 已提交
1982 1983 1984 1985 1986
		/*
		 * if we find an error in a super block, we just report it.
		 * They will get written with the next transaction commit
		 * anyway
		 */
1987 1988 1989
		spin_lock(&sctx->stat_lock);
		++sctx->stat.super_errors;
		spin_unlock(&sctx->stat_lock);
1990
		if (fail_cor)
1991
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1992 1993
				BTRFS_DEV_STAT_CORRUPTION_ERRS);
		else
1994
			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1995
				BTRFS_DEV_STAT_GENERATION_ERRS);
A
Arne Jansen 已提交
1996 1997
	}

1998
	return fail_cor + fail_gen;
A
Arne Jansen 已提交
1999 2000
}

2001 2002
static void scrub_block_get(struct scrub_block *sblock)
{
2003
	atomic_inc(&sblock->refs);
2004 2005 2006 2007
}

static void scrub_block_put(struct scrub_block *sblock)
{
2008
	if (atomic_dec_and_test(&sblock->refs)) {
2009 2010
		int i;

2011 2012 2013
		if (sblock->sparity)
			scrub_parity_put(sblock->sparity);

2014
		for (i = 0; i < sblock->page_count; i++)
2015
			scrub_page_put(sblock->pagev[i]);
2016 2017 2018 2019
		kfree(sblock);
	}
}

2020 2021
static void scrub_page_get(struct scrub_page *spage)
{
2022
	atomic_inc(&spage->refs);
2023 2024 2025 2026
}

static void scrub_page_put(struct scrub_page *spage)
{
2027
	if (atomic_dec_and_test(&spage->refs)) {
2028 2029 2030 2031 2032 2033
		if (spage->page)
			__free_page(spage->page);
		kfree(spage);
	}
}

2034
static void scrub_submit(struct scrub_ctx *sctx)
A
Arne Jansen 已提交
2035 2036 2037
{
	struct scrub_bio *sbio;

2038
	if (sctx->curr == -1)
S
Stefan Behrens 已提交
2039
		return;
A
Arne Jansen 已提交
2040

2041 2042
	sbio = sctx->bios[sctx->curr];
	sctx->curr = -1;
2043
	scrub_pending_bio_inc(sctx);
2044
	btrfsic_submit_bio(READ, sbio->bio);
A
Arne Jansen 已提交
2045 2046
}

2047 2048
static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
				    struct scrub_page *spage)
A
Arne Jansen 已提交
2049
{
2050
	struct scrub_block *sblock = spage->sblock;
A
Arne Jansen 已提交
2051
	struct scrub_bio *sbio;
2052
	int ret;
A
Arne Jansen 已提交
2053 2054 2055 2056 2057

again:
	/*
	 * grab a fresh bio or wait for one to become available
	 */
2058 2059 2060 2061 2062 2063 2064 2065
	while (sctx->curr == -1) {
		spin_lock(&sctx->list_lock);
		sctx->curr = sctx->first_free;
		if (sctx->curr != -1) {
			sctx->first_free = sctx->bios[sctx->curr]->next_free;
			sctx->bios[sctx->curr]->next_free = -1;
			sctx->bios[sctx->curr]->page_count = 0;
			spin_unlock(&sctx->list_lock);
A
Arne Jansen 已提交
2066
		} else {
2067 2068
			spin_unlock(&sctx->list_lock);
			wait_event(sctx->list_wait, sctx->first_free != -1);
A
Arne Jansen 已提交
2069 2070
		}
	}
2071
	sbio = sctx->bios[sctx->curr];
2072
	if (sbio->page_count == 0) {
2073 2074
		struct bio *bio;

2075 2076
		sbio->physical = spage->physical;
		sbio->logical = spage->logical;
2077
		sbio->dev = spage->dev;
2078 2079
		bio = sbio->bio;
		if (!bio) {
2080 2081
			bio = btrfs_io_bio_alloc(GFP_KERNEL,
					sctx->pages_per_rd_bio);
2082 2083 2084 2085
			if (!bio)
				return -ENOMEM;
			sbio->bio = bio;
		}
2086 2087 2088

		bio->bi_private = sbio;
		bio->bi_end_io = scrub_bio_end_io;
2089
		bio->bi_bdev = sbio->dev->bdev;
2090
		bio->bi_iter.bi_sector = sbio->physical >> 9;
2091
		sbio->err = 0;
2092 2093 2094
	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
		   spage->physical ||
		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2095 2096
		   spage->logical ||
		   sbio->dev != spage->dev) {
2097
		scrub_submit(sctx);
A
Arne Jansen 已提交
2098 2099
		goto again;
	}
2100

2101 2102 2103 2104 2105 2106 2107 2108
	sbio->pagev[sbio->page_count] = spage;
	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
		if (sbio->page_count < 1) {
			bio_put(sbio->bio);
			sbio->bio = NULL;
			return -EIO;
		}
2109
		scrub_submit(sctx);
2110 2111 2112
		goto again;
	}

2113
	scrub_block_get(sblock); /* one for the page added to the bio */
2114 2115
	atomic_inc(&sblock->outstanding_pages);
	sbio->page_count++;
2116
	if (sbio->page_count == sctx->pages_per_rd_bio)
2117
		scrub_submit(sctx);
2118 2119 2120 2121

	return 0;
}

2122
static void scrub_missing_raid56_end_io(struct bio *bio)
2123 2124 2125 2126
{
	struct scrub_block *sblock = bio->bi_private;
	struct btrfs_fs_info *fs_info = sblock->sctx->dev_root->fs_info;

2127
	if (bio->bi_error)
2128 2129
		sblock->no_io_error_seen = 0;

2130 2131
	bio_put(bio);

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
}

static void scrub_missing_raid56_worker(struct btrfs_work *work)
{
	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
	struct scrub_ctx *sctx = sblock->sctx;
	u64 logical;
	struct btrfs_device *dev;

	logical = sblock->pagev[0]->logical;
	dev = sblock->pagev[0]->dev;

2145
	if (sblock->no_io_error_seen)
2146
		scrub_recheck_block_checksum(sblock);
2147 2148 2149 2150 2151

	if (!sblock->no_io_error_seen) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors++;
		spin_unlock(&sctx->stat_lock);
2152
		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
2153
			"IO error rebuilding logical %llu for dev %s",
2154 2155 2156 2157 2158
			logical, rcu_str_deref(dev->name));
	} else if (sblock->header_error || sblock->checksum_error) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.uncorrectable_errors++;
		spin_unlock(&sctx->stat_lock);
2159
		btrfs_err_rl_in_rcu(sctx->dev_root->fs_info,
2160
			"failed to rebuild valid logical %llu for dev %s",
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
			logical, rcu_str_deref(dev->name));
	} else {
		scrub_write_block_to_dev_replace(sblock);
	}

	scrub_block_put(sblock);

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

	scrub_pending_bio_dec(sctx);
}

static void scrub_missing_raid56_pages(struct scrub_block *sblock)
{
	struct scrub_ctx *sctx = sblock->sctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	u64 length = sblock->page_count * PAGE_SIZE;
	u64 logical = sblock->pagev[0]->logical;
2184
	struct btrfs_bio *bbio = NULL;
2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	int ret;
	int i;

	ret = btrfs_map_sblock(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
			       &bbio, 0, 1);
	if (ret || !bbio || !bbio->raid_map)
		goto bbio_out;

	if (WARN_ON(!sctx->is_dev_replace ||
		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
		/*
		 * We shouldn't be scrubbing a missing device. Even for dev
		 * replace, we should only get here for RAID 5/6. We either
		 * managed to mount something with no mirrors remaining or
		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
		 */
		goto bbio_out;
	}

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = logical >> 9;
	bio->bi_private = sblock;
	bio->bi_end_io = scrub_missing_raid56_end_io;

	rbio = raid56_alloc_missing_rbio(sctx->dev_root, bio, bbio, length);
	if (!rbio)
		goto rbio_out;

	for (i = 0; i < sblock->page_count; i++) {
		struct scrub_page *spage = sblock->pagev[i];

		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
	}

	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
			scrub_missing_raid56_worker, NULL, NULL);
	scrub_block_get(sblock);
	scrub_pending_bio_inc(sctx);
	raid56_submit_missing_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
	btrfs_put_bbio(bbio);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
}

2240
static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2241
		       u64 physical, struct btrfs_device *dev, u64 flags,
2242 2243
		       u64 gen, int mirror_num, u8 *csum, int force,
		       u64 physical_for_dev_replace)
2244 2245 2246 2247
{
	struct scrub_block *sblock;
	int index;

2248
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2249
	if (!sblock) {
2250 2251 2252
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
2253
		return -ENOMEM;
A
Arne Jansen 已提交
2254
	}
2255

2256 2257
	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2258
	atomic_set(&sblock->refs, 1);
2259
	sblock->sctx = sctx;
2260 2261 2262
	sblock->no_io_error_seen = 1;

	for (index = 0; len > 0; index++) {
2263
		struct scrub_page *spage;
2264 2265
		u64 l = min_t(u64, len, PAGE_SIZE);

2266
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2267 2268
		if (!spage) {
leave_nomem:
2269 2270 2271
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
2272
			scrub_block_put(sblock);
2273 2274
			return -ENOMEM;
		}
2275 2276 2277
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
2278
		spage->sblock = sblock;
2279
		spage->dev = dev;
2280 2281 2282 2283
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
2284
		spage->physical_for_dev_replace = physical_for_dev_replace;
2285 2286 2287
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
2288
			memcpy(spage->csum, csum, sctx->csum_size);
2289 2290 2291 2292
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2293
		spage->page = alloc_page(GFP_KERNEL);
2294 2295
		if (!spage->page)
			goto leave_nomem;
2296 2297 2298
		len -= l;
		logical += l;
		physical += l;
2299
		physical_for_dev_replace += l;
2300 2301
	}

2302
	WARN_ON(sblock->page_count == 0);
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
	if (dev->missing) {
		/*
		 * This case should only be hit for RAID 5/6 device replace. See
		 * the comment in scrub_missing_raid56_pages() for details.
		 */
		scrub_missing_raid56_pages(sblock);
	} else {
		for (index = 0; index < sblock->page_count; index++) {
			struct scrub_page *spage = sblock->pagev[index];
			int ret;
2313

2314 2315 2316 2317 2318
			ret = scrub_add_page_to_rd_bio(sctx, spage);
			if (ret) {
				scrub_block_put(sblock);
				return ret;
			}
2319
		}
A
Arne Jansen 已提交
2320

2321 2322 2323
		if (force)
			scrub_submit(sctx);
	}
A
Arne Jansen 已提交
2324

2325 2326
	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
A
Arne Jansen 已提交
2327 2328 2329
	return 0;
}

2330
static void scrub_bio_end_io(struct bio *bio)
2331 2332
{
	struct scrub_bio *sbio = bio->bi_private;
2333
	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2334

2335
	sbio->err = bio->bi_error;
2336 2337
	sbio->bio = bio;

2338
	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2339 2340 2341 2342 2343
}

static void scrub_bio_end_io_worker(struct btrfs_work *work)
{
	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2344
	struct scrub_ctx *sctx = sbio->sctx;
2345 2346
	int i;

2347
	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
	if (sbio->err) {
		for (i = 0; i < sbio->page_count; i++) {
			struct scrub_page *spage = sbio->pagev[i];

			spage->io_error = 1;
			spage->sblock->no_io_error_seen = 0;
		}
	}

	/* now complete the scrub_block items that have all pages completed */
	for (i = 0; i < sbio->page_count; i++) {
		struct scrub_page *spage = sbio->pagev[i];
		struct scrub_block *sblock = spage->sblock;

		if (atomic_dec_and_test(&sblock->outstanding_pages))
			scrub_block_complete(sblock);
		scrub_block_put(sblock);
	}

	bio_put(sbio->bio);
	sbio->bio = NULL;
2369 2370 2371 2372
	spin_lock(&sctx->list_lock);
	sbio->next_free = sctx->first_free;
	sctx->first_free = sbio->index;
	spin_unlock(&sctx->list_lock);
2373 2374 2375 2376 2377 2378 2379 2380

	if (sctx->is_dev_replace &&
	    atomic_read(&sctx->wr_ctx.flush_all_writes)) {
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);
	}

2381
	scrub_pending_bio_dec(sctx);
2382 2383
}

2384 2385 2386 2387
static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
				       unsigned long *bitmap,
				       u64 start, u64 len)
{
2388
	u32 offset;
2389 2390 2391 2392 2393 2394 2395 2396 2397
	int nsectors;
	int sectorsize = sparity->sctx->dev_root->sectorsize;

	if (len >= sparity->stripe_len) {
		bitmap_set(bitmap, 0, sparity->nsectors);
		return;
	}

	start -= sparity->logic_start;
2398
	start = div_u64_rem(start, sparity->stripe_len, &offset);
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
	offset /= sectorsize;
	nsectors = (int)len / sectorsize;

	if (offset + nsectors <= sparity->nsectors) {
		bitmap_set(bitmap, offset, nsectors);
		return;
	}

	bitmap_set(bitmap, offset, sparity->nsectors - offset);
	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
}

static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
						   u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
}

static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
						  u64 start, u64 len)
{
	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
}

2423 2424
static void scrub_block_complete(struct scrub_block *sblock)
{
2425 2426
	int corrupted = 0;

2427
	if (!sblock->no_io_error_seen) {
2428
		corrupted = 1;
2429
		scrub_handle_errored_block(sblock);
2430 2431 2432 2433 2434 2435
	} else {
		/*
		 * if has checksum error, write via repair mechanism in
		 * dev replace case, otherwise write here in dev replace
		 * case.
		 */
2436 2437
		corrupted = scrub_checksum(sblock);
		if (!corrupted && sblock->sctx->is_dev_replace)
2438 2439
			scrub_write_block_to_dev_replace(sblock);
	}
2440 2441 2442 2443 2444 2445 2446 2447 2448

	if (sblock->sparity && corrupted && !sblock->data_corrected) {
		u64 start = sblock->pagev[0]->logical;
		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
			  PAGE_SIZE;

		scrub_parity_mark_sectors_error(sblock->sparity,
						start, end - start);
	}
2449 2450
}

2451
static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
A
Arne Jansen 已提交
2452 2453
{
	struct btrfs_ordered_sum *sum = NULL;
2454
	unsigned long index;
A
Arne Jansen 已提交
2455 2456
	unsigned long num_sectors;

2457 2458
	while (!list_empty(&sctx->csum_list)) {
		sum = list_first_entry(&sctx->csum_list,
A
Arne Jansen 已提交
2459 2460 2461 2462 2463 2464
				       struct btrfs_ordered_sum, list);
		if (sum->bytenr > logical)
			return 0;
		if (sum->bytenr + sum->len > logical)
			break;

2465
		++sctx->stat.csum_discards;
A
Arne Jansen 已提交
2466 2467 2468 2469 2470 2471 2472
		list_del(&sum->list);
		kfree(sum);
		sum = NULL;
	}
	if (!sum)
		return 0;

2473
	index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2474
	num_sectors = sum->len / sctx->sectorsize;
2475 2476
	memcpy(csum, sum->sums + index, sctx->csum_size);
	if (index == num_sectors - 1) {
A
Arne Jansen 已提交
2477 2478 2479
		list_del(&sum->list);
		kfree(sum);
	}
2480
	return 1;
A
Arne Jansen 已提交
2481 2482 2483
}

/* scrub extent tries to collect up to 64 kB for each bio */
2484
static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2485
			u64 physical, struct btrfs_device *dev, u64 flags,
2486
			u64 gen, int mirror_num, u64 physical_for_dev_replace)
A
Arne Jansen 已提交
2487 2488 2489
{
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
2490 2491 2492
	u32 blocksize;

	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2493 2494 2495 2496 2497
		blocksize = sctx->sectorsize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.data_extents_scrubbed++;
		sctx->stat.data_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2498
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2499 2500 2501 2502 2503
		blocksize = sctx->nodesize;
		spin_lock(&sctx->stat_lock);
		sctx->stat.tree_extents_scrubbed++;
		sctx->stat.tree_bytes_scrubbed += len;
		spin_unlock(&sctx->stat_lock);
2504
	} else {
2505
		blocksize = sctx->sectorsize;
2506
		WARN_ON(1);
2507
	}
A
Arne Jansen 已提交
2508 2509

	while (len) {
2510
		u64 l = min_t(u64, len, blocksize);
A
Arne Jansen 已提交
2511 2512 2513 2514
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2515
			have_csum = scrub_find_csum(sctx, logical, csum);
A
Arne Jansen 已提交
2516
			if (have_csum == 0)
2517
				++sctx->stat.no_csum;
2518 2519 2520 2521 2522 2523
			if (sctx->is_dev_replace && !have_csum) {
				ret = copy_nocow_pages(sctx, logical, l,
						       mirror_num,
						      physical_for_dev_replace);
				goto behind_scrub_pages;
			}
A
Arne Jansen 已提交
2524
		}
2525
		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2526 2527 2528
				  mirror_num, have_csum ? csum : NULL, 0,
				  physical_for_dev_replace);
behind_scrub_pages:
A
Arne Jansen 已提交
2529 2530 2531 2532 2533
		if (ret)
			return ret;
		len -= l;
		logical += l;
		physical += l;
2534
		physical_for_dev_replace += l;
A
Arne Jansen 已提交
2535 2536 2537 2538
	}
	return 0;
}

2539 2540 2541 2542 2543 2544 2545 2546 2547
static int scrub_pages_for_parity(struct scrub_parity *sparity,
				  u64 logical, u64 len,
				  u64 physical, struct btrfs_device *dev,
				  u64 flags, u64 gen, int mirror_num, u8 *csum)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_block *sblock;
	int index;

2548
	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2549 2550 2551 2552 2553 2554 2555 2556 2557
	if (!sblock) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	/* one ref inside this function, plus one for each page added to
	 * a bio later on */
2558
	atomic_set(&sblock->refs, 1);
2559 2560 2561 2562 2563 2564 2565 2566 2567
	sblock->sctx = sctx;
	sblock->no_io_error_seen = 1;
	sblock->sparity = sparity;
	scrub_parity_get(sparity);

	for (index = 0; len > 0; index++) {
		struct scrub_page *spage;
		u64 l = min_t(u64, len, PAGE_SIZE);

2568
		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
		if (!spage) {
leave_nomem:
			spin_lock(&sctx->stat_lock);
			sctx->stat.malloc_errors++;
			spin_unlock(&sctx->stat_lock);
			scrub_block_put(sblock);
			return -ENOMEM;
		}
		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
		/* For scrub block */
		scrub_page_get(spage);
		sblock->pagev[index] = spage;
		/* For scrub parity */
		scrub_page_get(spage);
		list_add_tail(&spage->list, &sparity->spages);
		spage->sblock = sblock;
		spage->dev = dev;
		spage->flags = flags;
		spage->generation = gen;
		spage->logical = logical;
		spage->physical = physical;
		spage->mirror_num = mirror_num;
		if (csum) {
			spage->have_csum = 1;
			memcpy(spage->csum, csum, sctx->csum_size);
		} else {
			spage->have_csum = 0;
		}
		sblock->page_count++;
2598
		spage->page = alloc_page(GFP_KERNEL);
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
		if (!spage->page)
			goto leave_nomem;
		len -= l;
		logical += l;
		physical += l;
	}

	WARN_ON(sblock->page_count == 0);
	for (index = 0; index < sblock->page_count; index++) {
		struct scrub_page *spage = sblock->pagev[index];
		int ret;

		ret = scrub_add_page_to_rd_bio(sctx, spage);
		if (ret) {
			scrub_block_put(sblock);
			return ret;
		}
	}

	/* last one frees, either here or in bio completion for last page */
	scrub_block_put(sblock);
	return 0;
}

static int scrub_extent_for_parity(struct scrub_parity *sparity,
				   u64 logical, u64 len,
				   u64 physical, struct btrfs_device *dev,
				   u64 flags, u64 gen, int mirror_num)
{
	struct scrub_ctx *sctx = sparity->sctx;
	int ret;
	u8 csum[BTRFS_CSUM_SIZE];
	u32 blocksize;

2633 2634 2635 2636 2637
	if (dev->missing) {
		scrub_parity_mark_sectors_error(sparity, logical, len);
		return 0;
	}

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
	if (flags & BTRFS_EXTENT_FLAG_DATA) {
		blocksize = sctx->sectorsize;
	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
		blocksize = sctx->nodesize;
	} else {
		blocksize = sctx->sectorsize;
		WARN_ON(1);
	}

	while (len) {
		u64 l = min_t(u64, len, blocksize);
		int have_csum = 0;

		if (flags & BTRFS_EXTENT_FLAG_DATA) {
			/* push csums to sbio */
2653
			have_csum = scrub_find_csum(sctx, logical, csum);
2654 2655 2656 2657 2658 2659 2660 2661
			if (have_csum == 0)
				goto skip;
		}
		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
					     flags, gen, mirror_num,
					     have_csum ? csum : NULL);
		if (ret)
			return ret;
2662
skip:
2663 2664 2665 2666 2667 2668 2669
		len -= l;
		logical += l;
		physical += l;
	}
	return 0;
}

2670 2671 2672 2673 2674 2675 2676 2677
/*
 * Given a physical address, this will calculate it's
 * logical offset. if this is a parity stripe, it will return
 * the most left data stripe's logical offset.
 *
 * return 0 if it is a data stripe, 1 means parity stripe.
 */
static int get_raid56_logic_offset(u64 physical, int num,
2678 2679
				   struct map_lookup *map, u64 *offset,
				   u64 *stripe_start)
2680 2681 2682 2683 2684
{
	int i;
	int j = 0;
	u64 stripe_nr;
	u64 last_offset;
2685 2686
	u32 stripe_index;
	u32 rot;
2687 2688 2689

	last_offset = (physical - map->stripes[num].physical) *
		      nr_data_stripes(map);
2690 2691 2692
	if (stripe_start)
		*stripe_start = last_offset;

2693 2694 2695 2696
	*offset = last_offset;
	for (i = 0; i < nr_data_stripes(map); i++) {
		*offset = last_offset + i * map->stripe_len;

2697 2698
		stripe_nr = div_u64(*offset, map->stripe_len);
		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2699 2700

		/* Work out the disk rotation on this stripe-set */
2701
		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2702 2703
		/* calculate which stripe this data locates */
		rot += i;
2704
		stripe_index = rot % map->num_stripes;
2705 2706 2707 2708 2709 2710 2711 2712 2713
		if (stripe_index == num)
			return 0;
		if (stripe_index < num)
			j++;
	}
	*offset = last_offset + j * map->stripe_len;
	return 1;
}

2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
static void scrub_free_parity(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct scrub_page *curr, *next;
	int nbits;

	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
	if (nbits) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.read_errors += nbits;
		sctx->stat.uncorrectable_errors += nbits;
		spin_unlock(&sctx->stat_lock);
	}

	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
		list_del_init(&curr->list);
		scrub_page_put(curr);
	}

	kfree(sparity);
}

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
{
	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
						    work);
	struct scrub_ctx *sctx = sparity->sctx;

	scrub_free_parity(sparity);
	scrub_pending_bio_dec(sctx);
}

2746
static void scrub_parity_bio_endio(struct bio *bio)
2747 2748 2749
{
	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;

2750
	if (bio->bi_error)
2751 2752 2753 2754
		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
			  sparity->nsectors);

	bio_put(bio);
2755 2756 2757 2758 2759

	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
			scrub_parity_bio_endio_worker, NULL, NULL);
	btrfs_queue_work(sparity->sctx->dev_root->fs_info->scrub_parity_workers,
			 &sparity->work);
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
}

static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
{
	struct scrub_ctx *sctx = sparity->sctx;
	struct bio *bio;
	struct btrfs_raid_bio *rbio;
	struct scrub_page *spage;
	struct btrfs_bio *bbio = NULL;
	u64 length;
	int ret;

	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
			   sparity->nsectors))
		goto out;

2776
	length = sparity->logic_end - sparity->logic_start;
2777
	ret = btrfs_map_sblock(sctx->dev_root->fs_info, WRITE,
2778
			       sparity->logic_start,
2779 2780
			       &length, &bbio, 0, 1);
	if (ret || !bbio || !bbio->raid_map)
2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
		goto bbio_out;

	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
	if (!bio)
		goto bbio_out;

	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
	bio->bi_private = sparity;
	bio->bi_end_io = scrub_parity_bio_endio;

	rbio = raid56_parity_alloc_scrub_rbio(sctx->dev_root, bio, bbio,
2792
					      length, sparity->scrub_dev,
2793 2794 2795 2796 2797 2798
					      sparity->dbitmap,
					      sparity->nsectors);
	if (!rbio)
		goto rbio_out;

	list_for_each_entry(spage, &sparity->spages, list)
2799
		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2800 2801 2802 2803 2804 2805 2806 2807

	scrub_pending_bio_inc(sctx);
	raid56_parity_submit_scrub_rbio(rbio);
	return;

rbio_out:
	bio_put(bio);
bbio_out:
2808
	btrfs_put_bbio(bbio);
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
		  sparity->nsectors);
	spin_lock(&sctx->stat_lock);
	sctx->stat.malloc_errors++;
	spin_unlock(&sctx->stat_lock);
out:
	scrub_free_parity(sparity);
}

static inline int scrub_calc_parity_bitmap_len(int nsectors)
{
2820
	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2821 2822 2823 2824
}

static void scrub_parity_get(struct scrub_parity *sparity)
{
2825
	atomic_inc(&sparity->refs);
2826 2827 2828 2829
}

static void scrub_parity_put(struct scrub_parity *sparity)
{
2830
	if (!atomic_dec_and_test(&sparity->refs))
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
		return;

	scrub_parity_check_and_repair(sparity);
}

static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
						  struct map_lookup *map,
						  struct btrfs_device *sdev,
						  struct btrfs_path *path,
						  u64 logic_start,
						  u64 logic_end)
{
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
2847
	struct btrfs_bio *bbio = NULL;
2848 2849 2850 2851 2852 2853 2854 2855 2856
	u64 flags;
	int ret;
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	u64 generation;
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
2857
	u64 mapped_length;
2858 2859 2860 2861 2862 2863 2864
	struct btrfs_device *extent_dev;
	struct scrub_parity *sparity;
	int nsectors;
	int bitmap_len;
	int extent_mirror_num;
	int stop_loop = 0;

2865
	nsectors = div_u64(map->stripe_len, root->sectorsize);
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
			  GFP_NOFS);
	if (!sparity) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	sparity->stripe_len = map->stripe_len;
	sparity->nsectors = nsectors;
	sparity->sctx = sctx;
	sparity->scrub_dev = sdev;
	sparity->logic_start = logic_start;
	sparity->logic_end = logic_end;
2882
	atomic_set(&sparity->refs, 1);
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
	INIT_LIST_HEAD(&sparity->spages);
	sparity->dbitmap = sparity->bitmap;
	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;

	ret = 0;
	while (logic_start < logic_end) {
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
		key.objectid = logic_start;
		key.offset = (u64)-1;

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;

		if (ret > 0) {
			ret = btrfs_previous_extent_item(root, path, 0);
			if (ret < 0)
				goto out;
			if (ret > 0) {
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
		}

		stop_loop = 0;
		while (1) {
			u64 bytes;

			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

				stop_loop = 1;
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

2931 2932 2933 2934
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

2935 2936 2937 2938 2939 2940 2941 2942
			if (key.type == BTRFS_METADATA_ITEM_KEY)
				bytes = root->nodesize;
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logic_start)
				goto next;

2943
			if (key.objectid >= logic_end) {
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955
				stop_loop = 1;
				break;
			}

			while (key.objectid >= logic_start + map->stripe_len)
				logic_start += map->stripe_len;

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

2956 2957 2958 2959 2960 2961
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logic_start ||
			     key.objectid + bytes >
			     logic_start + map->stripe_len)) {
				btrfs_err(fs_info, "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
					  key.objectid, logic_start);
2962 2963 2964
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
				goto next;
			}
again:
			extent_logical = key.objectid;
			extent_len = bytes;

			if (extent_logical < logic_start) {
				extent_len -= logic_start - extent_logical;
				extent_logical = logic_start;
			}

			if (extent_logical + extent_len >
			    logic_start + map->stripe_len)
				extent_len = logic_start + map->stripe_len -
					     extent_logical;

			scrub_parity_mark_sectors_data(sparity, extent_logical,
						       extent_len);

2984
			mapped_length = extent_len;
2985
			bbio = NULL;
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
			ret = btrfs_map_block(fs_info, READ, extent_logical,
					      &mapped_length, &bbio, 0);
			if (!ret) {
				if (!bbio || mapped_length < extent_len)
					ret = -EIO;
			}
			if (ret) {
				btrfs_put_bbio(bbio);
				goto out;
			}
			extent_physical = bbio->stripes[0].physical;
			extent_mirror_num = bbio->mirror_num;
			extent_dev = bbio->stripes[0].dev;
			btrfs_put_bbio(bbio);
3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013

			ret = btrfs_lookup_csums_range(csum_root,
						extent_logical,
						extent_logical + extent_len - 1,
						&sctx->csum_list, 1);
			if (ret)
				goto out;

			ret = scrub_extent_for_parity(sparity, extent_logical,
						      extent_len,
						      extent_physical,
						      extent_dev, flags,
						      generation,
						      extent_mirror_num);
3014 3015 3016

			scrub_free_csums(sctx);

3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
			if (ret)
				goto out;

			if (extent_logical + extent_len <
			    key.objectid + bytes) {
				logic_start += map->stripe_len;

				if (logic_start >= logic_end) {
					stop_loop = 1;
					break;
				}

				if (logic_start < key.objectid + bytes) {
					cond_resched();
					goto again;
				}
			}
next:
			path->slots[0]++;
		}

		btrfs_release_path(path);

		if (stop_loop)
			break;

		logic_start += map->stripe_len;
	}
out:
	if (ret < 0)
		scrub_parity_mark_sectors_error(sparity, logic_start,
3048
						logic_end - logic_start);
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
	scrub_parity_put(sparity);
	scrub_submit(sctx);
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);

	btrfs_release_path(path);
	return ret < 0 ? ret : 0;
}

3059
static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3060 3061
					   struct map_lookup *map,
					   struct btrfs_device *scrub_dev,
3062 3063
					   int num, u64 base, u64 length,
					   int is_dev_replace)
A
Arne Jansen 已提交
3064
{
3065
	struct btrfs_path *path, *ppath;
3066
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
A
Arne Jansen 已提交
3067 3068 3069
	struct btrfs_root *root = fs_info->extent_root;
	struct btrfs_root *csum_root = fs_info->csum_root;
	struct btrfs_extent_item *extent;
3070
	struct blk_plug plug;
A
Arne Jansen 已提交
3071 3072 3073 3074 3075 3076 3077
	u64 flags;
	int ret;
	int slot;
	u64 nstripes;
	struct extent_buffer *l;
	u64 physical;
	u64 logical;
L
Liu Bo 已提交
3078
	u64 logic_end;
3079
	u64 physical_end;
A
Arne Jansen 已提交
3080
	u64 generation;
3081
	int mirror_num;
A
Arne Jansen 已提交
3082 3083
	struct reada_control *reada1;
	struct reada_control *reada2;
3084
	struct btrfs_key key;
A
Arne Jansen 已提交
3085
	struct btrfs_key key_end;
A
Arne Jansen 已提交
3086 3087
	u64 increment = map->stripe_len;
	u64 offset;
3088 3089 3090
	u64 extent_logical;
	u64 extent_physical;
	u64 extent_len;
3091 3092
	u64 stripe_logical;
	u64 stripe_end;
3093 3094
	struct btrfs_device *extent_dev;
	int extent_mirror_num;
3095
	int stop_loop = 0;
D
David Woodhouse 已提交
3096

3097
	physical = map->stripes[num].physical;
A
Arne Jansen 已提交
3098
	offset = 0;
3099
	nstripes = div_u64(length, map->stripe_len);
A
Arne Jansen 已提交
3100 3101 3102
	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
		offset = map->stripe_len * num;
		increment = map->stripe_len * map->num_stripes;
3103
		mirror_num = 1;
A
Arne Jansen 已提交
3104 3105 3106 3107
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
		int factor = map->num_stripes / map->sub_stripes;
		offset = map->stripe_len * (num / map->sub_stripes);
		increment = map->stripe_len * factor;
3108
		mirror_num = num % map->sub_stripes + 1;
A
Arne Jansen 已提交
3109 3110
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
		increment = map->stripe_len;
3111
		mirror_num = num % map->num_stripes + 1;
A
Arne Jansen 已提交
3112 3113
	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
		increment = map->stripe_len;
3114
		mirror_num = num % map->num_stripes + 1;
3115
	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3116
		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3117 3118
		increment = map->stripe_len * nr_data_stripes(map);
		mirror_num = 1;
A
Arne Jansen 已提交
3119 3120
	} else {
		increment = map->stripe_len;
3121
		mirror_num = 1;
A
Arne Jansen 已提交
3122 3123 3124 3125 3126 3127
	}

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3128 3129
	ppath = btrfs_alloc_path();
	if (!ppath) {
3130
		btrfs_free_path(path);
3131 3132 3133
		return -ENOMEM;
	}

3134 3135 3136 3137 3138
	/*
	 * work on commit root. The related disk blocks are static as
	 * long as COW is applied. This means, it is save to rewrite
	 * them to repair disk errors without any race conditions
	 */
A
Arne Jansen 已提交
3139 3140 3141
	path->search_commit_root = 1;
	path->skip_locking = 1;

3142 3143
	ppath->search_commit_root = 1;
	ppath->skip_locking = 1;
A
Arne Jansen 已提交
3144
	/*
A
Arne Jansen 已提交
3145 3146 3147
	 * trigger the readahead for extent tree csum tree and wait for
	 * completion. During readahead, the scrub is officially paused
	 * to not hold off transaction commits
A
Arne Jansen 已提交
3148 3149
	 */
	logical = base + offset;
3150
	physical_end = physical + nstripes * map->stripe_len;
3151
	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3152
		get_raid56_logic_offset(physical_end, num,
3153
					map, &logic_end, NULL);
3154 3155 3156 3157
		logic_end += base;
	} else {
		logic_end = logical + increment * nstripes;
	}
3158
	wait_event(sctx->list_wait,
3159
		   atomic_read(&sctx->bios_in_flight) == 0);
3160
	scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3161 3162

	/* FIXME it might be better to start readahead at commit root */
3163 3164 3165
	key.objectid = logical;
	key.type = BTRFS_EXTENT_ITEM_KEY;
	key.offset = (u64)0;
3166
	key_end.objectid = logic_end;
3167 3168
	key_end.type = BTRFS_METADATA_ITEM_KEY;
	key_end.offset = (u64)-1;
3169
	reada1 = btrfs_reada_add(root, &key, &key_end);
A
Arne Jansen 已提交
3170

3171 3172 3173
	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key.type = BTRFS_EXTENT_CSUM_KEY;
	key.offset = logical;
A
Arne Jansen 已提交
3174 3175
	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3176
	key_end.offset = logic_end;
3177
	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
A
Arne Jansen 已提交
3178 3179 3180 3181 3182 3183

	if (!IS_ERR(reada1))
		btrfs_reada_wait(reada1);
	if (!IS_ERR(reada2))
		btrfs_reada_wait(reada2);

A
Arne Jansen 已提交
3184 3185 3186 3187 3188

	/*
	 * collect all data csums for the stripe to avoid seeking during
	 * the scrub. This might currently (crc32) end up to be about 1MB
	 */
3189
	blk_start_plug(&plug);
A
Arne Jansen 已提交
3190 3191 3192 3193 3194

	/*
	 * now find all extents for each stripe and scrub them
	 */
	ret = 0;
3195
	while (physical < physical_end) {
A
Arne Jansen 已提交
3196 3197 3198 3199
		/*
		 * canceled?
		 */
		if (atomic_read(&fs_info->scrub_cancel_req) ||
3200
		    atomic_read(&sctx->cancel_req)) {
A
Arne Jansen 已提交
3201 3202 3203 3204 3205 3206 3207 3208
			ret = -ECANCELED;
			goto out;
		}
		/*
		 * check to see if we have to pause
		 */
		if (atomic_read(&fs_info->scrub_pause_req)) {
			/* push queued extents */
3209
			atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3210
			scrub_submit(sctx);
3211 3212 3213
			mutex_lock(&sctx->wr_ctx.wr_lock);
			scrub_wr_submit(sctx);
			mutex_unlock(&sctx->wr_ctx.wr_lock);
3214
			wait_event(sctx->list_wait,
3215
				   atomic_read(&sctx->bios_in_flight) == 0);
3216
			atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3217
			scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3218 3219
		}

3220 3221 3222 3223 3224 3225
		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
			ret = get_raid56_logic_offset(physical, num, map,
						      &logical,
						      &stripe_logical);
			logical += base;
			if (ret) {
3226
				/* it is parity strip */
3227
				stripe_logical += base;
3228
				stripe_end = stripe_logical + increment;
3229 3230 3231 3232 3233 3234 3235 3236 3237
				ret = scrub_raid56_parity(sctx, map, scrub_dev,
							  ppath, stripe_logical,
							  stripe_end);
				if (ret)
					goto out;
				goto skip;
			}
		}

3238 3239 3240 3241
		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
			key.type = BTRFS_METADATA_ITEM_KEY;
		else
			key.type = BTRFS_EXTENT_ITEM_KEY;
A
Arne Jansen 已提交
3242
		key.objectid = logical;
L
Liu Bo 已提交
3243
		key.offset = (u64)-1;
A
Arne Jansen 已提交
3244 3245 3246 3247

		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
			goto out;
3248

3249
		if (ret > 0) {
3250
			ret = btrfs_previous_extent_item(root, path, 0);
A
Arne Jansen 已提交
3251 3252
			if (ret < 0)
				goto out;
3253 3254 3255 3256 3257 3258 3259 3260 3261
			if (ret > 0) {
				/* there's no smaller item, so stick with the
				 * larger one */
				btrfs_release_path(path);
				ret = btrfs_search_slot(NULL, root, &key,
							path, 0, 0);
				if (ret < 0)
					goto out;
			}
A
Arne Jansen 已提交
3262 3263
		}

L
Liu Bo 已提交
3264
		stop_loop = 0;
A
Arne Jansen 已提交
3265
		while (1) {
3266 3267
			u64 bytes;

A
Arne Jansen 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276
			l = path->nodes[0];
			slot = path->slots[0];
			if (slot >= btrfs_header_nritems(l)) {
				ret = btrfs_next_leaf(root, path);
				if (ret == 0)
					continue;
				if (ret < 0)
					goto out;

L
Liu Bo 已提交
3277
				stop_loop = 1;
A
Arne Jansen 已提交
3278 3279 3280 3281
				break;
			}
			btrfs_item_key_to_cpu(l, &key, slot);

3282 3283 3284 3285
			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
			    key.type != BTRFS_METADATA_ITEM_KEY)
				goto next;

3286
			if (key.type == BTRFS_METADATA_ITEM_KEY)
3287
				bytes = root->nodesize;
3288 3289 3290 3291
			else
				bytes = key.offset;

			if (key.objectid + bytes <= logical)
A
Arne Jansen 已提交
3292 3293
				goto next;

L
Liu Bo 已提交
3294 3295 3296 3297 3298 3299
			if (key.objectid >= logical + map->stripe_len) {
				/* out of this device extent */
				if (key.objectid >= logic_end)
					stop_loop = 1;
				break;
			}
A
Arne Jansen 已提交
3300 3301 3302 3303 3304 3305

			extent = btrfs_item_ptr(l, slot,
						struct btrfs_extent_item);
			flags = btrfs_extent_flags(l, extent);
			generation = btrfs_extent_generation(l, extent);

3306 3307 3308 3309
			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
			    (key.objectid < logical ||
			     key.objectid + bytes >
			     logical + map->stripe_len)) {
3310 3311 3312
				btrfs_err(fs_info,
					   "scrub: tree block %llu spanning "
					   "stripes, ignored. logical=%llu",
3313
				       key.objectid, logical);
3314 3315 3316
				spin_lock(&sctx->stat_lock);
				sctx->stat.uncorrectable_errors++;
				spin_unlock(&sctx->stat_lock);
A
Arne Jansen 已提交
3317 3318 3319
				goto next;
			}

L
Liu Bo 已提交
3320 3321 3322 3323
again:
			extent_logical = key.objectid;
			extent_len = bytes;

A
Arne Jansen 已提交
3324 3325 3326
			/*
			 * trim extent to this stripe
			 */
L
Liu Bo 已提交
3327 3328 3329
			if (extent_logical < logical) {
				extent_len -= logical - extent_logical;
				extent_logical = logical;
A
Arne Jansen 已提交
3330
			}
L
Liu Bo 已提交
3331
			if (extent_logical + extent_len >
A
Arne Jansen 已提交
3332
			    logical + map->stripe_len) {
L
Liu Bo 已提交
3333 3334
				extent_len = logical + map->stripe_len -
					     extent_logical;
A
Arne Jansen 已提交
3335 3336
			}

L
Liu Bo 已提交
3337
			extent_physical = extent_logical - logical + physical;
3338 3339 3340 3341 3342 3343 3344
			extent_dev = scrub_dev;
			extent_mirror_num = mirror_num;
			if (is_dev_replace)
				scrub_remap_extent(fs_info, extent_logical,
						   extent_len, &extent_physical,
						   &extent_dev,
						   &extent_mirror_num);
L
Liu Bo 已提交
3345

3346 3347 3348 3349 3350
			ret = btrfs_lookup_csums_range(csum_root,
						       extent_logical,
						       extent_logical +
						       extent_len - 1,
						       &sctx->csum_list, 1);
L
Liu Bo 已提交
3351 3352 3353
			if (ret)
				goto out;

3354 3355 3356
			ret = scrub_extent(sctx, extent_logical, extent_len,
					   extent_physical, extent_dev, flags,
					   generation, extent_mirror_num,
3357
					   extent_logical - logical + physical);
3358 3359 3360

			scrub_free_csums(sctx);

A
Arne Jansen 已提交
3361 3362 3363
			if (ret)
				goto out;

L
Liu Bo 已提交
3364 3365
			if (extent_logical + extent_len <
			    key.objectid + bytes) {
3366
				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3367 3368 3369 3370
					/*
					 * loop until we find next data stripe
					 * or we have finished all stripes.
					 */
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
loop:
					physical += map->stripe_len;
					ret = get_raid56_logic_offset(physical,
							num, map, &logical,
							&stripe_logical);
					logical += base;

					if (ret && physical < physical_end) {
						stripe_logical += base;
						stripe_end = stripe_logical +
3381
								increment;
3382 3383 3384 3385 3386 3387 3388 3389
						ret = scrub_raid56_parity(sctx,
							map, scrub_dev, ppath,
							stripe_logical,
							stripe_end);
						if (ret)
							goto out;
						goto loop;
					}
3390 3391 3392 3393
				} else {
					physical += map->stripe_len;
					logical += increment;
				}
L
Liu Bo 已提交
3394 3395 3396 3397 3398
				if (logical < key.objectid + bytes) {
					cond_resched();
					goto again;
				}

3399
				if (physical >= physical_end) {
L
Liu Bo 已提交
3400 3401 3402 3403
					stop_loop = 1;
					break;
				}
			}
A
Arne Jansen 已提交
3404 3405 3406
next:
			path->slots[0]++;
		}
C
Chris Mason 已提交
3407
		btrfs_release_path(path);
3408
skip:
A
Arne Jansen 已提交
3409 3410
		logical += increment;
		physical += map->stripe_len;
3411
		spin_lock(&sctx->stat_lock);
L
Liu Bo 已提交
3412 3413 3414 3415 3416
		if (stop_loop)
			sctx->stat.last_physical = map->stripes[num].physical +
						   length;
		else
			sctx->stat.last_physical = physical;
3417
		spin_unlock(&sctx->stat_lock);
L
Liu Bo 已提交
3418 3419
		if (stop_loop)
			break;
A
Arne Jansen 已提交
3420
	}
3421
out:
A
Arne Jansen 已提交
3422
	/* push queued extents */
3423
	scrub_submit(sctx);
3424 3425 3426
	mutex_lock(&sctx->wr_ctx.wr_lock);
	scrub_wr_submit(sctx);
	mutex_unlock(&sctx->wr_ctx.wr_lock);
A
Arne Jansen 已提交
3427

3428
	blk_finish_plug(&plug);
A
Arne Jansen 已提交
3429
	btrfs_free_path(path);
3430
	btrfs_free_path(ppath);
A
Arne Jansen 已提交
3431 3432 3433
	return ret < 0 ? ret : 0;
}

3434
static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3435 3436
					  struct btrfs_device *scrub_dev,
					  u64 chunk_offset, u64 length,
3437 3438 3439
					  u64 dev_offset,
					  struct btrfs_block_group_cache *cache,
					  int is_dev_replace)
A
Arne Jansen 已提交
3440 3441
{
	struct btrfs_mapping_tree *map_tree =
3442
		&sctx->dev_root->fs_info->mapping_tree;
A
Arne Jansen 已提交
3443 3444 3445
	struct map_lookup *map;
	struct extent_map *em;
	int i;
3446
	int ret = 0;
A
Arne Jansen 已提交
3447 3448 3449 3450 3451

	read_lock(&map_tree->map_tree.lock);
	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
	read_unlock(&map_tree->map_tree.lock);

3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
	if (!em) {
		/*
		 * Might have been an unused block group deleted by the cleaner
		 * kthread or relocation.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed)
			ret = -EINVAL;
		spin_unlock(&cache->lock);

		return ret;
	}
A
Arne Jansen 已提交
3464

3465
	map = em->map_lookup;
A
Arne Jansen 已提交
3466 3467 3468 3469 3470 3471 3472
	if (em->start != chunk_offset)
		goto out;

	if (em->len < length)
		goto out;

	for (i = 0; i < map->num_stripes; ++i) {
3473
		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3474
		    map->stripes[i].physical == dev_offset) {
3475
			ret = scrub_stripe(sctx, map, scrub_dev, i,
3476 3477
					   chunk_offset, length,
					   is_dev_replace);
A
Arne Jansen 已提交
3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
			if (ret)
				goto out;
		}
	}
out:
	free_extent_map(em);

	return ret;
}

static noinline_for_stack
3489
int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3490 3491
			   struct btrfs_device *scrub_dev, u64 start, u64 end,
			   int is_dev_replace)
A
Arne Jansen 已提交
3492 3493 3494
{
	struct btrfs_dev_extent *dev_extent = NULL;
	struct btrfs_path *path;
3495
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3496 3497 3498
	struct btrfs_fs_info *fs_info = root->fs_info;
	u64 length;
	u64 chunk_offset;
3499
	int ret = 0;
3500
	int ro_set;
A
Arne Jansen 已提交
3501 3502 3503 3504 3505
	int slot;
	struct extent_buffer *l;
	struct btrfs_key key;
	struct btrfs_key found_key;
	struct btrfs_block_group_cache *cache;
3506
	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
A
Arne Jansen 已提交
3507 3508 3509 3510 3511

	path = btrfs_alloc_path();
	if (!path)
		return -ENOMEM;

3512
	path->reada = READA_FORWARD;
A
Arne Jansen 已提交
3513 3514 3515
	path->search_commit_root = 1;
	path->skip_locking = 1;

3516
	key.objectid = scrub_dev->devid;
A
Arne Jansen 已提交
3517 3518 3519 3520 3521 3522
	key.offset = 0ull;
	key.type = BTRFS_DEV_EXTENT_KEY;

	while (1) {
		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
		if (ret < 0)
3523 3524 3525 3526 3527
			break;
		if (ret > 0) {
			if (path->slots[0] >=
			    btrfs_header_nritems(path->nodes[0])) {
				ret = btrfs_next_leaf(root, path);
3528 3529 3530 3531
				if (ret < 0)
					break;
				if (ret > 0) {
					ret = 0;
3532
					break;
3533 3534 3535
				}
			} else {
				ret = 0;
3536 3537
			}
		}
A
Arne Jansen 已提交
3538 3539 3540 3541 3542 3543

		l = path->nodes[0];
		slot = path->slots[0];

		btrfs_item_key_to_cpu(l, &found_key, slot);

3544
		if (found_key.objectid != scrub_dev->devid)
A
Arne Jansen 已提交
3545 3546
			break;

3547
		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
A
Arne Jansen 已提交
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558
			break;

		if (found_key.offset >= end)
			break;

		if (found_key.offset < key.offset)
			break;

		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
		length = btrfs_dev_extent_length(l, dev_extent);

3559 3560
		if (found_key.offset + length <= start)
			goto skip;
A
Arne Jansen 已提交
3561 3562 3563 3564 3565 3566 3567 3568

		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);

		/*
		 * get a reference on the corresponding block group to prevent
		 * the chunk from going away while we scrub it
		 */
		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3569 3570 3571 3572 3573 3574

		/* some chunks are removed but not committed to disk yet,
		 * continue scrubbing */
		if (!cache)
			goto skip;

3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
		/*
		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
		 * to avoid deadlock caused by:
		 * btrfs_inc_block_group_ro()
		 * -> btrfs_wait_for_commit()
		 * -> btrfs_commit_transaction()
		 * -> btrfs_scrub_pause()
		 */
		scrub_pause_on(fs_info);
		ret = btrfs_inc_block_group_ro(root, cache);
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
		if (!ret && is_dev_replace) {
			/*
			 * If we are doing a device replace wait for any tasks
			 * that started dellaloc right before we set the block
			 * group to RO mode, as they might have just allocated
			 * an extent from it or decided they could do a nocow
			 * write. And if any such tasks did that, wait for their
			 * ordered extents to complete and then commit the
			 * current transaction, so that we can later see the new
			 * extent items in the extent tree - the ordered extents
			 * create delayed data references (for cow writes) when
			 * they complete, which will be run and insert the
			 * corresponding extent items into the extent tree when
			 * we commit the transaction they used when running
			 * inode.c:btrfs_finish_ordered_io(). We later use
			 * the commit root of the extent tree to find extents
			 * to copy from the srcdev into the tgtdev, and we don't
			 * want to miss any new extents.
			 */
			btrfs_wait_block_group_reservations(cache);
			btrfs_wait_nocow_writers(cache);
			ret = btrfs_wait_ordered_roots(fs_info, -1,
						       cache->key.objectid,
						       cache->key.offset);
			if (ret > 0) {
				struct btrfs_trans_handle *trans;

				trans = btrfs_join_transaction(root);
				if (IS_ERR(trans))
					ret = PTR_ERR(trans);
				else
					ret = btrfs_commit_transaction(trans,
								       root);
				if (ret) {
					scrub_pause_off(fs_info);
					btrfs_put_block_group(cache);
					break;
				}
			}
		}
3625
		scrub_pause_off(fs_info);
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640

		if (ret == 0) {
			ro_set = 1;
		} else if (ret == -ENOSPC) {
			/*
			 * btrfs_inc_block_group_ro return -ENOSPC when it
			 * failed in creating new chunk for metadata.
			 * It is not a problem for scrub/replace, because
			 * metadata are always cowed, and our scrub paused
			 * commit_transactions.
			 */
			ro_set = 0;
		} else {
			btrfs_warn(fs_info, "failed setting block group ro, ret=%d\n",
				   ret);
3641 3642 3643 3644
			btrfs_put_block_group(cache);
			break;
		}

3645
		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3646 3647 3648
		dev_replace->cursor_right = found_key.offset + length;
		dev_replace->cursor_left = found_key.offset;
		dev_replace->item_needs_writeback = 1;
3649
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3650
		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3651
				  found_key.offset, cache, is_dev_replace);
3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670

		/*
		 * flush, submit all pending read and write bios, afterwards
		 * wait for them.
		 * Note that in the dev replace case, a read request causes
		 * write requests that are submitted in the read completion
		 * worker. Therefore in the current situation, it is required
		 * that all write requests are flushed, so that all read and
		 * write requests are really completed when bios_in_flight
		 * changes to 0.
		 */
		atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
		scrub_submit(sctx);
		mutex_lock(&sctx->wr_ctx.wr_lock);
		scrub_wr_submit(sctx);
		mutex_unlock(&sctx->wr_ctx.wr_lock);

		wait_event(sctx->list_wait,
			   atomic_read(&sctx->bios_in_flight) == 0);
3671 3672

		scrub_pause_on(fs_info);
3673 3674 3675 3676 3677 3678

		/*
		 * must be called before we decrease @scrub_paused.
		 * make sure we don't block transaction commit while
		 * we are waiting pending workers finished.
		 */
3679 3680
		wait_event(sctx->list_wait,
			   atomic_read(&sctx->workers_pending) == 0);
3681 3682
		atomic_set(&sctx->wr_ctx.flush_all_writes, 0);

3683
		scrub_pause_off(fs_info);
3684

3685 3686 3687 3688 3689
		btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
		dev_replace->cursor_left = dev_replace->cursor_right;
		dev_replace->item_needs_writeback = 1;
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);

3690 3691
		if (ro_set)
			btrfs_dec_block_group_ro(root, cache);
3692

3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
		/*
		 * We might have prevented the cleaner kthread from deleting
		 * this block group if it was already unused because we raced
		 * and set it to RO mode first. So add it back to the unused
		 * list, otherwise it might not ever be deleted unless a manual
		 * balance is triggered or it becomes used and unused again.
		 */
		spin_lock(&cache->lock);
		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
		    btrfs_block_group_used(&cache->item) == 0) {
			spin_unlock(&cache->lock);
			spin_lock(&fs_info->unused_bgs_lock);
			if (list_empty(&cache->bg_list)) {
				btrfs_get_block_group(cache);
				list_add_tail(&cache->bg_list,
					      &fs_info->unused_bgs);
			}
			spin_unlock(&fs_info->unused_bgs_lock);
		} else {
			spin_unlock(&cache->lock);
		}

A
Arne Jansen 已提交
3715 3716 3717
		btrfs_put_block_group(cache);
		if (ret)
			break;
3718 3719
		if (is_dev_replace &&
		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3720 3721 3722 3723 3724 3725 3726
			ret = -EIO;
			break;
		}
		if (sctx->stat.malloc_errors > 0) {
			ret = -ENOMEM;
			break;
		}
3727
skip:
A
Arne Jansen 已提交
3728
		key.offset = found_key.offset + length;
C
Chris Mason 已提交
3729
		btrfs_release_path(path);
A
Arne Jansen 已提交
3730 3731 3732
	}

	btrfs_free_path(path);
3733

3734
	return ret;
A
Arne Jansen 已提交
3735 3736
}

3737 3738
static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
					   struct btrfs_device *scrub_dev)
A
Arne Jansen 已提交
3739 3740 3741 3742 3743
{
	int	i;
	u64	bytenr;
	u64	gen;
	int	ret;
3744
	struct btrfs_root *root = sctx->dev_root;
A
Arne Jansen 已提交
3745

3746
	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
3747 3748
		return -EIO;

3749 3750 3751 3752 3753
	/* Seed devices of a new filesystem has their own generation. */
	if (scrub_dev->fs_devices != root->fs_info->fs_devices)
		gen = scrub_dev->generation;
	else
		gen = root->fs_info->last_trans_committed;
A
Arne Jansen 已提交
3754 3755 3756

	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
		bytenr = btrfs_sb_offset(i);
3757 3758
		if (bytenr + BTRFS_SUPER_INFO_SIZE >
		    scrub_dev->commit_total_bytes)
A
Arne Jansen 已提交
3759 3760
			break;

3761
		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3762
				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3763
				  NULL, 1, bytenr);
A
Arne Jansen 已提交
3764 3765 3766
		if (ret)
			return ret;
	}
3767
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3768 3769 3770 3771 3772 3773 3774

	return 0;
}

/*
 * get a reference count on fs_info->scrub_workers. start worker if necessary
 */
3775 3776
static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
						int is_dev_replace)
A
Arne Jansen 已提交
3777
{
3778
	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3779
	int max_active = fs_info->thread_pool_size;
A
Arne Jansen 已提交
3780

A
Arne Jansen 已提交
3781
	if (fs_info->scrub_workers_refcnt == 0) {
3782
		if (is_dev_replace)
3783
			fs_info->scrub_workers =
3784
				btrfs_alloc_workqueue(fs_info, "scrub", flags,
3785
						      1, 4);
3786
		else
3787
			fs_info->scrub_workers =
3788
				btrfs_alloc_workqueue(fs_info, "scrub", flags,
3789
						      max_active, 4);
3790 3791 3792
		if (!fs_info->scrub_workers)
			goto fail_scrub_workers;

3793
		fs_info->scrub_wr_completion_workers =
3794
			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3795
					      max_active, 2);
3796 3797 3798
		if (!fs_info->scrub_wr_completion_workers)
			goto fail_scrub_wr_completion_workers;

3799
		fs_info->scrub_nocow_workers =
3800
			btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
3801 3802
		if (!fs_info->scrub_nocow_workers)
			goto fail_scrub_nocow_workers;
3803
		fs_info->scrub_parity_workers =
3804
			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3805
					      max_active, 2);
3806 3807
		if (!fs_info->scrub_parity_workers)
			goto fail_scrub_parity_workers;
A
Arne Jansen 已提交
3808
	}
A
Arne Jansen 已提交
3809
	++fs_info->scrub_workers_refcnt;
3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
	return 0;

fail_scrub_parity_workers:
	btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
fail_scrub_nocow_workers:
	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
fail_scrub_wr_completion_workers:
	btrfs_destroy_workqueue(fs_info->scrub_workers);
fail_scrub_workers:
	return -ENOMEM;
A
Arne Jansen 已提交
3820 3821
}

3822
static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
3823
{
3824
	if (--fs_info->scrub_workers_refcnt == 0) {
3825 3826 3827
		btrfs_destroy_workqueue(fs_info->scrub_workers);
		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
		btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
3828
		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3829
	}
A
Arne Jansen 已提交
3830 3831 3832
	WARN_ON(fs_info->scrub_workers_refcnt < 0);
}

3833 3834
int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
		    u64 end, struct btrfs_scrub_progress *progress,
3835
		    int readonly, int is_dev_replace)
A
Arne Jansen 已提交
3836
{
3837
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
3838 3839
	int ret;
	struct btrfs_device *dev;
3840
	struct rcu_string *name;
A
Arne Jansen 已提交
3841

3842
	if (btrfs_fs_closing(fs_info))
A
Arne Jansen 已提交
3843 3844
		return -EINVAL;

3845
	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
3846 3847 3848 3849 3850
		/*
		 * in this case scrub is unable to calculate the checksum
		 * the way scrub is implemented. Do not handle this
		 * situation at all because it won't ever happen.
		 */
3851 3852
		btrfs_err(fs_info,
			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3853
		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
3854 3855 3856
		return -EINVAL;
	}

3857
	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
3858
		/* not supported for data w/o checksums */
3859
		btrfs_err_rl(fs_info,
3860 3861
			   "scrub: size assumption sectorsize != PAGE_SIZE "
			   "(%d != %lu) fails",
3862
		       fs_info->chunk_root->sectorsize, PAGE_SIZE);
A
Arne Jansen 已提交
3863 3864 3865
		return -EINVAL;
	}

3866 3867 3868 3869 3870 3871 3872 3873
	if (fs_info->chunk_root->nodesize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
	    fs_info->chunk_root->sectorsize >
	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
		/*
		 * would exhaust the array bounds of pagev member in
		 * struct scrub_block
		 */
3874 3875
		btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
			   "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3876 3877 3878 3879 3880 3881 3882
		       fs_info->chunk_root->nodesize,
		       SCRUB_MAX_PAGES_PER_BLOCK,
		       fs_info->chunk_root->sectorsize,
		       SCRUB_MAX_PAGES_PER_BLOCK);
		return -EINVAL;
	}

A
Arne Jansen 已提交
3883

3884 3885
	mutex_lock(&fs_info->fs_devices->device_list_mutex);
	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3886
	if (!dev || (dev->missing && !is_dev_replace)) {
3887
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3888 3889 3890
		return -ENODEV;
	}

3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
	if (!is_dev_replace && !readonly && !dev->writeable) {
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		rcu_read_lock();
		name = rcu_dereference(dev->name);
		btrfs_err(fs_info, "scrub: device %s is not writable",
			  name->str);
		rcu_read_unlock();
		return -EROFS;
	}

3901
	mutex_lock(&fs_info->scrub_lock);
3902
	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
A
Arne Jansen 已提交
3903
		mutex_unlock(&fs_info->scrub_lock);
3904 3905
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return -EIO;
A
Arne Jansen 已提交
3906 3907
	}

3908
	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3909 3910 3911
	if (dev->scrub_device ||
	    (!is_dev_replace &&
	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3912
		btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
A
Arne Jansen 已提交
3913
		mutex_unlock(&fs_info->scrub_lock);
3914
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3915 3916
		return -EINPROGRESS;
	}
3917
	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3918 3919 3920 3921 3922 3923 3924 3925

	ret = scrub_workers_get(fs_info, is_dev_replace);
	if (ret) {
		mutex_unlock(&fs_info->scrub_lock);
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		return ret;
	}

3926
	sctx = scrub_setup_ctx(dev, is_dev_replace);
3927
	if (IS_ERR(sctx)) {
A
Arne Jansen 已提交
3928
		mutex_unlock(&fs_info->scrub_lock);
3929 3930
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
		scrub_workers_put(fs_info);
3931
		return PTR_ERR(sctx);
A
Arne Jansen 已提交
3932
	}
3933 3934
	sctx->readonly = readonly;
	dev->scrub_device = sctx;
3935
	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
A
Arne Jansen 已提交
3936

3937 3938 3939 3940
	/*
	 * checking @scrub_pause_req here, we can avoid
	 * race between committing transaction and scrubbing.
	 */
3941
	__scrub_blocked_if_needed(fs_info);
A
Arne Jansen 已提交
3942 3943 3944
	atomic_inc(&fs_info->scrubs_running);
	mutex_unlock(&fs_info->scrub_lock);

3945
	if (!is_dev_replace) {
3946 3947 3948 3949
		/*
		 * by holding device list mutex, we can
		 * kick off writing super in log tree sync.
		 */
3950
		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3951
		ret = scrub_supers(sctx, dev);
3952
		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3953
	}
A
Arne Jansen 已提交
3954 3955

	if (!ret)
3956 3957
		ret = scrub_enumerate_chunks(sctx, dev, start, end,
					     is_dev_replace);
A
Arne Jansen 已提交
3958

3959
	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
A
Arne Jansen 已提交
3960 3961 3962
	atomic_dec(&fs_info->scrubs_running);
	wake_up(&fs_info->scrub_pause_wait);

3963
	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3964

A
Arne Jansen 已提交
3965
	if (progress)
3966
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
3967 3968 3969

	mutex_lock(&fs_info->scrub_lock);
	dev->scrub_device = NULL;
3970
	scrub_workers_put(fs_info);
A
Arne Jansen 已提交
3971 3972
	mutex_unlock(&fs_info->scrub_lock);

3973
	scrub_put_ctx(sctx);
A
Arne Jansen 已提交
3974 3975 3976 3977

	return ret;
}

3978
void btrfs_scrub_pause(struct btrfs_root *root)
A
Arne Jansen 已提交
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	mutex_lock(&fs_info->scrub_lock);
	atomic_inc(&fs_info->scrub_pause_req);
	while (atomic_read(&fs_info->scrubs_paused) !=
	       atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_paused) ==
			   atomic_read(&fs_info->scrubs_running));
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);
}

3995
void btrfs_scrub_continue(struct btrfs_root *root)
A
Arne Jansen 已提交
3996 3997 3998 3999 4000 4001 4002
{
	struct btrfs_fs_info *fs_info = root->fs_info;

	atomic_dec(&fs_info->scrub_pause_req);
	wake_up(&fs_info->scrub_pause_wait);
}

4003
int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
A
Arne Jansen 已提交
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
{
	mutex_lock(&fs_info->scrub_lock);
	if (!atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}

	atomic_inc(&fs_info->scrub_cancel_req);
	while (atomic_read(&fs_info->scrubs_running)) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   atomic_read(&fs_info->scrubs_running) == 0);
		mutex_lock(&fs_info->scrub_lock);
	}
	atomic_dec(&fs_info->scrub_cancel_req);
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}

4024 4025
int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
			   struct btrfs_device *dev)
4026
{
4027
	struct scrub_ctx *sctx;
A
Arne Jansen 已提交
4028 4029

	mutex_lock(&fs_info->scrub_lock);
4030 4031
	sctx = dev->scrub_device;
	if (!sctx) {
A
Arne Jansen 已提交
4032 4033 4034
		mutex_unlock(&fs_info->scrub_lock);
		return -ENOTCONN;
	}
4035
	atomic_inc(&sctx->cancel_req);
A
Arne Jansen 已提交
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
	while (dev->scrub_device) {
		mutex_unlock(&fs_info->scrub_lock);
		wait_event(fs_info->scrub_pause_wait,
			   dev->scrub_device == NULL);
		mutex_lock(&fs_info->scrub_lock);
	}
	mutex_unlock(&fs_info->scrub_lock);

	return 0;
}
S
Stefan Behrens 已提交
4046

A
Arne Jansen 已提交
4047 4048 4049 4050
int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
			 struct btrfs_scrub_progress *progress)
{
	struct btrfs_device *dev;
4051
	struct scrub_ctx *sctx = NULL;
A
Arne Jansen 已提交
4052 4053

	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
4054
	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
A
Arne Jansen 已提交
4055
	if (dev)
4056 4057 4058
		sctx = dev->scrub_device;
	if (sctx)
		memcpy(progress, &sctx->stat, sizeof(*progress));
A
Arne Jansen 已提交
4059 4060
	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);

4061
	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
A
Arne Jansen 已提交
4062
}
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078

static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
			       u64 extent_logical, u64 extent_len,
			       u64 *extent_physical,
			       struct btrfs_device **extent_dev,
			       int *extent_mirror_num)
{
	u64 mapped_length;
	struct btrfs_bio *bbio = NULL;
	int ret;

	mapped_length = extent_len;
	ret = btrfs_map_block(fs_info, READ, extent_logical,
			      &mapped_length, &bbio, 0);
	if (ret || !bbio || mapped_length < extent_len ||
	    !bbio->stripes[0].dev->bdev) {
4079
		btrfs_put_bbio(bbio);
4080 4081 4082 4083 4084 4085
		return;
	}

	*extent_physical = bbio->stripes[0].physical;
	*extent_mirror_num = bbio->mirror_num;
	*extent_dev = bbio->stripes[0].dev;
4086
	btrfs_put_bbio(bbio);
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
}

static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
			      struct scrub_wr_ctx *wr_ctx,
			      struct btrfs_fs_info *fs_info,
			      struct btrfs_device *dev,
			      int is_dev_replace)
{
	WARN_ON(wr_ctx->wr_curr_bio != NULL);

	mutex_init(&wr_ctx->wr_lock);
	wr_ctx->wr_curr_bio = NULL;
	if (!is_dev_replace)
		return 0;

	WARN_ON(!dev->bdev);
4103
	wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137
	wr_ctx->tgtdev = dev;
	atomic_set(&wr_ctx->flush_all_writes, 0);
	return 0;
}

static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
{
	mutex_lock(&wr_ctx->wr_lock);
	kfree(wr_ctx->wr_curr_bio);
	wr_ctx->wr_curr_bio = NULL;
	mutex_unlock(&wr_ctx->wr_lock);
}

static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
			    int mirror_num, u64 physical_for_dev_replace)
{
	struct scrub_copy_nocow_ctx *nocow_ctx;
	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;

	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
	if (!nocow_ctx) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}

	scrub_pending_trans_workers_inc(sctx);

	nocow_ctx->sctx = sctx;
	nocow_ctx->logical = logical;
	nocow_ctx->len = len;
	nocow_ctx->mirror_num = mirror_num;
	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
4138 4139
	btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
			copy_nocow_pages_worker, NULL, NULL);
4140
	INIT_LIST_HEAD(&nocow_ctx->inodes);
4141 4142
	btrfs_queue_work(fs_info->scrub_nocow_workers,
			 &nocow_ctx->work);
4143 4144 4145 4146

	return 0;
}

4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163
static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
{
	struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
	struct scrub_nocow_inode *nocow_inode;

	nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
	if (!nocow_inode)
		return -ENOMEM;
	nocow_inode->inum = inum;
	nocow_inode->offset = offset;
	nocow_inode->root = root;
	list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
	return 0;
}

#define COPY_COMPLETE 1

4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
static void copy_nocow_pages_worker(struct btrfs_work *work)
{
	struct scrub_copy_nocow_ctx *nocow_ctx =
		container_of(work, struct scrub_copy_nocow_ctx, work);
	struct scrub_ctx *sctx = nocow_ctx->sctx;
	u64 logical = nocow_ctx->logical;
	u64 len = nocow_ctx->len;
	int mirror_num = nocow_ctx->mirror_num;
	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
	int ret;
	struct btrfs_trans_handle *trans = NULL;
	struct btrfs_fs_info *fs_info;
	struct btrfs_path *path;
	struct btrfs_root *root;
	int not_written = 0;

	fs_info = sctx->dev_root->fs_info;
	root = fs_info->extent_root;

	path = btrfs_alloc_path();
	if (!path) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		not_written = 1;
		goto out;
	}

	trans = btrfs_join_transaction(root);
	if (IS_ERR(trans)) {
		not_written = 1;
		goto out;
	}

	ret = iterate_inodes_from_logical(logical, fs_info, path,
4199
					  record_inode_for_nocow, nocow_ctx);
4200
	if (ret != 0 && ret != -ENOENT) {
4201 4202
		btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
			"phys %llu, len %llu, mir %u, ret %d",
4203 4204
			logical, physical_for_dev_replace, len, mirror_num,
			ret);
4205 4206 4207 4208
		not_written = 1;
		goto out;
	}

4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226
	btrfs_end_transaction(trans, root);
	trans = NULL;
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
						 entry->root, nocow_ctx);
		kfree(entry);
		if (ret == COPY_COMPLETE) {
			ret = 0;
			break;
		} else if (ret) {
			break;
		}
	}
4227
out:
4228 4229 4230 4231 4232 4233 4234 4235
	while (!list_empty(&nocow_ctx->inodes)) {
		struct scrub_nocow_inode *entry;
		entry = list_first_entry(&nocow_ctx->inodes,
					 struct scrub_nocow_inode,
					 list);
		list_del_init(&entry->list);
		kfree(entry);
	}
4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
	if (trans && !IS_ERR(trans))
		btrfs_end_transaction(trans, root);
	if (not_written)
		btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
					    num_uncorrectable_read_errors);

	btrfs_free_path(path);
	kfree(nocow_ctx);

	scrub_pending_trans_workers_dec(sctx);
}

4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
static int check_extent_to_block(struct inode *inode, u64 start, u64 len,
				 u64 logical)
{
	struct extent_state *cached_state = NULL;
	struct btrfs_ordered_extent *ordered;
	struct extent_io_tree *io_tree;
	struct extent_map *em;
	u64 lockstart = start, lockend = start + len - 1;
	int ret = 0;

	io_tree = &BTRFS_I(inode)->io_tree;

4260
	lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
	ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
	if (ordered) {
		btrfs_put_ordered_extent(ordered);
		ret = 1;
		goto out_unlock;
	}

	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
	if (IS_ERR(em)) {
		ret = PTR_ERR(em);
		goto out_unlock;
	}

	/*
	 * This extent does not actually cover the logical extent anymore,
	 * move on to the next inode.
	 */
	if (em->block_start > logical ||
	    em->block_start + em->block_len < logical + len) {
		free_extent_map(em);
		ret = 1;
		goto out_unlock;
	}
	free_extent_map(em);

out_unlock:
	unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
			     GFP_NOFS);
	return ret;
}

4292 4293
static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
				      struct scrub_copy_nocow_ctx *nocow_ctx)
4294
{
4295
	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
4296
	struct btrfs_key key;
4297 4298
	struct inode *inode;
	struct page *page;
4299
	struct btrfs_root *local_root;
4300
	struct extent_io_tree *io_tree;
4301
	u64 physical_for_dev_replace;
4302
	u64 nocow_ctx_logical;
4303
	u64 len = nocow_ctx->len;
4304
	unsigned long index;
4305
	int srcu_index;
4306 4307
	int ret = 0;
	int err = 0;
4308 4309 4310 4311

	key.objectid = root;
	key.type = BTRFS_ROOT_ITEM_KEY;
	key.offset = (u64)-1;
4312 4313 4314

	srcu_index = srcu_read_lock(&fs_info->subvol_srcu);

4315
	local_root = btrfs_read_fs_root_no_name(fs_info, &key);
4316 4317
	if (IS_ERR(local_root)) {
		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4318
		return PTR_ERR(local_root);
4319
	}
4320 4321 4322 4323 4324

	key.type = BTRFS_INODE_ITEM_KEY;
	key.objectid = inum;
	key.offset = 0;
	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
4325
	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
4326 4327 4328
	if (IS_ERR(inode))
		return PTR_ERR(inode);

4329
	/* Avoid truncate/dio/punch hole.. */
A
Al Viro 已提交
4330
	inode_lock(inode);
4331 4332
	inode_dio_wait(inode);

4333
	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4334
	io_tree = &BTRFS_I(inode)->io_tree;
4335
	nocow_ctx_logical = nocow_ctx->logical;
4336

4337 4338 4339 4340
	ret = check_extent_to_block(inode, offset, len, nocow_ctx_logical);
	if (ret) {
		ret = ret > 0 ? 0 : ret;
		goto out;
4341 4342
	}

4343 4344
	while (len >= PAGE_SIZE) {
		index = offset >> PAGE_SHIFT;
4345
again:
4346 4347
		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
		if (!page) {
4348
			btrfs_err(fs_info, "find_or_create_page() failed");
4349
			ret = -ENOMEM;
4350
			goto out;
4351 4352 4353 4354 4355 4356 4357
		}

		if (PageUptodate(page)) {
			if (PageDirty(page))
				goto next_page;
		} else {
			ClearPageError(page);
4358
			err = extent_read_full_page(io_tree, page,
4359 4360
							   btrfs_get_extent,
							   nocow_ctx->mirror_num);
4361 4362
			if (err) {
				ret = err;
4363 4364
				goto next_page;
			}
4365

4366
			lock_page(page);
4367 4368 4369 4370 4371 4372 4373
			/*
			 * If the page has been remove from the page cache,
			 * the data on it is meaningless, because it may be
			 * old one, the new data may be written into the new
			 * page in the page cache.
			 */
			if (page->mapping != inode->i_mapping) {
4374
				unlock_page(page);
4375
				put_page(page);
4376 4377
				goto again;
			}
4378 4379 4380 4381 4382
			if (!PageUptodate(page)) {
				ret = -EIO;
				goto next_page;
			}
		}
4383 4384 4385 4386 4387 4388 4389 4390

		ret = check_extent_to_block(inode, offset, len,
					    nocow_ctx_logical);
		if (ret) {
			ret = ret > 0 ? 0 : ret;
			goto next_page;
		}

4391 4392 4393 4394
		err = write_page_nocow(nocow_ctx->sctx,
				       physical_for_dev_replace, page);
		if (err)
			ret = err;
4395
next_page:
4396
		unlock_page(page);
4397
		put_page(page);
4398 4399 4400 4401

		if (ret)
			break;

4402 4403 4404 4405
		offset += PAGE_SIZE;
		physical_for_dev_replace += PAGE_SIZE;
		nocow_ctx_logical += PAGE_SIZE;
		len -= PAGE_SIZE;
4406
	}
4407
	ret = COPY_COMPLETE;
4408
out:
A
Al Viro 已提交
4409
	inode_unlock(inode);
4410
	iput(inode);
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
	return ret;
}

static int write_page_nocow(struct scrub_ctx *sctx,
			    u64 physical_for_dev_replace, struct page *page)
{
	struct bio *bio;
	struct btrfs_device *dev;
	int ret;

	dev = sctx->wr_ctx.tgtdev;
	if (!dev)
		return -EIO;
	if (!dev->bdev) {
4425 4426
		btrfs_warn_rl(dev->dev_root->fs_info,
			"scrub write_page_nocow(bdev == NULL) is unexpected");
4427 4428
		return -EIO;
	}
4429
	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4430 4431 4432 4433 4434 4435
	if (!bio) {
		spin_lock(&sctx->stat_lock);
		sctx->stat.malloc_errors++;
		spin_unlock(&sctx->stat_lock);
		return -ENOMEM;
	}
4436 4437
	bio->bi_iter.bi_size = 0;
	bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
4438
	bio->bi_bdev = dev->bdev;
4439 4440
	ret = bio_add_page(bio, page, PAGE_SIZE, 0);
	if (ret != PAGE_SIZE) {
4441 4442 4443 4444 4445 4446
leave_with_eio:
		bio_put(bio);
		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
		return -EIO;
	}

4447
	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
4448 4449 4450 4451 4452
		goto leave_with_eio;

	bio_put(bio);
	return 0;
}